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The tunneling wave function of the Universe is calculated exactly for a de Sitter minisuperspace model
with a massless conformally coupled scalar field, both by solving the Wheeler-DeWitt equation and by
evaluating the Lorentzian path integral. The same wave function is found in both approaches. The
backreaction of quantum field fluctuations on the scale factor amounts to a constant renormalization of the
vacuum energy density. This is in contrast to the recent suggestion of Feldbrugge et al. that the backreaction
should diverge when the scale factor gets small, a → 0. Similar results are found for a massive scalar field
in the limit of a large mass. We also verified that the tunneling wave function can be expressed as a
transition amplitude from a universe of vanishing size with the scalar field in the state of Euclidean vacuum,
as was suggested in our earlier work.
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I. INTRODUCTION

In quantum cosmology, the entire Universe is treated
quantummechanically and is described by a wave function,
rather than by a classical spacetime. The wave function
Ψðg;ϕÞ is defined on the space of all 3-geometries (g) and
matter field configurations (ϕ), called superspace. It can be
found by solving the Wheeler-DeWitt (WDW) equation

HΨ ¼ 0; ð1Þ
where H is the Hamiltonian operator. Alternatively, the
wave function can be expressed as a path integral,

Ψðg;ϕÞ ¼
Z ðg;ϕÞ

DgDϕeiS; ð2Þ

where S is the action.
The choice of the boundary conditions for the WDW

equation and of the class of paths included in the path
integral has been a subject of ongoing debate. The most
developed proposals in this regard are the no-boundary [1]
and the tunneling [2–4] proposals.1 The debate around
these proposals has recently intensified [10–15], spurred by
the work of Feldbrugge et al. [10–12], who pointed out that
the path integral in (2) can be rigorously defined with the
aid of the Picard-Lefschetz theory (at least in minisuper-
space models, where the number of degrees of freedom is
truncated to a finite number).
Our focus in this paper will be on the tunneling wave

function of the Universe. It was defined in Refs. [2,3] by
specifying a boundary condition for the WDW equation.

Roughly, Ψ is required to include only outgoing waves
at the boundary of superspace, except for the part of the
boundary corresponding to vanishing 3-geometries (see
Refs. [2,3] for more details). This is supplemented by the
regularity condition, requiring that Ψ remains finite every-
where, including the boundaries of superspace,

jΨðg;ϕÞj < ∞: ð3Þ

The resulting wave function can be interpreted as describing
a universe originating at zero size, that is, from “nothing”.
It was conjectured in Refs. [4,8] that the same wave

function can be expressed as a path integral (2) with the
integration taken over (Lorentzian) histories interpolating
between a vanishing 3-geometry and a given configuration
ðg;ϕÞ in superspace. In the simple de Sitter minisuperspace
model describing a spherical universe with a positive
vacuum energy density, this expectation was confirmed
in Ref. [16] and more recently in [10] using the Picard-
Lefschetz method. However, the situation with extensions
of the de Sitter model to perturbative superspace, including
scalar field and/or gravitational wave perturbations, is still a
matter of dispute.
The tunneling wave function in a perturbative WDW

approach has been discussed in Refs. [3,17], with the
conclusion that the modes of free scalar and gravitational
fields are described by Gaussian wave functions corre-
sponding to de Sitter invariant (Bunch-Davies) quantum
states. On the other hand, Feldbrugge et al. [11] argued that
the path integral version of the tunneling proposal predicts
a runaway instability: the probability of quantum fluctua-
tions of the fields grows with their amplitude, so the
conjecture of [8] does not hold. Similar claims about

1For early work closely related to the tunneling proposal, see
Refs. [5–9].
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instability of the tunneling proposal have also been made in
the earlier literature [18].
We have addressed this issue in our recent paper [15],

where we showed that quantum field fluctuations in the
tunneling wave function (2) are well behaved if the action S
is supplemented with a suitable boundary term. Inclusion of
this term is, in fact, necessary. The regularity condition (3)
requires that the mode functions satisfy the Robin boundary
condition at a → 0, where a is the radius of the Universe,
and the boundary termmust be chosen so that the variational
problem iswell defined.The path integral thengives the same
wave function as the WDW approach in [3,17].
A related issue is the behavior of themode functionsϕnðaÞ

at a → 0. The tunneling wave function has two branches in
the classically forbidden (under-barrier) region: one branch
growing with a and the other decreasing with a. On the
growing branch our boundary conditions select the modes
satisfying ϕnð0Þ ¼ 0.2 But on the decreasing branch, the
mode function grows without bound at a → 0, and some
authors suggested that this may cause serious problems.
In the path integral approach, Feldbrugge et al. [12] argued

that such behavior of the mode functions is unacceptable
because it makes the mode action infinite. However, we
showed in [15] that inclusion of the boundary term renders
the action finite. We emphasize that inclusion of this term is
not a matter of choice: it is dictated by our boundary
conditions. Another concern raised in Ref. [12] is that the
unbounded growth ofmodeswould cause an infinitely strong
backreaction on the geometry. The perturbative expansion
would then break down when one tries to go beyond the
linear perturbation theory considered in [15].
Here, we are going to show that the backreaction is

actually well under control. We first note that the problem,
if it exists, should be present in the case of a massless
conformally coupled field, where the mode functions
exhibit the same behavior. Moreover, the same behavior
of the mode functions is obtained in the WDWapproach, so
one would expect the same backreaction problem to arise
there as well. An attractive feature of this model is that it
allows an exact solution, so the backreaction problem can
be completely analyzed.
In the next section, we consider a de Sitter model with a

massless conformal scalar field in the WDW approach and
show that the field backreaction amounts to the usual
renormalization of the vacuum energy density. We also
consider a massive field in the perturbative superspace
framework and reach the same conclusion regarding the
backreaction in the limit of a large mass. In Sec. III, we
evaluate the Lorentzian path integral for both massless and
massive models. This yields the same results as the WDW
approach. We also verify that the tunneling wave function
can be expressed as a transition amplitude from a universe

of vanishing size with the scalar field in the state of
Euclidean vacuum, as it was suggested in [15]. Our results
are summarized and discussed in Sec. IV.

II. WDW APPROACH

A. Perturbative superspace

We consider a closed FRW universe,

ds2 ¼ a2ðηÞðN2dη2 − dΩ2
3Þ; ð4Þ

with a conformally coupled scalar field ϕ. Here, aðηÞ is the
scale factor (radius of the Universe), η is the conformal
time, and N is the lapse parameter, which is set to be
constant. The action for this model is given by

S ¼
Z ffiffiffiffiffiffiffiffiffiffi

−gð4Þ
q

d4x

�
R
2
− ρv

�
þ Sm þ SB; ð5Þ

Sm¼
Z ffiffiffiffiffiffiffiffiffiffi

−gð4Þ
q

d4x

�
−
1

2
ð∇ϕÞ2−1

2
m2ϕ2−

1

12
Rϕ2

�
: ð6Þ

Here, ρv is the vacuum energy density, SB is the boundary
term, and we use Planck units with ℏ ¼ c ¼ 1 and
8πG ¼ 1. The boundary term is unimportant in the
WDW approach; it will be specified in the next section.
We expand the field ϕ as

ϕðx; tÞ ¼
X

ϕnðtÞQnðxÞ ¼
1

aðtÞ
X

χnðtÞQnðxÞ; ð7Þ

Z
QnQ�

n0dΩ3 ¼ δnn0 ; ð8Þ

whereQnlmðxÞ are suitably normalized spherical harmonics
and we have suppressed the indices l, m for brevity.
The wave function of the Universe Ψða; fϕngÞ satisfies

the WDW equation,

�
1

24π2
∂2

∂a2 − 6π2VðaÞ þ
X
n

n2Hn

�
Ψ ¼ 0: ð9Þ

Here,

VðaÞ ¼ a2 −H2a4; ð10Þ
H2 ¼ ρv=3, the scalar field Hamiltonian for the nth mode is

Hn ¼ −
1

2

∂2

∂χ2n þ
1

2
ðn2 þm2a2Þχ2n; ð11Þ

and n2 is the mode degeneracy factor. We also disregard the
ambiguity of ordering the factors a and ∂=∂a. This is
justified when ρv ≪ 1 and the scale factor can be regarded

2The same modes are selected by the Hartle-Hawking wave
function, which does not include a decreasing branch.
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as a semiclassical variable.3 With the modes χn treated as
small perturbations, a solution of Eq. (9) can be expressed
as a superposition of terms of the form [17,19,20]

Ψða; χnÞ ¼ A exp

�
−12π2SðaÞ − 1

2

X
n

RnðaÞχ2n
�
; ð12Þ

where A is a normalization constant. Substituting this in (9)
and neglecting terms Oðχ4nÞ, we obtain

�
dS
da

�
2

− VðaÞ − ℏ
12π2

S00 þ ℏ
12π2

X
n

n2Rn ¼ 0; ð13Þ

�
dS
da

��
dRn

da

�
− R2

n þ ω2
nðaÞ −

ℏ
24π2

R00
n ¼ 0: ð14Þ

Here, we explicitly wrote the Planck constant ℏ ¼ 1 only to
indicate the subleading terms in the WKB expansion.4

The terms proportional to S00 and R00
n are responsible for

WKB pre-factors, while the last term in (13) accounts for
the backreaction of quantum field fluctuations on the
dynamics of the scale factor a. We shall first focus on
the leading semiclassical behavior, neglecting terms pro-
portional to ℏ.
In the classically forbidden range ða < H−1Þ, it will be

convenient to introduce a Euclidean conformal time var-
iable τ via

da
dτ

¼ dS
da

¼ �
ffiffiffiffiffiffiffiffiffiffi
VðaÞ

p
: ð15Þ

With VðaÞ from (10), this has the solution

aðτÞ ¼ ðH cosh τÞ−1 ð16Þ

or

eτ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2a2

p

Ha
: ð17Þ

The upper and lower signs in Eqs. (15) and (17) correspond
to the decreasing and growing branches of the wave
function, respectively. Note that for a → 0 we have τ →
−∞ on the decreasing branch and τ → þ∞ on the growing
branch. More specifically,

Ha
2

≈ e∓τ ðτ → �∞Þ: ð18Þ

The tunneling boundary condition requires that only an
outgoing branch of the wave function should be present in
the classically allowed range. The relative magnitude of the
three branches can then be determined using the WKB
connection formulas at the turning point a ¼ H−1.

B. Mode functions

Turning now to Eq. (14) for Rn, we rewrite it in the
leading semiclassical order as

dRn

dτ
− R2

n þ ω2
nðaÞ ¼ 0: ð19Þ

This is a Riccati equation; it can be reduced to a linear
equation by the standard substitution

RnðτÞ ¼ −
_νn
νn

; ð20Þ

where dots stand for derivatives with respect to τ and the
functions νnðτÞ satisfy the free field equation

ν̈n − ω2
nνn ¼ 0: ð21Þ

The regularity condition (3) requires that the functions
RnðaÞ should satisfy RefRnðaÞg > 0. It has been shown in
Ref. [15] that this condition is enforced, provided that the
mode functions satisfy the Robin boundary condition,

dνn
dτ

¼ −nνn; ð22Þ

at τ → �∞. This selects the solutions

νnðτÞ ∝ expð−nτÞ ðτ → �∞Þ: ð23Þ

As we noted, τ → �∞ corresponds to a → 0, with the
upper and lower signs corresponding, respectively, to the
growing and decreasing branches of the wave function. We
then find that νn ∝ a�n at a → 0. Hence on the growing
branch our mode functions νn are regular at a ¼ 0, while on
the decreasing branch they grow without bound.
Note, however, that it follows from Eq. (20) that on both

branches of the wave function we have Rnð0Þ ¼ n, so the
wave function Ψða; fχngÞ is nonsingular at a → 0.
Furthermore, the backreaction terms Rn in Eq. (13) are
all regular and show no sign of an infinite backreaction.
One may still be concerned that this is an artifact of
perturbative superspace and that the backreaction problem
would arise in higher orders of perturbation theory in χn.
We address this issue in the next section, where we discuss
the exactly soluble case of a massless field.

3With a suitable choice of factor ordering the WDW equation
for the scale factor can be solved exactly and the semiclassical
approximation is not necessary [3].

4For a more detailed discussion of WKB expansion in the
WDW equation, see e.g., [21].
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C. Massless field: An exact solution

For a massless field, m ¼ 0, the solutions νnðτÞ ∝
expð−nτÞ are exact and the mode functions exhibit the
same divergent behavior at τ → −∞. In this case, the
WDW equation separates, and solutions can be found in
the form

Ψða; fχngÞ ¼ ψðaÞ
Y
n

ψnðχnÞ: ð24Þ

Here, ψnðχnÞ are eigenstates of Hn with eigenvalues
ðpn þ 1

2
Þn, where pn is an integer occupation number

indicating the excitation level of the mode n. The scale
factor wave function ψðaÞ satisfies
�

1

24π2
∂2

∂a2 − 6π2VðaÞ þ
X
n

n3
�
pn þ

1

2

��
ψðaÞ ¼ 0;

ð25Þ

where the last term represents the backreaction of the scalar
field modes on the scale factor.
Equation (25) can be rewritten as

�
1

24π2
∂2

∂a2 − 6π2a2 þ 2π2a4ðρv þ Δρv þ ρrÞ
�
ψðaÞ ¼ 0:

ð26Þ

Here,

ρrðaÞ ¼
1

2π2a4
X
n

n3pn ð27Þ

is the energy density of scalar radiation, which is present if
some of the occupation numbers pn are nonzero, and

Δρv ¼
1

4π2a4
X
n

n3 ð28Þ

is the correction to the vacuum energy density due to the
zero-point oscillations of the field modes.
The sum in Eq. (28) is divergent. It can be regularized by

introducing a cutoff at a physical momentum kmax ¼ Λ,
which corresponds to the wave number nmax ¼ aΛ.
Approximating the sum over n by an integral over k ¼
n=a, we have

Δρv ≈
1

4π2

Z
Λ

0

k3dk ¼ Λ4

16π2
; ð29Þ

which is independent of a, as it should be.
If ρr ≠ 0, it becomes the dominant term at small a, and

the backreaction becomes very significant. In this case
another classically allowed region appears near a ¼ 0,
so the wave function does not describe tunneling from

‘nothing’. Instead, it describes a universe originating at a
singularity, then bouncing and recollapsing or alternatively
tunneling to large values of a [21]. The tunneling boundary
conditions require that pn ¼ 0. Then it follows from
Eq. (26) that there is no backreaction effect, except for a
constant renormalization of the vacuum energy density.
With pn ¼ 0 the mode wave functions are given by

ψn ∝ exp

�
−
n
2
χ2n

�
: ð30Þ

These wave functions decrease exponentially with χn, so
the fluctuations are well behaved.

D. Massive field backreaction

Backreaction of a massive quantum field can be analyzed
in the limit ofm ≫ H. In this case, an approximate solution
of Eq. (14) is

RnðaÞ ≈ ωnðaÞ: ð31Þ

This approximation is accurate, provided that

S0R0
n ≈

m2a
ffiffiffiffiffiffiffiffiffiffi
VðaÞp

ωn
≪ ω2

n: ð32Þ

It is easily verified that this is always satisfied for m ≫ H.
In this limit, the backreaction term in the WDW

equation (14) is given by

1

12π2
X
n

n2Rn ≈
1

12π2

Z
dnn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2a2

p

¼ a4

12π2

Z
Λ

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; ð33Þ

where we have defined a new variable k ¼ n=a and a UV
cutoff scale Λ. As before, this term gives a constant
correction to the vacuum energy density,

Δρv ¼
1

4π2

Z
Λ

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
: ð34Þ

For m≲H, the analysis is more complicated and we will
not attempt it here. We note also that our regularization
method (a momentum cutoff) is rather crude and could miss
subtle effects like trace anomaly. We expect that such effects
can be recovered using, e.g., the Pauli-Villars regularization,
but we shall not attempt to do that in this paper.

III. PATH INTEGRAL APPROACH

We now consider the model of a conformally coupled
field in the path integral approach, starting with the
massless case. The wave function is now given by
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Ψða1; χn1Þ ¼
Z

∞

0

dN
Z

DaeiSgða;NÞY
n

Z
DχneiSn½χn;N�;

ð35Þ

where

Sg½a;N� ¼ 6π2
Z

η1

η0

�
−
_a2

N
þ Na2ð1 −H2a2Þ

�
dη

ð36Þ

is the gravitational part of the action,

Sn½χn;N� ¼ 1

2

Z
η1

η0

dη

�
1

N
_χ2n − Nn2χ2n

�
þ SBn ð37Þ

is the action for the nth scalar field mode, and the boundary
term

SBn ¼
in

4π2a3

Z
B0

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3yχ2n ¼

in
2
χ2nðη0Þ ð38Þ

has been added at the lower boundary B0∶η ¼ η0. As we
already mentioned, this term in the action is necessary to
make the variational problem consistent with the Robin
boundary condition (22). There is no boundary term at the
upper boundary (η ¼ η1), because a Dirichlet boundary
condition is imposed there. As in the WDW formalism,
there is no direct coupling between the variables a and χn,
but both Sg and Sn depend on the lapse function N, and this
opens the possibility of backreaction.

A. Semiclassical wave function

We decompose the modes χnðηÞ into a classical part and
a quantum fluctuation part:

χnðηÞ ¼ χ̄nðηÞ þ ξnðηÞ: ð39Þ

The classical part χ̄nðηÞ satisfies the classical equation of
motion

1

N2
̈χ̄n þ n2χ̄n ¼ 0 ð40Þ

with the boundary conditions

_̄χnðη0Þ ¼ inNχ̄nðη0Þ; χ̄nðη1Þ ¼ χn1: ð41Þ

The solution is

χ̄nðηÞ ¼ χn1einNðη−η1Þ: ð42Þ

The path integral over χn can be represented as a product
ψn ¼ ψncψnq, where

ψnc ¼ eiSnc ð43Þ

ψnq ¼
Z

DξneiS̃n½ξn;N�: ð44Þ

Here,

Snc ¼ Sn½χ̄n;N�

¼ i
2N

χ̄n1 _̄χn1 −
i
2N

χ̄n0 _̄χn0 þ iSBnðχ̄nÞ ð45Þ

is the classical action for the solution χ̄nðηÞ and

S̃n½ξ;N� ¼ 1

2

Z
η1

η0

dη

�
1

N
_ξ2n − Nn2ξ2n

�
: ð46Þ

The last two terms in Snc cancel out and the classical
contribution to the wave function for χn becomes

ψnc ∝ exp
�
−
1

2
Rnχ

2
n1

�
; ð47Þ

where

Rn ¼ −
i
N

_χn1
χn1

¼ n: ð48Þ

The path integral in ψnq is independent of χn, so the χn
dependence of ψn is

ψn ∝ exp

�
−
n
2
χ2n1

�
; ð49Þ

the same as in the WKB approach (30).

B. Massless field backreaction

Evaluation of the remaining path integral over ξnðηÞ is
similar to the standard calculation of functional determinants,
as e.g., in Ref. [22], except the standard calculation assumes
Dirichlet boundary conditions ξnðη0Þ ¼ ξnðη1Þ ¼ 0,while in
our case the boundary conditions are

_ξnðη0Þ ¼ inNξnðη0Þ; ξnðη1Þ ¼ 0: ð50Þ

The path integral can be reduced to Gaussian integrals by
expanding ξnðηÞ into an infinite series of complete ortho-
normal functions fpðηÞ (p ¼ 1; 2;…) that satisfy these
boundary conditions. However, we can find such a set of
functions only if N is purely imaginary. In addition, ImN
must be negative, so that we can perform the Gaussian
integral.We setN ¼ −iÑ with Ñ being real and positive and
calculate the path integral. After that, we analytically con-
tinue the result as a function of Ñ (¼ iN).
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We expand ξn as

ξnðηÞ ¼
X∞
p¼1

cpfpðηÞ; ð51Þ

where cp are real constants and normalize the functions by

Z
η1

η0

dηfpðηÞfp0 ðηÞ ¼ δpp0 : ð52Þ

The boundary conditions determine the form of the
functions as

fpðηÞ ¼ Ap sin ½kpðη − η1Þ�; ð53Þ

where Ap are normalization constants. The frequency kp is
determined by

− tan ðkpΔηÞ ¼
kp
nÑ

ð54Þ

and is labeled by an integer p, where Δη≡ ðη1 − η0Þ. It
satisfies

π

Δη

�
p −

1

2

�
< kp <

π

Δη
p: ð55Þ

Note that kpþ1 − kp ≈ π=Δη in the limit of nÑ ≫ 1=Δη,
which is the case for η0 → −∞.
Expanding ξn as in Eq. (51), we can rewrite Eq. (44) as

ψnq ∝
Z Y

p

dcp exp

�
−
1

2

X
p

�
1

Ñ
k2p þ n2Ñ

�
c2p

�

∝ exp

�
−
1

2

X
p

ln

�
1

Ñ
k2p þ n2Ñ

��
; ð56Þ

where we disregard the normalization constant. Noting that
η0 → −∞ as aðη0Þ → 0 for the classical solution, we take a
limit of nÑ ≫ 1=Δη, which allows us to approximate the
infinite sum as an integral as follows:

ψnq ∝ exp

�
−
1

2

Δη
π

Z
∞

0

dk ln

�
1

Ñ
k2 þ n2Ñ

��

¼ exp

�
−
1

2
nÑ

Z
dη

�
: ð57Þ

In the last line, we used Δη ¼ R
dη.

Since the result is an analytic function of Ñ, we can
analytically continue the resulting function to the whole
complex plane of Ñ. Rewriting Ñ as iN, we obtain

ψnq ∝ exp

�
−inN

Z
dη

�
: ð58Þ

Combining this with Eq. (36) and taking into account the
degeneracy factor n2 with summation over n, we find that
the wave function (35) reduces to

Ψða1; χn1Þ ¼
Z

∞

0

dN
Z

DaeiSða;NÞ; ð59Þ

where Sða;NÞ is given by Eq. (36) with the replacement

H2 ¼ 1

3
ρv →

1

3
ðρv þ ΔρvÞ ð60Þ

and Δρv given by (28). Thus, as before, the effect of
quantum fluctuations amounts to a constant renormaliza-
tion of the vacuum energy density. The path-integral (59)
can now be calculated using the Picard-Lefschetz theory as
in the de Sitter minisuperspace model, like it was done in
Refs. [10,16,23].

C. Massive field backreaction

In this section, we calculate the backreaction of a
massive scalar field. We add Na2ðηÞm2χ2n in the paren-
theses for Sn in Eq. (37). We shall first do the path integral
over χn in Eq. (35) treatingN as an undetermined parameter
and aðηÞ as an unspecified function, so that integrations
over N and aðηÞ can be performed afterwards.
As before, we represent the field χnðηÞ as a sum of a

classical solution and a quantum fluctuation. The classical
solution χ̄nðηÞ satisfies the equation

1

N2

d2χ̄n
dη2

þ ω2
nðηÞχ̄n ¼ 0; ð61Þ

where

ω2
nðηÞ≡ n2 þ a2ðηÞm2: ð62Þ

The corresponding classical action Snc can be found using
integration by parts and the classical field equation (61),

iSnc ¼ −
1

2
Rnχ

2
n1: ð63Þ

Here Rn is defined by

Rn ¼ −
i
N

_χn1
χn1

; ð64Þ

and satisfies Eq. (19) with the replacement dτ → −iNdη.
Note that since we do not specify the function aðηÞ in this
calculation, Snc (or Rn) should be regarded as functionals in
terms of aðηÞ. Now we shall use the WKB approximation,
dRn=dðNηÞ ≪ R2

n. Then an approximate solution is given
by Rn ≈ ωnða1Þ. Since this is independent of the form of the
function aðηÞ in the range of ðη0; η1Þ, the classical part of
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the massive field does not affect the equation of motion
for aðηÞ.
The quantum correction comes from Eq. (44) with

S̃n½ξ;N� ¼ 1

2

Z
η1

η0

dη

�
1

N
_ξ2n − Nn2ξ2n − Nm2a2ξ2n

�
: ð65Þ

The boundary conditions are the same as in Eq. (50). This
path integral can be calculated in the limit of large m by
using an adiabatic expansion.
First, we divide the domain of integration Δη ¼ η1 − η0

into K small intervals ϵ ¼ Δη=K,

Z
η1

η0

dη½…� ¼
XK−1
j¼0

Z
ηjþ1

ηj

dη½…�; ð66Þ

where ηj ¼ η0 þ jϵ. Then let us focus on the j-th interval.
When ϵ is small enough, we can treat the scale factor as
a constant. In this case, we can calculate the path integral
in the same way as we did in Sec. III B with the replace-
ment of Δη → ϵ and n → ωnðηjÞ, where ωnðηÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2a2ðηÞ

p
. The result is

exp ½−iNϵωnðηjÞ�: ð67Þ

As we noted above Eq. (57), this calculation requires that
the condition

Ñ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2a2ðηÞ

q
≫ 1=ϵ ð68Þ

is satisfied. Furthermore, the assumption that the variation
of the scale factor can be neglected in the interval of
(ηj, ηjþ1) implies that

1

ωn

dωn

dη
≪

1

ϵ
: ð69Þ

We can choose ϵ satisfying both conditions (68) and (69),
provided that

1

Ñωn

dωn

dη
≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2a2ðηÞ

q
: ð70Þ

Anticipating that the backreaction will only renormalize the
vacuum energy, we can estimate the left-hand side of
Eq. (70) using the known results for the de Sitter minisuper-
space model. Then Eq. (70) is equivalent to the adiabatic
condition Eq. (32) and is satisfied for m ≫ H.
Combining the contributions of different time intervals

and of different n, we find

Y
n

Z
DχneiSn½χn;N�

≈
Y
n

exp

�
−iNϵ

X
j

ωnðηjÞ
�

≈ exp

�
−iN

X
n

n2
Z

η1

η0

dη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2a2ðηÞ

q �
: ð71Þ

After replacing summation over n by integration and
introducing a cutoff, as in Sec. II D, this reduces to

exp

�
−2π2iNΔρv

Z
η1

η0

dηa4ðηÞ
�
; ð72Þ

where Δρv is given by Eq. (34). Substitution of (72) into
Eq. (35) amounts to renormalizing the vacuum energy
density in the gravitational part of the action, in complete
agreement with the WDW analysis.

D. Boundary term as initial wave function

In the above calculation, the boundary term is added to
the action as a fundamental law and the Robin boundary
condition is imposed on the quantum variable χn. On the
other hand, as it was noted in [15], one can interpret the
boundary term as an initial condition for the wave function
without imposing the Robin boundary condition. In this
subsection, we focus on the massless case for simplicity.
In this case the path integral for the nth mode becomes

ψnðχn1; NÞ ¼
Z

DχneiSn½χn;N�ψ iniðχn0Þ; ð73Þ

where

ψ iniðχn0Þ ¼ exp

�
−
n
2
χ2n0

�
ð74Þ

can be thought of as the wave function of the Euclidean
vacuum. Here, the integration is performed with Dirichlet
boundary conditions

χnðη1Þ ¼ χn1; χnðη0Þ ¼ χn0 ð75Þ

and the integration measure includes an integral over χn0.
The classical part of the path integral is then given by

ψnc ¼
Z

dχ̄n0 exp

�
i
2N

χ̄n1 _̄χn1−
i
2N

χ̄n0 _̄χn0 −
n
2
χ̄2n0

�
; ð76Þ

where χ̄nðηÞ satisfies the classical equation of motion
Eq. (40) with the boundary conditions (75). The solution is
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χ̄nðηÞ ¼
χn1 sin ðnNðη − η0ÞÞ − χn0 sin ðnNðη − η1ÞÞ

sin ðnNΔηÞ :

ð77Þ

Using this solution, we can rewrite _χn1 and _χn0 in terms of
χn0 and χn1. As a result, the exponent is given by

in
2
cot ðnNΔηÞχ2n1 −

in
sin ðnNΔηÞ χn1χn0

þ n
2
ði cot ðnNΔηÞ − 1Þχ2n0: ð78Þ

Assuming Re½i cotðnNΔηÞ − 1� > 0, we can perform the
integral over χn0. The result is given by

ψnc ∝ exp

�
−
n
2
χ2n1

�
; ð79Þ

which is the same as Eq. (47). Although we assumed
Re½i cotðnNΔηÞ − 1� > 0, we expect that the result can be
used for arbitrary N by analytic continuation.
The boundary condition for the quantum fluctuation part

ψnq is also the Dirichlet boundary condition at the final and
initial surfaces. The calculation of the quantum fluctuation
part is similar to that in the previous section, except that km
is determined by

km ¼ πm
Δη

: ð80Þ

The result in the limit of nÑ ≫ 1=Δη is the same as
Eq. (58).

IV. SUMMARY AND DISCUSSION

We discussed the tunneling wave function of the Universe
in de Sitter minisuperspace with a conformally coupled
massless scalar field using both the WDW and path integral
approaches. We found by an exact calculation (i) that the two
approaches give the same wave function and (ii) that the
backreaction of quantum field fluctuations on the scale factor
amounts to a constant renormalization of the vacuum energy
density ρv. We also verified that the tunneling wave function
can be expressed as a transition amplitude from a universe of
vanishing size with the scalar field in the state of Euclidean
vacuum, as it was suggested in [15]. Furthermore, we
considered a massive conformally coupled field in the limit
of large mass, m ≫ H, and found that once again the
backreaction gives only a constant renormalization of ρv.
We expect the same conclusions to hold for arbitrary values
ofm, but the analysis in the general case would require more
sophisticated regularization methods (e.g., Pauli-Villars),
and we leave it for future work.
We now comment on why the divergence of mode

functions at a → 0 in the tunneling wave function does

not result in infinite backreaction, as it was expected by
Feldbrugge et al. in Ref. [12]. These authors assumed that
the effect of backreaction can be accounted for simply by
adding the classical energy-momentum tensor of the modes
to the right-hand side of classical Friedmann equations.
This, however, does not appear to be the case.
The mode functions νnðηÞ are related to the wave

function (12) by Eq. (20). In the classically allowed range
(a > H−1) these are the “negative energy” mode functions
[20,24]. These mode functions are complex, and when
substituted in the energy-momentum tensor for a real scalar
field, they would give a complex Tμν. Back-reaction of
quantum fields on the metric has been extensively studied
by calculating the expectation value hTμνi in a classical
spacetime (for a review see [25]). The contribution of a
given mode νn to the expectation value hT00i is given by

1

4π2a4
ð_ν�n _νn þ n2ν�nνnÞ: ð81Þ

With νnðtÞ ¼ ð2nÞ−1=2 expðinηÞ, this gives
n

4π2a4
; ð82Þ

which is real and agrees with Eq. (28). One can expect that
the corresponding contributions on the two branches of the
wave function in the classically forbidden range can be
obtained from (81) by analytic continuation η → �iτ. This
gives the same result (82) and no divergence.
We note also that even though the mode functions

diverge at a → 0, the functions RnðaÞ are finite, so the
wave function of the Universe (12) is well behaved.
Furthermore, the functions RnðaÞ describe the effect of
backreaction in the WDWequation (13); hence this effect is
clearly finite, at least in the WDW approach.
Another objection that has been raised against the path

integral form of the tunneling wave function is that it gives a
Green’s function (propagator) rather than a solution of the
WDW equation [13,26]. This, however, is not a valid
distinction in the present case. The delta function in the
propagator equation is δðaÞ, so its support is at the boundary
of superspace (a ¼ 0) and thus the propagator satisfies the
WDWequation everywhere in superspace. This is supported
by our result that the path integral version of the tunneling
wave function coincides with the WDW version.
We finally comment on the most recent version of the no

boundary wave function [26]. The original proposal [1] was
based on the Euclidean path integral, but it was soon realized
that as it stands this integral is divergent, because the
gravitational part of the Euclidean action is unbounded from
below. Attempts have been made to fix the problem by
extending the path integral to complex metrics [16,18].
However, the space of complex metrics is very large and no
obvious choice of the set of complex histories in the path
integral suggests itself as the preferred one. The no-boundary
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approach was recently applied to several minisuperspace
models by Dorronsoro et al. [13,14], where they used
different lapse integration contours in the complex plane
for different models. (An extensive list of references to
earlier literature can also be found in these papers.) This
analysis made it obvious that the no boundary proposal is
incomplete without a choice of a complex integration
contour in the path integral. Some general requirements to
this contour have been given in Ref. [18], but it is not clear
that they can always be satisfied or what contour should be
used in models admitting a number of choices that satisfy the
requirements.
Most recently, Halliwell, Hartle and Hertog [26] pro-

posed yet another version of the no boundary wave
function, apparently in an attempt to address the difficulties
indicated above. They suggest that the semiclassical wave
function of the Universe has the form

Ψðg;ϕÞ ≈
X
i

di exp ð−Siðg;ϕÞÞ: ð83Þ

Here, Siðg;ϕÞ is the Euclidean action evaluated for a
regular (generally complex) solution of Einstein’s equa-
tions on a four-disk (a saddle point) with boundary

conditions ðg;ϕÞ on its boundary. The index i labels
different saddle points. No attempt has yet been made to
extend this wave function proposal beyond the semiclass-
ical level.
In this proposal there is no path integration, so one does

not have to choose between different integration contours,
but the choice of the coefficients di appears to be arbitrary.
Halliwell et al. suggest that saddle points predicting
unbounded quantum fluctuations should be excluded
(assigned di ¼ 0) and that saddle points with actions Si
and S�i should contribute with equal weight. But this still
allows much room for different choices, especially if the
model admits a large number of saddle points. In our view,
the basic criticism against this approach still remains: it
does not specify the wave function uniquely. But the wave
function of the Universe should be unique, since if it is
not, then what determines the choice between different
alternatives?
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