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The tunneling wave function of the Universe is calculated exactly for a de Sitter minisuperspace model
with a massless conformally coupled scalar field, both by solving the Wheeler-DeWitt equation and by
evaluating the Lorentzian path integral. The same wave function is found in both approaches. The
backreaction of quantum field fluctuations on the scale factor amounts to a constant renormalization of the
vacuum energy density. This is in contrast to the recent suggestion of Feldbrugge et al. that the backreaction
should diverge when the scale factor gets small, a — 0. Similar results are found for a massive scalar field
in the limit of a large mass. We also verified that the tunneling wave function can be expressed as a
transition amplitude from a universe of vanishing size with the scalar field in the state of Euclidean vacuum,

as was suggested in our earlier work.
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I. INTRODUCTION

In quantum cosmology, the entire Universe is treated
quantum mechanically and is described by a wave function,
rather than by a classical spacetime. The wave function
W(g, ¢) is defined on the space of all 3-geometries (g) and
matter field configurations (¢), called superspace. It can be
found by solving the Wheeler-DeWitt (WDW) equation

HY =0, (1)

where H is the Hamiltonian operator. Alternatively, the
wave function can be expressed as a path integral,

(9.9) .
W(g. ) = / " DyDie’s, 2)

where S is the action.

The choice of the boundary conditions for the WDW
equation and of the class of paths included in the path
integral has been a subject of ongoing debate. The most
developed proposals in this regard are the no-boundary [1]
and the tunneling [2—4] proposals.' The debate around
these proposals has recently intensified [10-15], spurred by
the work of Feldbrugge et al. [10-12], who pointed out that
the path integral in (2) can be rigorously defined with the
aid of the Picard-Lefschetz theory (at least in minisuper-
space models, where the number of degrees of freedom is
truncated to a finite number).

Our focus in this paper will be on the tunneling wave
function of the Universe. It was defined in Refs. [2,3] by
specifying a boundary condition for the WDW equation.

'For early work closely related to the tunneling proposal, see
Refs. [5-9].
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Roughly, ¥ is required to include only outgoing waves
at the boundary of superspace, except for the part of the
boundary corresponding to vanishing 3-geometries (see
Refs. [2,3] for more details). This is supplemented by the
regularity condition, requiring that ¥ remains finite every-
where, including the boundaries of superspace,

[¥(g. )| < co. (3)

The resulting wave function can be interpreted as describing
a universe originating at zero size, that is, from “nothing”.

It was conjectured in Refs. [4,8] that the same wave
function can be expressed as a path integral (2) with the
integration taken over (Lorentzian) histories interpolating
between a vanishing 3-geometry and a given configuration
(g, @) in superspace. In the simple de Sitter minisuperspace
model describing a spherical universe with a positive
vacuum energy density, this expectation was confirmed
in Ref. [16] and more recently in [10] using the Picard-
Lefschetz method. However, the situation with extensions
of the de Sitter model to perturbative superspace, including
scalar field and/or gravitational wave perturbations, is still a
matter of dispute.

The tunneling wave function in a perturbative WDW
approach has been discussed in Refs. [3,17], with the
conclusion that the modes of free scalar and gravitational
fields are described by Gaussian wave functions corre-
sponding to de Sitter invariant (Bunch-Davies) quantum
states. On the other hand, Feldbrugge et al. [11] argued that
the path integral version of the tunneling proposal predicts
a runaway instability: the probability of quantum fluctua-
tions of the fields grows with their amplitude, so the
conjecture of [8] does not hold. Similar claims about
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instability of the tunneling proposal have also been made in
the earlier literature [18].

We have addressed this issue in our recent paper [15],
where we showed that quantum field fluctuations in the
tunneling wave function (2) are well behaved if the action S
is supplemented with a suitable boundary term. Inclusion of
this term is, in fact, necessary. The regularity condition (3)
requires that the mode functions satisfy the Robin boundary
condition at a — 0, where a is the radius of the Universe,
and the boundary term must be chosen so that the variational
problem is well defined. The path integral then gives the same
wave function as the WDW approach in [3,17].

A related issue is the behavior of the mode functions ¢,,(a)
at a — 0. The tunneling wave function has two branches in
the classically forbidden (under-barrier) region: one branch
growing with a and the other decreasing with a. On the
growing branch our boundary conditions select the modes
satisfying ¢, (0) = 0.> But on the decreasing branch, the
mode function grows without bound at @ — 0, and some
authors suggested that this may cause serious problems.

In the path integral approach, Feldbrugge et al. [12] argued
that such behavior of the mode functions is unacceptable
because it makes the mode action infinite. However, we
showed in [15] that inclusion of the boundary term renders
the action finite. We emphasize that inclusion of this term is
not a matter of choice: it is dictated by our boundary
conditions. Another concern raised in Ref. [12] is that the
unbounded growth of modes would cause an infinitely strong
backreaction on the geometry. The perturbative expansion
would then break down when one tries to go beyond the
linear perturbation theory considered in [15].

Here, we are going to show that the backreaction is
actually well under control. We first note that the problem,
if it exists, should be present in the case of a massless
conformally coupled field, where the mode functions
exhibit the same behavior. Moreover, the same behavior
of the mode functions is obtained in the WDW approach, so
one would expect the same backreaction problem to arise
there as well. An attractive feature of this model is that it
allows an exact solution, so the backreaction problem can
be completely analyzed.

In the next section, we consider a de Sitter model with a
massless conformal scalar field in the WDW approach and
show that the field backreaction amounts to the usual
renormalization of the vacuum energy density. We also
consider a massive field in the perturbative superspace
framework and reach the same conclusion regarding the
backreaction in the limit of a large mass. In Sec. III, we
evaluate the Lorentzian path integral for both massless and
massive models. This yields the same results as the WDW
approach. We also verify that the tunneling wave function
can be expressed as a transition amplitude from a universe

*The same modes are selected by the Hartle-Hawking wave
function, which does not include a decreasing branch.

of vanishing size with the scalar field in the state of
Euclidean vacuum, as it was suggested in [15]. Our results
are summarized and discussed in Sec. IV.

II. WDW APPROACH

A. Perturbative superspace

We consider a closed FRW universe,
ds? = a2 (n) (N*df? — d3). (4)

with a conformally coupled scalar field ¢. Here, a(n) is the
scale factor (radius of the Universe), n is the conformal
time, and N is the lapse parameter, which is set to be
constant. The action for this model is given by

S— / 1/_9(4)d4x(§—p1}) 4 S, 4S5 (5)
1 1 1
Su= [ V= | -5 Vap s -Re). (@

Here, p, is the vacuum energy density, Sp is the boundary

term, and we use Planck units with #=c¢ =1 and

87G = 1. The boundary term is unimportant in the

WDW approach; it will be specified in the next section.
We expand the field ¢ as

#t) = Y b (00,0 = 25 300,00, ()

/ 0,0°d; = 6, (8)

where Q,,;,,(x) are suitably normalized spherical harmonics
and we have suppressed the indices [, m for brevity.

The wave function of the Universe ¥(a, {¢, }) satisfies
the WDW equation,

1 8 5 5
L 5 ¥ =0,
[24”2 e 67°V(a) + d n H,,} 0 9)
Here,
V(a) = a*> — H*a*, (10)

H? = p,/3, the scalar field Hamiltonian for the nth mode is

1 0% 1
Ho = _58)(3, +§

(n* + m*a®)y;. (11)

and n? is the mode degeneracy factor. We also disregard the
ambiguity of ordering the factors a and 9/0a. This is
justified when p, < 1 and the scale factor can be regarded
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as a semiclassical variable.” With the modes X, treated as
small perturbations, a solution of Eq. (9) can be expressed
as a superposition of terms of the form [17,19,20]

¥la) = Aexp |-1205(0) =3 SR, (@3|. (12

where A is a normalization constant. Substituting this in (9)
and neglecting terms O(y), we obtain

ds\? n n
) Vi) - 5"+ SR, =0, (13
<da> (@) =122 +12n2;" " (13)

dsS\ [dR n
— ") - R? 2 ———R'=0. 14
(da) ( da) 2 4 03(a) s R =0, (14

Here, we explicitly wrote the Planck constant 2 = 1 only to
indicate the subleading terms in the WKB expansion.*
The terms proportional to S” and R are responsible for
WKB pre-factors, while the last term in (13) accounts for
the backreaction of quantum field fluctuations on the
dynamics of the scale factor a. We shall first focus on
the leading semiclassical behavior, neglecting terms pro-
portional to #.

In the classically forbidden range (a < H™'), it will be
convenient to introduce a Euclidean conformal time var-
iable 7 via

da dS

—_—_——— = :I:

dr da
With V(a) from (10), this has the solution

Via). (15)

a(r) = (Hcoshz)™! (16)
or
e — 1+vI1-Ha '1H;Hza2_ (17)

The upper and lower signs in Eqgs. (15) and (17) correspond
to the decreasing and growing branches of the wave
function, respectively. Note that for a - 0 we have 7 —
—oo on the decreasing branch and 7 — +oco on the growing
branch. More specifically,

@zequ

(r > to0). (18)

*With a suitable choice of factor ordering the WDW equation
for the scale factor can be solved exactly and the semiclassical
approximation is not necessary [3].

For a more detailed discussion of WKB expansion in the
WDW equation, see e.g., [21].

The tunneling boundary condition requires that only an
outgoing branch of the wave function should be present in
the classically allowed range. The relative magnitude of the
three branches can then be determined using the WKB
connection formulas at the turning point a = H™'.

B. Mode functions

Turning now to Eq. (14) for R,, we rewrite it in the
leading semiclassical order as

dR,
dr

- R + w2(a) = 0. (19)

This is a Riccati equation; it can be reduced to a linear
equation by the standard substitution

Rn<T) =T (20)

where dots stand for derivatives with respect to 7 and the
functions v, () satisfy the free field equation

i, — v, =0. (21)

The regularity condition (3) requires that the functions
R, (a) should satisfy Re{R,(a)} > 0. It has been shown in
Ref. [15] that this condition is enforced, provided that the
mode functions satisfy the Robin boundary condition,

= —nv,, (22)

at 7 — $oco. This selects the solutions

v,(7) x exp(—nt) (r = £o0). (23)

As we noted, 7 - oo corresponds to a — 0, with the
upper and lower signs corresponding, respectively, to the
growing and decreasing branches of the wave function. We
then find that v, «x a*" at a — 0. Hence on the growing
branch our mode functions v,, are regular at @ = 0, while on
the decreasing branch they grow without bound.

Note, however, that it follows from Eq. (20) that on both
branches of the wave function we have R, (0) = n, so the
wave function W(a,{y,}) is nonsingular at a — O.
Furthermore, the backreaction terms R, in Eq. (13) are
all regular and show no sign of an infinite backreaction.
One may still be concerned that this is an artifact of
perturbative superspace and that the backreaction problem
would arise in higher orders of perturbation theory in y,,.
We address this issue in the next section, where we discuss
the exactly soluble case of a massless field.
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C. Massless field: An exact solution

For a massless field, m =0, the solutions v,(7) «
exp(—nt) are exact and the mode functions exhibit the
same divergent behavior at 7 — —oco. In this case, the
WDW equation separates, and solutions can be found in
the form

W(a, {x.}) = Hv/n (n)- (24)

Here, z//,,(;(n) are eigenstates of H, with eigenvalues
(pn +3%)n, where p, is an integer occupation number
indicating the excitation level of the mode n. The scale
factor wave function w(a) satisfies

Y (70 5) i =o.

(25)

1 02
—————61°V(a
247% Ha?

where the last term represents the backreaction of the scalar
field modes on the scale factor.
Equation (25) can be rewritten as

2417128‘9_2 — 6m2a? + 27%a*(p, + Ap, + pr)] w(a) =0.
(26)
Here,
pil@) = 555 >, (27)

is the energy density of scalar radiation, which is present if
some of the occupation numbers p, are nonzero, and

1
— E 3
Apn - Ar2at ~ n (28)

is the correction to the vacuum energy density due to the
zero-point oscillations of the field modes.

The sum in Eq. (28) is divergent. It can be regularized by
introducing a cutoff at a physical momentum k,, = A,
which corresponds to the wave number n,, = aA.
Approximating the sum over n by an integral over k =
n/a, we have

Ap, ~— k3dk:—, 29
Po R a2 1672 (29)

which is independent of a, as it should be.

If p, # 0, it becomes the dominant term at small a, and
the backreaction becomes very significant. In this case
another classically allowed region appears near a = 0,
so the wave function does not describe tunneling from

‘nothing’. Instead, it describes a universe originating at a
singularity, then bouncing and recollapsing or alternatively
tunneling to large values of a [21]. The tunneling boundary
conditions require that p, = 0. Then it follows from
Eq. (26) that there is no backreaction effect, except for a
constant renormalization of the vacuum energy density.
With p, = 0 the mode wave functions are given by

W, o exp (— g;ﬁ) : (30)

These wave functions decrease exponentially with y,, so
the fluctuations are well behaved.

D. Massive field backreaction

Backreaction of a massive quantum field can be analyzed
in the limit of m > H. In this case, an approximate solution
of Eq. (14) is

R,(a) % w,(a). (31)

This approximation is accurate, provided that
SR~ —Y - L w. (32)

It is easily verified that this is always satisfied for m > H.
In this limit, the backreaction term in the WDW
equation (14) is given by

1
WE”2"~122 dnn \/l’l +ma
n

4

A
° / Ak K + m?, (33)
0

T 127

where we have defined a new variable k = n/a and a UV
cutoff scale A. As before, this term gives a constant
correction to the vacuum energy density,

1 A
A9y = 1 / Ak K + 2. (34)
= Jo

For m < H, the analysis is more complicated and we will
not attempt it here. We note also that our regularization
method (a momentum cutoff) is rather crude and could miss
subtle effects like trace anomaly. We expect that such effects
can be recovered using, e.g., the Pauli-Villars regularization,
but we shall not attempt to do that in this paper.

III. PATH INTEGRAL APPROACH

We now consider the model of a conformally coupled
field in the path integral approach, starting with the
massless case. The wave function is now given by
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Y(a,ym) / dN/Dae‘s (a.N) H/D)( e'SuleniN
(35)

where

1 02
S,la.N] = 6x* /n [—%—Q—Ncﬁ(l - Hzaz)} dn
o
(36)

is the gravitational part of the action,

1 m 1 .
Snb(n;N] :E/ d”(ﬁln
Mo

is the action for the nth scalar field mode, and the boundary

term
SBn / \/ dzy)(n -
4712a3

has been added at the lower boundary By:n = 7. As we
already mentioned, this term in the action is necessary to
make the variational problem consistent with the Robin
boundary condition (22). There is no boundary term at the
upper boundary (y = #,), because a Dirichlet boundary
condition is imposed there. As in the WDW formalism,
there is no direct coupling between the variables a and y,,,
but both S, and §,, depend on the lapse function N, and this
opens the possibility of backreaction.

Nn2y >+SB,, (37)

)(n ’10) (38)

A. Semiclassical wave function

We decompose the modes y,,(77) into a classical part and
a quantum fluctuation part:

Xn(m) = () + &, (). (39)

The classical part 7, (n) satisfies the classical equation of
motion

1 ..
Wﬂ?n + nzj_{n =0 (40)

with the boundary conditions

)?n(rlO) = lnN)_(n(r]O)’ }?n(rll) = Xnl- (41)

The solution is

in (;7) :){nlei”N(ﬂ—ﬂl). (42)

The path integral over y,, can be represented as a product
Yin = ¥ncWngs where

= EIS”‘ (43)
/ D, eiSilenN], (44)
Here,
Spe = SulZniN]
= ﬁ)?nl)?nl - %V)?annO +iSp,(7n)  (45)

is the classical action for the solution j,(17) and

1
3 [ n(GE-vwg). wo

The last two terms in S,,. cancel out and the classical
contribution to the wave function for y, becomes

S.[& N

1
Wiye X EXp <_§Rn)(%1> ’ (47)
where
R, — —ldm (48)
N)(nl

The path integral in y,, is independent of y,, so the y,
dependence of y,, is

n
W, o exp (— 5){%) (49)
the same as in the WKB approach (30).

B. Massless field backreaction

Evaluation of the remaining path integral over &,(r) is
similar to the standard calculation of functional determinants,
as e.g., in Ref. [22], except the standard calculation assumes
Dirichlet boundary conditions &, (19) = &,(17;) = 0, whilein
our case the boundary conditions are

én(”]O) = inNgn (’70)’ én(’/ll) =0. (50)

The path integral can be reduced to Gaussian integrals by
expanding &,(») into an infinite series of complete ortho-
normal functions f,() (p =1,2,...) that satisfy these
boundary conditions. However, we can find such a set of
functions only if N is purely imaginary. In addition, ImN
must be negative, so that we can perform the Gaussian
integral. We set N = —iN with N being real and positive and
calculate the path integral. After that, we analytically con-
tinue the result as a function of N (= iN).
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We expand &, as

io:cpfp (51)

where c), are real constants and normalize the functions by
m

" dns ot o) = 3, (52)
o

The boundary conditions determine the form of the
functions as

fp(n)

where A, are normalization constants. The frequency k), is
determined by

= A, sin[k,(n—m)], (53)

k
—tan (k,An) = ﬁ (54)

and is labeled by an integer p, where Ay = (n; — ). It
satisfies

1 /2

Note that k,, — k, ~ x/An in the limit of nV > 1/An,
which is the case for 5 — —oo0.
Expanding &, as in Eq. (51), we can rewrite Eq. (44) as

1 1 -
IS /Hdcp exp {_Ez(ﬁk%’ +n2N> c?,]
P P
1 1, -
x exp —EZIH ﬁkp—l—nN . (56)
p

where we disregard the normalization constant. Noting that
1o — —oo as a(ny) — 0 for the classical solution, we take a
limit of nN > 1/An, which allows us to approximate the
infinite sum as an integral as follows:

1A o0 1 -
Wy & EXP {—57’1/0 dk1In (ﬁk2 + nzN)]
1 -
= exp {—EnN/dn} (57)

In the last line, we used An = [ dn.

Since the result is an analytic function of N, we can
analytically continue the resulting function to the whole
complex plane of N. Rewriting N as iN, we obtain

Wng x exp |—inN [ dp|. (58)
/

Combining this with Eq. (36) and taking into account the
degeneracy factor n*> with summation over n, we find that
the wave function (35) reduces to

qj(alvxnl) :Am dN/DaeiS(‘LN)’ (59)

where S(a, N) is given by Eq. (36) with the replacement

1
H* = 2P

1

3

and Ap, given by (28). Thus, as before, the effect of
quantum fluctuations amounts to a constant renormaliza-
tion of the vacuum energy density. The path-integral (59)
can now be calculated using the Picard-Lefschetz theory as

in the de Sitter minisuperspace model, like it was done in
Refs. [10,16,23].

C. Massive field backreaction

In this section, we calculate the backreaction of a
massive scalar field. We add Na?(n)m?y2 in the paren-
theses for S, in Eq. (37). We shall first do the path integral
over y,, in Eq. (35) treating NV as an undetermined parameter
and a(n) as an unspecified function, so that integrations
over N and a(n) can be performed afterwards.

As before, we represent the field y,(n) as a sum of a
classical solution and a quantum fluctuation. The classical
solution %, () satisfies the equation

| &7,
v d)(z + @), =0, (61)
where
wy(n) = n? + a*(n)m*. (62)

The corresponding classical action §,,. can be found using
integration by parts and the classical field equation (61),

1
iS,. = _ERM%r (63)
Here R, is defined by
R, = —Ldm (64)
N}(nl

and satisfies Eq. (19) with the replacement dr — —iNdn.
Note that since we do not specify the function a() in this
calculation, S,,. (or R,,) should be regarded as functionals in
terms of a(n). Now we shall use the WKB approximation,
dR,/d(Nn) < R2. Then an approximate solution is given
by R, ~ w,(a;). Since this is independent of the form of the
function a(#) in the range of (19,7, ), the classical part of
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the massive field does not affect the equation of motion
for a(n).
The quantum correction comes from Eq. (44) with

SN =5 [" (& -wrg-Nweg). (6
o

The boundary conditions are the same as in Eq. (50). This
path integral can be calculated in the limit of large m by
using an adiabatic expansion.

First, we divide the domain of integration Ay = 5, — 1,
into K small intervals ¢ = An/K,

/7:1 dnl...] = Ijz_;/mﬂm af.. ] .

where 17; = 1y + je. Then let us focus on the j-th interval.
When e is small enough, we can treat the scale factor as
a constant. In this case, we can calculate the path integral
in the same way as we did in Sec. III B with the replace-
ment of Ay —e and n— w,(q;), where w,(n) =

\/n? + m?a*(n). The result is
exp [~iNew,(n;)]. (67)

As we noted above Eq. (57), this calculation requires that
the condition

Ny/n* +m?a*(n) > 1/e (68)

is satisfied. Furthermore, the assumption that the variation
of the scale factor can be neglected in the interval of
(1> nj41) implies that

1 do 1
— L. 69
w, dn € (69)
We can choose € satisfying both conditions (68) and (69),
provided that

1 dw, <
Nw, dn

n* + m?a*(n). (70)
Anticipating that the backreaction will only renormalize the
vacuum energy, we can estimate the left-hand side of
Eq. (70) using the known results for the de Sitter minisuper-
space model. Then Eq. (70) is equivalent to the adiabatic
condition Eq. (32) and is satisfied for m > H.

Combining the contributions of different time intervals
and of different n, we find

H/D)(neisnb(n;N]
> Hexp [—iNeZa)n (nj)]
n J
~ exp [—iNan /m dny/n® + mzaz(n)]. (71)
n U

0

After replacing summation over n by integration and
introducing a cutoff, as in Sec. II D, this reduces to

exp |:—2ﬂ2iNApv /m dna“(ﬂ)], (72)
Mo

where Ap, is given by Eq. (34). Substitution of (72) into
Eq. (35) amounts to renormalizing the vacuum energy
density in the gravitational part of the action, in complete
agreement with the WDW analysis.

D. Boundary term as initial wave function

In the above calculation, the boundary term is added to
the action as a fundamental law and the Robin boundary
condition is imposed on the quantum variable y,,. On the
other hand, as it was noted in [15], one can interpret the
boundary term as an initial condition for the wave function
without imposing the Robin boundary condition. In this
subsection, we focus on the massless case for simplicity.

In this case the path integral for the nth mode becomes

l//n()(nl’N) :/’DxneiSI’b{";N]Wini(ZnO)’ (73)

where

vinttn) =0 (=523 (74)

can be thought of as the wave function of the Euclidean
vacuum. Here, the integration is performed with Dirichlet
boundary conditions

K1) = 2wts Xa(M0) = Xn0 (75)
and the integration measure includes an integral over y .
The classical part of the path integral is then given by

_ i _ . i _ . n._
Yne :/d)(n()exp {ﬁXnIan_ﬁ)(nO)(nO_ixiO ’ (76)

where %,(n) satisfies the classical equation of motion
Eq. (40) with the boundary conditions (75). The solution is
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_ X1 SIN (RN (7 =10)) = xuo sin (nN(n —1ny))
Zn() = si(:1 (nNAZ) '

(77)

Using this solution, we can rewrite y,,; and y, in terms of
Xno and y,;. As a result, the exponent is given by

in in
—cot(nNA 2 __ -
5 cot(nNAn)y = (N2 70
n
+ 5 (icot (nNAR) — 1)%,. (78)

Assuming Re[i cot(nNAn) — 1] > 0, we can perform the
integral over y,o. The result is given by

n
Wie X EXp |:_ E)(%ll:| ) (79)

which is the same as Eq. (47). Although we assumed
Re[i cot(nNAn) — 1] > 0, we expect that the result can be
used for arbitrary N by analytic continuation.

The boundary condition for the quantum fluctuation part
Wng 18 also the Dirichlet boundary condition at the final and
initial surfaces. The calculation of the quantum fluctuation
part is similar to that in the previous section, except that k,,
is determined by

Tm
="_, 80
"=y (80)
The result in the limit of nN > 1/An is the same as
Eq. (58).

IV. SUMMARY AND DISCUSSION

We discussed the tunneling wave function of the Universe
in de Sitter minisuperspace with a conformally coupled
massless scalar field using both the WDW and path integral
approaches. We found by an exact calculation (i) that the two
approaches give the same wave function and (ii) that the
backreaction of quantum field fluctuations on the scale factor
amounts to a constant renormalization of the vacuum energy
density p,. We also verified that the tunneling wave function
can be expressed as a transition amplitude from a universe of
vanishing size with the scalar field in the state of Euclidean
vacuum, as it was suggested in [15]. Furthermore, we
considered a massive conformally coupled field in the limit
of large mass, m > H, and found that once again the
backreaction gives only a constant renormalization of p,,.
We expect the same conclusions to hold for arbitrary values
of m, but the analysis in the general case would require more
sophisticated regularization methods (e.g., Pauli-Villars),
and we leave it for future work.

We now comment on why the divergence of mode
functions at a — 0 in the tunneling wave function does

not result in infinite backreaction, as it was expected by
Feldbrugge et al. in Ref. [12]. These authors assumed that
the effect of backreaction can be accounted for simply by
adding the classical energy-momentum tensor of the modes
to the right-hand side of classical Friedmann equations.
This, however, does not appear to be the case.

The mode functions v, () are related to the wave
function (12) by Eq. (20). In the classically allowed range
(a > H") these are the “negative energy” mode functions
[20,24]. These mode functions are complex, and when
substituted in the energy-momentum tensor for a real scalar
field, they would give a complex T,,. Back-reaction of
quantum fields on the metric has been extensively studied
by calculating the expectation value (T,,) in a classical
spacetime (for a review see [25]). The contribution of a
given mode v, to the expectation value (T) is given by

1
W(I./ZI./”+H21/;I/”). (81)
With v, (1) = (2n)~"/2 exp(inn), this gives

n
4r*a®’

(82)

which is real and agrees with Eq. (28). One can expect that
the corresponding contributions on the two branches of the
wave function in the classically forbidden range can be
obtained from (81) by analytic continuation # — =iz. This
gives the same result (82) and no divergence.

We note also that even though the mode functions
diverge at a — 0, the functions R, (a) are finite, so the
wave function of the Universe (12) is well behaved.
Furthermore, the functions R,(a) describe the effect of
backreaction in the WDW equation (13); hence this effect is
clearly finite, at least in the WDW approach.

Another objection that has been raised against the path
integral form of the tunneling wave function is that it gives a
Green’s function (propagator) rather than a solution of the
WDW equation [13,26]. This, however, is not a valid
distinction in the present case. The delta function in the
propagator equation is §(a), so its support is at the boundary
of superspace (a = 0) and thus the propagator satisfies the
WDW equation everywhere in superspace. This is supported
by our result that the path integral version of the tunneling
wave function coincides with the WDW version.

We finally comment on the most recent version of the no
boundary wave function [26]. The original proposal [1] was
based on the Euclidean path integral, but it was soon realized
that as it stands this integral is divergent, because the
gravitational part of the Euclidean action is unbounded from
below. Attempts have been made to fix the problem by
extending the path integral to complex metrics [16,18].
However, the space of complex metrics is very large and no
obvious choice of the set of complex histories in the path
integral suggests itself as the preferred one. The no-boundary
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approach was recently applied to several minisuperspace
models by Dorronsoro et al. [13,14], where they used
different lapse integration contours in the complex plane
for different models. (An extensive list of references to
earlier literature can also be found in these papers.) This
analysis made it obvious that the no boundary proposal is
incomplete without a choice of a complex integration
contour in the path integral. Some general requirements to
this contour have been given in Ref. [18], but it is not clear
that they can always be satisfied or what contour should be
used in models admitting a number of choices that satisfy the
requirements.

Most recently, Halliwell, Hartle and Hertog [26] pro-
posed yet another version of the no boundary wave
function, apparently in an attempt to address the difficulties
indicated above. They suggest that the semiclassical wave
function of the Universe has the form

¥(g.¢)~ Y _diexp (=Si(g.¢)). (83)

Here, S;(g.¢) is the Euclidean action evaluated for a
regular (generally complex) solution of Einstein’s equa-
tions on a four-disk (a saddle point) with boundary

conditions (g,¢) on its boundary. The index i labels
different saddle points. No attempt has yet been made to
extend this wave function proposal beyond the semiclass-
ical level.

In this proposal there is no path integration, so one does
not have to choose between different integration contours,
but the choice of the coefficients d; appears to be arbitrary.
Halliwell et al. suggest that saddle points predicting
unbounded quantum fluctuations should be excluded
(assigned d; = 0) and that saddle points with actions S
and S should contribute with equal weight. But this still
allows much room for different choices, especially if the
model admits a large number of saddle points. In our view,
the basic criticism against this approach still remains: it
does not specify the wave function uniquely. But the wave
function of the Universe should be unique, since if it is
not, then what determines the choice between different
alternatives?
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