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Abstract—A distributed convex optimization framework for energy
trading of interconnected microgrids is investigated to improve
the economy and reliability of system operation. In this work, a
distributed energy trading approach for interconnected operation
of islanded microgrids is studied. Specifically, the system includes
several islanded microgrids that can trade energy in a given topol-
ogy. A distributed iterative deep cut ellipsoid (DCE) algorithm is
implemented with limited information exchange. This approach will
address the scalability issue and also secure local information on
cost functions. During the iterative process, the information exchange
among interconnected microgrids is restricted to electricity prices and
expected trading energy. Numerical results are presented in terms of
the convergent rate of the algorithm for different topologies, and the
performance of the DCE algorithm is compared with sub-gradient
algorithm.

Index Terms—Distributed energy resources, sub-gradient method,
deep cut ellipsoid algorithm, Lagrange multiplier, and interconnected
microgrids.

I. INTRODUCTION

I
n traditional power systems, energy is generated by large gener-

ation plants in centralized fashion. In centralized systems, the

energy needs to be transported over long distance and through

complex transportation meshes to the end users. Complicated,

inflexible structures can create a burden to the whole power system

and are susceptible to outages [1]. The smart grid aims to improve

the traditional power grid by introducing the interconnected micro-

grids system (IMS) in a distributed way.

The distributed microgrid system allows the energy exchange

with several micro-grids which are islanded from the utility grid.

By using IMS, it is easy to ensure the full utilization of local

energy resources, reduce the energy operating cost and achieve

reliability of power delivery [2]. Interconnection of microgrids

can provide improved electric service reliability and better power

quality for the end users. From the aspect of energy trading

game, the microgrids (MGs) can act as players from cooperative

perspective. During different time periods, MGs can act as seller

and buyer based on their respective load demand and aim at

maximizing their individual benefits. Therefore, distributed energy

trading is necessary to meet the global operation goal of an

interconnected micro-grid system that preserves scalability and

privacy issues. Recent studies focus on the energy optimization

strategy of smart grid. The energy optimization can be divided into

two types: centralized optimization and distributed optimization.

Normally, if all the MGs share information on their respective

load, generation and grid condition, the system could be easily

implemented based on classical optimization such as optimal

power flow.

For instance, in [3], [4], the authors consider a method of

joint and distributed control of IMS and residential community.

Alternatively, a method of Newton-like descent is proposed in

[5] to solve the three-phase optimal power flow problems. From

the security perspective, these centralized solutions may undergo

privacy issues [5] that encouraged the authors of [6] to deploy

distributed optimal power flow (OPF) in the power system in [7],

[8]. However, the OPF problem is non-convex, and the solution

is too complicated to compute since it has multiple local optimal

points.

In this work, we will focus on the trading mechanism of

interconnected micro-grids rather than the electrical operation

of the utility grid. In the context of energy trading, distributed

energy resources can convert the current oligopolistic market into

a flexible one [9]. For instance, the authors in [10] proposed a game

theoretic approach to trade the stored energy with other elements of

the grid. In terms of demand response, the authors in [11] studied

a generalized Nash equilibrium problem that considered demand

response where aggregators and micro-grids are formulated as a

non-cooperative game. However, the majority of existing works

focus on an energy trading mechanism based on an architectural

framework [12]–[14].

Motivated by aforementioned works, we studied the energy

trading mechanism between the islanded MGs without the need of

a central coordinator. Each MG buys/sells energy from/to adjacent

MGs without sharing the local cost information. The objective of

this work is to minimize the global operation cost (generation plus

transmission costs) by preserving the local information. Compared

with the previous works (e.g., [14], [15]), the main contributions

of this work include: (i) A distributed iterative algorithm based

on the deep cut ellipsoid (DCE) method is proposed for energy

trading between isolated MGs. Different from prior works, this

work analyzes the comparative study between two distributed

energy trading approaches using different topologies (e.g., Full,

Line, Ring, and Star). (ii) The performance of two distributed

algorithms is compared with different case studies.

The remainder of this paper is structured as follows. Section

II represents the model of the energy exchange network. Section

III illustrates the distributed model and algorithm of the inter-

connected microgrids system. Section IV presents the simulation

results and discussion. Section V concludes this paper.

II. SYSTEM MODEL

A system of N = 4 interconnected MGs is considered through a

power interconnection infrastructure and a communication network

as shown in Figure 1.
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Fig. 1: A network of multiple interconnected MGs, distribution power
line and communication network.

During each scheduling time, E(g)
i and E(c)

i are the generation

and consumption of MG i respectively. Moreover, MG i is allowed

to sell energy Ei, j to MG j, j �= i, and to buy energy Ek,i from

MG k, k �= i. The power balance within the MG requires

E(g)
i + eT

i AT E(b)
i = E(c)

i + eT
i AE(s)

i (1)

where the two N-dimensional column vectors are defined as:

E(b)
i =

⎡
⎢⎢⎢⎢⎢⎣

E1,i

.

.

.

EN,i

⎤
⎥⎥⎥⎥⎥⎦

and E(s)
i =

⎡
⎢⎢⎢⎢⎢⎣

E1,i

.

.

.

EN,i

⎤
⎥⎥⎥⎥⎥⎦

where E(b)
i and E(s)

i are the energy purchasing and selling vector

of MG i. In order to introduce the connection between MGs,

an adjacency matrix A = [ai, j]N×N is defined. If there exists a

connection between MG i to MG j, element ai, j is set as 1 and

0 otherwise. Note that A may be nonsymmetric, meaning that at

least two MGs are allowed to share energy in one direction only.

Moreover, two MGs without connection defines ai, j = 0 → Ei, j = 0

for all i, j = 1..., ..N.

The objective of this problem is to minimize the total op-

erating cost of interconnected microgrid system, consisting of

power generation and transmission cost. The energy exchanged by

interconnected MGs form the equilibrium point of the following

minimization problem:

min
Ei, j

N=4

∑
i=1

Ci(E
(g)
i )+

N=4

∑
i=1

eT
i AT β (E(b)

i ) (2)

subject to Ei, j ≥ 0,∀i, j (3)

E(c)
i + eT

i (AE(s)
i −ATE(b)

i )≥ 0,∀i (4)

where Ci(E
(g)
i ) is defined as the cost of generating E(g)

i units of

energy at MG i; β (E(b)
i ) is the cost of transferring Ei, j units of

the energy between MG i and MG j; ei is the ith column of the

N ×N identity matrix; E(b)
i is the vector composed of the energy

bought from other MGs by MG i;
The multiple MGs in one interconnected microgrid system,

which has their set of strategies, should be coordinated in order

to achieve the global objective of the system and meet power

demands.

In the system model mentioned above, two cost functions have

been introduced, namely, cost function Ci(E
(g)
i ) is the cost of

MG i spend to generate the energy E(g)
i , and the cost function

β (E(b)
i ) is the cost of transferring energy between MG i to

MG j. Both cost functions are positive valued, monotonically

increasing, convex and twice differentiable. Each MG is capable

of producing extra energy by using a diesel generator at an “extra

cost”. The cost function Ci(E
(g)
i ) of a diesel generator (DG) is

modeled as a quadratic polynomial. The fuel cost is represented

as: CDGi(E
(g)
i ) = ai + biPDGi + ciP2

DGi where ai, bi and ci are the

fuel cost coefficients of DG; and PDGi is the output power of DG

i.
The total operation cost Ci(E

(g)
i ) includes the cost of all DG

units of MG i, Ci(E
(g)
i ) = ∑N=4

N=1 CDGi. For the transportation cost,

many factors may have an influence on the model, i.e, the in-

vestment and construction cost of the network, etc. For simplicity,

we imagine the cost of all connection topologies of the system

is the same. The transmission cost is a second-order quadratic

polynomial.

III. DISTRIBUTED MODEL AND ALGORITHM

1) Distributed optimal scheduling model: When considering

the minimization problem (2), one can readily identify that the

objective function is strictly convex. Moreover, a centralized unit

needs a control unit that is aware of all system information.

This fact implies a considerable amount of data traffic to gather

all the information and can miss some annoying privacy issues.

In this regard, we propose a distributed iterative approach by

decomposing the problem N local subproblems, which can be

implemented by the MGs in an autonomous and cooperative

manner.

By utilizing the Lagrangian method and duality theorem, a

multiplier strategy is introduced as the exchanged information

between MGs to solve the subproblem for each MG. Thus, the

distributed iterative solution (2) can be rewritten as:

C∗ = min
ε(s)i ,Ei, j

N=4

∑
i=1

Ci(E
(g)
i )+

N=4

∑
i=1

eT
i AT β (E(b)

i )

subject to constraints (3),(4),and

(5)

ε(s)i = eT
i AE(s)

i ,∀i (6)

The only difference with respect to (2) is the introduction of

new variable ε(s)i to represent the energy sold by MG i and later

it will be equal to all the energy bought by other MGs from MG

i. The coupling constraint can be represented as ε(s)i = eT
i AE(s)

i .

Due to the decomposition theory [16] of the primal-dual prob-

lem (2), Lagrange multipliers are introduced to relax the coupling

constraints for solving the dual problem (7)
C∗ = max

λ
C(λ ) (7)

where, C(λ ) = ∑N
i=1 Cl

i (λ )
Cl

i (λ ) = min
ε(s)i ,E(b)

i

Ci(ε
(s)
i ,E(b)

i ,λ )

subject to constraints (3),(4), and (6)

(8)

For each MG, we have:

Ci(ε
(s)
i ,E(b)

i ,λ )=Ci(E
(g)
i )+eT

i AT β (E(b)
i )+eT

i AT diagλE(b)
i −λiε

(s)
i

(9)

that is the contribution of MG i to the Lagrangian function

relative to (2). The parameter λ gathers all the Lagrange mul-

tipliers λi corresponding to coupling constraints ε(s)i = eT
i AE(s)

i ,



respectively and for all i = 1, ....,N. Based on above analysis,

each Lagrange multiplier λi can be defined as the marginal cost of

MG i, namely the selling price of a unit of power to neighboring

MGs. Thus, Lagrange function can be seen as net expenditure.

The net expenditure of each MG has four parts: (i) Ci(E
(g)
i ) is the

generation unit cost function; (ii) eT
i AT β (E(b)

i ) is the transmission

network cost resulted from transferring energy bought from other

MGs; (iii) eT
i AT diagλE(b)

i is the cost due to buying energy; and

(iv) λiε
(s)
i is the income by selling energy.

2) Distributed algorithm: The problem can be transformed to

maximum dual problem. To this end, the optimal Lagrangian

multiplier converge to the optimal point of dual problem (7),

λ ∗ = argmaxλC(λ ). More specifically, at each point λ [k], each

MG minimizes its corresponding contribution to the Lagrange

function by solving the local subproblem (8) and determining the

minimum point (ε(s)i [k],E(b)
i [k]) = (ε(s)i (λ [k]),E(b)

i (λ [k])).
In the previous work [14], the Sub-Gradient Algorithm is used

to solve the optimization problem. In particular, the Lagrange

multiplier is updated according to

λi[k+1] = λi[k]+α [k]

⎡
⎢⎢⎢⎢⎢⎣

eT
1 AE(s)

1 [k]− ε(s)1 [k]
.

.

.

eT
NAE(s)

N [k]− ε(s)N [k]

⎤
⎥⎥⎥⎥⎥⎦

(10)

where, α[k] is a positive step factor. However, the Sub-Gradient

Algorithm needs the initial guess of price (λ ) and step size (α).

The initial assumption is restrictive in the Sub-Gradient Algorithm

to find an optimal solution set. This initial assumption often makes

the algorithm slower. A faster algorithm is needed to improve the

system performance.

The approach proposed in this work is based on the Deep

Cut Ellipsoid Algorithm. According to [17], the DCE is used to

determine the feasibility of a system of linear inequalities. This

algorithm generates a “decreasing” sequence of ellipsoids that

contain a minimizing point. The update of the dual variables has

been done in this algorithm. The idea of choosing initial ellipsoid

is to localize the set of candidate λ ’s within a closed and bounded

set. Therefore, this algorithm releases the users to initialize the

price values (λ ) at the first iteration and from choosing the step

size (α).

The size and boundary of the ellipsoid can be represented as λ
and matrix P respectively. The sub-gradient of C(λ ) in λ = λ [k]
need to be computed from k− th can be described as

ς [k] = [eT
NAE(s)

N [k]− ε(s)N [k]]N×1,∀λ (11)

Then we have, C(λ ) ≤ C(λ [k]) + ςT (λ − λ [k]),∀λ and the sub-

gradient needs to be normalized as,

(12)υ [k] =
ς [k]√

ςT × P[k]× ς [k]

First, the Lagrange multiplier (λ ) can be represented as,

(13)λi[k + 1] = λi[k] +
1 + N × α

N + 1
× P[k]× υ [k]

Second, the boundary (matrix P) of the ellipsoid can be updated

as:

(14)
P[k + 1] =

N2

N2 − 1
× (1 − α2)× (P[k]− 2(1 + Nα)

(N + 1)(1 + α)

× P[k]× υ [k]× (υ [k])T × P[k])

where, α is a positive step factor, P[k] is the boundary of solution

space and k is the iteration number.
Next, the updated Lagrange multiplier (λ ) will check the

original bounds. If it is within the bound, then it has converged

otherwise it will take next iteration according to (11), (12), (13),

and (14).
Algorithm 1 summarizes are the steps of the proposed dis-

tributed iterative algorithm.

Algorithm 1 Distributed optimal scheduling algorithm

1: Initialize λmin, λmax, λi[0], P[0], N = 4, α = 0, k=0

2: At kth iteration

3: At any MG i
4: Compute the sub-gradient ς [k] = [eT

NAE(s)
N [k]− ε(s)N [k]]N×1,∀λ

5: Normalize the sub-gradient υ [k] = ς [k]√
ςT×P[k]×ς [k]

6: MGs exchange λi[k] with neighboring MG

7: MG i computes ε(s)i [k] and E(b)
i [K] using (5) with λ [k].

8: MG i informs MG j( j �= i) the energy it expects to buy namely

E j,i[k], at the given price λ j[k].
9: According to the expected purchasing energy E j,i[k] from other

MGs, MG i obtains

10: E(s)
i [k]⇒ [Ei1[k]........EiN [k]]T

11: MG i updates according to step 12 and 13

12: λi[k+1] = λi[k]+ 1+N×α
N+1 ×P[k]×υ [k]

13: P[k+1] = N2

N2−1
×(1−α2)×(P[k]− 2(1+Nα)

(N+1)(1+α) ×P[k]×υ [k]×
(υ [k])T ×P[k])

14: At any MG i
15: If λi < λmin
16: ς [k] =−1, υ [k] = ς [k]√

P[k]
,α = (λmin−λi)√

P[k]
17: Then, MG i updates according to step 18 and 19

18: λi[k+1] = λi[k]+ 1+N×α
N+1 ×P[k]×υ [k]

19: P[k+1] = N2

N2−1
×(1−α2)×(P[k]− 2(1+Nα)

(N+1)(1+α) ×P[k]×υ [k]×
(υ [k])T ×P[k])

20: k = k+1

21: Until stopping criteria is met.

To solve the dual problem (7), each MG should be aware of

ε(s)i [k] and E(b)
i [K] , namely the total energy it sold and the vector

composed of energy bought from other MGs, respectively. More-

over, we can compute E(s)
i from E(b)

i . Combined with Algorithm 1,

the Lagrangian multipliers can be updated. Therefore, all necessary

data can be computed by each MG without a centralized controller.

Also, the information shared between MGs is bound to Lagrange

multipliers λi and the expected buying energy E j,i. Hence, the

privacy of MGs can be secured. According to Algorithm 1, each

Lagrange multiplier λi can be interpreted as the price per energy

unit requested by MG i to sell energy to its neighboring MGs.

Using the Lagrangian function (8), each MG pays for generating

energy, for purchasing energy and for transferring the energy it

purchases. On the other hand, the MG is paid for the energy it

sells.



By solving the problem (8), the MG maximizes profit for

some given selling (λi[k]) and buying (λ j, j �= i) prices per unit

energy. Based on the Algorithm 1, the price λi would be modified

constantly until the energy demand matches energy offer. As

reported by (13), if the energy offered by MG i is less than the

requested energy from other MGs, the price must be increased as

the demand exceeds the supply. Conversely, when the demand by

MG i is less than the supply, the price will be decreased. However,

the price does not change when the supply and demand are at

equilibrium.

3) Solution of The Local Subproblem: In this section, the

solution of the local subproblem is reported to support the global

minimization problem of the system. The minimization subprob-

lem (8) at MG i behaves according to six possible cases. Table I

expresses these six cases to support the local subproblem.

TABLE I: Possible Cases of Local Subproblem of MG i.
Cases Generation Buy Sell

1 � − −
2 − � −
3 � � −
4 � − �
5 − � �
6 � � �

The intention of MG i is to minimize local cost or, equivalently,

to maximize net profit, when λis are interpreted as exchanging

prices per energy unit. In the first case, the MG i is generating all

and only the energy it consumes, that is ε(s)i = 0 and E(g)
i = E(c)

i .

The MG i is not interested to sell energy since the selling price

is lower than marginal generation cost. Indeed, the income will

be lower than the extra production cost. In addition, purchasing

is not beneficial either since the purchasing price is higher than

the marginal production cost. Therefore, as for case 1, the MG i
should remain self-constrained. However, MG i is always willing

to trade energy since their local cost (Ci(E
(c)
i )+β (0)) is higher

than the net payment. This scenario holds only in case 6. Similar

considerations hold for other cases.

IV. RESULT AND DISCUSSION

Several case studies have been considered based on proposed

energy trading mechanism. An interconnected test system con-

sisting of four different MGs, including DG units only. The

interconnection topology of interconnected microgrid system is

represented in Figure 2.

MG-4

MG-1 MG-2

MG-3 MG-4

MG-1 MG-2

MG-3

Fig. 2: A fully interconnected
microgrid system.

The fuel coefficients of DG (a

= 86.39 $, b = 56.56 $/MW and

c = 0.33 $/(MW )2) are consid-

ered from [18]. The coefficients

of transfer cost function are p

= 0, q = 0, r = 3.68. The ca-

ble capacity assumes 100 MW.

We have introduced a soft upper

bound Emax= 5 MW The trans-

fer cost function is set without

the upper bound. All simulation

studies have been done on a

single machine with an i7 dual-core processor.

1) Trading prices: Figure 3 represents the iterative process of

electricity price of each MG.
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Fig. 3: Iterative process of the electricity price of each MG.

The curves refer to a fully connected system, where microgrid

loads are E(c) = [1,6,6,6] MW and each MG generation capacity is

Emax = 5 MW. The result shows that the DCE algorithm converges

after 58 iterations. The prices of MG1, MG2, MG3 and MG4 are

59.35 $/MWh, 67.32 $/MWh, 67.32 $/MWh and 67.32 $/MWh,

respectively. However, the electricity prices of MGs converge to

different values with same initial prices. Besides, Figure 3 depicts

the final selling prices of MGs which have a direct relationship to

their own loads that means the MG that consumes more electricity

has a higher selling price after the convergence is achieved. For

example, MG1 earns more money by selling energy to the other

MGs with a lower price because it has lower power demand.

In fact, the MG1 only generates and sells energy whose local

cost function is:

C1 =CDG1(PDG1)−λ1ε(s)1 (15)

The optimal λ1 = λ ∗
1 can be given in the form of marginal cost:

λ ∗
1 =C

′
(PDG1) (16)

On the other hand, MG2, MG3, and MG4 only generate and buy

energy from MG 1. They are all buying same amount of energy

from MG1, and their local cost functions can be represented as:

C2 =CDG2(PDG2)+β (E1,2)+λ2E1,2 (17)

C3 =CDG3(PDG3)+β (E1,3)+λ3E1,3 (18)

C4 =CDG4(PDG4)+β (E1,4)+λ4E1,4 (19)

Moreover, from the perspective of MG2, MG3, and MG4, λ ∗
2 , λ ∗

3

and λ ∗
4 can be expressed as:

λ ∗
2 =C

′
(PDG2)−β

′
(E1,2) (20)

λ ∗
3 =C

′
(PDG3)−β

′
(E1,3) (21)

λ ∗
4 =C

′
(PDG4)−β

′
(E1,4) (22)

Therefore, MG2, MG3, and MG4 should reduce their net expen-

ditures by purchasing energy from MG1. The price of MG1 after

convergence can be calculated according to (16), (20), (21) and

(22), which is consistent with the result of Algorithm 1.



2) Trading energy: The iterative process of the energy trading

between MGs is shown in Figure 4.
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Fig. 4: Iterative process of the trading energy of MG1, MG2, MG3, and
MG4.

The energy trading after convergence at current time slot can

be explained as follows: MG2, MG3, and MG4 buy 1.08 MWh

energy from MG1 respectively.

However, MG1 has been sold 3.25 MW power to all other MGs.

The total energy sold equals the total energy purchased in the

system. The coupling constraint ε(s)i = eT
i AE(s)

i is fulfilled after

convergence, which show that the algorithm works well. During

the optimization, the cost by power transmission between MGs

is covered by the electricity buyer. In the current time slot, MG2

buys energy from MG1 to meet its load demand, as the marginal

cost of its own generating unit is higher than the sum of the selling

price and the transmission cost of MG1. Similarly, the marginal

cost of MG3 and MG4 is not economical. It is beneficial to work

on lower generation limit.
3) Benefits of interconnection: Given the same setting, each

MG can also be operated autonomously. Table II represents the

cost comparison of each MG between autonomous and intercon-

nected operation. The results show that energy trading decreases

TABLE II: Cost comparison of each MG between autonomous and
interconnected operation.

Cost ($)

Operation

MG ID Autonomous Interconnected

MG 1 143.28 332.11

MG 2 4610.83 377.01

MG 3 4610.83 376.99

MG 4 4610.83 376.99

Total 13975.78 1463.11

the global operation cost and decreases the local expenditure of

individual MG that has less generation. Therefore, MG1 gains

revenue by selling energy whereas MG2, MG3, and MG4 reduce

their costs by purchasing energy.
4) Performance comparison with existing work: To interpret

the benefits and advantages of the distributed model and the deep

cut ellipsoid algorithm, the results are compared with the existing

work [14] in terms of exchanged information, the number of

MGs, solution algorithm, and performance. The studied algorithm

features advantages in several aspects, especially in algorithm

performance. The CDE algorithm has shown a better convergence

performance compared to the Sub-gradient algorithm proposed in

[14]. In this algorithm, the information shared among MGs is

limited to Lagrange multipliers and the expected buying energy

quantities, which are only communicated with trading MGs. As

for the convergence performance of algorithms, the simulation

results show the proposed method improves performance over

the distributed sub-gradient algorithm of [14]. The detail iterative

process comparison of price in MG3 between this work and the

work in [14] based on same test cases is shown in Figure 5.
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Fig. 5: Iterative process comparison of price in MG 3 between this work
and that in [14].

The proposed approach releases the system to make the restric-

tive assumption, which reflects in faster convergence. The deep

cut ellipsoid algorithm has a faster iteration speed due to faster

shrinking. First, the initial assumption of price is made based on

the total cost function. Then, the price needs to be maintained

within the bounded limit, which reduces the solution space and

speeds up the system. Finally, the prices of MG3 in this work and

the work in [14] converge to the same value. For energy exchange

network, four different topologies (e.g., Full, Ring, Line, and Star)

are considered as in Figure 2 and Figure 6.
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Fig. 6: Three different connection topologies.

The performance comparison for sub-gradient algorithm and

DCE algorithm has also been done for four topologies as in Figure

7.
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Fig. 7: Comparison between Sub-gradient algorithm and DCE Algorithm
with the different topology in terms of iteration and time.

The four topologies are compared in terms of iteration and

time to show the performance improvement of the proposed

method. As shown in Figure 7, the fully interconnected topology

gives the best performance. While for other three topologies, the

star-connected topology has advantages over other two since it

improves the income for MG1, which achieves the highest cost

reduction although it has worst cost reduction performance for

MG2, MG3, and MG4. The proposed method performs better than

the slow sub-gradient algorithm in terms of iteration and time.

Therefore, the MGs should operate in a distributed manner which

lowers the interaction time with fewer data exchanges.

With more insight into the results, the search routines of the

sub-gradient algorithm seems zigzag shaped. The sub-gradient

algorithm is the fastest direction for the increasing of objective

function value. Therefore, it could be a good choice to search on

the sub-gradient direction in the local space.

However, this algorithm’s convergence speed is slowed in the

global space due to its zigzag-shaped search direction. For this

drawback, the deepest cut ellipsoid algorithm with a sequence

of shrinking ellipsoids that is polynomial in time is studied in

this work. During each iteration, the sequence of each ellipsoid

is smaller in volume than its predecessor due to its deepest cut.

After that, it is easy to find a feasible point within this smallest

global space. The proposed method has addressed the problem by

the zigzag typed searching direction and eventually quicken the

convergence.

V. CONCLUSION

In this paper, a distributed energy trading approach was inves-

tigated under a distribution network. The problem is formulated

as an energy management problem to minimize the total system

cost. An hour-ahead optimization model is constructed and the

objective function includes the operation of DGs and network

tariff. A distributed iterative algorithm was studied based on deep

cut ellipsoid method considering descent search direction. The

convergence of the proposed method was proved and verified

with numerical results. Moreover, the results show that each MG

can adjust generation of DGs or trade with other MGs with an

extensive consideration of generation cost, trading price, and load

characteristics. The distributed energy trading based on the DCE

algorithm was applied to four topologies and found that certain

topologies were more beneficial than others. Compared with the

existing work [14], the proposed approach shows the advantageous

features of modeling and performance.
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