2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

Parallelization of Plane Sweep based Voronoi
Construction with Compiler Directives

Anmol Paudel
MSCS Department
Marquette University
anmol.paudel @marquette.edu

Abstract—Voronoi diagram construction is a common and
fundamental problem in computational geometry and spatial
computing. Numerous sequential and parallel algorithms for
Voronoi diagram construction exists in literature. This paper
presents a multi-threaded approach where we augment an exist-
ing sequential implementation of Fortune’s planesweep algorithm
with compiler directives. The novelty of our fine-grained parallel
algorithm lies in exploiting the concurrency available at each
event point encountered during the algorithm.

On the Intel Xeon ES CPU, our shared-memory parallelization
with OpenMP achieves around 2x speedup compared to the
sequential implementation using datasets containing 2k-128k
sites.

Index Terms—Voronoi, Directive Based Programming, Plane
Sweep, Fortune’s Algorithm, OpenMP, OpenACC

I. INTRODUCTION

Voronoi diagrams are extensively used in computational
geometry to partition a plane into multiple regions where each
region corresponds to and contain a site, and that site will be
the closest site to all points in that region. Figure 1 shows a
Voronoi diagram with a unique region for each site. Here is a
mathematical definition [1] of a Voronoi region:

Definition 1. Ler P := {p1,pa, ..., pn} be a set of n distinct
points in the plane; these points are the sites. We define the
Voronoi diagram of P as the subdivision of the plane into n
cells, one for each site in P, with the property that a point
q lies in the cell corresponding to a site p;, if and only if
dist(q,p;) < dist(q,pj) for each p; € P with j # i.

where dist(p,q) := \/(px — ¢2)* + (py — ¢,)?

There are different algorithms to construct Voronoi diagram
with n sites as input. A brute-force algorithm constructs one
region at a time. Since each region is the intersection of n-1
half planes, it takes O(nlogn) time per region, thereby result-
ing in an O(n2logn) time algorithm. An optimal algorithm has
O(nlogn) lower bound [2]. The planesweep algorithm that we
consider here for parallelization is an optimal algorithm.

We are exploiting parallelism in the planesweep algorithm
on a per event basis, however, the order of event processing
is still sequential. This is because there is interdependence
between the static and dynamic events generated by concurrent
event processing. We have discovered that there is enough
computation in an event itself to warrant performance improve-
ment in a shared memory environment. These computations

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00136

Jie Yang
MSCS Department
Marquette University
jie.yang @marquette.edu

908

Satish Puri
MSCS Department
Marquette University
satish.puri @marquette.edu

Fig. 1. Voronoi Diagram

[The dots in the figure are the sites and the lines are the
edges of the a partitioned region. It can be observed that for
any arbitrary point in the whole space, the closest site is the
one inside the same region as it is.]

include intersection of neighboring arcs (w.r.t. an event) that
is required to generate new events. This is the first work
to identify and report the performance enhancement possible
while concurrently maintaining the spatial data structures
(beachline) on a per-event basis.

This paper is a part of our series of work focused on
parallelizing existing spatial and computational geometry code
using compiler directives. Our prior work was successful
in the parallelization of the planesweep version of segment
intersection and polygon intersection problems [3], [4], [5].
Existing literature focuses on theoretical work on parallel al-
gorithms [6], [7]. There are other approaches of parallelization
that use data decomposition [2], [8]. However, data decompo-
sition algorithms require expensive merging steps (O(n) time
complexity) which are non-trivial to implement efficiently. Our
work does not require explicit data decomposition.

This paper explores the concurrency available in processing
each event in Voronoi diagram construction and uses directives
to make an existing implementation of Fortune’s algorithm
faster with minimal efforts using compiler directives. OpenMP
is an application programming interface which enables us to
parallelize existing C, C++ or Fortran code by just adding
compiler directives (#pragma) to it. The compiler takes the
directives as hints for potential ways to inject parallelism

IEEE
computer
® psoaety

in the sequential code. Directives based parallelization can
be targeted at multicore CPUs, GPUs or a combination of
both. Adding directives should not affect the correctness of
the results produced, although the order in which results are
produced might vary due to concurrency. Compiler directives
based parallelization is more maintainable and performance
portable to different multicore architectures and removes the
hassle of having to change the parallelized code according
to changes in multicore architecture. Even though, OpenMP
is good for regular parallelism, here we are trying to extract
irregular and dynamic parallelism exposed by our modified
Fortune’s algorithm.

II. FORTUNE’S ALGORITHM

Fortune’s algorithm is a planesweep algorithm for com-
puting Voronoi Diagram in O(nlogn) time with O(n) space
[9]. Fortune presented a transformation that could be used to
compute Voronoi diagrams with a sweepline technique. [9]

v}\\

Fig. 2. A snapshot of the algorithm showing circle events, a vertical sweep
line and beachline made up of arcs. (Best viewed in color)

In Figure 2, the dark grey dots are the site points. The
blue dots are the Voronoi vertices and lines connecting the
blue dots are the Voronoi edges. The vertical blue line is the
sweepline. The green and red arcs form the beachline structure
at the sweepline position. The light grey circles are the circle
events. As the sweepline reaches a site point, an arc/parabola
corresponding to it is created which will grow as the sweepline
progresses and is clipped by neighbouring arcs or new arc
ahead of it. The collection of active arcs is the beachline.

Algorithm 1 is a simplified algorithmic description of the
implementation of Fortune’s Algorithm. The focus of the
description here is to show the flow of the algorithm so that the
possibilities and limitations to a directive based approach can
be explored. This algorithmic description here is necessary to
understand the flow of execution and interdependencies among
the variables that are key to any directive-based parallelization.

Algorithm 1 Fortune’s Algorithm (Horizontal Sweep)
1: P < load all points
2: Initialize a bounding box with offset
3: Initialize beachline B
/I B is of type arc
4: Initialize output O
/1 O is a collection of edges of the partitioned regions
5: Initialize events priority queue
/I event with minimum x-coordinate is at the top
6: Sort P in ascending order by x-coordinate
7: for each p in P do
8
9

while (events.top.x <= p.x) do
: ProcessEvent(events.deque())
10: end while

11: ProcessPoint(p)
12: end for

13: ProcessRemainingEvents()
14: FinishEdges()

In the event data structure, x is the maximum x-location
a circle event can affect and it introduces a event processing
there. So, x = p.x + radiusOfTheCircle.

Listing 1. Data Structure for Event
struct event {
var Xx;
point p;
arc xa;

Algorithm 2 ProcessEvent(event e)

1: Input event e
2: if (e.valid) then

3: Begin a new Segment s at e.x

4 Remove e.a from beachline B

5: Complete segments e.a.s0 and e.a.sl
6 /I Check circle events

CheckCircleEvent(e.a.prev, e.x)
CheckCircleEvent(e.a.next, e.x)
7. end if

A. Parallelizing Fortune’s Algorithm

We start by trying to find opportunities in the algorithm
where compiler directives can be inserted for parallelization.
The most obvious choice would be to parallelize the loops.
Loop parallelization using directives is the easiest way to
parallelize and usually has very less overheads. Furthermore,
internal loops inside nested loops can also be parallelized.

In Algorithm 1, the for-loops and while loops cannot be di-
rectly parallelized due to interdependencies and memory side-
effects. Algorithm 3 and Algorithm 2 can not run concurrently
due to the interdependence of site events and the circle events.

In Algorithm 2, since entirety of its execution is based
on a conditional, we need to determine the possibility of

Algorithm 3 ProcessPoint(point p)
1: Input point p
2: for arc i in beachline B do
3 if intersects(p,?) then
Add new arc at p.x to beachline B
Connect new arc to prev and next segments of %
CheckCircleEvent(i, p.x)
CheckCircleEvent(i.prev, p.z)
CheckCircleEvent(i.next, p.x)
return
end if
end for
arc ¢ <— last arc in B
: Insert segment between p and i

—_
(=]

parallelizing this portion if it gets executed. Here, line 4
is dependent on line 3 because we need the segment s to
remove e.a from beachline B. However, excluding this, the
two operations in line 5 and the two operations in line 6
can be parallelized to run concurrently. Completing the two
segments in line 5 does not affect any other operations that
could happen here concurrently. However the two circle events
check in line 6 can lead to new events being added, but since
these events are just added and not used elsewhere, we can put
adding events part of the code inside critical sections and still
parallelize line 6. So, in overall we can have five sections that
run in parallel here - one section would comprise of lines 3 and
4, another two sections would comprise of completing each
segment in line 5 and the other two sections would comprise
of the two circle events checks in line 6.

Algorithm 3 is even more complicated to parallelize because
it has loops, conditionals inside loop and early exits inside
those conditionals. An event is rendered invalid if the arc
associated with that event is no longer in the beachline.

The outermost loop is searching for an arc corresponding
to the new event. This is done by performing an exhaustive
search looking for a single instance for which the search
criterion is fulfilled. Then a series of operations is performed
on the resultant instance if it was found. If a resultant instance
was found then not only the loop is returned but the whole
procedure is exited. We can start by separating the search and
the execution of the result of the search. So, we parallelize the
loop in step 2 to find an arc ¢ which satisfies the if-condition
and remove the execution part below. One problem here is
that if such an arc is found by sequential iteration early on,
parallelizing it might just give us unessential overhead. To
remedy this, we will convert this search loop into a chunked
iterative exhaustive search loop by providing hints to the
compiler that there might be a loop cancellation before each
chunked iteration. This transformation makes it suitable for
utilizing OpenMP parallel loop cancellation feature as shown
line 5 and line 6 of Algorithm 4.

Concurrent Processing of Circle Events:

Another problem with Algorithm 3 is that, a sequential search
would have terminated after finding the first instance for which

910

the search criteria would have been satisfied but during a
concurrent chunked iteration, there might be multiple instances
for which the search criteria has been satisfied. For correctness
with regards to the sequential code, we can use a minimum
reduction to make certain that the first instance is reported.
At this point we will either have an arc ¢ that satisfies the
conditional or not and the loop will be exited but the procedure
will not have been terminated. We can put this conditional of
whether an arc ¢ has been found in an if-statement with its
else-part as lines 10-11. If an arc ¢ has been found then we can
execute the lines 4-6 with ¢ and if not then we execute lines 10-
11. This removes any early procedure terminating conditions
from Algorithm 3. Then lines 4-6 that has been moved out
of the loop and put inside this new conditional statement can
now be explored for further parallelism. Lines 4-5 need to
be executed sequentially because line 5 is dependent on the
arc created in line 4. However, as shown in Algorithm 4, the
three parts of line 6 can be parallelized to run concurrently
even along with lines 4-5. Again, here the circle events check
can lead to new events being added, but since these events are
just added and not used elsewhere, we can put adding events
part of the code inside critical sections and still parallelize.
However, we will not be able to parallelize lines 10-11 of
Algorithm 3 because its execution needs to be sequential. So,
in this portion we are able to parallelize the search phase
and lines 4-6 after they have been moved outside. As shown
by Algorithm 4, Lines 4-6 from Algorithm 3 will have four
sections - first section would comprise of lines 4-5 and the
other three sections would comprise each of the three parts of
line 6.

III. RESULTS

An OpenMP implementation of code was created using the
analysis in section II-A and executed on data with varying
number of sites. The skeleton for the sequential C++ code
used was inspired by the work of Matt Brubeck [10]. The
machine used to run the OpenMP code has the Intel Xeon E5-
2695 multi-core CPU with 45MB cache and base frequency
of 2.10GHz.

TABLE I
TIMINGS OF RUNNING THE CODE IN SEQUENTIAL AND WITH OPENMP

Sites | Sequential | OpenMP | SpeedUp |

2k 0.456s 0.165s 2.761
4k 0.758s 0.419s 1.809
8k 2.06s 0.995s 2.070
16k 6.496s 2.748s 2.364
32k 13.748s 5.162s 2.663
64k 38.847s 18.029s 2.155
128k 84.396s 39.305s 2.147

Figure 3 shows the execution time for different number
of site events. Even with the overhead of parallelization, the
OpenMP version beats its sequential counterpart. We can see
from Table I that we get almost above 2x speedup using upto
four threads. The distribution of points affects the runtime
of our algorithm and we have observed that having some

Algorithm 4 ProcessPoint(point p) with directives

1: Input point p, initialize bool doesIntersect = False

#pragma omp parallel for num_threads(threadCount)
2: for arc ¢ in beachline B do
j < index of arc ¢ in beachline B

3: if intersects(p,i) then
4: ind =]
5: doeslIntersect = True
#pragma omp cancel for
6: end if
#pragma omp cancellation point for
7: end for

8: if (doeslntersect == True) then

9: arc ¢ < BJind]
#pragma omp parallel sections
#pragma omp section
{
10: Add new arc at p.x to beachline B
11: Connect new arc to prev and next segments of ¢
}
#pragma omp section
12: CheckCircleEvent(z, p.x)
#pragma omp section
13: CheckCircleEvent(i.prev, p.x)
#pragma omp section
14: CheckCircleEvent(i.next, p.x)
}
15: else
16: arc ¢ < last arc in B
17: Insert segment between p and i
18: end if

types of distribution of points improves the performance of
our algorithm. The speedup varies for different number of sites
because the time taken to search for an arc corresponding to
the event being processed is variable. In Algorithm 4, there are
two code blocks which have been parallelized using OpenMP.
There is a sequential dependency between block 1 (lines 2-7)
and block 2 (lines 8-18). Even though the for-loop is highly
parallelizable, the second block with OpenMP sections can
only use few threads. In the worst case scenario, the execution
time for block 1 depends on the number of active arcs in the
beachline but in average case, the intersection test (line 3) can
finish much earlier. We have found that beyond four threads
there is a degradation in efficiency.

IV. CONCLUSION

Our experiments and design space exploration in directives-
based parallelization of Fortune’s algorithm has yielded a
shared memory implementation that gives around 2x speedup
compared to the sequential version. A four threaded paral-
lelization is extremely useful for applications that run on per-

911

Sequential Vs OpenMP Timings

Time (s)

2 4 8

16 32

Number of Sites (in thousands)

64 128

=8=—Sequential =8=OpenVP

Fig. 3. Sequential vs OpenMP timings

sonal devices with quad-core processors or on cloud instances
where the most common instance of compute nodes usually
has four cores. We have experimentally demonstrated a novel
way of extracting irregular and dynamic parallelism inherent
at each event of the algorithm. Moreover, our new method
decreases the run-time of the algorithm on data sets of different
size.

ACKNOWLEDGEMENTS

This work is partly supported by the National Science Foundation
Grant No. 1756000.

REFERENCES

K. Wong and H. A. Muller, “An efficient implementation of fortune’s
plane-sweep algorithm for voronoi diagrams,” 1991.

F. P. Preparata and M. I. Shamos, Computational geometry: an intro-
duction. Springer Science & Business Media, 2012.

A. Paudel and S. Puri, “Openacc based gpu parallelization of plane
sweep algorithm for geometric intersection,” in Fifth Workshop on Accel-
erator Programming Using Directives, co-located with the International
Conference for High Performance Computing, Networking, Storage, and
Analysis (SC18). Springer, 2018.

S. Puri and S. K. Prasad, “Output-sensitive parallel algorithm for poly-
gon clipping,” in Parallel Processing (ICPP), 2014 43rd International
Conference on. 1EEE, 2014, pp. 241-250.

S. Puri, A. Paudel, and S. K. Prasad, “MPI-vector-10: Parallel I/O and
Partitioning for Geospatial Vector Data,” in Proceedings of the 47th
International Conference on Parallel Processing, ICPP, 2018, p. 13.
S. G. Akl and K. A. Lyons, Parallel computational geometry. Prentice-
Hall, Inc., 1993.

M. T. Goodrich, M. R. Ghouse, and J. Bright, “Sweep methods for
parallel computational geometry,” Algorithmica, vol. 15, no. 2, pp. 126—
153, 1996.

M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational
geometry: algorithms and applications. Springer-Verlag TELOS, 2008.
S. Fortune, “A sweepline algorithm for voronoi diagrams,” Algorithmica,
vol. 2, no. 1-4, pp. 153-174, Nov 1987.

(2002). [Online]. Available: https://www.cs.hmc.edu/ mbrubeck-
/voronoi.html

