
Parallelization of Plane Sweep based Voronoi
Construction with Compiler Directives

Anmol Paudel
MSCS Department

Marquette University

anmol.paudel@marquette.edu

Jie Yang
MSCS Department

Marquette University

jie.yang@marquette.edu

Satish Puri
MSCS Department

Marquette University

satish.puri@marquette.edu

Abstract—Voronoi diagram construction is a common and
fundamental problem in computational geometry and spatial
computing. Numerous sequential and parallel algorithms for
Voronoi diagram construction exists in literature. This paper
presents a multi-threaded approach where we augment an exist-
ing sequential implementation of Fortune’s planesweep algorithm
with compiler directives. The novelty of our fine-grained parallel
algorithm lies in exploiting the concurrency available at each
event point encountered during the algorithm.

On the Intel Xeon E5 CPU, our shared-memory parallelization
with OpenMP achieves around 2x speedup compared to the
sequential implementation using datasets containing 2k-128k
sites.

Index Terms—Voronoi, Directive Based Programming, Plane
Sweep, Fortune’s Algorithm, OpenMP, OpenACC

I. INTRODUCTION

Voronoi diagrams are extensively used in computational

geometry to partition a plane into multiple regions where each

region corresponds to and contain a site, and that site will be

the closest site to all points in that region. Figure 1 shows a

Voronoi diagram with a unique region for each site. Here is a

mathematical definition [1] of a Voronoi region:

Definition 1. Let P := {p1, p2, ..., pn} be a set of n distinct
points in the plane; these points are the sites. We define the
Voronoi diagram of P as the subdivision of the plane into n
cells, one for each site in P, with the property that a point
q lies in the cell corresponding to a site pi, if and only if
dist(q, pi) < dist(q, pj) for each pj ∈ P with j �= i.

where dist(p, q) :=
√
(px − qx)2 + (py − qy)2

There are different algorithms to construct Voronoi diagram

with n sites as input. A brute-force algorithm constructs one

region at a time. Since each region is the intersection of n-1

half planes, it takes O(nlogn) time per region, thereby result-

ing in an O(n2logn) time algorithm. An optimal algorithm has

O(nlogn) lower bound [2]. The planesweep algorithm that we

consider here for parallelization is an optimal algorithm.

We are exploiting parallelism in the planesweep algorithm

on a per event basis, however, the order of event processing

is still sequential. This is because there is interdependence

between the static and dynamic events generated by concurrent

event processing. We have discovered that there is enough

computation in an event itself to warrant performance improve-

ment in a shared memory environment. These computations

Fig. 1. Voronoi Diagram

[The dots in the figure are the sites and the lines are the

edges of the a partitioned region. It can be observed that for

any arbitrary point in the whole space, the closest site is the

one inside the same region as it is.]

include intersection of neighboring arcs (w.r.t. an event) that

is required to generate new events. This is the first work

to identify and report the performance enhancement possible

while concurrently maintaining the spatial data structures

(beachline) on a per-event basis.

This paper is a part of our series of work focused on

parallelizing existing spatial and computational geometry code

using compiler directives. Our prior work was successful

in the parallelization of the planesweep version of segment

intersection and polygon intersection problems [3], [4], [5].

Existing literature focuses on theoretical work on parallel al-

gorithms [6], [7]. There are other approaches of parallelization

that use data decomposition [2], [8]. However, data decompo-

sition algorithms require expensive merging steps (O(n) time

complexity) which are non-trivial to implement efficiently. Our

work does not require explicit data decomposition.

This paper explores the concurrency available in processing

each event in Voronoi diagram construction and uses directives

to make an existing implementation of Fortune’s algorithm

faster with minimal efforts using compiler directives. OpenMP

is an application programming interface which enables us to

parallelize existing C, C++ or Fortran code by just adding

compiler directives (#pragma) to it. The compiler takes the

directives as hints for potential ways to inject parallelism

908

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00136

in the sequential code. Directives based parallelization can

be targeted at multicore CPUs, GPUs or a combination of

both. Adding directives should not affect the correctness of

the results produced, although the order in which results are

produced might vary due to concurrency. Compiler directives

based parallelization is more maintainable and performance

portable to different multicore architectures and removes the

hassle of having to change the parallelized code according

to changes in multicore architecture. Even though, OpenMP

is good for regular parallelism, here we are trying to extract

irregular and dynamic parallelism exposed by our modified

Fortune’s algorithm.

II. FORTUNE’S ALGORITHM

Fortune’s algorithm is a planesweep algorithm for com-

puting Voronoi Diagram in O(nlogn) time with O(n) space

[9]. Fortune presented a transformation that could be used to

compute Voronoi diagrams with a sweepline technique. [9]

Fig. 2. A snapshot of the algorithm showing circle events, a vertical sweep
line and beachline made up of arcs. (Best viewed in color)

In Figure 2, the dark grey dots are the site points. The

blue dots are the Voronoi vertices and lines connecting the

blue dots are the Voronoi edges. The vertical blue line is the

sweepline. The green and red arcs form the beachline structure

at the sweepline position. The light grey circles are the circle

events. As the sweepline reaches a site point, an arc/parabola

corresponding to it is created which will grow as the sweepline

progresses and is clipped by neighbouring arcs or new arc

ahead of it. The collection of active arcs is the beachline.

Algorithm 1 is a simplified algorithmic description of the

implementation of Fortune’s Algorithm. The focus of the

description here is to show the flow of the algorithm so that the

possibilities and limitations to a directive based approach can

be explored. This algorithmic description here is necessary to

understand the flow of execution and interdependencies among

the variables that are key to any directive-based parallelization.

Algorithm 1 Fortune’s Algorithm (Horizontal Sweep)

1: P ← load all points

2: Initialize a bounding box with offset

3: Initialize beachline B

// B is of type arc

4: Initialize output O

// O is a collection of edges of the partitioned regions

5: Initialize events priority queue

// event with minimum x-coordinate is at the top

6: Sort P in ascending order by x-coordinate

7: for each p in P do
8: while (events.top.x <= p.x) do
9: ProcessEvent(events.deque())

10: end while
11: ProcessPoint(p)

12: end for
13: ProcessRemainingEvents()

14: FinishEdges()

In the event data structure, x is the maximum x-location

a circle event can affect and it introduces a event processing

there. So, x = p.x + radiusOfTheCircle.

Listing 1. Data Structure for Event

s t r u c t e v e n t {
v a r x ;

p o i n t p ;

a r c ∗a ;

}

Algorithm 2 ProcessEvent(event e)

1: Input event e
2: if (e.valid) then
3: Begin a new Segment s at e.x
4: Remove e.a from beachline B

5: Complete segments e.a.s0 and e.a.s1
6: // Check circle events

CheckCircleEvent(e.a.prev, e.x)

CheckCircleEvent(e.a.next, e.x)

7: end if

A. Parallelizing Fortune’s Algorithm

We start by trying to find opportunities in the algorithm

where compiler directives can be inserted for parallelization.

The most obvious choice would be to parallelize the loops.

Loop parallelization using directives is the easiest way to

parallelize and usually has very less overheads. Furthermore,

internal loops inside nested loops can also be parallelized.

In Algorithm 1, the for-loops and while loops cannot be di-

rectly parallelized due to interdependencies and memory side-

effects. Algorithm 3 and Algorithm 2 can not run concurrently

due to the interdependence of site events and the circle events.

In Algorithm 2, since entirety of its execution is based

on a conditional, we need to determine the possibility of

909

Algorithm 3 ProcessPoint(point p)

1: Input point p
2: for arc i in beachline B do
3: if intersects(p,i) then
4: Add new arc at p.x to beachline B

5: Connect new arc to prev and next segments of i
CheckCircleEvent(i, p.x)

CheckCircleEvent(i.prev, p.x)

CheckCircleEvent(i.next, p.x)

6: return

7: end if
8: end for
9: arc i ← last arc in B

10: Insert segment between p and i

parallelizing this portion if it gets executed. Here, line 4

is dependent on line 3 because we need the segment s to

remove e.a from beachline B. However, excluding this, the

two operations in line 5 and the two operations in line 6

can be parallelized to run concurrently. Completing the two

segments in line 5 does not affect any other operations that

could happen here concurrently. However the two circle events

check in line 6 can lead to new events being added, but since

these events are just added and not used elsewhere, we can put

adding events part of the code inside critical sections and still

parallelize line 6. So, in overall we can have five sections that

run in parallel here - one section would comprise of lines 3 and

4, another two sections would comprise of completing each

segment in line 5 and the other two sections would comprise

of the two circle events checks in line 6.

Algorithm 3 is even more complicated to parallelize because

it has loops, conditionals inside loop and early exits inside

those conditionals. An event is rendered invalid if the arc

associated with that event is no longer in the beachline.

The outermost loop is searching for an arc corresponding

to the new event. This is done by performing an exhaustive

search looking for a single instance for which the search

criterion is fulfilled. Then a series of operations is performed

on the resultant instance if it was found. If a resultant instance

was found then not only the loop is returned but the whole

procedure is exited. We can start by separating the search and

the execution of the result of the search. So, we parallelize the

loop in step 2 to find an arc i which satisfies the if-condition

and remove the execution part below. One problem here is

that if such an arc is found by sequential iteration early on,

parallelizing it might just give us unessential overhead. To

remedy this, we will convert this search loop into a chunked

iterative exhaustive search loop by providing hints to the

compiler that there might be a loop cancellation before each

chunked iteration. This transformation makes it suitable for

utilizing OpenMP parallel loop cancellation feature as shown

line 5 and line 6 of Algorithm 4.

Concurrent Processing of Circle Events:
Another problem with Algorithm 3 is that, a sequential search

would have terminated after finding the first instance for which

the search criteria would have been satisfied but during a

concurrent chunked iteration, there might be multiple instances

for which the search criteria has been satisfied. For correctness

with regards to the sequential code, we can use a minimum

reduction to make certain that the first instance is reported.

At this point we will either have an arc i that satisfies the

conditional or not and the loop will be exited but the procedure

will not have been terminated. We can put this conditional of

whether an arc i has been found in an if-statement with its

else-part as lines 10-11. If an arc i has been found then we can

execute the lines 4-6 with i and if not then we execute lines 10-

11. This removes any early procedure terminating conditions

from Algorithm 3. Then lines 4-6 that has been moved out

of the loop and put inside this new conditional statement can

now be explored for further parallelism. Lines 4-5 need to

be executed sequentially because line 5 is dependent on the

arc created in line 4. However, as shown in Algorithm 4, the

three parts of line 6 can be parallelized to run concurrently

even along with lines 4-5. Again, here the circle events check

can lead to new events being added, but since these events are

just added and not used elsewhere, we can put adding events

part of the code inside critical sections and still parallelize.

However, we will not be able to parallelize lines 10-11 of

Algorithm 3 because its execution needs to be sequential. So,

in this portion we are able to parallelize the search phase

and lines 4-6 after they have been moved outside. As shown

by Algorithm 4, Lines 4-6 from Algorithm 3 will have four

sections - first section would comprise of lines 4-5 and the

other three sections would comprise each of the three parts of

line 6.

III. RESULTS

An OpenMP implementation of code was created using the

analysis in section II-A and executed on data with varying

number of sites. The skeleton for the sequential C++ code

used was inspired by the work of Matt Brubeck [10]. The

machine used to run the OpenMP code has the Intel Xeon E5-

2695 multi-core CPU with 45MB cache and base frequency

of 2.10GHz.

TABLE I
TIMINGS OF RUNNING THE CODE IN SEQUENTIAL AND WITH OPENMP

Sites Sequential OpenMP SpeedUp
2k 0.456s 0.165s 2.761
4k 0.758s 0.419s 1.809
8k 2.06s 0.995s 2.070
16k 6.496s 2.748s 2.364
32k 13.748s 5.162s 2.663
64k 38.847s 18.029s 2.155
128k 84.396s 39.305s 2.147

Figure 3 shows the execution time for different number

of site events. Even with the overhead of parallelization, the

OpenMP version beats its sequential counterpart. We can see

from Table I that we get almost above 2x speedup using upto

four threads. The distribution of points affects the runtime

of our algorithm and we have observed that having some

910

Algorithm 4 ProcessPoint(point p) with directives
1: Input point p, initialize bool doesIntersect = False

#pragma omp parallel for num threads(threadCount)

2: for arc i in beachline B do
j ← index of arc i in beachline B

3: if intersects(p,i) then
4: ind = j

5: doesIntersect = True

#pragma omp cancel for

6: end if
#pragma omp cancellation point for

7: end for

8: if (doesIntersect == True) then
9: arc i ← B[ind]

#pragma omp parallel sections

{
#pragma omp section

{
10: Add new arc at p.x to beachline B

11: Connect new arc to prev and next segments of i
}
#pragma omp section

12: CheckCircleEvent(i, p.x)

#pragma omp section

13: CheckCircleEvent(i.prev, p.x)

#pragma omp section

14: CheckCircleEvent(i.next, p.x)

}
15: else
16: arc i ← last arc in B

17: Insert segment between p and i

18: end if

types of distribution of points improves the performance of

our algorithm. The speedup varies for different number of sites

because the time taken to search for an arc corresponding to

the event being processed is variable. In Algorithm 4, there are

two code blocks which have been parallelized using OpenMP.

There is a sequential dependency between block 1 (lines 2-7)

and block 2 (lines 8-18). Even though the for-loop is highly

parallelizable, the second block with OpenMP sections can

only use few threads. In the worst case scenario, the execution

time for block 1 depends on the number of active arcs in the

beachline but in average case, the intersection test (line 3) can

finish much earlier. We have found that beyond four threads

there is a degradation in efficiency.

IV. CONCLUSION

Our experiments and design space exploration in directives-

based parallelization of Fortune’s algorithm has yielded a

shared memory implementation that gives around 2x speedup

compared to the sequential version. A four threaded paral-

lelization is extremely useful for applications that run on per-

Fig. 3. Sequential vs OpenMP timings

sonal devices with quad-core processors or on cloud instances

where the most common instance of compute nodes usually

has four cores. We have experimentally demonstrated a novel

way of extracting irregular and dynamic parallelism inherent

at each event of the algorithm. Moreover, our new method

decreases the run-time of the algorithm on data sets of different

size.

ACKNOWLEDGEMENTS

This work is partly supported by the National Science Foundation
Grant No. 1756000.

REFERENCES

[1] K. Wong and H. A. Muller, “An efficient implementation of fortune’s
plane-sweep algorithm for voronoi diagrams,” 1991.

[2] F. P. Preparata and M. I. Shamos, Computational geometry: an intro-
duction. Springer Science & Business Media, 2012.

[3] A. Paudel and S. Puri, “Openacc based gpu parallelization of plane
sweep algorithm for geometric intersection,” in Fifth Workshop on Accel-
erator Programming Using Directives, co-located with the International
Conference for High Performance Computing, Networking, Storage, and
Analysis (SC18). Springer, 2018.

[4] S. Puri and S. K. Prasad, “Output-sensitive parallel algorithm for poly-
gon clipping,” in Parallel Processing (ICPP), 2014 43rd International
Conference on. IEEE, 2014, pp. 241–250.

[5] S. Puri, A. Paudel, and S. K. Prasad, “MPI-vector-IO: Parallel I/O and
Partitioning for Geospatial Vector Data,” in Proceedings of the 47th
International Conference on Parallel Processing, ICPP, 2018, p. 13.

[6] S. G. Akl and K. A. Lyons, Parallel computational geometry. Prentice-
Hall, Inc., 1993.

[7] M. T. Goodrich, M. R. Ghouse, and J. Bright, “Sweep methods for
parallel computational geometry,” Algorithmica, vol. 15, no. 2, pp. 126–
153, 1996.

[8] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational
geometry: algorithms and applications. Springer-Verlag TELOS, 2008.

[9] S. Fortune, “A sweepline algorithm for voronoi diagrams,” Algorithmica,
vol. 2, no. 1-4, pp. 153–174, Nov 1987.

[10] (2002). [Online]. Available: https://www.cs.hmc.edu/ mbrubeck-
/voronoi.html

911

