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Abstract—Smart grid attacks can be applied on a single
component or multiple components. The corresponding defense
strategies are totally different. In this paper, we investigate the
solutions (e.g., linear programming and reinforcement learning)
for one-shot game between the attacker and defender in smart
power systems. We designed one-shot game with multi-line-
switching attack and solved it using linear programming. We also
designed the game with single-line-switching attack and solved
it using reinforcement learning. The pay-off and utility/reward
of the game is calculated based on the generation loss due
to initiated attack by the attacker. Defender’s defense action
is considered while evaluating the pay-off from attacker’s and
defender’s action. The linear programming based solution gives
the probability of choosing best attack actions against different
defense actions. The reinforcement learning based solution gives
the optimal action to take under selected defense action. The
proposed game is demonstrated on 6 bus system and IEEE 30
bus system and optimal solutions are analyzed.

Index Terms—Game theory, smart grid security, reinforcement
learning, cascading failures, linear programming.

I. INTRODUCTION

Smart electric power grid is inter-connected within various
nations and regions. Large scale generation units, various
residential and industrial loads, transmission and distribu-
tion systems, distributed energy sources etc. are making the
power system meeting the demand of electrical power in
this age. Modernization of the power grid (cyber physical
power system) has brought flexible and efficient generation,
transmission and distribution of electrical power along with
high exposure to severe vulnerabilities [1]-[4]. Events in
the power system like transmission line outages, generator
outages, load variation and many more are making the fu-
ture power system challenging to keep safe, controlled and
monitored. Additionally, combining the traditional power grid
with the cyber operation, control and monitoring is making
the power system vulnerable to several threats including cyber
attack in the operating stations, transmission line outages, false
data injections, malware injections etc. Cascading failures,
cyber-physical system security, hardware/human-in-the-loop
etc. are significant areas in the smart grid security research
for modern smart power system [5].

Game theory is an analytical tool to analyze the complex
interactions between dependent/independent rational players
with a set of mathematical rules and framework. System
operators in the power system usually monitors the system’s

health and take actions accordingly. In case of contingencies,
operators take corrective actions (i.e. remedial actions) to
restore the system back to normal operating condition [6].
Attacker attacks the power system (physically or/and virtually)
with the intention of harming/sabotizing the power system and
create electrical, financial and social hazards. Game theory
is used to explain complex interactions between the attacker
and the defender (power system operator) in the smart power
system successfully from various points of view [7]. Use of
game theory is also discovering many emergent areas of vul-
nerabilities in smart grid security which needs to be explored
more. In case of defending, the power system operators and the
power system protection schemes monitor the system’s health
by observing the key parameters (e.g. voltage, power (real and
reactive), frequency etc. ). After observing the key parameters,
the defender takes corrective actions in case of any emergency
situations like generator outages, transmission line failures,
overloading of the transmission lines, relay malfunctioning etc.
Incidents like northeast power grid blackout [8], cyberattack
on ukraine power grid [9], Stuxnet’s attack in iran’s nuclear
program[10] etc. proves the necessity of improving the secu-
rity of smart power system. These improvements can be done
by understanding the strategies of cyber attackers by finding
the vulnerabilities of power systems.

Existing research in power system security using game
theory gives the benefit of understanding the attacker-defender
interactions in the power system. This improves the power
system protection schemes by allowing the authorities (opera-
tors, utility companies and governments) to find the breaches/
weak areas in the power system and protect them. Static and
dynamic games are two branches in game theory. Static games
are formulated to observe the interactions between the players
for one action. In dynamic game, interactions are observed
between the players for multiple interdependent actions [11].
In [12], game theoretic environment is designed and staged to
analyze the cyber switching attack by observing voltage angles
and power flows for all the generators. A two-player zero-sum
game is introduced between attacker and defender to evaluate
the game equilibrium of defense mechanisms under network
configurations in [13]. In [14] and [15] static game theory is
used to identify the vulnerable and critical components of a
smart electric power system considering attacker can conduct



only one action. In [16], power system measurements are
attacked in a static game to investigate the interactions between
attacker and defender.

Inspired by the gaming in smart grid security researches,
we are proposing solutions for the one-shot game in smart
electric power grid. Both single line outage and multiple
transmission line outages are considered for attacker’s action
set. The linear programming based proposed approach for the
one-shot game will give multiple solutions for different attack-
defense action sets with probabilities to be executed using
multi-line-switching attack. A pay-off matrix is formulated to
solve the game. Generation loss due to the line switching is
considered as the pay-offs of the game matrix. The solution
using reinforcement learning will also give the optimal at-
tack action from attacker’s perspective by using single line-
switching attack. From reinforcement learning based solution
we can see that, defender’s action can be changed from
attacker’s previous action history. This change will strengthen
the security of power system by identifying and protecting
critical elements, reducing generation and financial loss.

The rest of the papers are organized as follows: section II
describes the formulation of the game problem, calculation
of generation loss, selection of targets and attack matrices
etc. Gaming solution between attacker and defender using
linear programming and reinforcement learning is explained
in section III. Simulation results are discussed in section
IV. Finally section V gives the summary of this paper’s
conclusion.

II. PROBLEM FORMULATION AND IMPLEMENTATION

In this section, the game between attacker and defender
is formulated and solved following two different approaches.
Linear programming is used to solve the game for multi-line-
switching attack. Reinforcement learning is used to solve the
game for single-line-switching attack. Problem formulation
for two-player zero-sum game between the attacker and the
defender is shown using game matrix for linear programming
based solution. To formulate the game with game matrix, in
this section, calculation of the generation loss is explained
briefly. Load ranking of the buses is used here to identify
the most critical buses and the transmission lines connected
to them for any typical power system. For reinforcement
learning based solution, value iteration method is used. After
value iteration, optimal attack target is achieved by fighting
against a static defender. To rank the buses according to their
loads, transmission lines connected to individual buses are
identified. Then, transmission lines connected to the individual
buses are used as the targets to trigger line-switching attacks.
For individual buses, generation losses are calculated using a
modified dc cascaded failure simulator [17] [18]. Generation
loss is also used as the reward for reinforcement learning based
problem formulation and solution.

A. Benchmark model

The solution of the game is proposed using two different
approaches. To demonstrate the proposed solution of the

two-player, zero-sum attacker-defender game using linear
programming, IEEE 30 bus system is used. 6 bus system is
used to demonstrate the proposed solution of the game using
reinforcement learning.
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Figure 1: One-line diagram of 6 bus system. Topological information
of this test system is used to create attack and defense vectors and
evaluate the attack-defense strategy.

Figure 1 shows the one-line diagram of 6 bus system. The
topological information (such as the connection between the
buses, branch indices, maximum power flow between the buses
etc. ) is used in the simulation to calculate the generation loss.
Transmission line indices are also used to represent the attacks
in the power system test cases.

B. Calculation of generation loss

To solve the game between the attacker and the defender
in smart grid security, calculation of generation loss is re-
quired both in linear programming and reinforcement learning
based solution. To calculate the generation loss, a modified
DC cascaded failure simulator named DCSIMSEP is adopted
[17] [18] [19]. In this paper, modified DC cascaded failure
simulator is capable of taking a vector of transmission lines
as input and gives the generation losses due to the attacks in
these transmission lines. Simultaneous and sequential attacks
are types of attack strategies in the smart grid security.
Simultaneous attack represents attacking multiple targets at the
same time while sequential attack represents attacking multiple
targets in a time sequence (one after another) [20][21]. Simul-
taneous attack strategy is adopted to calculate generation loss
in this paper for solving the game using linear programming.
To solve one-shot game using reinforcement learning, single-
line-switching attack at a time is considered.

Algorithm 1 shows the process of calculation of generation
loss using the simulator. In order to calculate the generation
loss, indices of the target branches are given to the system.
Then, the simulator initializes the power flow. It starts the
simulation with measuring the pre-contingency power flow.



Algorithm 1: Calculation of generation loss matrix

Input : Case name, attack matrix containing
transmission line indices

Output: Cascaded outages, total generation losses

Result: Rebalanced generation loss matrix

1 Initialization;

2 for Given test case do

3 Load the test case;

4 Extract the attack matrix;

5 for Given attack matrix do

6 Run power flow;

7 Switch the branches from attack matrix;

8 Divide into sub-grids according to the overloads;

9 Redispatching the power flow;

10 Update the relay settings;

11 if There are overloads then

12 Trip the branches according to updated
settings;

13 Check for the overloads again;

14 else

15 Calculate total generation loss;

16 end

17 end

18 Display the generation loss matrix;

19 end

The power flow is used to calculate the system status and
measure the overloads. These overloads result in tripping
some branches as a consequence of cascading failure due to
overcurrent. Then redispatching and recalculating of power
flow is done in the system. It gives the separation of the
grid into subgrids and redispatching the power flow in the
subgrids. The generators in the system are then ramped up
or down to rebalance the power flow within the range of
P and P, After redispatching if there is any surplus of
generation in the subgrids, the system trips the generators in
the subgrids one by one. After redistributing the power flow or
redispatching the generators, if there is a surplus of generation,
the generators are tripped down. Usually, the generators are
tripped sequentially according to the generation capacity, from
small to large.

R:(Zpg—zpd>o) (1)
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where P, is the generated power, P; is the load demand,
G is the set of generator buses and D is the set of load buses.
The tripping of the generators continues till R < 0.

Usually in the surplus cases, instead of tripping the gen-
erators, ramping the generation can be proved to be a slow
process. If automatic generation control (AGC) fails to fix
the frequency error, a few generators will trip because of the
overspeed relays. Even if after this, R < 0 load shedding
occurs by multiplication with a scalar factor A\. \ is defined

as
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After that, DC power flow is simulated in the simulator.
Then, the relay settings are updated. Usually, time delayed
overcurrent relays are used in the simulator to identify the
branches to be tripped due to overcurrent. There is an over-
current threshold which is fixed by the system operator termed
as 0;. For branch j, for the power flow of f; and flow limit of
fj, the outage happens when concurrent overload o; crosses
the limit 0;. This concurrent overload is calculated from:

t+At

Aoj(t, At) = {Ot (fi(t) = fpdt iff;(t) > f;

otherwise

3)

The simulator finds the minimum time for failing the
next branch. This time is denoted as AT. Then, the time
is advanced or updated with the addition of AT. Then if
the relay trips due to overcurrent, it will switch the online
branches to offline. Thus, the generation loss is calculated.
These generation losses are used both in the solution of the
game using linear programming and reinforcement learning.

C. Attack matrix, selection of targets, generation losses and
game matrix

Attack matrix is required for the game. This matrix contains
the branches associated with the buses of a typical power sys-
tem. Individual rows represent the buses and columns represent
the branches associated with the buses. Table I shows the
generation loss for attacks in the transmission lines connected
to individual buses. After calculation of generation loss, the
target buses are selected based on the criticality. The criticality
is determined based on the generation loss due to switching the
lines connected to the buses. The more generation loss occurs
due to attacking one bus, the more it is critical than others.
For example, from Table I, bus 6 connects transmission lines
6,7,9,10,11,12 and 41. Triggering line-switching attack in
these transmission lines will cause generation loss of 70.49
MW . Similarly, bus 9 connects transmission lines 11, 13 and
14. Triggering line-switching attack in these transmission lines
will cause no generation loss. Because these transmission lines
are not connected to the generator buses. It means, branches
associated with bus 6 is more critical than branches associated
with bus 9 in selecting the target to attack.



Table I: Generation losses for the attack matrix of IEEE 30 bus
system. These generation losses are the pre-calculation to identify
the branches connected with individual buses with the highest effect
on the system.

Bus Branches Loss Bus Branches Loss
1 [12] 10.79 16 [19 21] 3.5
2 [13506] 48.22 17 [21 26] 9
3 [2 4] 2.4 18 [22 23] 3.2
4 [34715] 7.6 19 [23 24] 9.5
5 [5 8] 0 20 [24 25] 2.2
6 [6791011 1241] 70.49 21 [27 29] 17.5
7 [8 9] 22.8 22 [28 29 31] 7.39
8 [10 40] 30 23 [30 32] 3.95
9 [11 13 14] 0 24 [31 32 33] 8.7
10 [12 14 25 26 27 28] 5.8 25 [33 34 35] 3.5
11 [13] 0 26 [34] 3.5
12 [15 16 17 18 19] 29.70 27 [35 36 37 38] 13
13 [16] 22.25 28 [34 40 41] 0
14 [17 20] 6.2 29 [37 39] 24
15 [18 20 22 30] 8.2 30 [38 39] 10.6

From the generation losses showed in Table I, we select
buses 8,7,2,12,6 and 13 as targets for attacking and defend-
ing. We name them as z1, 26, 22, 23, 24 and z5 respectively.
Then we make the combination matrix taking two targets
(buses) at the same time to attack the system and calculate
the payoff (generation loss). Table II shows the targets and
branches connected to these selected attack targets.

Table II: Target buses and branch sets. This target branches are
selected from table I with maximum generation loss

Targets Branches Targets Branches
zl [10 40] z4 [67910 11 12 41]
z2 [1356] z5 [16]

z3 [16 16 17 18 19] z6 [8 9]

Table III: Branches and generation loss due to attack in the combi-
nations of target buses. Combinations of two targets are considered
for calculation of generation loss.

Number of branches Generation loss (MW)

z122 [1040 135 6] 51.7
z1z3 [10 40 15 16 17 18 19] 58.8
z1z4 [1040 6 79 10 11 12 41] 30

7125 [10 40 16] 30

z1z6 [10 40 8 9] 52.8
7273 [1356151617 18 19] 87.22
7274 [1356791011 12 41] 69.59
2275 [135616] 87.22
7226 [135689] 48.22
z3z4 [151617 1819679 10 11 12 41] 114.75
2325 [15 16 17 18 19] 29.70
2326 [1516 17 18 19 8 9] 51.6
7475 [6791011 12 41 16] 22.25
7426 [6791011124189] 75.90

Table III shows the target combinations and generation
losses due to the attacks. For example, from Table III, com-
bination of target z3 and z4 combines transmission lines
15,16,17,18,19,6,7,9,10,11,12 and 41. Triggering line-
switching attack in these transmission lines will cause 114.75
MW of generation loss. After calculation of generation loss
due to the attacks in the targets (2122,2123,2124...2426),
defender’s action is introduced. It is assumed that only one

target can be protected at a time. It is also assumed that, while
being protected, the branches associated with the protection set
cannot be successfully attacked and will remain active. For
example, if the attacker selects the combination of z3 and z4
to attack while, the defender is defending target z4 and 25,
the attack will be successful for transmission lines connected
to target 23 only. Transmission lines connected to target z4
will remain active as they are being defended by the defender.
In this case, the generation loss will be caused by failure of
transmission lines connected to target z3. Considering these
assumptions, generation losses are calculated for all the targets
against the defense sets and pay-off matrix is built.

The pay-off matrix is given in Table IV. The columns in
the pay-off matrix represent the pay-offs for the attacker’s
strategies, and the rows are representing the strategies for the
defender. Element, (4,j) in the game matrix represents the
pay-off for the attack action j in response to the defense
action ¢. From the game matrix, we can see that, if target
z122 is being defended and attacked at the same time, the
attack will be a failure causing no generation loss. This
is why the principle diagonal of this game matrix is zero.
Because all these attacks will be successfully defended by
the defender. Now having a game matrix (or pay-off matrix)
solution can be found in several ways (minimax theorem[22],
linear programming [23] etc.).

III. GAMING : ATTACKER-DEFENDER INTERACTION

In order to protect a set of transmission lines (i.e. any spe-
cific target/s), the defender needs to play against the attacker.
In this paper, given the defender cannot defend/protect all the
elements at the same time. Similarly, attacking all the elements
at the same time is not possible for the attacker.

A. Solving attacker-defender two-person zero-sum game :
Linear Programming

Designing an interactive decision-making game can lead
to model a strategic game. For a given matrix A,,x, =
{ai; i = 1,...,m;j = 1,...,n}, we can consider,
{row,i*, column, j*} is a pair of strategies adopted by the
players (attacker and defender). Then if the condition stated
below is satisfied Vi, j, then it can be said that the two-person
zero-sum game has a saddle point in pure strategies.

Aivj < Qs < iy “)

The strategies {row, *, column, j*} will constitute a saddle
point equilibrium. They are also referred as saddle point strate-
gies. And, the corresponding outcome of the game, {a;. j*} is
termed as the saddle-point value. If a two-person zero-sum
game has a single saddle point, then the value associated with
that saddle point is called the value of the game. But, in case if
the matrix game does not have a saddle point in pure strategies,
mixed strategies are used to obtain the equilibrium solutions.
A mixed strategy for a player gives a probability distribution
on the space of its pure strategies. Given a (m X n) matrix



Table IV: Attacker-defender two-player zero-sum game matrix for IEEE 30 bus system. In this game matrix, pay-offs are generation losses
which are calculated due to attack in the target buses. For different attack scenarios, different defending actions are also considered to
calculate these pay-offs.

Attacker
z1z2 z1z3 z1z4 z1z5 z1z6 7273 7274 2275 2226 z3z4 2325 2326 z4z5 7426
z122 0 48.22  48.22 48.22 48.22 30 30 30 30 51.7 51.7 51.7 51.7 51.7 z122
7123 29.70 0 29.70 29.70 29.70 30 58.8 58.8 58.8 30 30 30 58.8 58.8 7123
z1z4 70.49 70.49 0 70.49 29.70 30 30 30 30 30 30 30 30 30 z1z4
z125 22.25 2225 2225 0 22.25 30 30 30 30 30 30 30 30 30 z125
. zlz6 22.8 22.8 22.8 22.8 0 52.8 52.8 52.8 30 52.8 52.8 30 52.8 30 2126
< 7273 29.70 48.22  87.22 87.22 87.22 0 29.70 29.70 29.70 4822 4822 4822 8722 8722 7273
é 7274 70.49 69.60 48.22 69.60 69.60  70.49 0 70.49 70.49 4822  69.60 69.60 4822 4822 7274
A 2245 22.22 87.22 87.22  48.22 87.22 2225 2225 0 22.25 87.22 4822 8722 4822 87.22 7275
7276 22.8 4822 4822 48.22 48.22 22.8 22.8 22.8 0 48.22 48.22 4822 4822 48.22  z3z6
z3z4 11475 7049 2970 11475 11445 7049 29.70 11475 11475 0 7049 7049 29.70 29.70  z3z4
2375 29.70 2225 29.70 29.70 29.70 2225  29.70 29.70 29.70 22.25 0 22.25 2970  29.70  z3z5
2326 51.6 22.8 51.6 51.6 29.70 22.8 51.6 51.6 29.70 22.8 22.8 0 51.6 29.70  z4z6
7475 22.25 2225 2225 70.49 22.25 2225 2225 70.49 22.25 2225 7049 2225 0 22.25  74z5
7476 75.90 75.90 22.8 75.90 70.49 75.89 22.8 75.89 70.49 22.8 75.89  70.49 22.8 0 7476
A={a;; i =1,...,m;j =1,...,n}. The average value For mixed strategies in two-person zero-sum game V,,(A) =

of the game can be written as:

J(y,w) = Z Z Yitijw; = y" Aw

i=1 j=1

®)

Here y and w are the probability distribution vectors. They
can be defined by:

)T
Swn) T

y =,
w = (w,..

(6)

Here, the goal of the defender is to minimize J(y,w) by an
optimum choice of a probability distribution vector y € Y.
On the other hand, the attacker wants to maximize the same
quantity by choosing an appropriate w € W. The sets ¥ and
W can be given by:

m

Y ={yeR"y>0> y; =1}

i=1

! )
w :{wER"wZO,ijzl}
j=1
A vector w* is a mixed strategy for the defender if the
following condition is satisfied Vy € Y:

Vo (A) 2 T Aw < A Y
Vin(4) = max y™ Aw < maxy” Aw,y € ®)

Here V,,(A) is defender’s average security level. In the
same way, if the following inequality holds for all w € W,
attacker’s average security level can be formulated.

V,,(A)2 ﬁig yT Aw > %19 y T Aw,w e W (9)

Here V., (A) is the attacker’s average security level. These
two inequalities can be written alternatively as:

Vm(A) =minmaxy’ Aw, (10)
y w

V,.(A) = maxminy” Aw (11)
w oy

V., (A). Thus, for a matrix game A, x,, equilibrium solutions

can be found in mixed strategies. Average security level for
both attacker and defender can be written uniquely as:

Vin(4) = Von(4) =V, (4) (12)

For mixed strategies, to solve for equilibrium solutions,
converting the game matrix into linear programming model
is one of the ways. The matrix game can be expressed as :
Apxn = a;j. Here (i = 1,2,...,m) and (j = 1,2,...,n).
All the entries in A matrix are positive (a;; > 0). The average
game value in the mixed strategies for the attacker-defender
zero-sum game can be written as:

m

— i T foy — ST
Vi (A) = minmaxy Awfmwa}xmx}ny Aw  (13)

Vin(A) is also a positive quantity which belongs to A, xn.
This equation can be written as:

i 14
min vy (y) (14)
where
v1(y) = mv[z}xyTAw >yl Aw,Yw e W (15)
Additionally we can rewrite the equation as:
ATy <1,oi(y), 1, & (L,..., )T € R"  (16)
Now, defender’s mixed security strategy becomes,
min vy (y)
ATy <1,
=T -1
) 1, = (17)
subject to 4 - 1 (w)]
y =gu(y),
y=0,

Here 3 is defined as y/v1(y). This problem can be converted
to a maximization problem as:

max §7 1,,
g
| ATj< 1, (1%
subject to ¢ _
y =0,



This maximization problem will give the values of defender’s
mixed strategies for actions, y. This problem will take the pay-
offs from Table IV as input and is subjected to the constraints
from equation (18). The goal is to find the mixed strategies
for the defender. This problem can be solved by using a
linear programming algorithm. Meanwhile, we can write the
attacker’s objective function as follow,

minw’ 1,
AT > 1, (19)

subject to <
w > 0,

Here w can be defined as w/v2 (W) and vy can be defined as:

vy = H%;n yTAw <yTAw,VyeY (20)
For solving the equation (19), pay-offs from the Table IV is
considered as input subject to the constraints. The outcome of
this problem is attacker’s mixed strategies, w associated with
the game matrix from Table IV.

B. Solving attacker-defender two-person zero-sum game : Q-
learning

To analyze the agent - environment interactions in Q-
learning for gaming in smart grid security, the agents are
the attacker and defender and the environment is the power
system. The reward is the feedback from the environment for
attacker-defender’s action. In a two-person zero-sum game,
optimal strategies can be found by the mixed strategies of all
actions chosen by the participants of the game that maximize
their expected long-term rewards. In this case, we consider
the attacker’s and defender’s probability of taking an action
does not change over time (stationary policy). So, we will
find the convergent policies for each player at each state s.
From attacker’s perspective,

Qa(a,d,s) = Ra(a,d,s)+7 > Qals

s'eS

T(a,d,s,s")

where, Qa(a,d,s) is called the quality of the state s € S,
Ra(a,d,s) is called the reward for executing action a and
d for attacker. Here, generation loss is considered as the
reward, Ra(a,d,s) for the attacker’s and defender’s action.
T(a,d,s,s’) is the state transition probability which is con-
sidered equal for all the state transitions. The value of the
game is measured by value function V4 (s) which is given by:

Z Z ma(8)Qa(a,d, s)Tp(s)

a€EMa(s) deEMp(s)

where, m4(s) = ma(s)|a € Ma(s),mq(s)|d € Mp(s). Va(s)
is called the value of the state s. Qa(a,d, s) is equal to im-
mediate reward in addition with discounted expected optimal
value which can be attained from the next state s’. Here, 7 is
the discounted factor ranges from zero to one. It represents the
impact of current decisions on long term rewards. Similarly,
from the defender’s perspective, defenders quality of state
®pl(a,d,s) and value function Vp(s) can be formulated.

Va(s) = max min
mA(s) mp(s)

In general, V4(s) < Vp(s) due to weak duality. Here,
Va(s) and Vp(s) correspond to the primal problem and dual
problem, respectively. In zero-sum game, strong duality holds
and we get Va(s) = Vp(s) = V(s). The game can be solved
by value iteration. From the attacker’s perspective, the problem
becomes

Va(s) = max min
7a(s)deEMp(s)

> Qalad s)ma(s) (1)

a€EM4(s)

Qa(s) = R(a,d,s) + 7. Z Va(s').T(a,d,s,s") (22)

s'esS

In this paper, it is considered that the defender’s action is fixed
throughout the game and initially it is determined randomly.

IV. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Study : Linear Programming

In this section, we are going to analyze the consequences
of the attack on IEEE 30 bus system. According to the
assumptions made, there are 6 insecure targets (z1,22... 26)
and the attacker is capable of attacking two of the targets
at the same time. So, the final targets are transmission lines
connected to two buses at the same time. The defender
is also capable of defending two targets at the same time
(.e. 2122,2123...etc.). It is assumed that, if the attacker
chooses his strategy as {z;z;} (attack target ¢ and j) and
the defender chooses his strategy as {z;z;} (defend target
7 and k), failing z; will be successful and the generation
loss will be only for switching lines connected to z;. Payoffs
in Table IV are the results of different attack and defend
strategies (considering both player’s action). In this section
we are going to analyze the results for IEEE 30 bus system.
Table IV shows that min(maz,q,) = 29.6979 which is not
equal to max(Mmincoiumn) = 0. So there is no single saddle
point for solution in equilibrium and hence no values of ;.
that satisfies condition in equation 4. Having no single saddle
point, the problem moves to find the proportion of times that
the attacker and the defender play their own strategies. From
equation 18 defender defines y, we can calculate the values of
7, y = [0 0.0405 0 0 0.4104 0 0 0.2076 0 0.1586 0 0.1829

0]. Similarly, solving for attacker’s mixed strategy we get
w = [0.0305 0.1988 0.0585 0 0 0 0.6530 0 0 0 0 0.0593 0 0].
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Figure 2: Attacker’s mixed strategy for different attack targets in
attacker-defender zero-sum two-player game for IEEE 30 bus system
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Figure 3: Defender’s mixed strategy for different defending targets in
attacker-defender zero-sum two-player game for IEEE 30 bus system

Figure 2 and 3 show the proportion of times that the attacker
and the defender should attack and defend different targets.
In figure 2, we can see that, tripping target z2z4 has the
maximum probability of taking this action (65% probability)
while target 2122, 2123, 2124 and 2326 is having the proba-
bilities to be considered as the actions are 3%, 20%, 6% and
18% respectively. And figure 3 is showing defender’s mixed
strategies for the defense actions. From the figure, we can see
that defending target 2126 has the maximum probability of
41% to choose this target to defend. Target 2123, 2225, 2324
and 2326 are having the probabilities to be defended by the
defender for 4%, 21%, 16% and 18% times of its action. For
example, the attacker’s strategy is 2224 with 65% probability
and the defender’s strategy is 2123 with 4% probability. With
these strategies for attacker and defender obtained generation
loss will be 58.8 M W. In another case, attacker’s strategy of

2224 (65% probability) and defender’s strategy of 2126 (41%
probability) causes generation loss of 52.8 MW.

B. Simulation Study : Reinforcement Learning

Reinforcement learning can solve the one-shot game follow-
ing the formulas from section III-B. The simulation results are
given and explained here. 6 bus system has been considered
as the benchmark.

Table V: Parameter information for the two-player zero-sum game
between attacker and defender in 6 bus system.

Parameter Values
Test Case 6 bus system
Number of total transmission lines 11

Number of target transmission lines
Maximum generation loss
Attacker’s optimal action Transmission line - 5

Defender’s fixed action Transmission line - 2
Gamma, v 0.9
Epsilon, € 0.4

Total iterations

4 (30% of total transmission lines)
210 MW

Table V gives the value of the parameters considered for
game formulation and simulation in 6 bus system. Here,
epsilon, ¢ ensures that the agent in the game environment
explores enough states to find the optimal action. The value
of epsilon ranges from zero to one. Here, the value of € = 0.4
makes sure that, the agent (attacker) follows exploration for
40% of the total iterations and rest of the iterations are fol-
lowed by epsilon-greedy policy. The total number of iterations
considered here is 1000. This number of iterations varies
according to the number of transmission lines. For smaller
test power systems, the number of maximum iterations is
comparatively smaller than for the bigger test power systems
(such as IEEE 300 bus system). Generation loss is considered
as the reward , R(a, d, s) in solving two-person zero-sum game
using reinforcement learning.
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Figure 4: Attacker’s cumulative Q value per iteration in the two-
player zero-sum game between attacker and defender in smart grid
security for 6 bus system (average of 10 runs).

1000

Figure 4 shows the value of the game in the process of
value iteration. As, the value of epsilon, ¢ = 0.4, the agent
will randomly explore all the possible actions within first 400



iterations to find the optimal action policy for the attacker.
From the figure, the optimal action for the attacker is trans-
mission line 5 while the defender is defending transmission
line 2. This attack will cause 210 MW of generation loss.
After analyzing this game result, we can conclude that, for 6
bus system, with the target of 30% of total transmission line
failures, the attacker should attack line number 5 while the
defender is defending line number 2. This attack will cause
generation loss of 210 MW for 6 bus system. Now, we have
the information that, for any randomly defended transmission
line, attacker’s optimal policy is attacking transmission line
5. Now we will increase the defender’s strength by defending
transmission line 5 and observe the attacker’s optimal action. It
is found that, while defending transmission line 5, the attacker
chooses transmission lines 1 or 2 or 3. Because switching these
transmission lines cause the same amount of generation loss.
And this amount is 90.25 MW. As a result, the game value
decreases and comes down to 902.5.

V. CONCLUSION

In this paper, we proposed two methods to solve the game in
smart grid security problem. First, linear programming algo-
rithm is used in a multi-line-switching attack scenario. Second,
reinforcement learning is used for single-line-switching attack
scenario. In the first case, pre-calculation of the generation
loss is obtained from the system model. In the second case,
we don’t need any precalculation, and this solution is actually
online and data-driven. Also, in reinforcement learning based
solution for the one-shot game, the defender’s action policy
is learned from the attacker’s action in the history. Linear
programming shows the attacker’s and defender’s mixed strat-
egy to find the optimal actions and their probability to take
those actions. Reinforcement learning shows the optimal attack
action in the presence of static defender’s action for smart grid
security.
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