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Abstract—A distributed convex optimization framework for energy
trading of interconnected microgrids is investigated to improve
the economy and reliability of system operation. In this work, a
distributed energy trading approach for interconnected operation
of islanded microgrids is studied. Specifically, the system includes
several islanded microgrids that can trade energy in a given topol-
ogy. A distributed iterative deep cut ellipsoid (DCE) algorithm is
implemented with limited information exchange. This approach will
address the scalability issue and also secure local information on
cost functions. During the iterative process, the information exchange
among interconnected microgrids is restricted to electricity prices and
expected trading energy. Numerical results are presented in terms of
the convergent rate of the algorithm for different topologies, and the
performance of the DCE algorithm is compared with sub-gradient
algorithm.

Index Terms—Distributed energy resources, sub-gradient method,
deep cut ellipsoid algorithm, Lagrange multiplier, and interconnected
microgrids.

I. INTRODUCTION

n traditional power systems, energy is generated by large gener-
I ation plants in centralized fashion. In centralized systems, the
energy needs to be transported over long distance and through
complex transportation meshes to the end users. Complicated,
inflexible structures can create a burden to the whole power system
and are susceptible to outages [1]. The smart grid aims to improve
the traditional power grid by introducing the interconnected micro-
grids system (IMS) in a distributed way.

The distributed microgrid system allows the energy exchange
with several micro-grids which are islanded from the utility grid.
By using IMS, it is easy to ensure the full utilization of local
energy resources, reduce the energy operating cost and achieve
reliability of power delivery [2]. Interconnection of microgrids
can provide improved electric service reliability and better power
quality for the end users. From the aspect of energy trading
game, the microgrids (MGs) can act as players from cooperative
perspective. During different time periods, MGs can act as seller
and buyer based on their respective load demand and aim at
maximizing their individual benefits. Therefore, distributed energy
trading is necessary to meet the global operation goal of an
interconnected micro-grid system that preserves scalability and
privacy issues. Recent studies focus on the energy optimization
strategy of smart grid. The energy optimization can be divided into
two types: centralized optimization and distributed optimization.
Normally, if all the MGs share information on their respective
load, generation and grid condition, the system could be easily
implemented based on classical optimization such as optimal
power flow.
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For instance, in [3], [4], the authors consider a method of
joint and distributed control of IMS and residential community.
Alternatively, a method of Newton-like descent is proposed in
[5] to solve the three-phase optimal power flow problems. From
the security perspective, these centralized solutions may undergo
privacy issues [5] that encouraged the authors of [6] to deploy
distributed optimal power flow (OPF) in the power system in [7],
[8]. However, the OPF problem is non-convex, and the solution
is too complicated to compute since it has multiple local optimal
points.

In this work, we will focus on the trading mechanism of
interconnected micro-grids rather than the electrical operation
of the utility grid. In the context of energy trading, distributed
energy resources can convert the current oligopolistic market into
a flexible one [9]. For instance, the authors in [10] proposed a game
theoretic approach to trade the stored energy with other elements of
the grid. In terms of demand response, the authors in [11] studied
a generalized Nash equilibrium problem that considered demand
response where aggregators and micro-grids are formulated as a
non-cooperative game. However, the majority of existing works
focus on an energy trading mechanism based on an architectural
framework [12]-[14].

Motivated by aforementioned works, we studied the energy
trading mechanism between the islanded MGs without the need of
a central coordinator. Each MG buys/sells energy from/to adjacent
MGs without sharing the local cost information. The objective of
this work is to minimize the global operation cost (generation plus
transmission costs) by preserving the local information. Compared
with the previous works (e.g., [14], [15]), the main contributions
of this work include: (i) A distributed iterative algorithm based
on the deep cut ellipsoid (DCE) method is proposed for energy
trading between isolated MGs. Different from prior works, this
work analyzes the comparative study between two distributed
energy trading approaches using different topologies (e.g., Full,
Line, Ring, and Star). (ii) The performance of two distributed
algorithms is compared with different case studies.

The remainder of this paper is structured as follows. Section
II represents the model of the energy exchange network. Section
IIT illustrates the distributed model and algorithm of the inter-
connected microgrids system. Section IV presents the simulation
results and discussion. Section V concludes this paper.

II. SYSTEM MODEL

A system of N = 4 interconnected MGs is considered through a
power interconnection infrastructure and a communication network
as shown in Figure 1.
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Fig. 1: A network of multiple interconnected MGs, distribution power
line and communication network.
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During each scheduling time, Eig) and Ei(c) are the generation
and consumption of MG i respectively. Moreover, MG i is allowed
to sell energy E;; to MG j, j # i, and to buy energy Ej; from
MG k, k # i. The power balance within the MG requires

E® 1+ el ATE") = E[) 4 T A ()
where the two N-dimensional column vectors are defined as:

Ey;

where Ei(b) and Ei(s) are the energy purchasing and selling vector
of MG i. In order to introduce the connection between MGs,
an adjacency matrix A = [g; j|yxy is defined. If there exists a
connection between MG i to MG j, element q;; is set as 1 and
0 otherwise. Note that A may be nonsymmetric, meaning that at
least two MGs are allowed to share energy in one direction only.
Moreover, two MGs without connection defines a; j =0 — E; ;=0
foralli,j=1...,..N.

The objective of this problem is to minimize the total op-
erating cost of interconnected microgrid system, consisting of
power generation and transmission cost. The energy exchanged by
interconnected MGs form the equilibrium point of the following
minimization problem:

N=4 N=4 b
min Y Ci(Ei<g)) +Y eiTATB(Ei( )) )
i,j i=1 i=1
subject to  E;; >0,Vi, j )
E\ +el (AR —ATE") > 0.vi @

where C;(E®)) is defined as the cost of generating E*)

;% units of

energy at MG i; ﬁ(Ei(b)) is the cost of transferring E; ; units of
the energy between MG i and MG j; e; is the ith column of the
N x N identity matrix; El@ is the vector composed of the energy
bought from other MGs by MG i;

The multiple MGs in one interconnected microgrid system,
which has their set of strategies, should be coordinated in order
to achieve the global objective of the system and meet power
demands.

In the system model mentioned above, two cost functions have

been introduced, namely, cost function Ci(Ei<g>) is the cost of

MG i spend to generate the energy Ei(g), and the cost function
ﬁ(E(b)) is the cost of transferring energy between MG i to

]

MG j. Both cost functions are positive valued, monotonically
increasing, convex and twice differentiable. Each MG is capable
of producing extra energy by using a diesel generator at an “extra
cost”. The cost function Ci(Ei<g>) of a diesel generator (DG) is
modeled as a quadratic polynomial. The fuel cost is represented
as: CDGi(Ei(g)) = ai+biPDGi+ciP12)Gi where a;, b; and c¢; are the
fuel cost coefficients of DG; and Ppg; is the output power of DG
i.

The total operation cost C,-(Ei(g)) includes the cost of all DG
units of MG i, C,'(Efg)) = Z%j Cpgi. For the transportation cost,
many factors may have an influence on the model, i.e, the in-
vestment and construction cost of the network, etc. For simplicity,
we imagine the cost of all connection topologies of the system
is the same. The transmission cost is a second-order quadratic
polynomial.

III. DISTRIBUTED MODEL AND ALGORITHM

1) Distributed optimal scheduling model: When considering
the minimization problem (2), one can readily identify that the
objective function is strictly convex. Moreover, a centralized unit
needs a control unit that is aware of all system information.
This fact implies a considerable amount of data traffic to gather
all the information and can miss some annoying privacy issues.
In this regard, we propose a distributed iterative approach by
decomposing the problem N local subproblems, which can be
implemented by the MGs in an autonomous and cooperative
manner.

By utilizing the Lagrangian method and duality theorem, a
multiplier strategy is introduced as the exchanged information
between MGs to solve the subproblem for each MG. Thus, the
distributed iterative solution (2) can be rewritten as:

N=4 N=4 )
c'=min Y GE®)+ Y LATBED)
eV g =l i-1 &)
subject to  constraints (3),(4),and
el = T AEY i 6)

The only difference with respect to (2) is the introduction of
new variable £i(s) to represent the energy sold by MG i and later
it will be equal to all the energy bought by other MGs from MG
i. The coupling constraint can be represented as ei(s) = el-TAEi(S) .

Due to the decomposition theory [16] of the primal-dual prob-
lem (2), Lagrange multipliers are introduced to relax the coupling
constraints for solving the dual problem (7)

Ccr = max C(A) (7)

where, C(A) =YY Cl(2)

clA)= min (e EP 1)
E(S) E@) (8)

subject to constraints (3),(4), and (6)

For each MG, we have:
Ci(el EP A) = C(EX) + T ATB(E")) + el AT diaghE" — die”
€))
that is the contribution of MG i to the Lagrangian function
relative to (2). The parameter A gathers all the Lagrange mul-

tipliers A; corresponding to coupling constraints £i<s) = eiTAEi(S),



respectively and for all i = 1,....,N. Based on above analysis,
each Lagrange multiplier A; can be defined as the marginal cost of
MG i, namely the selling price of a unit of power to neighboring
MGs. Thus, Lagrange function can be seen as net expenditure.
The net expenditure of each MG has four parts: (i) C; (Ei<g)) is the
generation unit cost function; (ii) e/ A” ﬁ(Ef.b)) is the transmission
network cost resulted from transferring energy bought from other
MGs; (iii) eiTATdiaglEEb) is the cost due to buying energy; and
(iv) Aie

2) Distributed algorithm: The problem can be transformed to
maximum dual problem. To this end, the optimal Lagrangian
multiplier converge to the optimal point of dual problem (7),
A* = argmax) C(L). More specifically, at each point A[k], each
MG minimizes its corresponding contribution to the Lagrange
function by solving the local subproblem (8) and determining the
minimum point (") [k],E”[k]) = (") (A [k]), E” (A [K])).

In the previous work [14], the Sub-Gradient Algorithm is used
to solve the optimization problem. In particular, the Lagrange
multiplier is updated according to

is the income by selling energy.

TAEW (K] — eV [K]

Ailk+1] = Ailk] + e [k] (10)

LAES K - ey [K]

where, o[k is a positive step factor. However, the Sub-Gradient
Algorithm needs the initial guess of price (1) and step size (o).
The initial assumption is restrictive in the Sub-Gradient Algorithm
to find an optimal solution set. This initial assumption often makes
the algorithm slower. A faster algorithm is needed to improve the
system performance.

The approach proposed in this work is based on the Deep
Cut Ellipsoid Algorithm. According to [17], the DCE is used to
determine the feasibility of a system of linear inequalities. This
algorithm generates a “decreasing” sequence of ellipsoids that
contain a minimizing point. The update of the dual variables has
been done in this algorithm. The idea of choosing initial ellipsoid
is to localize the set of candidate A’s within a closed and bounded
set. Therefore, this algorithm releases the users to initialize the
price values (A) at the first iteration and from choosing the step
size ().

The size and boundary of the ellipsoid can be represented as A
and matrix P respectively. The sub-gradient of C(A1) in A = A[k]
need to be computed from k —th can be described as

5[kl = [eRAEY 1K) — & Wllvx1, VA an
Then we have, C(A1) < C(A[k]) + ¢r(A — A[k]),VA and the sub-
gradient needs to be normalized as,

vl = sl (12)
g™ x Plk] x g[K]
First, the Lagrange multiplier (A) can be represented as,
Mt 1] = A+ N XE b ol (13)

N+1

Second, the boundary (matrix P) of the ellipsoid can be updated
as:

N? 2(1+Na)
thxu_aaxwm_w+nu+m
v[k] x (v[k])" x Plk])

where, a is a positive step factor, P[k] is the boundary of solution
space and k is the iteration number.

Next, the updated Lagrange multiplier (1) will check the
original bounds. If it is within the bound, then it has converged
otherwise it will take next iteration according to (11), (12), (13),
and (14).

Algorithm 1 summarizes are the steps of the proposed dis-
tributed iterative algorithm.

Plk+ 1] = 14

x P[k] x

Algorithm 1 Distributed optimal scheduling algorithm

1: Initialize Apin, Amax Ai[0], P[0], N=4, o« =0, k=0
2: At k' iteration
3: At any MG i
4: Compute the sub-gradient g[k] = [eLA [ 1— 81(\,5) [K]]nx1, VA
5: Normalize the sub-gradient v[k] = %
¢! xPlkxg[k]
6: MGs exchange /I[Ek] with neighboring MG
7: MG i computes & ) [k] and Ei(b) [K] using (5) with A[k].
8: MG i informs MG j(j # i) the energy it expects to buy namely

E;;[k], at the given price A;[k].
9: According to the expected purchasing energy E; ;[k] from other
MGs, MG i obtains
10: EVk] = [Eit [K]...... Eiy[K]]T
11: MG i updates according to step 12 and 13
120 Aifk 4 1] = Li[k] + L5252 < PlK] x v[kl 1
N
13 Pk 1] = 25 x (1 02) x (P = ety
(v[k))" x P[K])
14: At any MG i
15: If A; < Ain " o
. —_ _ S . min /i
16: glk] = —1, v[k] = TR
17: Then, MG i updates according to step 18 and 19

X P[k] x v[k] x

18: Aifk + 1] = L[k] + 1252 x Plk] < v[]

19: Plk+1] = 25 x (11— 6) x (PK] — reiiysy x Pk x o[k] x
(v[k])" x P[K])

20: k=k+1

21: Until stopping criteria is met.

To solve the dual problem (7), each MG should be aware of
£<S) [k] and E, (b)[ K] , namely the total energy it sold and the vector
composed of energy bou%’ht from other MGs, respectively. More-
over, we can compute E from E ). Combined with Algorithm 1,
the Lagrangian mu1t1phers can be updated Therefore, all necessary
data can be computed by each MG without a centralized controller.
Also, the information shared between MGs is bound to Lagrange
multipliers A; and the expected buying energy E;;. Hence, the
privacy of MGs can be secured. According to Algorithm 1, each
Lagrange multiplier A; can be interpreted as the price per energy
unit requested by MG i to sell energy to its neighboring MGs.
Using the Lagrangian function (8), each MG pays for generating
energy, for purchasing energy and for transferring the energy it
purchases. On the other hand, the MG is paid for the energy it
sells.



By solving the problem (8), the MG maximizes profit for
some given selling (A;[k]) and buying (A;, j # i) prices per unit
energy. Based on the Algorithm 1, the price A; would be modified
constantly until the energy demand matches energy offer. As
reported by (13), if the energy offered by MG i is less than the
requested energy from other MGs, the price must be increased as
the demand exceeds the supply. Conversely, when the demand by
MG i is less than the supply, the price will be decreased. However,
the price does not change when the supply and demand are at
equilibrium.

3) Solution of The Local Subproblem: In this section, the
solution of the local subproblem is reported to support the global
minimization problem of the system. The minimization subprob-
lem (8) at MG i behaves according to six possible cases. Table I
expresses these six cases to support the local subproblem.

TABLE I: Possible Cases of Local Subproblem of MG i.

Cases | Generation | Buy | Sell
1 v — —
2 — v —
3 v v —
4 v — v
5 — v v
6 v v v

The intention of MG i is to minimize local cost or, equivalently,
to maximize net profit, when A;s are interpreted as exchanging
prices per energy unit. In the first case, the MG i is generating all
and only the energy it consumes, that is £ = 0 and E*) = E\“).
The MG i is not interested to sell energy since the selling price
is lower than marginal generation cost. Indeed, the income will
be lower than the extra production cost. In addition, purchasing
is not beneficial either since the purchasing price is higher than
the marginal production cost. Therefore, as for case 1, the MG i
should remain self-constrained. However, MG i is always willing
to trade energy since their local cost (Ci(El.(”)) + B(0)) is higher
than the net payment. This scenario holds only in case 6. Similar
considerations hold for other cases.

IV. RESULT AND DISCUSSION

Several case studies have been considered based on proposed
energy trading mechanism. An interconnected test system con-
sisting of four different MGs, including DG units only. The
interconnection topology of interconnected microgrid system is
represented in Figure 2.
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Fig. 2: A fully interconnected
microgrid system.

The fuel coefficients of DG (a
=86.39 $,b=56.56 $/MW and
¢ =0.33 $/(MW)?) are consid-
ered from [18]. The coefficients
of transfer cost function are p
=0,q =0, r=3.68. The ca-
ble capacity assumes 100 MW.
We have introduced a soft upper
bound E,,;x= 5 MW The trans-
fer cost function is set without
the upper bound. All simulation
studies have been done on a
single machine with an i7 dual-core processor.

1) Trading prices: Figure 3 represents the iterative process of
electricity price of each MG.
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Fig. 3: Iterative process of the electricity price of each MG.

The curves refer to a fully connected system, where microgrid
loads are E(©) = [1,6,6,6] MW and each MG generation capacity is
Eax =5 MW. The result shows that the DCE algorithm converges
after 58 iterations. The prices of MG1, MG2, MG3 and MG4 are
59.35 $/MWh, 67.32 $/MWh, 67.32 $/MWh and 67.32 $/ MW h,
respectively. However, the electricity prices of MGs converge to
different values with same initial prices. Besides, Figure 3 depicts
the final selling prices of MGs which have a direct relationship to
their own loads that means the MG that consumes more electricity
has a higher selling price after the convergence is achieved. For
example, MG1 earns more money by selling energy to the other
MGs with a lower price because it has lower power demand.

In fact, the MG1 only generates and sells energy whose local
cost function is:

C1 = Coor (Pog1) — Mg (15)

The optimal A; = A can be given in the form of marginal cost:
AF=C (Ppoi) (16)
On the other hand, MG2, MG3, and MG4 only generate and buy

energy from MG 1. They are all buying same amount of energy
from MG1, and their local cost functions can be represented as:

Cr =Cpc2(Ppc2) + B(E12) +2E1 2 (17)
C3 =Cpg3(Ppg3) + B(E13) +AM3E 3 (18)
Cy4 = Cpga(Ppca) + B(Er14) + AE 4 (19)

Moreover, from the perspective of MG2, MG3, and MG4, 15, A5
and A; can be expressed as:

A =C (Poca) — B (E2) (20)
A5 =C (Pogs) — B (E13) @1)
Ay = c (Ppga) — ﬁ/(E1,4) (22)

Therefore, MG2, MG3, and MG4 should reduce their net expen-
ditures by purchasing energy from MGI1. The price of MGI1 after
convergence can be calculated according to (16), (20), (21) and
(22), which is consistent with the result of Algorithm 1.



2) Trading energy: The iterative process of the energy trading
between MGs is shown in Figure 4.
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Fig. 4: Iterative process of the trading energy of MG1, MG2, MG3, and
MG4.

The energy trading after convergence at current time slot can
be explained as follows: MG2, MG3, and MG4 buy 1.08 MWh
energy from MG respectively.

However, MG1 has been sold 3.25 MW power to all other MGs.
The total energy sold equals the total energy purchased in the
system. The coupling constraint ei(s) = eiTAEim is fulfilled after
convergence, which show that the algorithm works well. During
the optimization, the cost by power transmission between MGs
is covered by the electricity buyer. In the current time slot, MG2
buys energy from MG1 to meet its load demand, as the marginal

cost of its own generating unit is higher than the sum of the selling
price and the transmission cost of MGI. Similarly, the marginal
cost of MG3 and MG4 is not economical. It is beneficial to work
on lower generation limit.

3) Benefits of interconnection: Given the same setting, each
MG can also be operated autonomously. Table II represents the
cost comparison of each MG between autonomous and intercon-
nected operation. The results show that energy trading decreases

TABLE II: Cost comparison of each MG between autonomous and
interconnected operation.

Operation
MG ID | Autonomous | Interconnected
MG 1 143.28 332.11
Cost ($) | MG 2 4610.83 377.01
MG 3 4610.83 376.99
MG 4 4610.83 376.99
Total 13975.78 1463.11

the global operation cost and decreases the local expenditure of
individual MG that has less generation. Therefore, MG1 gains
revenue by selling energy whereas MG2, MG3, and MG4 reduce
their costs by purchasing energy.

4) Performance comparison with existing work: To interpret
the benefits and advantages of the distributed model and the deep
cut ellipsoid algorithm, the results are compared with the existing
work [14] in terms of exchanged information, the number of
MGs, solution algorithm, and performance. The studied algorithm
features advantages in several aspects, especially in algorithm
performance. The CDE algorithm has shown a better convergence
performance compared to the Sub-gradient algorithm proposed in
[14]. In this algorithm, the information shared among MGs is
limited to Lagrange multipliers and the expected buying energy
quantities, which are only communicated with trading MGs. As
for the convergence performance of algorithms, the simulation
results show the proposed method improves performance over
the distributed sub-gradient algorithm of [14]. The detail iterative
process comparison of price in MG3 between this work and the
work in [14] based on same test cases is shown in Figure 5.
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Fig. 5: Iterative process comparison of price in MG 3 between this work
and that in [14].
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The proposed approach releases the system to make the restric-
tive assumption, which reflects in faster convergence. The deep
cut ellipsoid algorithm has a faster iteration speed due to faster
shrinking. First, the initial assumption of price is made based on
the total cost function. Then, the price needs to be maintained
within the bounded limit, which reduces the solution space and
speeds up the system. Finally, the prices of MG3 in this work and
the work in [14] converge to the same value. For energy exchange
network, four different topologies (e.g., Full, Ring, Line, and Star)
are considered as in Figure 2 and Figure 6.
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Fig. 6: Three different connection topologies.
The performance comparison for sub-gradient algorithm and

DCE algorithm has also been done for four topologies as in Figure
7.
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Fig. 7: Comparison between Sub-gradient algorithm and DCE Algorithm
with the different topology in terms of iteration and time.

The four topologies are compared in terms of iteration and
time to show the performance improvement of the proposed
method. As shown in Figure 7, the fully interconnected topology
gives the best performance. While for other three topologies, the
star-connected topology has advantages over other two since it
improves the income for MGI1, which achieves the highest cost
reduction although it has worst cost reduction performance for
MG2, MG3, and MG4. The proposed method performs better than
the slow sub-gradient algorithm in terms of iteration and time.
Therefore, the MGs should operate in a distributed manner which
lowers the interaction time with fewer data exchanges.

With more insight into the results, the search routines of the
sub-gradient algorithm seems zigzag shaped. The sub-gradient
algorithm is the fastest direction for the increasing of objective
function value. Therefore, it could be a good choice to search on
the sub-gradient direction in the local space.

However, this algorithm’s convergence speed is slowed in the
global space due to its zigzag-shaped search direction. For this
drawback, the deepest cut ellipsoid algorithm with a sequence
of shrinking ellipsoids that is polynomial in time is studied in
this work. During each iteration, the sequence of each ellipsoid
is smaller in volume than its predecessor due to its deepest cut.
After that, it is easy to find a feasible point within this smallest
global space. The proposed method has addressed the problem by
the zigzag typed searching direction and eventually quicken the
convergence.

V. CONCLUSION

In this paper, a distributed energy trading approach was inves-
tigated under a distribution network. The problem is formulated
as an energy management problem to minimize the total system
cost. An hour-ahead optimization model is constructed and the

objective function includes the operation of DGs and network
tariff. A distributed iterative algorithm was studied based on deep
cut ellipsoid method considering descent search direction. The
convergence of the proposed method was proved and verified
with numerical results. Moreover, the results show that each MG
can adjust generation of DGs or trade with other MGs with an
extensive consideration of generation cost, trading price, and load
characteristics. The distributed energy trading based on the DCE
algorithm was applied to four topologies and found that certain
topologies were more beneficial than others. Compared with the
existing work [14], the proposed approach shows the advantageous
features of modeling and performance.
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