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Abstract—In isolated power systems with low rotational in-
ertia, fast-frequency control strategies are required to maintain
frequency stability. Furthermore, with limited resources in such
isolated systems, the deployed control strategies have to provide
the flexibility to handle operational constraints so the controller
is optimal from a technical as well as an economical point-of-
view. In this paper, a model predictive control (MPC) approach is
proposed to maintain the frequency stability of these low inertia
power systems, such as microgrids. Given a predictive model of
the system, MPC computes control actions by recursively solving
a finite-horizon, online optimization problem that satisfies peak
power output and ramp-rate constraints. MATLAB/Simulink
based simulations show the effectiveness of the controller to
reduce frequency deviations and the rate-of-change-of-frequency
(ROCOF) of the system. By proper selection of controller param-
eters, desired performance can be achieved while respecting the
physical constraints on inverter peak power and/or ramp-rates.

Index Terms—Fast frequency control, frequency stability,
model predictive control, virtual inertia

I. INTRODUCTION

This paper focuses on fast-frequency control of low inertia,
inverter-dominated microgrids. Typically, remote microgrids
have a relatively low amount of rotational generation. Fre-
quency control in these microgrids is difficult due to the
fast-frequency dynamics that occur during a transient event.
Inverter-based renewable generation does not contribute to
system inertia, which makes the system susceptible to large
frequency swings in a short time interval as there is limited
inertial response to counteract the frequency change. Even
if a system has adequate reserve, the slow-acting nature of
these traditional reserves may not be able to handle high
rate-of-change-of-frequency (ROCOF), which compromises
the frequency stability of the system [1]. Another effect of
increased penetration of variable generation is that it affects
the number of synchronous generators that are online at any
given time. The inertia of the power system can thus vary
based on the number of generators that are online [2]. This
uncertainty further complicates the design of the frequency
controller. Hence, there is a need to develop optimal and
effective fast-acting frequency controllers.

Traditionally, to compensate these fast-frequency variations,
inverters have been equipped with algorithms that dispatch
power based on the derivative of the frequency measurements.
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This allows the inverter to react very fast in response to
frequency changes [3]. Energy storage systems (ESSs) can be
utilized to provide the power needed for such fast-frequency
services [4]. Classic PID based control techniques are used to
control these inverters. As such, it is difficult to incorporate
constraints on power limits and ramp-rates with such con-
trollers. Moreover, tuning of these controllers is not intuitive,
and it is difficult to relate the physical behavior (like inertia
emulation, damping and/or peak power) of the system with
the control parameters. Model predictive controllers (MPCs)
can optimize the behavior of these controllers as desired based
on the system operating conditions [5]. Furthermore, such a
control approach has the added flexibility of incorporating
other constraints, such as power limits and ramp-rate limits,
that have economic impacts. MPC design is based on tuning
a few weighting parameters that are easily relatable to the
physical behavior of the system as will be illustrated later.
In [6], a control scheme was developed to adaptively select
the gains of the controller online based on an underlying model
to reduce the energy exchange with the ESS. However, the
controller only had the capability to predict one time-step
ahead. An explicit MPC approach for fast-frequency control
was proposed in [7]. In this implementation, the solutions are
analytically computed offline, and the control action reduces to
a lookup table. Linear quadratic regulator (LQR) based optimal
controllers have also been developed in literature with an aim
of achieving an optimal controller [8], [9]. However, optimiza-
tion is performed offline, and the controller may not perform
“optimally” if system dynamics vary. Furthermore, there is no
explicit method to incorporate operational constraints in the
LQR controller formulation. Apart from these model-based
approaches, a few model free methods have also been explored
in the literature based on reinforcement learning [10], [11] and
fuzzy logic [12]. However, such methods may require intensive
training and online computation power, which may not be
feasible. In this paper, an online MPC approach is proposed for
fast-frequency control based on a long time horizon that pro-
vides near-optimal control actions based on system operating
conditions. In addition, the proposed MPC approach utilizes an
objective function that enables the possibility of providing both
inertial response and frequency regulation within the same



MPC formulation for power system fast-frequency control.

The paper is organized as follows: Section II develops a
model for the frequency dynamics of an isolated power system
followed by a description of the proposed MPC formulation.
In Section III, the methods and procedures are described for
the simulation study. The results and findings are presented in
Section IV, and Section V concludes the paper.

II. MPC-BASED FREQUENCY CONTROL

In this section, a generic model for the frequency dynamics
of a power system is derived, followed by the MPC formula-
tion for frequency control.

A. Frequency Event Characterization

When a frequency event (power imbalance) occurs in a
power system, the frequency of the system deviates from
its steady-state value. Fig. 1 shows how the frequency of a
typical power system evolves after a frequency event. In this
case, an increase in the net electrical load in the system has
caused the frequency to drop. The initial rate-of-change-of-
frequency (ROCOF) depends on the total inertia available in
the system [13]. In isolated power systems, this inertia can be
particularly low and can cause large ROCOF that may trigger
frequency relays, which can cut-off the generator. Based on
this initial rate-of-change, the frequency reaches a nadir w4 gir
after a time ¢, from the start of the frequency event. The
maximum ROCOF is denoted by w,,,, in Fig. 1. For these
initial few seconds, the inertial response is entirely responsible
for maintaining power balance. After this, governors start
acting on the system to stabilize the frequency and reduce the
steady-state error. The time taken for the frequency to return to
its steady-state value is defined as the recovery/settling time.
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Fig. 1: Power system frequency after a frequency event.

B. System Model

The frequency dynamics of an isolated power system can
be modeled based on the so-called swing equation and a
differential equation representing the dynamics of the governor
as follows [9], [14]:

MAw+ DAw = AP,, — AP, (1)
TyAPy, + AP, = —Ry) ' Aw 2)

where M represents the equivalent inertia constant of the gen-
erator, D is the normalized damping constant (which accounts
for the equivalent effect of all frequency dependent loads in the

system), w is the system frequency, and P,, and P, represent
the mechanical power and the electrical power, respectively.
Similarly, Ty and R, are the time constant and the equivalent
speed regulation droop. Fig. 2 shows a block diagram of the
power system defined by (1) and (2). To reduce the frequency
deviation to zero in the steady-state, an integral control loop
with a power output of AP; is also added. K; represents the
integral gain of this secondary control loop. For the design of
controllers which emulate inertia, the dynamics of this slower
secondary control loop can be neglected [8]. From the point-
of-view of dynamic frequency control, the secondary power
output AP; does not have a significant impact.
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Fig. 2: Block diagram of the isolated power system.

Based on (1) and (2), the following differential equation can
be derived:
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The state-space representation of the differential equation is
given by:
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C. Proposed Model Predictive Controller

An MPC approach is proposed in this paper for fast-
frequency control of an isolated power system. In particular,
the objective of the controller is to emulate inertial response
during the first few seconds after a frequency event. The
proposed controller can act much faster than the frequency
controllers in a traditional power system to reduce the initial
ROCOF. Fig. 3 shows a schematic diagram of the proposed
MPC. The frequency and ROCOF measurements are sent to
the MPC, which computes a sequence of future control actions
by minimizing a desired cost function given a predictive model
of the system and system constraints. In MPC, the first control
action in this sequence is applied, and the optimization is
solved again at each subsequent time step in a receding horizon
fashion.



The set 7 := {t,t+7,...,t+T —7} is defined as the discrete
times in the finite forward time horizon. 7" is defined as the
length of the time horizon, which is a multiple of the time step
7. Defining x = [Awg A(:uk]T as the discrete states of the
system and Apy, as the power output from the virtual inertia
unit, the proposed MPC formulation will take the following
form:

t+T—7

minimize J = Z (Ingk + Aka,RApk) (5a)
k=t

+ xLTQfxt-s-T
subject to
Ther = Az + BApy VEET, (5b)
|Api| < Prae YEET, (5¢)
|Apksr — Apill, <5 VR ET, (5d)

where A and B are the discretized state-space matrices of the
system. The discretization is performed using the zero order
hold (ZOH) method with a sampling time of 7. J is the cost-
function to be minimized, and () and R are the weighting
matrices corresponding to the state estimates and the control
input respectively. The weighting matrix ) can be used to
penalize poor system performance (i.e., to penalize change in
frequency and/or ROCOF), while matrix R is used to penalize
the control effort (i.e., the power output from the inverter). The
weighting matrix @ is defined as:

_|@Qu 0
Q= { 0 Q22:| . (6)

Similarly, Qf is a terminal cost weighting matrix. We assume
that Q7 is equal to @ throughout the paper. More details on
the choice of the terminal cost and time horizon can be found

in [15].
Solving this optimal control problem over the
time horizon 7T results in the solution Ap* =

[Ap*, Apyar™, oy Apiyr—."]. At each time ¢, the first
element of the solution Ap* is used which gives the
following control law:

The system dynamics are incorporated within the con-
straint (5b) of the above MPC formulation. Similarly, (5¢)
limits the power output of the inverter to P,,4,. The ramp-
rate of the inverter power output is limited to .S by (5d).

III. METHODOLOGY

The simulation studies were carried out in MAT-
LAB/Simulink. The simulation setup used is illustrated in
Fig. 4. The system is based on the PV-Hydro model described
in [16]. It consists of a 39 kVA hydro system and a 25
kWp PV system. In this paper, we model the generator and
develop the MPC approach to provide fast-frequency control.
A generator driven by a turbine is the main power source
controlling the voltage and the frequency of the system. A
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Fig. 3: Block diagram of the power system model with the MPC
approach.

variable load is also connected to the system. Whenever the
load changes, variations occur in the system frequency, which
are traditionally regulated by the governor. In this case, the
inverter (marked as virtual inertia unit in Fig. 4) provides faster
frequency response based on the MPC that was formulated in
Section II-C.
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Fig. 4: Simulation setup used in MATLAB/Simulink.

It should be noted that Fig. 4 is only used as an illustration
of the system under study, and the simulations are carried
out using state-space blocks in MATLAB/Simulink. The pa-
rameters used in the simulation are typical values and are
summarized in Table I.

TABLE I: Summary of Simulation Parameters

Parameter [ Values
Inertia constant (M) 4
Damping coefficient (D) 1.5%
Speed regulation droop (Ry) 5%
Turbine-Governor time constant (1) 0.2s
Sample time (7) 0.02 s
Prediction and Control Horizon (7T) ls

The MPC approach was
LAB/Simulink using CVXGEN,

implemented in MAT-
a code generator for



embedded convex optimization [17]. CVXGEN generates C
code that is compiled into high speed solvers [18]. When
incorporated with MATLAB, CVXGEN creates a MATLAB
MEX (MATLAB executable) interface to be used within
Simulink to call the custom solver.

IV. RESULTS AND ANALYSIS

In this section, the frequency dynamics of the benchmark
presented in Section III is studied under different configura-
tions of the MPC formulation. Based on how the weighting
matrices are selected, the frequency dynamics of the bench-
mark power system varies significantly. Initially, the effect
of changing Q17 and Q29 is studied independently followed
by a series of simulations that are utilized to select the best
combination of (011 and (Q22. The constrained operation of the
MPC formulation is also analyzed. Finally, a short discussion
on the computation time is provided.

A. Minimizing the Rate-of-Change-of-Frequency (ROCOF)

In this first case study, the objective of the MPC is to
minimize the ROCOF of the system. For this, ()11 is always
set to 0 and Q9o is varied from 0.1 to 1. R is set to a small
value of 0.001 indicating a small penalty on the control action.
Prqz was set to 1.0 p.u. and the maximum ramp-rate, S, was
set to 10 p.u./s. These values were intentionally chosen large
so that the constraints do not become active. The cost function
is now reduced to the following form:

t+T—1 5

J= > {Qunai” + R(An)?} @®)

k=t
Fig. 5 shows the change in frequency and the ROCOF for
these MPC settings. Increasing Q22 minimizes the ROCOF
of the system. The peak power injection from the inverter
also increases accordingly. However, it is interesting to note
that the frequency nadir has increased. Increasing the Q2o
parameter tries to reduce the ROCOF without any damping
in the system. This creates an overshoot in the ROCOF that
causes a negative spike in the power output from the inverter,
causing the frequency nadir to increase even more than in the
case with no controller. This behavior is similar to adding

inertia to the system.

B. Minimizing the Change in Frequency

In the second case study, the objective of the MPC is to
minimize the change in the frequency. For this, Q22 is always
set to 0 and Q17 is varied from 0.1 to 1. The remaining
parameters are the same as in the first case study. In this case,
the cost function is reduced to the following form:

t+T—1
J= > {QuAw+ R(Apy)*} ©)
k=t

Fig. 6 shows the change in frequency and the ROCOF for
these MPC settings. As expected, increasing (011 reduces the
frequency nadir of the system. Although there is a significant
amount of damping added to the system, the frequency dynam-
ics are not slower as desired. It can also be observed that the
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Fig. 5: Frequency and ROCOF when varying (22 keeping Q11 = 0.

reduction in the ROCOF is not as significant as in the previous
case. As a consequence, the time-to-nadir remains relatively
unchanged. Hence, increasing ()11 has a behavior similar to
adding more damping to the system. Based on this discussion,
it is clear that a suitable combination of ()11 and ()25 would
be needed to achieve the desired performance where both
frequency nadir and ROCOF are reduced to a desirable level.

C. Minimizing Both Change in Frequency and ROCOF

In this case, both ()11 and (22 are chosen to analyze the
combined effect of these parameters in the MPC performance.
Repeated simulations were carried out varying both ()11 and
Q22 in the range of [0.1, 1] at intervals of 0.1. The data
obtained from these simulations are summarized using heat-
maps. Fig. 7 shows the heat-maps for variations of minimum
frequency point wyqqi and maximum ROCOF w,,,q.. It can
be observed from Fig. 7 that increasing either Q11 or Qoo
reduces the frequency deviation, except at lower values of
@Q11- When @1, is low, at high values of (D22, the frequency
nadir gets worse compared to the no MPC case. In case of the
heat-map for ROCOF, increasing (J2 has a significant impact
in decreasing the ROCOF. An increase in ()11 has a similar
effect, but the impact is less significant.

Similarly, the effect of varying (011 and Q22 on the time-to-
nadir ¢,, and the peak power injection Ap is shown in Fig. 8.
The time-to-nadir should ideally be as high as possible, as
it indicates that the frequency dynamics have slowed. This
allows time for the governor response from the synchronous
generators to act and return the system frequency to steady-
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Fig. 6: Frequency and ROCOF when varying Q11 keeping Q22 = 0.

state. The time-to-nadir is highest when Q22 = 1 and Q17 = 0,
although increasing (11 does not significantly reduce the time-
to-nadir at higher ranges of (Q23. The peak inverter power
is maximum when ()1; and Qo2 are set to 1. This is as
expected, because the highest peak power would be required
when both frequency deviation and ROCOF are penalized
equally with the highest weights. Based on these heat maps,
the point (Q22 = 0.5,Q11 = 0.7) is a good choice because
it provides a fair compromise between reducing the frequency
nadir and ROCOF. At this point, the time-to-nadir is fairly
high at 2.5-3.0s, and peak power injection is about 10 kW.
If a lower power injection is desired, ()11 could be reduced
further. From this study, it is clear that appropriate selection
of the weighting matrices provides an intuitive technique to
tune system performance as desired.
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Fig. 7: Heat-map showing the effect of varying Q11 and Q)22 on the
change in frequency and the ROCOF if the system.
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D. Constrained Operation with MPC

In this section, the ability of the MPC approach to incorpo-
rate constraints is highlighted. Using the (Q22 = 0.5,Q11 =
0.7) from the previous section, the performance is compared
when limits are imposed on the maximum power output and
the ramp-rate of the MPC. In this particular case, the peak
inverter power is limited to 0.15 p.u. (6 kW), and the ramp-
rate is limited to 0.5 p.u./s (1 kW/s). These constraints indicate
that in a real system the inverter peak power is limited to 6 kW,
and 1 kW/s is the allowable ramp-rate for the type of energy
storage system being used. Fig. 9 shows the performance of
the constrained MPC versus the unconstrained MPC approach.
With a constraint on peak power, the output power from the
inverter is limited to 0.15 pu, and the change in the power is
limited by the ramp-rate constraint. However as a compromise,
the frequency nadir and the ROCOF are higher compared to
the unconstrained case. Also, the time to frequency nadir is
much smaller in the constrained case.

The ability to include constraints with the proposed MPC
approach can provide a means for microgrid operators to
incorporate inertial response services based on the requirement
of the end-users. The constraints can be adjusted based on
whether the criteria such as maximum allowable ROCOF
and/or frequency nadir is high or low. Based on this the
microgrid operators can then add value to the type of energy
storage needed and/or the lifetime of the energy storage being
used.

E. Discussion on the Computation Time

To highlight the computational feasibility of the MPC ap-
proach in a real-time controller, the MPC solver in CVXGEN
was run for 100 trials (the MPC optimized over the given
horizon) using MATLAB. The trials were conducted on a Intel
Core i7 - 8750H processor operating at 2.2 GHz. The total
execution time of the 100 trials was calculated as 40 ms using
the MATLAB profiler, which is an average of 400 us per trial.
Although the execution time may increase when implementing
the MPC solver in a low cost embedded controller, as one
trial is well under the sampling time of 20 ms the real-time
implementation of the MPC controller is shown to be feasible
in this initial analysis.



====== No Controller ======== Unconstrained MPC Constrained MPC|
o 0
3
c -0.01
)
=
4] -0.02
L
’:2\ 0 S
= q
L R
8 -002¢ i 1
@] v
& v
-0.04 : :
0 5 10 15

Power (p.u.)

Cost Function
o
o
o
()]

time (s)

Fig. 9: Comparison of constrained and unconstrained MPC approach.

V. CONCLUSIONS AND FUTURE WORK

An MPC approach was developed to provide fast-frequency
control for an isolated power system. The inverter was able
to act faster than the governor of the system to counteract
the power imbalance. This allowed the system to achieve
low ROCOF and frequency deviations. It was also found
that with appropriate selection of MPC parameters, the fre-
quency behavior and the power from the inverter can be intu-
itively controlled. In this sense, the MPC provides a flexible
framework to control the system frequency as per operator
requirements, while simultaneously considering the cost and
underlying constraints of the physical system. The choice of
the MPC time-step and time-horizon will depend largely on
the computational power of the controller being used and will
be analyzed in future. Furthermore, the possibility of providing
both inertial response and frequency regulation with the same
MPC formulation will also be explored as a part of future
work.
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