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Abstract—Digital radio over fiber (D-RoF), one of the
candidates for 5G mobile fronthaul networks, is known
for its high reliability and strong robustness against
nonlinear channel degradations, which makes it suitable
for short-reach fronthaul links supporting ultra-reliable
low-latency communication in 5G. However, traditional
D-RoF technology is limited by its lower bandwidth effi-
ciency. In this paper, based on our previouswork, advanced
data-compression techniques with adaptive non-uniform
quantizers and differential coding are discussed for a sig-
nificant improvement of bandwidth efficiency in fronthaul
networks. High-order differential coding based on a least-
mean-square algorithm has been proposed to further
improve the compression ratio with low complexity and
high adaptability. By jointly applying a non-uniform quan-
tizer and a differentiator, the signal-to-quantization-noise
ratio and bandwidth efficiency can be improved by around
10 dB and 40%–60%, respectively, depending on the modu-
lation formats in our proposed solution. We have experi-
mentally demonstrated the transmission of 200 Gbps
fronthaul links over a fiber distance of 80 km. The system
is capable of encapsulating 110 × 120 MHz 5G new radio
carriers with error-vector magnitude lower than 0.8%.

Index Terms—Digital radio over fiber; Mobile fronthaul;
Optical fiber communication.

I. INTRODUCTION

W ith the expectation of superior performance in

throughput and connectivity, the fifth-generation

new radio (5G-NR) air interface is going to be commercially

launched around 2020 [1]. The new features of 5G, includ-

ing higher-RF-band exploration, massive multiple input

multiple output (MIMO), beam forming, ultra-reliable

low-latency communication (uRLLC), and large-scale

Internet-of-Things (IoT) connectivity, bring great chal-

lenges for next-generation mobile fronthaul (MFH) net-

works. Recently, both telecom industries and standard

bodies have been working hard to finalize the design

and specifications of the core network and radio access

network (RAN) supporting 5G.

The centralized RAN (C-RAN) was proposed by China

Mobile in 2011 [2]; here the baseband processing units

(BBUs) are centralized and virtualized as a resource pool

called the BBU pool, and its resources can be dynamically

redistributed toward different radio access units on demand.

While it has advantages in dealing with large-scale network

resource allocation and data processing, the fully centralized

architecture also leads to issues of high latency require-

ments and lack of flexibility. To address the issues and en-

hance the flexibility as well as compatibility with different

application scenarios, C-RAN continues to evolve to accom-

modate new 5G RAN requirements and features. One of the

new features is functional split (FS), which has been stand-

ardized on high layer split by 3GPP radio access architecture

and interfaces release 14 [3]. In the 3GPPRAN architecture,

two logical entities, namely, the central unit (CU) and the

distributed unit (DU), are defined, and the functions in a tra-

ditional BBU can be divided between the CU and the DU in

regard of radio resource control, packet data convergence

protocol (PDCP), radio-link control (RLC), media access

control (MAC), and physical (PHY) layers. There are eight

options, which could realize a trade-off among radio perfor-

mance, flexibility, delay, and transmission data rate.

Following the new requirements in 5G, the concept of next

generation fronthaul interface (NGFI) has been proposed [4]

to build an open and flexible platform supporting various ser-

vices with diverse bandwidth and latency requirements. As

illustrated by the conceptual diagram of NGFI in Fig. 1,

two-layer fronthaul interfaces exist with Fronthaul-I connect-

ing the DU and the remote radio unit (RRU) and Fronthaul-II

connecting the CU and the DU. FS Option 2 with a split be-

tween PDCP and RLC has been adopted as the major option

in Fronthaul-II. However, the FS option for Fronthaul-I is still

open and it will depend on the service needs. As shown in

Fig. 1, for the short-reach low-cost fronthaul system, two can-

didates in Option 8, namely, the analog radio over fiber

(A-RoF) and the digital radio over fiber (D-RoF), are strong

candidates to provide simple, robust, and low-latency data

transmission links between the DU and the RRU, especially

to fulfill the needs of massive machine-type communication,

uRLLC, and vehicle-to-everything (V2X) communications.https://doi.org/10.1364/JOCN.11.000A60
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Fronthaul-I based on the A-RoF has been studied inten-

sively [5–7]. Its benefits include high bandwidth efficiency

and simple receiver architecture at the RRU. However, it

also suffers from several major issues. First, the signals

in the A-RoF are very sensitive to nonlinear degradations,

channel penalties, and chromatic-dispersion-induced

power fading. In order to guarantee the performance of

the air-transmission link without disturbance from the op-

tical systems, different nonlinear distortion-compensation

techniques have been proposed [8–10] to compensate for

the nonlinear distortions in the optical link. However,

sophisticated digital signal processing (DSP) is required

at the RRU site to restore the analog signals, thus greatly

increasing the complexity. On the other hand, when multi-

ple analog signals are aggregated in the frequency domain,

complex analog subsystems or high-bandwidth analog-to-

digital converters are needed to down-convert the signals

from the intermediate frequencies. Moreover, the latest

5G-NR specifications feature filtered orthogonal frequency-

division multiplexing (OFDM) and higher orders of modu-

lations (256 and 1024-QAM) [11]. With the higher spectral

efficiency, the upgrade of modulation in 5G also generates

higher requirements on linearity and signal-to-noise ratio,

where the shortcomings of the A-RoF seriously limit its

signal quality and transmission distance.

Compared with the A-RoF, the D-RoF system digitizes

and converts the continuous signal waveform to discrete

voltage levels, which will be further degenerated to binary

codes before modulation and transmission. Such techniques

greatly improve the reliability and robustness of the

system against different linear and nonlinear channel deg-

radations. Moreover, the digitization process is straight-

forward, format-agnostic, and multiservice-compatible.

Error-free transmission can also be achieved when employ-

ing forward-error correction (FEC) coding. Combined with

efficient antenna-component (AxC) chip interleaving [12],

point-to-multipoint efficient data multiplexing among

antennas could also be realized. These features make the

D-RoF technology a promising candidate for short-reach,

highly reliable, and low-latency fronthaul links supporting

IoT, machine-type, and V2X communications in 5G.

One of the major problems regarding the D-RoF

stems from its low bandwidth efficiency in transmission.

The common public radio interface (CPRI) has been widely

used in currentMFH supporting long-term evolution (LTE).

To transmit one 20 MHz LTE component, with 15-digit

quantization, 1-digit control word, and 8b/10b encoding,

a capacity of nearly 1.2 Gbps is required in the fiber

link, which is inefficient. Fortunately, multiple solutions,

including resampling, data compression, and advanced

modulation formats, could help to increase the bandwidth

efficiency of D-RoF systems. Among them, data compres-

sion is the key study item of this paper. A lot of work

has been done in this area, including partial-bit sampling

(PBS) [13], nonlinear quantization [14,15], statistical

estimation [16,17], vector quantization [18], and differen-

tial pulse-code modulation (DPCM) [19]. Great achieve-

ments have been reported where, depending on the

signal-to-quantization-noise (SQNR) threshold, almost

50% bandwidth can be saved [20]. The requirement of

digital-to-analog-converter (DAC) resolution is also re-

laxed, which approaches that of transmitting symbols

before inversed fast-Fourier transform (IFFT) in the

PHY-I-split option. In the following part of the paper, it

is demonstrated that by applying the adaptive statistical

algorithm and integrating the quantizer and differential

encoder into a feedback-loop-based architecture, the band-

width efficiency can be further improved bymore than 60%,

with a 10 dB improvement in SQNR. In the meantime, the

applicable waveform has been expanded from OFDM to

other frequently used wireless formats, like single-carrier

frequency-division multiplexing (SC-FDM). Sufficient sys-

tem margin from the threshold can be obtained. Since data

compression is widely studied and is under discussion

among standard bodies [15,21] as well as hardware vendors

[22], the results of the work could potentially pave the way

for future development in this area.

Recently, multiple FS options in 3GPP RAN architecture

[3], NGFI [4], and eCPRI [21] have been actively discussed.

With FS, especially a deep split at the MAC and RLC

layers, fronthaul data can be multiplexed over Ethernet

packets and the required bandwidth is expected to be

greatly reduced. However, there are still a lot of issues.

First of all, the reduction of bandwidth is at the expense

of higher complexity and cost of the DU, especially when

dealing with MIMO processing and coordinated multipoint

transmission. Second, the DU may need to change the FS

options adaptively or enable multiple FS options to coexist

to support different using scenarios, which also greatly

increases the complexity. Moreover, FS is not exclusive

to the D-RoF technology. In some FS options, like PHY-I

or ID split [23], quantization is still needed to digitally

convert the symbols after MIMO precoding.

The paper is organized as follows: in Section I, we

provide the background and motivations of the study.

Section II summarizes the existing work and our contribu-

tions. In Section III, we explain the operation principle of

the adaptive statistical method in non-uniform quantizer

(NUQ) design. Section IV demonstrates the high-order

DPCM encoder and decoder enhanced by the least-mean-

square (LMS) algorithm. Section V shows some selected

experimental results. Finally, we conclude the paper in

Section VI.

Fig. 1. Conceptual diagram of MFH architecture based on NGFI.
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II. RELATED WORKS AND OUR CONTRIBUTIONS

Before starting the technical discussions, it is important

to understand the role of data compression in future digital

MFH systems. The flow diagrams of functions in MFHwith

data compression are shown in Fig. 2. In the transmitter

part of the D-RoF, the operation is initiated from com-

plex-valued analog carriers. For each analog signal sample

of the component carrier (CC), the in-phase (I) and quad-

rature (Q) parts are separated, where the continuously var-

ied amplitudes will be quantized into discrete samples,

with 2U quantization levels for each sample. Then linear

pulse-code modulation (PCM) or DPCM is applied to con-

vert the quantization levels into U-bit binary codes, which

is also called an AxC chip. After that, certain compression

algorithms are used to reduce the size of each AxC chip.

Through a training process, eachU-bit chip can be mapped

into V bits and, in this case, the required bandwidth can be

reduced by a factor of �U − V�∕V. D-RoF frames are formed

by interleaving different AxC chips for different antennas

in the time domain. Then, different combinations of FEC

line coding and modulation formats are applied. In the

receiver site of the D-RoF, the procedures are reversed,

where demodulation, FEC decoding, and de-framing are

performed subsequently. After the AxC chips are recovered,

the inverse bit map will be applied to map each chip from V

bits back to U bits. It is worth noting that the inverse bit

map is generated by reversing the bit-mapping input and

output obtained by the compressor at the transmitter site,

which will be transported to the receiver site as part of the

system control information in the overhead. After the

DPCM/PCM decoder and the DAC, the discrete level of

each sample is reconstructed from the bits and the analog

waveform is re-generated, which is ready for the air trans-

mission. It can be noted that the critical procedures of the

data compressor are mainly performed at the transmitter

site and, apart from the data channel, a control channel

is also needed to control, manage, and coordinate the

operation of data compression between the transmitter

and receiver sites.

Different data compression algorithms have been pro-

posed. Among these, PBS proposed by ETRI [13] is simple

to implement. In PBS, for a U -to-V-digit compression, the

last �U − V� digits are directly cut off, which is equivalent

to a V-digit uniform quantization process. But this hard

truncation results in large quantization noise when reduc-

ing the number of digits. Fitting-based nonlinear quantiza-

tion is recommended by the Open Radio Equipment

Interface [15]. It is based on the Gaussian distribution

nature of the OFDM signal’s amplitudes, thus obtaining

improved accuracy. However, the algorithm requires esti-

mating the statistical properties of the Gaussian distribu-

tion from a large number of training samples, which is time

consuming and may not be applicable to non-Gaussian

wireless formats.

To simplify the computationally complex fitting process

and in the meantime guarantee signal quality after com-

pression, fast-statistical estimation or K-Law has been

proposed [17,24]. K-Law is also based on the Gaussian dis-

tribution property of OFDM signals and assumes that the

Gaussian function can be truncated within the range of

�−Kσ Kσ �, where σ is the standard variance and K is

an adjustable positive number. Recall that more than

99.6% amplitudes are distributed within �−3σ 3σ �. So,

by setting a K value around 2.5–3, high accuracy can be

obtained inK-Law. After taking the absolute value and per-

forming normalization to each D-RoF data block, σ can be

immediately obtained from the relation xmax � Kσ � 1 and

it will be used to build the companding transform function

y � C�x�. The companding function is used to linearize the

cumulative distribution function of the signal’s amplitude.

After that, uniform quantization is applied to the com-

panded signals and the quantization noise becomes nearly

uniform within each quantization section. According

to the minimum mean-square-error (MMSE) criterion, the

overall quantization noise is minimized, which allows us to

use fewer number of quantization digits to generate

each AxC chip. The error-vector magnitude (EVM) after

K-Law-based 15-to-8-digit compression and de-compression

processes could reach around 0.6%.

However, one major drawback of the K-Law method is

that it is based on the assumption of a Gaussian distribu-

tion. However, a lot of wireless formats, like SC-FDM and

Nyquist pulsed single-carrier modulation, do not strictly

follow a Gaussian distribution. Under these circumstances,

the accuracy of K-Law is significantly degraded. Some

traditional general-purpose companding methods, such

as μ-Law and A-Law, may outperform K-Law in regards

to non-Gaussian distributed waveforms. In what follows,

it has been demonstrated that the adaptive statistical

method with the Lloyd algorithm could theoretically pro-

cess any kind of formats while obtaining a good signal

quality.

Recently, machine-learning-enhanced multi-dimensional

quantization (MDQ) was also proposed in Ref. [18]. The tra-

ditional methods mentioned before perform quantization

and data compression in the real scalar domain toward
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Fig. 2. Signal processing procedures in MFH with data compres-

sion in (a) DL and (b) UL transmissions.
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either the I or Q component. However, in MDQ, first an

N-dimensional vector group is constructed based on the

original samples. Then, anN-dimensional K-means cluster-

ing algorithm is applied to slice the vector space into M

clusters, while data falling inside each cluster will be allo-

cated a quantization codeword. It has been demonstrated

that significant improvement in the performance of EVM

can be obtained through the proposed 2D and 3D quantiza-

tion. Nevertheless, the major drawback of this method

stems from its high complexity. For a 15-to-8-digit compres-

sion, the proposed method needs to calculate 216 clusters in

2D quantization, which is challenging to apply in a practical

low-latency MFH system.

The methods introduced above are concerned with the

design of quantizers in a PCM system. Another important

research direction in this area is DPCM [19,25]; it can

also be used to suppress the quantization noise level,

and when it jointly works with new quantizers, significant

performance enhancement can be achieved. The basic idea

of DPCM is based on the fact that most source signals

exhibit some correlations between successive samples,

which can result from over-sampling, presenting of long-

ones/zeros, or certain coding techniques; through differen-

tial precoding, the correlation-induced redundancy can be

reduced, which enables representing the information with

fewer digits. Given the original analog waveform samples,

x�k�, and the reconstructed waveform samples after the

compression–decompression process, xq�k�, the idea of

Nth-order DPCM is to quantize the error sequence of

the weighted differentiated samples instead of the original

samples, which is denoted as

err�k� � x�k� − x̂�k�, (1)

x̂�k� �
XN
i�1

cixq�k − i�, (2)

where x̂�k� is also called the prediction symbol of x�k�.

According to the Wiener theory [26], the best weight coef-

ficients of ciji�1∼N can be obtained by minimizing the mean-

square error (MSE), J � E�jerr�k�j2�. It has been reported

in Ref. [19] that by applying fourth-order DPCM plus a

nine-digit uniform quantizer, less than 0.5% EVM can be

achieved. However, to determine the optimal coefficients,

the traditional MMSE-based method requires building

the correlation matrix from a lot of training data, and

solve the inverse of it, which is computationally inefficient

and lacks the flexibility to process the dynamically varied

wireless signals.

In this paper, we have further studied the design and op-

eration of a joint architecture of NUQ and a differentiator.

Compared with our work in Ref. [16], improvements are

made in two aspects. Above all, more details are provided

about the relaxed Lloyd (R-Lloyd) algorithm based on our

previous results in Ref. [16]. Mechanisms for suppressing

the quantization noise, thus improving the bandwidth ef-

ficiency in D-RoF MFH, have been analyzed theoretically.

On the other hand, a DPCM-NUQ joint compressor is

employed to further improve the bandwidth efficiency,

and we propose using a LMS-algorithm-based adaptive

filter to determine the values of the weights toward the

high-order differential encoder. Compared with existing

methods, the LMS-based DPCM is computationally more

efficient, with high accuracy and adaptability. High signal

quality after de-compression has also been achieved

through the experimental demonstrations.

R-Lloyd-algorithm-based MFH with data compression

has been demonstrated in this paper; this can support

1024-QAM in the latest 3GPP specifications and a future-

proof 4096-QAM format. To reduce the complexity, the tra-

ditional Lloyd algorithm is applied to calculate the major

quantization levels and the minor quantization levels are

uniformly interpolated between two adjacent major levels.

The selection of the number of major and minor levels

results in a trade-off between computational complexity

and signal quality. Compared with existing methods such

as K-Law, μ-Law, and A-Law [27], the quantization noise

can be reduced by around 4.8 dB. Different from statistical

estimation methods like K-Law, the Lloyd algorithm is

format-agnostic and applicable to non-Gaussian modula-

tion formats, like SC-FDM.

Adaptive DPCM based on LMS has also been proposed

in this paper. Compared with the existing MMSE algo-

rithm, it shows no significant sacrifice of performance

accuracy. Also, it adds two benefits: first, the computational

complexity is greatly reduced especially when calculating

the coefficients for the high-order differentiator. Second,

the algorithm is based on an adaptive filter architecture;

the weights of the taps in a differentiator can be adaptively

adjusted according to the statistical property of the wave-

form at different times. The performance of the LMS

method has been confirmed by comparing it with the

look-up-table (LUT) [28] method, which finds the global

optimized tap coefficients of the differentiator through

hard searching all possible combinations of tap coefficients

in a certain range. The similar performance of the two

proves the effectiveness of the LMS method. It is also

confirmed that the SQNR improves when applying a

higher-order differentiator. However, the gain margin

also diminishes under the higher-order differentiator.

Considering the complexity and performance, a good

trade-off can be obtained with a third- or fourth-order dif-

ferentiator. Through the simulation and experimental

results, after combining R-Lloyd and DPCM, SQNR

improvements of around 6, 8, and 10 dB can be obtained

at the first, second, and fourth-order differentiators,

respectively.

The proposed technology is also demonstrated experi-

mentally over 180 Gbit/s QPSK and 200 Gbit/s 16-QAM

coherent optical fronthaul systems. Considering a subcar-

rier separation of 60 kHz, and a sampling rate of around

120 MHz for each 5G-NR CC, a 200 Gbit/s system could

encapsulate 90 or 110 carriers with the 1024-QAM format

under 15-to-8-bit or 15-to-7-bit compression, respectively.

The compression performance under the influence of bit

errors is also measured and the EVM degradation by

using DPCM instead of PCM is insignificant and so such

influence could be mitigated by employing FEC coding.
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III. OPERATION PRINCIPLE AND PERFORMANCE EVALUATION

OF THE RELAXED LLOYD ALGORITHM

The operation principle and procedures of the R-Lloyd

algorithm are shown in Fig. 3. Given the modulus (absolute

value) of the signal, x � jsj, the Lloyd algorithm starts with

the probability distribution function (PDF) of x before com-

pression, f �x�, as shown in Fig. 3(a). It first divides x into

N � 2V quantization segments and each of the segments is

bounded with two quantization thresholds, from Segment 1

with t1 and t2, until Segment N with tN and tN�1. N quan-

tization levels from l1 to lN are allocated for Segment 1

to Segment N, respectively. Thus, there are in total N

quantization levels and N � 1 thresholds. For the samples

falling into Segment i, they will be quantized into li.

Let two random variables X and Xq denote, respectively,

the signal’s modulus before and after quantization. Given

l1 to lN and t1 to tN�1, the objective of the Lloyd algorithm

is to minimize the MSE between X and Xq, which can be

calculated as

e2MSE,Q � E��Xq − X�2�: (3)

When f �x� is known, Eq. (3) can be rewritten as

e2MSE,Q �
XN
i�1

Z
ti�1

ti

�li − x�2f �x�dx: (4)

The minimum MSE value must appear at the extreme

points on the surface of e2MSE,Q, which can be expressed by

∂�e2MSE,Q�

∂ti
� 0, i � 1, 2,…,N � 1, (5)

∂�e2MSE,Q�

∂li
� 0, i � 1, 2, 3,…,N: (6)

Combining Eqs. (4)–(6), the following relations can be

obtained:

ti � �li−1 � li�∕2, i � 2, 3,…,N, (7)

li �

Z
ti�1

ti

xf �x�dx∕

Z
ti�1

ti

f �x�dx, i � 1, 2,…,N: (8)

It is Eqs. (7) and (8) that build the foundation of the Lloyd

algorithm, with the flow diagram shown in Fig. 3(c). The

first step in the Lloyd algorithm is to initialize the quan-

tization thresholds and levels. It is worth mentioning that,

typically, a data-compression algorithm is executed over

data blocks. For each data block, after removing the DC

component and normalizing the modulus into the range

of � 0 1 �, a simple rule to determine the initial first and

last values of thresholds are t1 � 0 and tN�1 � 1. Then,

t2 to tN can be uniformly inserted from 0 to 1 and the initial

values of l1 to lN can be calculated using Eq. (8). After

initialization, the Lloyd algorithm will take iterations to

calculate the quantization thresholds from previous values

of levels using Eq. (7), and the quantization levels are cal-

culated from former thresholds based on Eq. (8) until the

MSE converges to a certain value or the iteration index

meets its maximum. Supposing each original OFDM sam-

ple at the transmitter is represented as a U-digit code and

each output quantization level is denoted with a V-digit

code (V � log2 N), based on the final output of the compres-

sor, U-to-V-bit and inverse V-to-U-bit maps are generated

to simplify, respectively, the computational complexity at

the transmitter and receiver sites.

However, the traditional Lloyd algorithm is still very

complex and time consuming. For example, in a 15-to-8-

digit compression, the Lloyd algorithm needs to determine

256 (28) quantization levels and 257 thresholds through

thousands of iterations, thus incurring a large number of

(a)

(b)

(c)

Fig. 3. (a), (b) Operation principles of Lloyd and relaxed-Lloyd

algorithms. (c) Flow diagram of the quantization process using

R-Lloyd algorithm.
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operations and a higher delay. To address such an issue,

we demonstrated the R-Lloyd algorithm in Ref. [16], where

the regular Lloyd algorithm is only used to determine the

2P major quantization levels out of 2V total number of lev-

els in the first step. Then, 2�V−P� minor quantization levels

are uniformly interpolated within each quantization seg-

ment � li li�1 �. The selection of the number of major digits

(P) and minor digits (V − P) needs to jointly consider the

signal performance after compression and de-compression,

as well as the computational complexity. The simulated

EVM convergence of OFDM signals after 15-to-8-digit com-

pression and de-compression processes when applying a

different number of major digits are shown in Figs. 4(a)–

4(d). It can be noted that there is a trade-off between

the recovered signal quality and convergence speed.

With fewer number of major digits, e.g., P � 3, the algo-

rithm converges quickly within 50 iterations but the

EVM value is poorer. On the other hand, when increasing

the number of major digits to P � 4 or 5, the final EVM

performance can be improved at the expense of slower con-

vergence speed. Precisely, the results indicate that the sig-

nal quality is better, but the computational complexity is

increased when increasing the major quantization levels

rather than uniformly inserting the same number of minor

quantization levels. However, when further enlarging the

P value to P � 6, the convergence speed is significantly

reduced, thus seriously reducing the computing efficiency,

and this may not work for low-latency MFH systems. Thus,

to make a good balance between accuracy and complexity,

4 and 5 major digits are recommended. In this paper, five

major digits with 500 iterations for 15-to-8-digit compres-

sions are adopted.

The performance of EVM after recovering the com-

pressed signal versus the number of quantization digits

under different methods is shown in Fig. 5. In the simula-

tion of compressing and de-compressing OFDM wireless

signals as shown in Fig. 5(a), the 5G-NR-like data format

[29] is applied where the subcarrier spacing is set to be

4 × 15 � 60 KHz; the total number of subcarriers is

2048, with 1201 subcarriers loaded with data. 16-QAM

is adopted and each original OFDM I or Q sample calcu-

lated by a baseband processor is assumed to have 15 digits.

The tested number of samples is 1,43,360, which covers 10

subframes of LTE signal. Five methods are compared here,

including the R-Lloyd algorithm, μ-Law with μ � 4, A-Law

with A � 5, K-Law with K � 2.7, and uniform PBS, which

uniformly re-quantizes each sample from 15 digits to

3-to-10 digits. The coefficients of each method have been

optimized. The EVM thresholds of 18.5%, 12.5%, 8%,

and 4% are for QPSK, 16-QAM, 64-QAM, and 256-QAM,

respectively, which are referred from 3GPP TS 36.104 [30]

and 3GPP TS 36.872 [31], are marked on the figures.

The EVM threshold of 1024-QAM is set at 2% taking

reference from 3GPP TR 36.783 [32]. For 4096-QAM, the

threshold is assumed to be 0.8%.

It can be observed that, among all the methods, R-Lloyd

can obtain the best EVM performance after de-compression,

especially for compressing to less than six digits. With

four digits, the EVM can reach 7.56%, enough to pass the

64-QAM EVM threshold at the base station. With eight

digits, the EVM can reach 0.49%, with a margin of more

than 24 dB from the 64-QAM threshold. Other than

OFDM as the LTE downlink (DL) format, the performance

of SC-FDM in the LTE uplink (UL) is also evaluated as

shown in Fig. 5(b). All the parameters are exactly the same

as those in OFDM; the only difference arises because a
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Fig. 4. EVM performance versus number of iterations when

applying different numbers of major digits.
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the wireless modulation formats of (a) OFDM and (b) SC-FDM.
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discrete-Fourier-transform spread operation is added

before the IFFT. It can be seen that, compared with OFDM,

the R-Lloyd algorithm shows good performance under

SC-FDM. When compressed to 4 and 5 digits, EVMs of

6.78% and 3.46% are obtained, which pass, respectively,

the 64-QAM and 256-QAM thresholds. It is also worth men-

tioning that the performance of the K-Law method for

SC-FDM is degraded compared with that of OFDM. The

penalty becomes larger especially with fewer number of

quantization digits after compression. As mentioned before,

because the signal amplitude of SC-FDM does not follow a

Gaussian distribution, the performance of K-Law is ex-

pected to be weakened since it is based on a Gaussian

PDF assumption. However, since R-Lloyd is based on an

adaptive algorithm to fit the unique statistical properties

of different waveforms, its performance is more stable

and accurate than those of K-Law and non-adaptive tradi-

tional methods.

IV. DATA COMPRESSION ENHANCED BY ADAPTIVE

DIFFERENTIAL PULSE-CODE MODULATION

A. Linear Differentiator in Differential Pulse-Code

Modulation With the Least-Mean-Square Algorithm

Aside from the quantizer design, another important

technique to improve the compression ratio and bandwidth

efficiency in D-RoF-based MFH is DPCM. In what follows,

it can be seen that through weighted differential coding,

the variance of the error function between the original

and predicted samples can be reduced, thus resulting in

an improved SQNR performance compared with that of

regular PCM with the same number of quantization levels.

Here, the SQNR can be calculated as

SQNR �
Psignal

Pquantization_noise

�
E�jx�k�j2�

E�jx�k� − x̂�k�j2�
: (9)

Since the bandwidth efficiency is dependent on the reduc-

tion of quantization digits, which is fundamentally rooted

on the improvement of the SQNR, a higher bandwidth

efficiency can be achieved in D-RoF-based MFH using a

well-trained DPCM precoder to significantly suppress

the quantization noise level. From Ref. [33], it has been

proved that the SQNR improvement, Is, can be approxi-

mated as

Is �
SQNRDPCM

SQNRPCM

�
Var2s

e2MSE,D

, (10)

where Var2s is the mean-square variance for the original

samples, and e2MSE,D is the MSE between the original

and predicted samples, which is calculated as

e2MSE,D � E�jx�k� − x̂�k�j2� � E�jerr�k�j2�, (11)

where x�k� is the kth sample of the original signal; x̂�k� is

the predicted signal; and err�k� is the kth sample in the

error signal calculated by the difference between x�k�

and x̂�k�, same as Eq. (1). From Eq. (10), under a given

original signal, a better SQNR is obtained after DPCM

with a smaller mean-square variance of the error signal,

which could be achieved by carefully calculating the tap co-

efficients shown in Eq. (2). Figures 6(a) and 6(b) compare,

respectively, the waveform time-domain patterns and

PDFs of the amplitudes between the error and original

signals. Again, one 5G-NR-like OFDM signal with 2048

subcarriers and a bandwidth of 122.8 MHz is used here.

Third-order DPCM with optimized weights is applied

and it is observed that, after normalization, the variance

of the error signal, which is one of the major contributors

to the quantization noise, is significantly reduced from both

the waveform patterns and PDFs. In what follows, methods

to efficiently calculate the optimized tap values in the

differential encoder will be discussed.

As demonstrated in the previous section, the objective of

the DPCM encoder in data compression is to suppress the

SQNR, which is realized by minimizing the MSE, e2MSE,D,

through a linear prediction given in Eq. (2). Based on this

concept, the architecture of a differentiator in DPCM is

plotted in Fig. 7. The original baseband signal, x�k�, is lin-

early filtered by a multi-tap delay-line-based finite impulse

response (FIR) filter to generate the predicted signal, x̂�k�,

before differentiating them to get the error signal, err�k�.

The weights of the FIR filter can be adaptively adjusted to

reduce the MSE calculated by Eq. (11). It is worth noting

that the objective and architecture of the system are very

similar to those of the adaptive filter in the equalizer with

the LMS algorithm for a digital communication system,

which aims at minimizing the MSE between the received

and transmitted signals. Thus, a similar iteration algo-

rithm in a LMS-based equalizer can also be used to solve
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the weights of the delay taps in the differentiator. The

weights are updated following the relations

x̂�k� � c�k� � v�k�, (12)

err�k� � x�k� − x̂�k�, (13)

c�k� 1� � c�k� � μ · err�k� · conj�v�k��, (14)

where v�k� � � x�k − 1� x�k − 2� … x�k −N� �T is the

input data vector; c�k� � � c1�k� c2�k� … cN�k� � is the

FIR tap-weight vector; and μ is the step size. By properly

setting the initial tap-weight vector and step size, the LMS

algorithm can be made to quickly converge and provide a

good approximation to the MMSE algorithm without calcu-

lating the inverse of the correlation matrix; this reduces

the computational complexity especially for a high-order

predictor. Another advantage of the LMS algorithm is that

the system can keep updating the weights of the FIR filter

adaptive to the real-time channel conditions; this could

potentially benefit the wireless UL transmission with more

bursty signals.

B. Data Compression in Mobile Fronthaul With

Joint DPCM-NUQ Architecture

To further enhance the performance of the data compres-

sor with a higher compression ratio, the differentiator and

NUQ can work together in a feedback-loop-based system at

the transmitter and receiver sites as shown in Fig. 8(a) and

8(b), respectively. When using the differentiator, the quan-

tization noise generated from the quantizer will be trans-

ferred and accumulated from one symbol to another, thus

degrading the quality of the recovered signal. Therefore,

except from enabling the joint working of the quantizer

and differentiator, another important purpose of the feed-

back loop is to resolve the issue of quantization noise

transfer.

For the data compressor at the transmitter site, in the

kth iteration, the input error signal err�k�, the quantized

error signal errq�k�, and the quantized baseband signal

xq�k� can be calculated, respectively, as

err�k� � x�k� − x̂�k� � x�k� −
XN
i�1

cixq�k − i�, (15)

errq�k� � err�k� � nq�k�, (16)

xq�k� � x̂�k� � errq�k� �
XN
i�1

cixq�k − i� � errq�k�, (17)

where nq�k� is the quantization noise at the kth sample,

and x̂�k� is the output of the FIR filter, also known as

the predictor of x�k�. From Eqs. (15) to (17), it can be

deduced that

xq�k� � x�k� � nq�k�: (18)

It can be noted from Eq. (18) that the quantization noise

from previous symbols is cancelled out and the quality of

each quantized symbol is only determined by the current

quantization noise. At the de-compressor at the receiver

site, the baseband samples after quantization can be recon-

structed using Eq. (17).

In the compression and de-compression processes, differ-

ent NUQ algorithms can be used in the quantizer part, as

shown in Fig. 8(a), to enhance its performance. In the

following context of this paper, μ-Law, A-Law, K-Law,

and R-Lloyd algorithms are applied and compared. To

confirm the effectiveness of the LMS algorithm in the feed-

back-loop-based compressor architecture, comparisons are

made between first- and second-order DPCM based on

LMS and LUT. In the LUT method, a table is built with

the EVM of the wireless signal measured as a function

of tap coefficients. By searching all possible values in a

given range, the combination of tap weights with a global

optimization with the best EVM value can be figured out,

when the step size is fine enough. The waveform under test

is a 5G-NR OFDM signal with 2048 and 1201 total and

loaded subcarriers, respectively. The waveform contains

1,43,360 samples covering 10 subframes. The EVM values

given by the first- and second-order LUTs under 15-to-6-

digit compression are plotted, respectively, in Figs. 9 and

10. In the first-order DPCM where x̂�k� � c1xq�k − 1�, the

change of EVM can be plotted as a one-dimensional curve.

The tap weight and EVM obtained through LMS are also

marked on the corresponding curve, where the tap weights

are calculated through iterations from Eqs. (12) to (14). As

shown in Fig. 9, it can be noted that the coefficient c1 cal-

culated by LMS is very close to the bottom of the curves,

where the global optimal c1 is obtained. Similarly, we com-

pared the performance of the second-order DPCM-NUQ

joint compressor between the LUT and LMS algorithms.

In this case, x̂�k� � c1xq�k − 1� � c2xq�k − 2�, and the EVM

value is optimized by varying c1 and c2 in the LUT method

as shown by the two-dimensional contour plots in

Figs. 10(a)–10(d). The distributions applying different

compression algorithms have similar shapes. The tap
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coefficients (c1 and c2) calculated by the LMS method are

also marked on the figure. Their positions are quite close to

the minimal points on the surface with the best EVM

values, which proves that the result from LMS is a good

approximation of the global optimized tap weights in a

DPCM-NUQ joint architecture.

The performance of the proposed compressor adopting

different companding algorithms is compared in Fig. 11 us-

ing PCM, first-order DPCM, and second-order DPCM. The

SQNRs of the wireless baseband signal after compression

and de-compression are measured here. On a decibel scale,

all the curves are approximately linearly distributed as a

function of the number of quantization digits. There is an

improvement of around 6 dB in the SQNR upon adding

one more quantization digit. Compared with PCM, the

first- and second-order DPCMs can bring about extra

SQNR improvements of 1.4 and 1.24 dB, respectively.

(a) (b)

(d)(c)

Fig. 10. EVM versus tap weights of the wireless signal after ap-

plying second-order DPCM combined with different quantization

algorithms.

Fig. 11. SQNR versus quantization digits for compressors using

PCM, first-order DPCM, and second-order DPCM with different

NUQs.
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By combining second-order DPCM and the R-Lloyd

algorithm, total SQNR improvement of 8.24 dB can be

achieved. Considering SQNR improvement of nearly 6 dB

can be traded into one quantization digit reduction, the

joint DPCM-NUQ architecture is effective in improving

the quantization efficiency.

The performance among different orders of DPCM when

using μ-Law, A-Law, K-Law, and R-Lloyd are compared in

Figs. 12(a)–12(d). It can be observed that the SQNR can be

improved with an increase in the order of DPCM from 1 to

4, although the gain margin is also reduced. And consider-

ing the complexity introduced by the high-order DPCM, the

first- to fourth-order DPCM schemes are recommended to

be used here; in what follows, their performance in a MFH

testbed have been studied. The SQNR thresholds of 16-

QAM, 64-QAM, 256-QAM, 1024-QAM, and 4096-QAM in

Figs. 12(a)–12(d) are estimated as 18.1, 21.938, 27.959,

33.98, and 41.94 dB, based on their EVM thresholds dis-

cussed before. As shown in Fig. 12(d), by jointly applying

R-Lloyd and fourth-order DPCM, total SQNR improvement

of around 10 dB can be obtained. Under 15-to-8-digit (quan-

tization digits � 8) compression and de-compression,

51.15 dB SQNR can be achieved with nearly a 29 dB mar-

gin from 64-QAM SQNR threshold. The selected 256-QAM

constellations with 6–8 quantization digits using the

proposed fourth-order DPCM and R-Lloyd joint compressor

and de-compressor are shown in Fig. 12(e)–12(g). EVM

less than 1.4% is obtained, which is difficult to be

achieved using traditional A-RoF systems for MFH data

transmission.

V. EXPERIMENTAL DEMONSTRATIONS

The capacity of futurewireless systems can be significantly

boosted through space-division multiplexing technologies,

such as massive MIMO and small cell implementation.

According to the latest 5G specifications [34], the peak data

rate for DL could reach 20 Gbit/s, with up to 32 MIMO ports.

On the other hand, the utilization of the 6–30 GHz band and

extremely high-frequency bands beyond 30 GHz for future

wireless broadband transmission attracts a lot of attentions

[35–37]. To support the significantly increased wireless

throughput following increased MIMO ports and higher-

RF-band exploitation in 5G, coherent optics can be a good

solution to provide sufficient fronthaul capacity, high receiver

sensitivity, and large-scale connectivity.

In the former sections, we demonstrated the operation

principles of different data-compression techniques in

D-RoF-based MFH systems and compared their perfor-

mance mainly based on simulations. In what follows, to

demonstrate the feasibility of D-RoF-based coherent opti-

cal MFH, a point-to-point experimental testbed, as shown

in Fig. 13, has been set up, where the robustness of the

data-compression algorithm under the presence of bit

errors is studied. The impacts of bit errors on the different

combinations of compression algorithms in the coherent

optical system have also been compared.

As shown in Fig. 13, in the coherent MFH, a dual-

polarization IQ modulator (DP-IQM) is used as the

transmitter at the CU site. The samples from wireless

OFDM symbols are digitized and compressed to eight dig-

its per sample. After digitization, each sample is converted

into an 8 bit binary AxC chip. A CPRI-like data multiplex-

ing scheme is utilized, where AxC chips from different

antennas are interleaved to form D-RoF frames. Every two

streams of data frames are mapped into QPSK or 16-QAM

symbols offline, which are then sent to a 92 GSa/s arbitrary

waveform generator and modulated onto the light in X

or Y polarization through the DP-IQM. After transmission

through 80-km single-mode fiber, the optical signal is re-

ceived with a coherent detector and decomposed into four

electrical signals captured by a four-channel real-time sam-

pling oscilloscope operating at 80 GSa/s. The offline DSPs

are applied to demodulate the coherent optical QPSK or

16-QAM signals. Then the D-RoF frames are recovered and

after de-compression, they are used to reconstruct the wire-

less OFDM signals. In the optical part of the experiment,

36 Gbaud DP-QPSK and 32 Gbaud DP-16-QAM are tested,

and their bit error rate (BER) performance as well as the

selected constellations are shown in Fig. 14. Each OFDM

wireless CC under test contains 2048 subcarriers and

occupies a bandwidth of around 122.8 MHz. Out of the

2048 subcarriers, 1201 are loaded with 16-QAM symbols.

For the coherent system with 32 Gbaud DP-16-QAM at a

net information rate of 200 Gbit/s after excluding around

20% overhead for soft-decision FEC [38], 90 or 110 CCs

can be encapsulated under 15-to-8-digit or 15-to-7-digit

compression, respectively.

Fig. 13. Experimental system diagram.

Fig. 14. BER versus the received optical power of the coherent

MFH testbed.
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The EVM performance of the recovered wireless OFDM

signal after the compression–decompression process, under

the influence of bit errors in the MFH system, is shown in

Fig. 15. It can be seen from Eq. (9) that, without FEC, bit

errors further increase the deviations between x�k� and

x̂�k�, thus degrading the SQNR. The compression methods

of DPCM-μ-Law and DPCM-Lloyd have been compared in

Fig. 15(a) and 15(b), respectively. In the cases of using

DPCM-μ-Law and DPCM-Lloyd, less than 2% and 4%

EVMs can be achieved with BER values smaller than

2 × 10−5 and 1 × 10−4, respectively. It is worth noting that

the BER performance of DPCM is slightly worse than that

of regular PCM. Although the feedback-loop-based com-

pressor architecture at the transmitter site can eliminate

the issue of quantization-error accumulation in differential

coding, the decision errors at the receiver site can still be

transferred and accumulate from one sample to another in

the decoding process of DPCM, thus degrading the BER

performance of DPCM. However, the degradation is insig-

nificant, and it can be mitigated by FEC where error-free

performance can be achieved when the system can pass the

threshold.

VI. CONCLUSION

In this work, multiple data-compression techniques have

been investigated and implemented to improve the band-

width efficiency of a next-generation D-RoF-based MFH

system supporting 5G-NR. These include NUQ and DPCM.

Based on our previous work discussing NUQ [16], more

details and theoretical analysis on an R-Lloyd-algorithm-

based compressor are provided. By varying the number

of major and minor quantization levels, a good trade-off be-

tween quantization accuracy and computational complex-

ity can be achieved. Meanwhile, R-Lloyd does not rely on

the assumption of a Gaussian distribution and it can be

adapted to different kinds of wireless signal formats. On

the other hand, to further enhance the data compression

ratio and system adaptability, a computationally efficient

LMS algorithm is proposed to calculate the tap weights

for a high-order DPCM encoder. After combining the NUQ

and DPCM in a feedback-loop-based compressor, great

improvements in SQNR can be obtained, thus leading to

a good wireless signal quality after the compression and

de-compression processes with fewer quantization digits.

With fourth-order DPCM plus the R-Lloyd algorithm,

SQNR improvement of 10 dB can be successfully achieved.

EVM less than 0.4% and 0.7% can also be realized under

15-to-8-digit and 15-to-7-digit compressions, respectively.

The proposed algorithms have been verified over a high-

capacity MFH testbed based on coherent optics to support

future mobile systems with massive MIMO or densified

small cells. The encapsulated wireless signals can be recov-

ered with EVM less than 0.8%. The influence of the mea-

sured bit errors in the optical MFH on the wireless signal

quality has also been analyzed. According to the experi-

mental results, the proposed approach for data compres-

sion has been validated as a promising solution to

significantly improve the bandwidth efficiency for future

D-RoF-based MFH supporting 5G.
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