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Abstract—Digital radio over fiber (D-RoF), one of the
candidates for 5G mobile fronthaul networks, is known
for its high reliability and strong robustness against
nonlinear channel degradations, which makes it suitable
for short-reach fronthaul links supporting ultra-reliable
low-latency communication in 5G. However, traditional
D-RoF technology is limited by its lower bandwidth effi-
ciency. In this paper, based on our previous work, advanced
data-compression techniques with adaptive non-uniform
quantizers and differential coding are discussed for a sig-
nificant improvement of bandwidth efficiency in fronthaul
networks. High-order differential coding based on a least-
mean-square algorithm has been proposed to further
improve the compression ratio with low complexity and
high adaptability. By jointly applying a non-uniform quan-
tizer and a differentiator, the signal-to-quantization-noise
ratio and bandwidth efficiency can be improved by around
10 dB and 40%—-60%, respectively, depending on the modu-
lation formats in our proposed solution. We have experi-
mentally demonstrated the transmission of 200 Gbps
fronthaul links over a fiber distance of 80 km. The system
is capable of encapsulating 110 x 120 MHz 5G new radio
carriers with error-vector magnitude lower than 0.8%.

Index Terms—Digital radio over fiber; Mobile fronthaul;
Optical fiber communication.

I. INTRODUCTION

ith the expectation of superior performance in

throughput and connectivity, the fifth-generation
new radio (5G-NR) air interface is going to be commercially
launched around 2020 [1]. The new features of 5G, includ-
ing higher-RF-band exploration, massive multiple input
multiple output (MIMO), beam forming, ultra-reliable
low-latency communication (uRLLC), and large-scale
Internet-of-Things (IoT) connectivity, bring great chal-
lenges for next-generation mobile fronthaul (MFH) net-
works. Recently, both telecom industries and standard
bodies have been working hard to finalize the design
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and specifications of the core network and radio access
network (RAN) supporting 5G.

The centralized RAN (C-RAN) was proposed by China
Mobile in 2011 [2]; here the baseband processing units
(BBUs) are centralized and virtualized as a resource pool
called the BBU pool, and its resources can be dynamically
redistributed toward different radio access units on demand.
While it has advantages in dealing with large-scale network
resource allocation and data processing, the fully centralized
architecture also leads to issues of high latency require-
ments and lack of flexibility. To address the issues and en-
hance the flexibility as well as compatibility with different
application scenarios, C-RAN continues to evolve to accom-
modate new 5G RAN requirements and features. One of the
new features is functional split (F'S), which has been stand-
ardized on high layer split by 3GPP radio access architecture
and interfaces release 14 [3]. In the 3GPP RAN architecture,
two logical entities, namely, the central unit (CU) and the
distributed unit (DU), are defined, and the functions in a tra-
ditional BBU can be divided between the CU and the DU in
regard of radio resource control, packet data convergence
protocol (PDCP), radio-link control (RLC), media access
control (MAC), and physical (PHY) layers. There are eight
options, which could realize a trade-off among radio perfor-
mance, flexibility, delay, and transmission data rate.

Following the new requirements in 5G, the concept of next
generation fronthaul interface (NGFI) has been proposed [4]
to build an open and flexible platform supporting various ser-
vices with diverse bandwidth and latency requirements. As
illustrated by the conceptual diagram of NGFI in Fig. 1,
two-layer fronthaul interfaces exist with Fronthaul-I connect-
ing the DU and the remote radio unit (RRU) and Fronthaul-IT
connecting the CU and the DU. FS Option 2 with a split be-
tween PDCP and RLC has been adopted as the major option
in Fronthaul-II. However, the F'S option for Fronthaul-I is still
open and it will depend on the service needs. As shown in
Fig. 1, for the short-reach low-cost fronthaul system, two can-
didates in Option 8, namely, the analog radio over fiber
(A-RoF) and the digital radio over fiber (D-RoF), are strong
candidates to provide simple, robust, and low-latency data
transmission links between the DU and the RRU, especially
to fulfill the needs of massive machine-type communication,
uRLLC, and vehicle-to-everything (V2X) communications.
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Fig. 1. Conceptual diagram of MFH architecture based on NGFI.

Fronthaul-I based on the A-RoF has been studied inten-
sively [5-7]. Its benefits include high bandwidth efficiency
and simple receiver architecture at the RRU. However, it
also suffers from several major issues. First, the signals
in the A-RoF are very sensitive to nonlinear degradations,
channel penalties, and chromatic-dispersion-induced
power fading. In order to guarantee the performance of
the air-transmission link without disturbance from the op-
tical systems, different nonlinear distortion-compensation
techniques have been proposed [8-10] to compensate for
the nonlinear distortions in the optical link. However,
sophisticated digital signal processing (DSP) is required
at the RRU site to restore the analog signals, thus greatly
increasing the complexity. On the other hand, when multi-
ple analog signals are aggregated in the frequency domain,
complex analog subsystems or high-bandwidth analog-to-
digital converters are needed to down-convert the signals
from the intermediate frequencies. Moreover, the latest
5G-NR specifications feature filtered orthogonal frequency-
division multiplexing (OFDM) and higher orders of modu-
lations (256 and 1024-QAM) [11]. With the higher spectral
efficiency, the upgrade of modulation in 5G also generates
higher requirements on linearity and signal-to-noise ratio,
where the shortcomings of the A-RoF seriously limit its
signal quality and transmission distance.

Compared with the A-RoF, the D-RoF system digitizes
and converts the continuous signal waveform to discrete
voltage levels, which will be further degenerated to binary
codes before modulation and transmission. Such techniques
greatly improve the reliability and robustness of the
system against different linear and nonlinear channel deg-
radations. Moreover, the digitization process is straight-
forward, format-agnostic, and multiservice-compatible.
Error-free transmission can also be achieved when employ-
ing forward-error correction (FEC) coding. Combined with
efficient antenna-component (AxC) chip interleaving [12],
point-to-multipoint efficient data multiplexing among
antennas could also be realized. These features make the
D-RoF technology a promising candidate for short-reach,
highly reliable, and low-latency fronthaul links supporting
IoT, machine-type, and V2X communications in 5G.

One of the major problems regarding the D-RoF
stems from its low bandwidth efficiency in transmission.
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The common public radio interface (CPRI) has been widely
used in current MFH supporting long-term evolution (LTE).
To transmit one 20 MHz LTE component, with 15-digit
quantization, 1-digit control word, and 8b/10b encoding,
a capacity of nearly 1.2 Gbps is required in the fiber
link, which is inefficient. Fortunately, multiple solutions,
including resampling, data compression, and advanced
modulation formats, could help to increase the bandwidth
efficiency of D-RoF systems. Among them, data compres-
sion is the key study item of this paper. A lot of work
has been done in this area, including partial-bit sampling
(PBS) [13], nonlinear quantization [14,15], statistical
estimation [16,17], vector quantization [18], and differen-
tial pulse-code modulation (DPCM) [19]. Great achieve-
ments have been reported where, depending on the
signal-to-quantization-noise (SQNR) threshold, almost
50% bandwidth can be saved [20]. The requirement of
digital-to-analog-converter (DAC) resolution is also re-
laxed, which approaches that of transmitting symbols
before inversed fast-Fourier transform (IFFT) in the
PHY-I-split option. In the following part of the paper, it
is demonstrated that by applying the adaptive statistical
algorithm and integrating the quantizer and differential
encoder into a feedback-loop-based architecture, the band-
width efficiency can be further improved by more than 60%,
with a 10 dB improvement in SQNR. In the meantime, the
applicable waveform has been expanded from OFDM to
other frequently used wireless formats, like single-carrier
frequency-division multiplexing (SC-FDM). Sufficient sys-
tem margin from the threshold can be obtained. Since data
compression is widely studied and is under discussion
among standard bodies [15,21] as well as hardware vendors
[22], the results of the work could potentially pave the way
for future development in this area.

Recently, multiple F'S options in 3GPP RAN architecture
[3], NGFI [4], and eCPRI [21] have been actively discussed.
With FS, especially a deep split at the MAC and RLC
layers, fronthaul data can be multiplexed over Ethernet
packets and the required bandwidth is expected to be
greatly reduced. However, there are still a lot of issues.
First of all, the reduction of bandwidth is at the expense
of higher complexity and cost of the DU, especially when
dealing with MIMO processing and coordinated multipoint
transmission. Second, the DU may need to change the FS
options adaptively or enable multiple F'S options to coexist
to support different using scenarios, which also greatly
increases the complexity. Moreover, F'S is not exclusive
to the D-RoF technology. In some FS options, like PHY-I
or I split [23], quantization is still needed to digitally
convert the symbols after MIMO precoding.

The paper is organized as follows: in Section I, we
provide the background and motivations of the study.
Section II summarizes the existing work and our contribu-
tions. In Section III, we explain the operation principle of
the adaptive statistical method in non-uniform quantizer
(NUQ) design. Section IV demonstrates the high-order
DPCM encoder and decoder enhanced by the least-mean-
square (LMS) algorithm. Section V shows some selected
experimental results. Finally, we conclude the paper in
Section VI.
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II. ReLATED WORKS AND OUR CONTRIBUTIONS

Before starting the technical discussions, it is important
to understand the role of data compression in future digital
MFH systems. The flow diagrams of functions in MFH with
data compression are shown in Fig. 2. In the transmitter
part of the D-RoF, the operation is initiated from com-
plex-valued analog carriers. For each analog signal sample
of the component carrier (CC), the in-phase (I) and quad-
rature (Q) parts are separated, where the continuously var-
ied amplitudes will be quantized into discrete samples,
with 2U quantization levels for each sample. Then linear
pulse-code modulation (PCM) or DPCM is applied to con-
vert the quantization levels into U-bit binary codes, which
is also called an AxC chip. After that, certain compression
algorithms are used to reduce the size of each AxC chip.
Through a training process, each U-bit chip can be mapped
into V bits and, in this case, the required bandwidth can be
reduced by a factor of (U - V) /V. D-RoF frames are formed
by interleaving different AxC chips for different antennas
in the time domain. Then, different combinations of FEC
line coding and modulation formats are applied. In the
receiver site of the D-RoF, the procedures are reversed,
where demodulation, FEC decoding, and de-framing are
performed subsequently. After the AxC chips are recovered,
the inverse bit map will be applied to map each chip from V'
bits back to U bits. It is worth noting that the inverse bit
map is generated by reversing the bit-mapping input and
output obtained by the compressor at the transmitter site,
which will be transported to the receiver site as part of the
system control information in the overhead. After the
DPCM/PCM decoder and the DAC, the discrete level of
each sample is reconstructed from the bits and the analog
waveform is re-generated, which is ready for the air trans-
mission. It can be noted that the critical procedures of the
data compressor are mainly performed at the transmitter
site and, apart from the data channel, a control channel
is also needed to control, manage, and coordinate the
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Fig. 2. Signal processing procedures in MFH with data compres-
sion in (a) DL and (b) UL transmissions.
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operation of data compression between the transmitter
and receiver sites.

Different data compression algorithms have been pro-
posed. Among these, PBS proposed by ETRI [13] is simple
to implement. In PBS, for a U -to-V-digit compression, the
last (U - V) digits are directly cut off, which is equivalent
to a V-digit uniform quantization process. But this hard
truncation results in large quantization noise when reduc-
ing the number of digits. Fitting-based nonlinear quantiza-
tion is recommended by the Open Radio Equipment
Interface [15]. It is based on the Gaussian distribution
nature of the OFDM signal’s amplitudes, thus obtaining
improved accuracy. However, the algorithm requires esti-
mating the statistical properties of the Gaussian distribu-
tion from a large number of training samples, which is time
consuming and may not be applicable to non-Gaussian
wireless formats.

To simplify the computationally complex fitting process
and in the meantime guarantee signal quality after com-
pression, fast-statistical estimation or K-Law has been
proposed [17,24]. K-Law is also based on the Gaussian dis-
tribution property of OFDM signals and assumes that the
Gaussian function can be truncated within the range of
[-Ko Ko, where o is the standard variance and K is
an adjustable positive number. Recall that more than
99.6% amplitudes are distributed within [-36¢ 3¢]. So,
by setting a K value around 2.5-3, high accuracy can be
obtained in K-Law. After taking the absolute value and per-
forming normalization to each D-RoF data block, ¢ can be
immediately obtained from the relation x,,, = Ko = 1 and
it will be used to build the companding transform function
y = C(x). The companding function is used to linearize the
cumulative distribution function of the signal’s amplitude.
After that, uniform quantization is applied to the com-
panded signals and the quantization noise becomes nearly
uniform within each quantization section. According
to the minimum mean-square-error (MMSE) criterion, the
overall quantization noise is minimized, which allows us to
use fewer number of quantization digits to generate
each AxC chip. The error-vector magnitude (EVM) after
K-Law-based 15-to-8-digit compression and de-compression
processes could reach around 0.6%.

However, one major drawback of the K-Law method is
that it is based on the assumption of a Gaussian distribu-
tion. However, a lot of wireless formats, like SC-FDM and
Nyquist pulsed single-carrier modulation, do not strictly
follow a Gaussian distribution. Under these circumstances,
the accuracy of K-Law is significantly degraded. Some
traditional general-purpose companding methods, such
as pu-Law and A-Law, may outperform K-Law in regards
to non-Gaussian distributed waveforms. In what follows,
it has been demonstrated that the adaptive statistical
method with the Lloyd algorithm could theoretically pro-
cess any kind of formats while obtaining a good signal
quality.

Recently, machine-learning-enhanced multi-dimensional
quantization (MDQ) was also proposed in Ref. [18]. The tra-
ditional methods mentioned before perform quantization
and data compression in the real scalar domain toward
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either the I or Q component. However, in MDQ, first an
N-dimensional vector group is constructed based on the
original samples. Then, an N-dimensional K-means cluster-
ing algorithm is applied to slice the vector space into M
clusters, while data falling inside each cluster will be allo-
cated a quantization codeword. It has been demonstrated
that significant improvement in the performance of EVM
can be obtained through the proposed 2D and 3D quantiza-
tion. Nevertheless, the major drawback of this method
stems from its high complexity. For a 15-to-8-digit compres-
sion, the proposed method needs to calculate 2'¢ clusters in
2D quantization, which is challenging to apply in a practical
low-latency MFH system.

The methods introduced above are concerned with the
design of quantizers in a PCM system. Another important
research direction in this area is DPCM [19,25]; it can
also be used to suppress the quantization noise level,
and when it jointly works with new quantizers, significant
performance enhancement can be achieved. The basic idea
of DPCM is based on the fact that most source signals
exhibit some correlations between successive samples,
which can result from over-sampling, presenting of long-
ones/zeros, or certain coding techniques; through differen-
tial precoding, the correlation-induced redundancy can be
reduced, which enables representing the information with
fewer digits. Given the original analog waveform samples,
x(k), and the reconstructed waveform samples after the
compression—-decompression process, x,(k), the idea of
Nth-order DPCM is to quantize the error sequence of
the weighted differentiated samples instead of the original
samples, which is denoted as

err(k) = x(k) — x(k), (@})

N
&) =) cpxq(k - 1), @)
i=1

where %(k) is also called the prediction symbol of x(%).
According to the Wiener theory [26], the best weight coef-
ficients of ¢;|;,—1..y can be obtained by minimizing the mean-
square error (MSE), J = E[lerr(k)|?]. It has been reported
in Ref. [19] that by applying fourth-order DPCM plus a
nine-digit uniform quantizer, less than 0.5% EVM can be
achieved. However, to determine the optimal coefficients,
the traditional MMSE-based method requires building
the correlation matrix from a lot of training data, and
solve the inverse of it, which is computationally inefficient
and lacks the flexibility to process the dynamically varied
wireless signals.

In this paper, we have further studied the design and op-
eration of a joint architecture of NUQ and a differentiator.
Compared with our work in Ref. [16], improvements are
made in two aspects. Above all, more details are provided
about the relaxed Lloyd (R-Lloyd) algorithm based on our
previous results in Ref. [16]. Mechanisms for suppressing
the quantization noise, thus improving the bandwidth ef-
ficiency in D-RoF MFH, have been analyzed theoretically.
On the other hand, a DPCM-NUQ joint compressor is
employed to further improve the bandwidth efficiency,
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and we propose using a LMS-algorithm-based adaptive
filter to determine the values of the weights toward the
high-order differential encoder. Compared with existing
methods, the LMS-based DPCM is computationally more
efficient, with high accuracy and adaptability. High signal
quality after de-compression has also been achieved
through the experimental demonstrations.

R-Lloyd-algorithm-based MFH with data compression
has been demonstrated in this paper; this can support
1024-QAM in the latest 3GPP specifications and a future-
proof 4096-QAM format. To reduce the complexity, the tra-
ditional Lloyd algorithm is applied to calculate the major
quantization levels and the minor quantization levels are
uniformly interpolated between two adjacent major levels.
The selection of the number of major and minor levels
results in a trade-off between computational complexity
and signal quality. Compared with existing methods such
as K-Law, u-Law, and A-Law [27], the quantization noise
can be reduced by around 4.8 dB. Different from statistical
estimation methods like K-Law, the Lloyd algorithm is
format-agnostic and applicable to non-Gaussian modula-
tion formats, like SC-FDM.

Adaptive DPCM based on LMS has also been proposed
in this paper. Compared with the existing MMSE algo-
rithm, it shows no significant sacrifice of performance
accuracy. Also, it adds two benefits: first, the computational
complexity is greatly reduced especially when calculating
the coefficients for the high-order differentiator. Second,
the algorithm is based on an adaptive filter architecture;
the weights of the taps in a differentiator can be adaptively
adjusted according to the statistical property of the wave-
form at different times. The performance of the LMS
method has been confirmed by comparing it with the
look-up-table (LUT) [28] method, which finds the global
optimized tap coefficients of the differentiator through
hard searching all possible combinations of tap coefficients
in a certain range. The similar performance of the two
proves the effectiveness of the LMS method. It is also
confirmed that the SQNR improves when applying a
higher-order differentiator. However, the gain margin
also diminishes under the higher-order differentiator.
Considering the complexity and performance, a good
trade-off can be obtained with a third- or fourth-order dif-
ferentiator. Through the simulation and experimental
results, after combining R-Lloyd and DPCM, SQNR
improvements of around 6, 8, and 10 dB can be obtained
at the first, second, and fourth-order differentiators,
respectively.

The proposed technology is also demonstrated experi-
mentally over 180 Gbit/s QPSK and 200 Gbit/s 16-QAM
coherent optical fronthaul systems. Considering a subcar-
rier separation of 60 kHz, and a sampling rate of around
120 MHz for each 5G-NR CC, a 200 Gbit/s system could
encapsulate 90 or 110 carriers with the 1024-QAM format
under 15-to-8-bit or 15-to-7-bit compression, respectively.
The compression performance under the influence of bit
errors is also measured and the EVM degradation by
using DPCM instead of PCM is insignificant and so such
influence could be mitigated by employing FEC coding.
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III. OPERATION PRINCIPLE AND PERFORMANCE EVALUATION
OF THE RELAXED LLOYD ALGORITHM

The operation principle and procedures of the R-Lloyd
algorithm are shown in Fig. 3. Given the modulus (absolute
value) of the signal, x = |s|, the Lloyd algorithm starts with
the probability distribution function (PDF) of x before com-
pression, f(x), as shown in Fig. 3(a). It first divides x into
N = 2V quantization segments and each of the segments is
bounded with two quantization thresholds, from Segment 1
with #; and £,, until Segment N with ¢y and ¢y 1. N quan-
tization levels from /; to Iy are allocated for Segment 1
to Segment N, respectively. Thus, there are in total N
quantization levels and N + 1 thresholds. For the samples
falling into Segment i, they will be quantized into /;.
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Fig. 3. (a), (b) Operation principles of Lloyd and relaxed-Lloyd
algorithms. (¢) Flow diagram of the quantization process using
R-Lloyd algorithm.
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Let two random variables X and X, denote, respectively,
the signal’s modulus before and after quantization. Given
1 to Iy and ¢; to ¢ty 1, the objective of the Lloyd algorithm
is to minimize the MSE between X and X, which can be
calculated as

isne = ElX, - X)7). 3)
When f(x) is known, Eq. (3) can be rewritten as
. Z f (1 - 0?f (o) dx. @

The minimum MSE value must appear at the extreme
points on the surface of eZ;qp @ Which can be expressed by

2
Hemsne) _ o i_19  N41 ®)
ot ’ o ’
2
6(61\37?}3,62)20, i=123,..,N. ©
i

Combining Eqgs. (4)-(6), the following relations can be
obtained:
ti = (i1 +1)/2,

i=2,3,...,N, (7

I, = /t"“xf(x)dx/ /t”l f@dy, i=12..,N. (8)
t; ti

It is Egs. (7) and (8) that build the foundation of the Lloyd
algorithm, with the flow diagram shown in Fig. 3(c). The
first step in the Lloyd algorithm is to initialize the quan-
tization thresholds and levels. It is worth mentioning that,
typically, a data-compression algorithm is executed over
data blocks. For each data block, after removing the DC
component and normalizing the modulus into the range
of [0 1], a simple rule to determine the initial first and
last values of thresholds are ¢y = 0 and ¢y, = 1. Then,
ty to ty can be uniformly inserted from O to 1 and the initial
values of [; to Iy can be calculated using Eq. (8). After
initialization, the Lloyd algorithm will take iterations to
calculate the quantization thresholds from previous values
of levels using Eq. (7), and the quantization levels are cal-
culated from former thresholds based on Eq. (8) until the
MSE converges to a certain value or the iteration index
meets its maximum. Supposing each original OFDM sam-
ple at the transmitter is represented as a U-digit code and
each output quantization level is denoted with a V-digit
code (V = logy N), based on the final output of the compres-
sor, U-to-V-bit and inverse V-to-U-bit maps are generated
to simplify, respectively, the computational complexity at
the transmitter and receiver sites.

However, the traditional Lloyd algorithm is still very
complex and time consuming. For example, in a 15-to-8-
digit compression, the Lloyd algorithm needs to determine
256 (28) quantization levels and 257 thresholds through
thousands of iterations, thus incurring a large number of
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operations and a higher delay. To address such an issue,
we demonstrated the R-Lloyd algorithm in Ref. [16], where
the regular Lloyd algorithm is only used to determine the
2P major quantization levels out of 2V total number of lev-
els in the first step. Then, 2V-") minor quantization levels
are uniformly interpolated within each quantization seg-
ment [/; [;,1]. The selection of the number of major digits
(P) and minor digits (V - P) needs to jointly consider the
signal performance after compression and de-compression,
as well as the computational complexity. The simulated
EVM convergence of OFDM signals after 15-to-8-digit com-
pression and de-compression processes when applying a
different number of major digits are shown in Figs. 4(a)-
4(d). It can be noted that there is a trade-off between
the recovered signal quality and convergence speed.
With fewer number of major digits, e.g., P = 3, the algo-
rithm converges quickly within 50 iterations but the
EVM value is poorer. On the other hand, when increasing
the number of major digits to P = 4 or 5, the final EVM
performance can be improved at the expense of slower con-
vergence speed. Precisely, the results indicate that the sig-
nal quality is better, but the computational complexity is
increased when increasing the major quantization levels
rather than uniformly inserting the same number of minor
quantization levels. However, when further enlarging the
P value to P = 6, the convergence speed is significantly
reduced, thus seriously reducing the computing efficiency,
and this may not work for low-latency MFH systems. Thus,
to make a good balance between accuracy and complexity,
4 and 5 major digits are recommended. In this paper, five
major digits with 500 iterations for 15-to-8-digit compres-
sions are adopted.

The performance of EVM after recovering the com-
pressed signal versus the number of quantization digits
under different methods is shown in Fig. 5. In the simula-
tion of compressing and de-compressing OFDM wireless
signals as shown in Fig. 5(a), the 5G-NR-like data format
[29] is applied where the subcarrier spacing is set to be
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Fig. 4. EVM performance versus number of iterations when
applying different numbers of major digits.
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Fig. 5. EVM after de-compression versus number of digits using
the wireless modulation formats of (a) OFDM and (b) SC-FDM.

4 x 15 =60 KHz; the total number of subcarriers is
2048, with 1201 subcarriers loaded with data. 16-QAM
is adopted and each original OFDM I or Q sample calcu-
lated by a baseband processor is assumed to have 15 digits.
The tested number of samples is 1,43,360, which covers 10
subframes of LTE signal. Five methods are compared here,
including the R-Lloyd algorithm, y-Law with u = 4, A-Law
with A = 5, K-Law with K = 2.7, and uniform PBS, which
uniformly re-quantizes each sample from 15 digits to
3-t0-10 digits. The coefficients of each method have been
optimized. The EVM thresholds of 18.5%, 12.5%, 8%,
and 4% are for QPSK, 16-QAM, 64-QAM, and 256-QAM,
respectively, which are referred from 3GPP TS 36.104 [30]
and 3GPP TS 36.872 [31], are marked on the figures.
The EVM threshold of 1024-QAM is set at 2% taking
reference from 3GPP TR 36.783 [32]. For 4096-QAM, the
threshold is assumed to be 0.8%.

It can be observed that, among all the methods, R-Lloyd
can obtain the best EVM performance after de-compression,
especially for compressing to less than six digits. With
four digits, the EVM can reach 7.56%, enough to pass the
64-QAM EVM threshold at the base station. With eight
digits, the EVM can reach 0.49%, with a margin of more
than 24 dB from the 64-QAM threshold. Other than
OFDM as the LTE downlink (DL) format, the performance
of SC-FDM in the LTE uplink (UL) is also evaluated as
shown in Fig. 5(b). All the parameters are exactly the same
as those in OFDM; the only difference arises because a
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discrete-Fourier-transform spread operation is added
before the IFFT. It can be seen that, compared with OFDM,
the R-Lloyd algorithm shows good performance under
SC-FDM. When compressed to 4 and 5 digits, EVMs of
6.78% and 3.46% are obtained, which pass, respectively,
the 64-QAM and 256-QAM thresholds. It is also worth men-
tioning that the performance of the K-Law method for
SC-FDM is degraded compared with that of OFDM. The
penalty becomes larger especially with fewer number of
quantization digits after compression. As mentioned before,
because the signal amplitude of SC-FDM does not follow a
Gaussian distribution, the performance of K-Law is ex-
pected to be weakened since it is based on a Gaussian
PDF assumption. However, since R-Lloyd is based on an
adaptive algorithm to fit the unique statistical properties
of different waveforms, its performance is more stable
and accurate than those of K-Law and non-adaptive tradi-
tional methods.

IV. Data COMPRESSION ENHANCED BY ADAPTIVE
DirrFERENTIAL PULSE-CODE MODULATION

A. Linear Differentiator in Differential Pulse-Code
Modulation With the Least-Mean-Square Algorithm

Aside from the quantizer design, another important
technique to improve the compression ratio and bandwidth
efficiency in D-RoF-based MFH is DPCM. In what follows,
it can be seen that through weighted differential coding,
the variance of the error function between the original
and predicted samples can be reduced, thus resulting in
an improved SQNR performance compared with that of
regular PCM with the same number of quantization levels.
Here, the SQNR can be calculated as

Psig‘nal E[|x(k)|2]

S NR = = .
Q Pquantization_noise E[|x(k) - g%(k) |2]

9

Since the bandwidth efficiency is dependent on the reduc-
tion of quantization digits, which is fundamentally rooted
on the improvement of the SQNR, a higher bandwidth
efficiency can be achieved in D-RoF-based MFH using a
well-trained DPCM precoder to significantly suppress
the quantization noise level. From Ref. [33], it has been
proved that the SQNR improvement, I, can be approxi-
mated as

_ SQNRDPCM _ Var?

I - - ’
3 SQNRpcym 912\/13]3’1)

(10)

where Var? is the mean-square variance for the original
samples, and e%,ISE’D is the MSE between the original
and predicted samples, which is calculated as
ehise.p = Bllx(k) -2(k) ] = Ellerr®)?], (1D
where x(k) is the kth sample of the original signal; X(k) is

the predicted signal; and err(k) is the kth sample in the
error signal calculated by the difference between x(k)

Xu et al.

(a)

o [~ Regular —— 3rd-Order Diff| (b1)07 I Regular [ 3rd-Order Diff]

Amplitude
Probability Density

\ ! ! - 0.0
800 1200 1600 2000 -1.0
Symbol Index

0 400

-0.5 0.0 0.5 1.0
Normalized Amplitude

Fig. 6. (a) Amplitude and (b) probability density distribution of
regular and third-order differentiated OFDM waveforms.

and x(k), same as Eq. (1). From Eq. (10), under a given
original signal, a better SQNR is obtained after DPCM
with a smaller mean-square variance of the error signal,
which could be achieved by carefully calculating the tap co-
efficients shown in Eq. (2). Figures 6(a) and 6(b) compare,
respectively, the waveform time-domain patterns and
PDFs of the amplitudes between the error and original
signals. Again, one 5G-NR-like OFDM signal with 2048
subcarriers and a bandwidth of 122.8 MHz is used here.
Third-order DPCM with optimized weights is applied
and it is observed that, after normalization, the variance
of the error signal, which is one of the major contributors
to the quantization noise, is significantly reduced from both
the waveform patterns and PDF's. In what follows, methods
to efficiently calculate the optimized tap values in the
differential encoder will be discussed.

As demonstrated in the previous section, the objective of
the DPCM encoder in data compression is to suppress the
SQNR, which is realized by minimizing the MSE, ey, D>
through a linear prediction given in Eq. (2). Based on this
concept, the architecture of a differentiator in DPCM is
plotted in Fig. 7. The original baseband signal, x(k), is lin-
early filtered by a multi-tap delay-line-based finite impulse
response (FIR) filter to generate the predicted signal, x(k),
before differentiating them to get the error signal, err(k).
The weights of the FIR filter can be adaptively adjusted to
reduce the MSE calculated by Eq. (11). It is worth noting
that the objective and architecture of the system are very
similar to those of the adaptive filter in the equalizer with
the LMS algorithm for a digital communication system,
which aims at minimizing the MSE between the received
and transmitted signals. Thus, a similar iteration algo-
rithm in a LMS-based equalizer can also be used to solve

k-2 k-N-1
T x(k-2) ...x( ) T,

Adaptation
Algorithm

x(k) | x(k-1 )| x(k-N)

Ts

uerr(k)

Fig. 7. Architecture of a LMS-based differentiator.
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the weights of the delay taps in the differentiator. The
weights are updated following the relations

(k) = c(k) x v(k), (12)
err(k) = x(k) - x(k), (13)
c(k + 1) = c(k) + pu - err(k) - conj[v(k)], (14)

where v(k) =[ x(k-1) x(k-2) x(k-N)]T is the
input data vector; ¢c(k) = [ ¢1(k) ca(k) cy (k)] is the
FIR tap-weight vector; and x is the step size. By properly
setting the initial tap-weight vector and step size, the LMS
algorithm can be made to quickly converge and provide a
good approximation to the MMSE algorithm without calcu-
lating the inverse of the correlation matrix; this reduces
the computational complexity especially for a high-order
predictor. Another advantage of the LMS algorithm is that
the system can keep updating the weights of the FIR filter
adaptive to the real-time channel conditions; this could
potentially benefit the wireless UL transmission with more
bursty signals.

B. Data Compression in Mobile Fronthaul With
Joint DPCM-NUQ Architecture

To further enhance the performance of the data compres-
sor with a higher compression ratio, the differentiator and
NUQ can work together in a feedback-loop-based system at
the transmitter and receiver sites as shown in Fig. 8(a) and
8(b), respectively. When using the differentiator, the quan-
tization noise generated from the quantizer will be trans-
ferred and accumulated from one symbol to another, thus
degrading the quality of the recovered signal. Therefore,
except from enabling the joint working of the quantizer
and differentiator, another important purpose of the feed-
back loop is to resolve the issue of quantization noise
transfer.

(a)
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o (IR I eri err, | =
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Fig. 8. Structures of (a) transmitter and (b) receiver with a joint
DPCM-non-uniform-quantizer-based compressor in MFH.
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For the data compressor at the transmitter site, in the
kth iteration, the input error signal err(k), the quantized
error signal err,(k), and the quantized baseband signal
x4(k) can be calculated, respectively, as

N
err(k) = x(k) (k) = x(k) = Y ey (k—i),  (15)
i=1

err, (k) = err(k) + n,(k), (16)

N
xg(R) = &(k) + erry(k) = Y _cix (k—i) + errg(k),  (17)
i=1

where n,(k) is the quantization noise at the kth sample,
and (k) is the output of the FIR filter, also known as
the predictor of x(k). From Eqs. (15) to (17), it can be
deduced that

xq(R) = x(k) + ny (k). (18)
It can be noted from Eq. (18) that the quantization noise
from previous symbols is cancelled out and the quality of
each quantized symbol is only determined by the current
quantization noise. At the de-compressor at the receiver
site, the baseband samples after quantization can be recon-
structed using Eq. (17).

In the compression and de-compression processes, differ-
ent NUQ algorithms can be used in the quantizer part, as
shown in Fig. 8(a), to enhance its performance. In the
following context of this paper, y-Law, A-Law, K-Law,
and R-Lloyd algorithms are applied and compared. To
confirm the effectiveness of the LMS algorithm in the feed-
back-loop-based compressor architecture, comparisons are
made between first- and second-order DPCM based on
LMS and LUT. In the LUT method, a table is built with
the EVM of the wireless signal measured as a function
of tap coefficients. By searching all possible values in a
given range, the combination of tap weights with a global
optimization with the best EVM value can be figured out,
when the step size is fine enough. The waveform under test
is a 5G-NR OFDM signal with 2048 and 1201 total and
loaded subcarriers, respectively. The waveform contains
1,43,360 samples covering 10 subframes. The EVM values
given by the first- and second-order LUTSs under 15-to-6-
digit compression are plotted, respectively, in Figs. 9 and
10. In the first-order DPCM where %(k) = c;x,(k - 1), the
change of EVM can be plotted as a one-dimensional curve.
The tap weight and EVM obtained through LMS are also
marked on the corresponding curve, where the tap weights
are calculated through iterations from Eqs. (12) to (14). As
shown in Fig. 9, it can be noted that the coefficient ¢; cal-
culated by LMS is very close to the bottom of the curves,
where the global optimal ¢; is obtained. Similarly, we com-
pared the performance of the second-order DPCM-NUQ
joint compressor between the LUT and LMS algorithms.
In this case, £(k) = c1x4(k — 1) + coxy(k — 2), and the EVM
value is optimized by varying ¢; and ¢y in the LUT method
as shown by the two-dimensional contour plots in
Figs. 10(a)-10(d). The distributions applying different
compression algorithms have similar shapes. The tap



A68 J. OPT. COMMUN. NETW./VOL. 11, NO. 1/JANUARY 2019

5.5 LUT | |LMS .
' —=—R-Lloyd | O R-Lloyd|
|—e—K-Law O K-Law
B —4—u-Law | | O p-Law
—v—A-Law O A-Law
T

Fig. 9. EVM versus tap weights of the wireless signal after
applying first-order DPCM combined with different quantization
algorithms.

coefficients (c; and c¢y) calculated by the LMS method are
also marked on the figure. Their positions are quite close to
the minimal points on the surface with the best EVM
values, which proves that the result from LMS is a good
approximation of the global optimized tap weights in a
DPCM-NUQ joint architecture.

The performance of the proposed compressor adopting
different companding algorithms is compared in Fig. 11 us-
ing PCM, first-order DPCM, and second-order DPCM. The

p-Law (b) A-Law
7

(0.729 -0.485) (0.729 -0.485)
. ' °
EVM=1.66% \ EVM=1.56%

(0.729 -0.485)
[ ]

EVM=1.45%|

Fig. 10. EVM versus tap weights of the wireless signal after ap-
plying second-order DPCM combined with different quantization
algorithms.
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Fig. 11. SQNR versus quantization digits for compressors using
PCM, first-order DPCM, and second-order DPCM with different
NUQs.

SQNRs of the wireless baseband signal after compression
and de-compression are measured here. On a decibel scale,
all the curves are approximately linearly distributed as a
function of the number of quantization digits. There is an
improvement of around 6 dB in the SQNR upon adding
one more quantization digit. Compared with PCM, the
first- and second-order DPCMs can bring about extra
SQNR improvements of 1.4 and 1.24 dB, respectively.
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Fig. 12. (a)-(d) SQNR versus quantization digits under different
orders of DPCM. (e)-(g) Selected constellations of recovered
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By combining second-order DPCM and the R-Lloyd
algorithm, total SQNR improvement of 8.24 dB can be
achieved. Considering SQNR improvement of nearly 6 dB
can be traded into one quantization digit reduction, the
joint DPCM-NUQ architecture is effective in improving
the quantization efficiency.

The performance among different orders of DPCM when
using p-Law, A-Law, K-Law, and R-Lloyd are compared in
Figs. 12(a)-12(d). It can be observed that the SQNR can be
improved with an increase in the order of DPCM from 1 to
4, although the gain margin is also reduced. And consider-
ing the complexity introduced by the high-order DPCM, the
first- to fourth-order DPCM schemes are recommended to
be used here; in what follows, their performance in a MFH
testbed have been studied. The SQNR thresholds of 16-
QAM, 64-QAM, 256-QAM, 1024-QAM, and 4096-QAM in
Figs. 12(a)-12(d) are estimated as 18.1, 21.938, 27.959,
33.98, and 41.94 dB, based on their EVM thresholds dis-
cussed before. As shown in Fig. 12(d), by jointly applying
R-Lloyd and fourth-order DPCM, total SQNR improvement
of around 10 dB can be obtained. Under 15-to-8-digit (quan-
tization digits = 8) compression and de-compression,
51.15 dB SQNR can be achieved with nearly a 29 dB mar-
gin from 64-QAM SQNR threshold. The selected 256-QAM
constellations with 6-8 quantization digits using the
proposed fourth-order DPCM and R-Lloyd joint compressor
and de-compressor are shown in Fig. 12(e)-12(g). EVM
less than 1.4% is obtained, which is difficult to be
achieved using traditional A-RoF systems for MFH data
transmission.

V. EXPERIMENTAL DEMONSTRATIONS

The capacity of future wireless systems can be significantly
boosted through space-division multiplexing technologies,
such as massive MIMO and small cell implementation.
According to the latest 5G specifications [34], the peak data
rate for DL could reach 20 Gbit/s, with up to 32 MIMO ports.
On the other hand, the utilization of the 6-30 GHz band and
extremely high-frequency bands beyond 30 GHz for future
wireless broadband transmission attracts a lot of attentions
[35-37]. To support the significantly increased wireless
throughput following increased MIMO ports and higher-
RF-band exploitation in 5G, coherent optics can be a good
solution to provide sufficient fronthaul capacity, high receiver
sensitivity, and large-scale connectivity.

In the former sections, we demonstrated the operation
principles of different data-compression techniques in
D-RoF-based MFH systems and compared their perfor-
mance mainly based on simulations. In what follows, to
demonstrate the feasibility of D-RoF-based coherent opti-
cal MFH, a point-to-point experimental testbed, as shown
in Fig. 13, has been set up, where the robustness of the
data-compression algorithm under the presence of bit
errors is studied. The impacts of bit errors on the different
combinations of compression algorithms in the coherent
optical system have also been compared.

As shown in Fig. 13, in the coherent MFH, a dual-
polarization IQ modulator (DP-IQM) is used as the
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Fig. 13. Experimental system diagram.

transmitter at the CU site. The samples from wireless
OFDM symbols are digitized and compressed to eight dig-
its per sample. After digitization, each sample is converted
into an 8 bit binary AxC chip. A CPRI-like data multiplex-
ing scheme is utilized, where AxC chips from different
antennas are interleaved to form D-RoF frames. Every two
streams of data frames are mapped into QPSK or 16-QAM
symbols offline, which are then sent to a 92 GSa/s arbitrary
waveform generator and modulated onto the light in X
or Y polarization through the DP-IQM. After transmission
through 80-km single-mode fiber, the optical signal is re-
ceived with a coherent detector and decomposed into four
electrical signals captured by a four-channel real-time sam-
pling oscilloscope operating at 80 GSa/s. The offline DSPs
are applied to demodulate the coherent optical QPSK or
16-QAM signals. Then the D-RoF frames are recovered and
after de-compression, they are used to reconstruct the wire-
less OFDM signals. In the optical part of the experiment,
36 Gbaud DP-QPSK and 32 Gbaud DP-16-QAM are tested,
and their bit error rate (BER) performance as well as the
selected constellations are shown in Fig. 14. Each OFDM
wireless CC under test contains 2048 subcarriers and
occupies a bandwidth of around 122.8 MHz. Out of the
2048 subcarriers, 1201 are loaded with 16-QAM symbols.
For the coherent system with 32 Gbaud DP-16-QAM at a
net information rate of 200 Gbit/s after excluding around
20% overhead for soft-decision FEC [38], 90 or 110 CCs
can be encapsulated under 15-to-8-digit or 15-to-7-digit
compression, respectively.
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Fig. 14. BER versus the received optical power of the coherent
MFH testbed.
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Fig. 15. EVM of the recovered wireless signal versus the BERs of
the MFH data using (a) y-Law DPCM and (b) Lloyd DPCM.

The EVM performance of the recovered wireless OFDM
signal after the compression-decompression process, under
the influence of bit errors in the MFH system, is shown in
Fig. 15. It can be seen from Eq. (9) that, without FEC, bit
errors further increase the deviations between x(k) and
%(k), thus degrading the SQNR. The compression methods
of DPCM-u-Law and DPCM-Lloyd have been compared in
Fig. 15(a) and 15(b), respectively. In the cases of using
DPCM-u-Law and DPCM-Lloyd, less than 2% and 4%
EVMs can be achieved with BER values smaller than
2 x 1075 and 1 x 1074, respectively. It is worth noting that
the BER performance of DPCM is slightly worse than that
of regular PCM. Although the feedback-loop-based com-
pressor architecture at the transmitter site can eliminate
the issue of quantization-error accumulation in differential
coding, the decision errors at the receiver site can still be
transferred and accumulate from one sample to another in
the decoding process of DPCM, thus degrading the BER
performance of DPCM. However, the degradation is insig-
nificant, and it can be mitigated by FEC where error-free
performance can be achieved when the system can pass the
threshold.

VI. CoNCLUSION

In this work, multiple data-compression techniques have
been investigated and implemented to improve the band-
width efficiency of a next-generation D-RoF-based MFH
system supporting 5G-NR. These include NUQ and DPCM.
Based on our previous work discussing NUQ [16], more
details and theoretical analysis on an R-Lloyd-algorithm-
based compressor are provided. By varying the number
of major and minor quantization levels, a good trade-off be-
tween quantization accuracy and computational complex-
ity can be achieved. Meanwhile, R-Lloyd does not rely on
the assumption of a Gaussian distribution and it can be
adapted to different kinds of wireless signal formats. On
the other hand, to further enhance the data compression
ratio and system adaptability, a computationally efficient
LMS algorithm is proposed to calculate the tap weights
for a high-order DPCM encoder. After combining the NUQ
and DPCM in a feedback-loop-based compressor, great
improvements in SQNR can be obtained, thus leading to
a good wireless signal quality after the compression and
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de-compression processes with fewer quantization digits.
With fourth-order DPCM plus the R-Lloyd algorithm,
SQNR improvement of 10 dB can be successfully achieved.
EVM less than 0.4% and 0.7% can also be realized under
15-to-8-digit and 15-to-7-digit compressions, respectively.
The proposed algorithms have been verified over a high-
capacity MFH testbed based on coherent optics to support
future mobile systems with massive MIMO or densified
small cells. The encapsulated wireless signals can be recov-
ered with EVM less than 0.8%. The influence of the mea-
sured bit errors in the optical MFH on the wireless signal
quality has also been analyzed. According to the experi-
mental results, the proposed approach for data compres-
sion has been validated as a promising solution to
significantly improve the bandwidth efficiency for future
D-RoF-based MFH supporting 5G.
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