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Abstract—Smart grid attacks can be applied on a single
component or multiple components. The corresponding defense
strategies are totally different. In this paper, we investigate the
solutions (e.g., linear programming and reinforcement learning)
for one-shot game between the attacker and defender in smart
power systems. We designed one-shot game with multi-line-
switching attack and solved it using linear programming. We also
designed the game with single-line-switching attack and solved
it using reinforcement learning. The pay-off and utility/reward
of the game is calculated based on the generation loss due
to initiated attack by the attacker. Defender’s defense action
is considered while evaluating the pay-off from attacker’s and
defender’s action. The linear programming based solution gives
the probability of choosing best attack actions against different
defense actions. The reinforcement learning based solution gives
the optimal action to take under selected defense action. The
proposed game is demonstrated on 6 bus system and IEEE 30
bus system and optimal solutions are analyzed.

Index Terms—Game theory, smart grid security, reinforcement
learning, cascading failures, linear programming.

I. INTRODUCTION

Smart electric power grid is inter-connected within various

nations and regions. Large scale generation units, various

residential and industrial loads, transmission and distribu-

tion systems, distributed energy sources etc. are making the

power system meeting the demand of electrical power in

this age. Modernization of the power grid (cyber physical

power system) has brought flexible and efficient generation,

transmission and distribution of electrical power along with

high exposure to severe vulnerabilities [1]–[4]. Events in

the power system like transmission line outages, generator

outages, load variation and many more are making the fu-

ture power system challenging to keep safe, controlled and

monitored. Additionally, combining the traditional power grid

with the cyber operation, control and monitoring is making

the power system vulnerable to several threats including cyber

attack in the operating stations, transmission line outages, false

data injections, malware injections etc. Cascading failures,

cyber-physical system security, hardware/human-in-the-loop

etc. are significant areas in the smart grid security research

for modern smart power system [5].

Game theory is an analytical tool to analyze the complex

interactions between dependent/independent rational players

with a set of mathematical rules and framework. System

operators in the power system usually monitors the system’s

health and take actions accordingly. In case of contingencies,

operators take corrective actions (i.e. remedial actions) to

restore the system back to normal operating condition [6].

Attacker attacks the power system (physically or/and virtually)

with the intention of harming/sabotizing the power system and

create electrical, financial and social hazards. Game theory

is used to explain complex interactions between the attacker

and the defender (power system operator) in the smart power

system successfully from various points of view [7]. Use of

game theory is also discovering many emergent areas of vul-

nerabilities in smart grid security which needs to be explored

more. In case of defending, the power system operators and the

power system protection schemes monitor the system’s health

by observing the key parameters (e.g. voltage, power (real and

reactive), frequency etc. ). After observing the key parameters,

the defender takes corrective actions in case of any emergency

situations like generator outages, transmission line failures,

overloading of the transmission lines, relay malfunctioning etc.

Incidents like northeast power grid blackout [8], cyberattack

on ukraine power grid [9], Stuxnet’s attack in iran’s nuclear

program[10] etc. proves the necessity of improving the secu-

rity of smart power system. These improvements can be done

by understanding the strategies of cyber attackers by finding

the vulnerabilities of power systems.

Existing research in power system security using game

theory gives the benefit of understanding the attacker-defender

interactions in the power system. This improves the power

system protection schemes by allowing the authorities (opera-

tors, utility companies and governments) to find the breaches/

weak areas in the power system and protect them. Static and

dynamic games are two branches in game theory. Static games

are formulated to observe the interactions between the players

for one action. In dynamic game, interactions are observed

between the players for multiple interdependent actions [11].

In [12], game theoretic environment is designed and staged to

analyze the cyber switching attack by observing voltage angles

and power flows for all the generators. A two-player zero-sum

game is introduced between attacker and defender to evaluate

the game equilibrium of defense mechanisms under network

configurations in [13]. In [14] and [15] static game theory is

used to identify the vulnerable and critical components of a

smart electric power system considering attacker can conduct



only one action. In [16], power system measurements are

attacked in a static game to investigate the interactions between

attacker and defender.

Inspired by the gaming in smart grid security researches,

we are proposing solutions for the one-shot game in smart

electric power grid. Both single line outage and multiple

transmission line outages are considered for attacker’s action

set. The linear programming based proposed approach for the

one-shot game will give multiple solutions for different attack-

defense action sets with probabilities to be executed using

multi-line-switching attack. A pay-off matrix is formulated to

solve the game. Generation loss due to the line switching is

considered as the pay-offs of the game matrix. The solution

using reinforcement learning will also give the optimal at-

tack action from attacker’s perspective by using single line-

switching attack. From reinforcement learning based solution

we can see that, defender’s action can be changed from

attacker’s previous action history. This change will strengthen

the security of power system by identifying and protecting

critical elements, reducing generation and financial loss.

The rest of the papers are organized as follows: section II

describes the formulation of the game problem, calculation

of generation loss, selection of targets and attack matrices

etc. Gaming solution between attacker and defender using

linear programming and reinforcement learning is explained

in section III. Simulation results are discussed in section

IV. Finally section V gives the summary of this paper’s

conclusion.

II. PROBLEM FORMULATION AND IMPLEMENTATION

In this section, the game between attacker and defender

is formulated and solved following two different approaches.

Linear programming is used to solve the game for multi-line-

switching attack. Reinforcement learning is used to solve the

game for single-line-switching attack. Problem formulation

for two-player zero-sum game between the attacker and the

defender is shown using game matrix for linear programming

based solution. To formulate the game with game matrix, in

this section, calculation of the generation loss is explained

briefly. Load ranking of the buses is used here to identify

the most critical buses and the transmission lines connected

to them for any typical power system. For reinforcement

learning based solution, value iteration method is used. After

value iteration, optimal attack target is achieved by fighting

against a static defender. To rank the buses according to their

loads, transmission lines connected to individual buses are

identified. Then, transmission lines connected to the individual

buses are used as the targets to trigger line-switching attacks.

For individual buses, generation losses are calculated using a

modified dc cascaded failure simulator [17] [18]. Generation

loss is also used as the reward for reinforcement learning based

problem formulation and solution.

A. Benchmark model

The solution of the game is proposed using two different

approaches. To demonstrate the proposed solution of the

two-player, zero-sum attacker-defender game using linear

programming, IEEE 30 bus system is used. 6 bus system is

used to demonstrate the proposed solution of the game using

reinforcement learning.

Figure 1: One-line diagram of 6 bus system. Topological information
of this test system is used to create attack and defense vectors and
evaluate the attack-defense strategy.

Figure 1 shows the one-line diagram of 6 bus system. The

topological information (such as the connection between the

buses, branch indices, maximum power flow between the buses

etc. ) is used in the simulation to calculate the generation loss.

Transmission line indices are also used to represent the attacks

in the power system test cases.

B. Calculation of generation loss

To solve the game between the attacker and the defender

in smart grid security, calculation of generation loss is re-

quired both in linear programming and reinforcement learning

based solution. To calculate the generation loss, a modified

DC cascaded failure simulator named DCSIMSEP is adopted

[17] [18] [19]. In this paper, modified DC cascaded failure

simulator is capable of taking a vector of transmission lines

as input and gives the generation losses due to the attacks in

these transmission lines. Simultaneous and sequential attacks

are types of attack strategies in the smart grid security.

Simultaneous attack represents attacking multiple targets at the

same time while sequential attack represents attacking multiple

targets in a time sequence (one after another) [20][21]. Simul-

taneous attack strategy is adopted to calculate generation loss

in this paper for solving the game using linear programming.

To solve one-shot game using reinforcement learning, single-

line-switching attack at a time is considered.

Algorithm 1 shows the process of calculation of generation

loss using the simulator. In order to calculate the generation

loss, indices of the target branches are given to the system.

Then, the simulator initializes the power flow. It starts the

simulation with measuring the pre-contingency power flow.



Algorithm 1: Calculation of generation loss matrix
Input : Case name, attack matrix containing

transmission line indices

Output: Cascaded outages, total generation losses

Result: Rebalanced generation loss matrix

1 Initialization;

2 for Given test case do
3 Load the test case;

4 Extract the attack matrix;

5 for Given attack matrix do
6 Run power flow;

7 Switch the branches from attack matrix;

8 Divide into sub-grids according to the overloads;

9 Redispatching the power flow;

10 Update the relay settings;

11 if There are overloads then
12 Trip the branches according to updated

settings;

13 Check for the overloads again;

14 else
15 Calculate total generation loss;

16 end
17 end
18 Display the generation loss matrix;

19 end

The power flow is used to calculate the system status and

measure the overloads. These overloads result in tripping

some branches as a consequence of cascading failure due to

overcurrent. Then redispatching and recalculating of power

flow is done in the system. It gives the separation of the

grid into subgrids and redispatching the power flow in the

subgrids. The generators in the system are then ramped up

or down to rebalance the power flow within the range of

Pmax and Pmin. After redispatching if there is any surplus of

generation in the subgrids, the system trips the generators in

the subgrids one by one. After redistributing the power flow or

redispatching the generators, if there is a surplus of generation,

the generators are tripped down. Usually, the generators are

tripped sequentially according to the generation capacity, from

small to large.

(1)R = (
∑
g∈G

Pg −
∑
d∈D

Pd > 0)

where Pg is the generated power, Pd is the load demand,

G is the set of generator buses and D is the set of load buses.

The tripping of the generators continues till R ≤ 0.

Usually in the surplus cases, instead of tripping the gen-

erators, ramping the generation can be proved to be a slow

process. If automatic generation control (AGC) fails to fix

the frequency error, a few generators will trip because of the

overspeed relays. Even if after this, R < 0 load shedding

occurs by multiplication with a scalar factor λ. λ is defined

as

(2)λ =

∑
g∈G Pg∑
d∈D Pd

.

After that, DC power flow is simulated in the simulator.

Then, the relay settings are updated. Usually, time delayed

overcurrent relays are used in the simulator to identify the

branches to be tripped due to overcurrent. There is an over-

current threshold which is fixed by the system operator termed

as ōj . For branch j, for the power flow of fj and flow limit of

f̄j , the outage happens when concurrent overload oj crosses

the limit ōj . This concurrent overload is calculated from:

Δoj(t,Δt) =

{∫ t+Δt

t
(fj(t)− f̄j)dt iffj(t) > f̄j

0 otherwise
(3)

The simulator finds the minimum time for failing the

next branch. This time is denoted as ΔT. Then, the time

is advanced or updated with the addition of ΔT. Then if

the relay trips due to overcurrent, it will switch the online

branches to offline. Thus, the generation loss is calculated.

These generation losses are used both in the solution of the

game using linear programming and reinforcement learning.

C. Attack matrix, selection of targets, generation losses and
game matrix

Attack matrix is required for the game. This matrix contains

the branches associated with the buses of a typical power sys-

tem. Individual rows represent the buses and columns represent

the branches associated with the buses. Table I shows the

generation loss for attacks in the transmission lines connected

to individual buses. After calculation of generation loss, the

target buses are selected based on the criticality. The criticality

is determined based on the generation loss due to switching the

lines connected to the buses. The more generation loss occurs

due to attacking one bus, the more it is critical than others.

For example, from Table I, bus 6 connects transmission lines

6, 7, 9, 10, 11, 12 and 41. Triggering line-switching attack in

these transmission lines will cause generation loss of 70.49
MW . Similarly, bus 9 connects transmission lines 11, 13 and
14. Triggering line-switching attack in these transmission lines

will cause no generation loss. Because these transmission lines

are not connected to the generator buses. It means, branches

associated with bus 6 is more critical than branches associated

with bus 9 in selecting the target to attack.



Table I: Generation losses for the attack matrix of IEEE 30 bus
system. These generation losses are the pre-calculation to identify
the branches connected with individual buses with the highest effect
on the system.

Bus Branches Loss Bus Branches Loss

1 [1 2] 10.79 16 [19 21] 3.5
2 [1 3 5 6] 48.22 17 [21 26] 9
3 [2 4] 2.4 18 [22 23] 3.2
4 [3 4 7 15] 7.6 19 [23 24] 9.5
5 [5 8] 0 20 [24 25] 2.2
6 [6 7 9 10 11 12 41] 70.49 21 [27 29] 17.5
7 [8 9] 22.8 22 [28 29 31] 7.39
8 [10 40] 30 23 [30 32] 3.95
9 [11 13 14] 0 24 [31 32 33] 8.7
10 [12 14 25 26 27 28] 5.8 25 [33 34 35] 3.5
11 [13] 0 26 [34] 3.5
12 [15 16 17 18 19] 29.70 27 [35 36 37 38] 13
13 [16] 22.25 28 [34 40 41] 0
14 [17 20] 6.2 29 [37 39] 2.4
15 [18 20 22 30] 8.2 30 [38 39] 10.6

From the generation losses showed in Table I, we select

buses 8, 7, 2, 12, 6 and 13 as targets for attacking and defend-

ing. We name them as z1, z6, z2, z3, z4 and z5 respectively.

Then we make the combination matrix taking two targets

(buses) at the same time to attack the system and calculate

the payoff (generation loss). Table II shows the targets and

branches connected to these selected attack targets.

Table II: Target buses and branch sets. This target branches are
selected from table I with maximum generation loss

Targets Branches Targets Branches

z1 [10 40] z4 [6 7 9 10 11 12 41]
z2 [1 3 5 6] z5 [16]
z3 [16 16 17 18 19] z6 [8 9]

Table III: Branches and generation loss due to attack in the combi-
nations of target buses. Combinations of two targets are considered
for calculation of generation loss.

Number of branches Generation loss (MW)

z1z2 [10 40 1 3 5 6] 51.7
z1z3 [10 40 15 16 17 18 19] 58.8
z1z4 [10 40 6 7 9 10 11 12 41] 30
z1z5 [10 40 16] 30
z1z6 [10 40 8 9] 52.8
z2z3 [1 3 5 6 15 16 17 18 19] 87.22
z2z4 [1 3 5 6 7 9 10 11 12 41] 69.59
z2z5 [1 3 5 6 16] 87.22
z2z6 [1 3 5 6 8 9] 48.22
z3z4 [15 16 17 18 19 6 7 9 10 11 12 41] 114.75
z3z5 [15 16 17 18 19] 29.70
z3z6 [15 16 17 18 19 8 9] 51.6
z4z5 [6 7 9 10 11 12 41 16] 22.25
z4z6 [6 7 9 10 11 12 41 8 9] 75.90

Table III shows the target combinations and generation

losses due to the attacks. For example, from Table III, com-

bination of target z3 and z4 combines transmission lines

15, 16, 17, 18, 19, 6, 7, 9, 10, 11, 12 and 41. Triggering line-

switching attack in these transmission lines will cause 114.75
MW of generation loss. After calculation of generation loss

due to the attacks in the targets (z1z2, z1z3, z1z4 . . . z4z6),
defender’s action is introduced. It is assumed that only one

target can be protected at a time. It is also assumed that, while

being protected, the branches associated with the protection set

cannot be successfully attacked and will remain active. For

example, if the attacker selects the combination of z3 and z4
to attack while, the defender is defending target z4 and z5,

the attack will be successful for transmission lines connected

to target z3 only. Transmission lines connected to target z4
will remain active as they are being defended by the defender.

In this case, the generation loss will be caused by failure of

transmission lines connected to target z3. Considering these

assumptions, generation losses are calculated for all the targets

against the defense sets and pay-off matrix is built.

The pay-off matrix is given in Table IV. The columns in

the pay-off matrix represent the pay-offs for the attacker’s

strategies, and the rows are representing the strategies for the

defender. Element, (i, j) in the game matrix represents the

pay-off for the attack action j in response to the defense

action i. From the game matrix, we can see that, if target

z1z2 is being defended and attacked at the same time, the

attack will be a failure causing no generation loss. This

is why the principle diagonal of this game matrix is zero.

Because all these attacks will be successfully defended by

the defender. Now having a game matrix (or pay-off matrix)

solution can be found in several ways (minimax theorem[22],

linear programming [23] etc.).

III. GAMING : ATTACKER-DEFENDER INTERACTION

In order to protect a set of transmission lines (i.e. any spe-

cific target/s), the defender needs to play against the attacker.

In this paper, given the defender cannot defend/protect all the

elements at the same time. Similarly, attacking all the elements

at the same time is not possible for the attacker.

A. Solving attacker-defender two-person zero-sum game :
Linear Programming

Designing an interactive decision-making game can lead

to model a strategic game. For a given matrix Am×n =
{aij : i = 1, . . . ,m; j = 1, . . . , n}, we can consider,

{row, i∗, column, j∗} is a pair of strategies adopted by the

players (attacker and defender). Then if the condition stated

below is satisfied ∀i, j, then it can be said that the two-person

zero-sum game has a saddle point in pure strategies.

(4)ai∗j ≤ ai∗j∗ ≤ aij∗

The strategies {row, i∗, column, j∗} will constitute a saddle

point equilibrium. They are also referred as saddle point strate-

gies. And, the corresponding outcome of the game, {ai∗j∗} is

termed as the saddle-point value. If a two-person zero-sum

game has a single saddle point, then the value associated with

that saddle point is called the value of the game. But, in case if

the matrix game does not have a saddle point in pure strategies,

mixed strategies are used to obtain the equilibrium solutions.

A mixed strategy for a player gives a probability distribution

on the space of its pure strategies. Given a (m × n) matrix



Table IV: Attacker-defender two-player zero-sum game matrix for IEEE 30 bus system. In this game matrix, pay-offs are generation losses
which are calculated due to attack in the target buses. For different attack scenarios, different defending actions are also considered to
calculate these pay-offs.

Attacker

D
ef

en
d

er

z1z2 z1z3 z1z4 z1z5 z1z6 z2z3 z2z4 z2z5 z2z6 z3z4 z3z5 z3z6 z4z5 z4z6
z1z2 0 48.22 48.22 48.22 48.22 30 30 30 30 51.7 51.7 51.7 51.7 51.7 z1z2
z1z3 29.70 0 29.70 29.70 29.70 30 58.8 58.8 58.8 30 30 30 58.8 58.8 z1z3
z1z4 70.49 70.49 0 70.49 29.70 30 30 30 30 30 30 30 30 30 z1z4
z1z5 22.25 22.25 22.25 0 22.25 30 30 30 30 30 30 30 30 30 z1z5
z1z6 22.8 22.8 22.8 22.8 0 52.8 52.8 52.8 30 52.8 52.8 30 52.8 30 z1z6
z2z3 29.70 48.22 87.22 87.22 87.22 0 29.70 29.70 29.70 48.22 48.22 48.22 87.22 87.22 z2z3
z2z4 70.49 69.60 48.22 69.60 69.60 70.49 0 70.49 70.49 48.22 69.60 69.60 48.22 48.22 z2z4
z2z5 22.22 87.22 87.22 48.22 87.22 22.25 22.25 0 22.25 87.22 48.22 87.22 48.22 87.22 z2z5
z2z6 22.8 48.22 48.22 48.22 48.22 22.8 22.8 22.8 0 48.22 48.22 48.22 48.22 48.22 z3z6
z3z4 114.75 70.49 29.70 114.75 114.45 70.49 29.70 114.75 114.75 0 70.49 70.49 29.70 29.70 z3z4
z3z5 29.70 22.25 29.70 29.70 29.70 22.25 29.70 29.70 29.70 22.25 0 22.25 29.70 29.70 z3z5
z3z6 51.6 .22.8 51.6 51.6 29.70 22.8 51.6 51.6 29.70 22.8 22.8 0 51.6 29.70 z4z6
z4z5 22.25 22.25 22.25 70.49 22.25 22.25 22.25 70.49 22.25 22.25 70.49 22.25 0 22.25 z4z5
z4z6 75.90 75.90 22.8 75.90 70.49 75.89 22.8 75.89 70.49 22.8 75.89 70.49 22.8 0 z4z6

A = {ai,j : i = 1, . . . ,m; j = 1, . . . , n}. The average value

of the game can be written as:

(5)J(y, w) =

m∑
i=1

n∑
j=1

yiaijwj = yTAw

Here y and w are the probability distribution vectors. They

can be defined by:

(6)y = (y1, . . . , ym)T ,

w = (w1, . . . , wn)
T .

Here, the goal of the defender is to minimize J(y, w) by an

optimum choice of a probability distribution vector y ∈ Y .

On the other hand, the attacker wants to maximize the same

quantity by choosing an appropriate w ∈ W . The sets Y and

W can be given by:

(7)

Y = {y ∈ Rm y ≥ 0,

m∑
i=1

yi = 1}

W = {w ∈ Rn w ≥ 0,

n∑
j=1

wj = 1}

A vector w∗ is a mixed strategy for the defender if the

following condition is satisfied ∀y ∈ Y :

(8)V m(A) � max
w ∈W

y∗TAw ≤ max
w∈W

yTAw, y ∈ Y

Here V m(A) is defender’s average security level. In the

same way, if the following inequality holds for all w ∈ W ,

attacker’s average security level can be formulated.

(9)V m(A) � min
y ∈Y

yTAw ≥ min
y∈Y

yTAw,w ∈ W

Here V m(A) is the attacker’s average security level. These

two inequalities can be written alternatively as:

(10)V m(A) = min
y

max
w

yTAw,

(11)V m(A) = max
w

min
y

yTAw

For mixed strategies in two-person zero-sum game V m(A) =
V m(A). Thus, for a matrix game Am×n, equilibrium solutions

can be found in mixed strategies. Average security level for

both attacker and defender can be written uniquely as:

(12)Vm(A) = V m(A) = V m(A)

For mixed strategies, to solve for equilibrium solutions,

converting the game matrix into linear programming model

is one of the ways. The matrix game can be expressed as :

Am×n = aij . Here (i = 1, 2, . . . ,m) and (j = 1, 2, . . . , n).
All the entries in A matrix are positive (aij > 0). The average

game value in the mixed strategies for the attacker-defender

zero-sum game can be written as:

(13)Vm(A) = min
Y

max
W

yTAw = max
W

min
Y

yTAw

Vm(A) is also a positive quantity which belongs to Am×n.

This equation can be written as:

(14)min
y ∈Y

v1(y)

where

(15)v1(y) = max
W

yTAw ≥ yTAw, ∀w ∈ W

Additionally we can rewrite the equation as:

(16)AT y ≤ 1nv1(y), 1n � (1, . . . , 1)T ∈ Rn

Now, defender’s mixed security strategy becomes,

(17)

min v1(y)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
AT ỹ ≤ 1n,

yT 1m = [v1(y)]
−1

y = ỹv1(y),

ỹ ≥ 0,

Here ỹ is defined as y/v1(y). This problem can be converted

to a maximization problem as:

(18)

max
ỹ

ỹT 1m

subject to

{
AT ỹ ≤ 1n,

ỹ ≥ 0,



This maximization problem will give the values of defender’s

mixed strategies for actions, y. This problem will take the pay-

offs from Table IV as input and is subjected to the constraints

from equation (18). The goal is to find the mixed strategies

for the defender. This problem can be solved by using a

linear programming algorithm. Meanwhile, we can write the

attacker’s objective function as follow,

(19)

min
w̃

w̃T 1n

subject to

{
AT w̃ ≥ 1m,

w̃ ≥ 0,

Here w̃ can be defined as w/v2(W ) and v2 can be defined as:

(20)v2 � min
Y

yTAw ≤ yTAw, ∀y ∈ Y

For solving the equation (19), pay-offs from the Table IV is

considered as input subject to the constraints. The outcome of

this problem is attacker’s mixed strategies, w associated with

the game matrix from Table IV.

B. Solving attacker-defender two-person zero-sum game : Q-
learning

To analyze the agent - environment interactions in Q-

learning for gaming in smart grid security, the agents are

the attacker and defender and the environment is the power

system. The reward is the feedback from the environment for

attacker-defender’s action. In a two-person zero-sum game,

optimal strategies can be found by the mixed strategies of all

actions chosen by the participants of the game that maximize

their expected long-term rewards. In this case, we consider

the attacker’s and defender’s probability of taking an action

does not change over time (stationary policy). So, we will

find the convergent policies for each player at each state s.

From attacker’s perspective,

QA(a, d, s) = RA(a, d, s) + γ
∑
s′∈S

QA(s
′)T (a, d, s, s′)

where, QA(a, d, s) is called the quality of the state s ∈ S,

RA(a, d, s) is called the reward for executing action a and

d for attacker. Here, generation loss is considered as the

reward, RA(a, d, s) for the attacker’s and defender’s action.

T (a, d, s, s′) is the state transition probability which is con-

sidered equal for all the state transitions. The value of the

game is measured by value function VA(s) which is given by:

VA(s) = max
πA(s)

min
πD(s)

∑
a∈MA(s)

∑
d∈MD(s)

πA(s)QA(a, d, s)πD(s)

where, πA(s) = πa(s)|a ∈ MA(s), πd(s)|d ∈ MD(s). VA(s)
is called the value of the state s. QA(a, d, s) is equal to im-

mediate reward in addition with discounted expected optimal

value which can be attained from the next state s′. Here, γ is

the discounted factor ranges from zero to one. It represents the

impact of current decisions on long term rewards. Similarly,

from the defender’s perspective, defenders quality of state

QD(a, d, s) and value function VD(s) can be formulated.

In general, VA(s) ≤ VD(s) due to weak duality. Here,

VA(s) and VD(s) correspond to the primal problem and dual

problem, respectively. In zero-sum game, strong duality holds

and we get VA(s) = VD(s) = V (s). The game can be solved

by value iteration. From the attacker’s perspective, the problem

becomes

(21)VA(s) = max
πA(s)

min
d∈MD(s)

∑
a∈MA(s)

QA(a, d, s).πa(s)

(22)QA(s) = R(a, d, s) + γ.
∑
s′∈S

VA(s
′).T (a, d, s, s′)

In this paper, it is considered that the defender’s action is fixed

throughout the game and initially it is determined randomly.

IV. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Study : Linear Programming

In this section, we are going to analyze the consequences

of the attack on IEEE 30 bus system. According to the

assumptions made, there are 6 insecure targets (z1, z2 . . . z6)

and the attacker is capable of attacking two of the targets

at the same time. So, the final targets are transmission lines

connected to two buses at the same time. The defender

is also capable of defending two targets at the same time

(i.e. z1z2, z1z3 . . . etc.). It is assumed that, if the attacker

chooses his strategy as {zizj} (attack target i and j) and

the defender chooses his strategy as {zjzk} (defend target

j and k), failing zi will be successful and the generation

loss will be only for switching lines connected to zi. Payoffs

in Table IV are the results of different attack and defend

strategies (considering both player’s action). In this section

we are going to analyze the results for IEEE 30 bus system.

Table IV shows that min(maxrow) = 29.6979 which is not

equal to max(mincolumn) = 0. So there is no single saddle

point for solution in equilibrium and hence no values of ai∗j∗
that satisfies condition in equation 4. Having no single saddle

point, the problem moves to find the proportion of times that

the attacker and the defender play their own strategies. From

equation 18 defender defines ỹ, we can calculate the values of

ỹ, y = [0 0.0405 0 0 0.4104 0 0 0.2076 0 0.1586 0 0.1829
0 0]. Similarly, solving for attacker’s mixed strategy we get

w = [0.0305 0.1988 0.0585 0 0 0 0.6530 0 0 0 0 0.0593 0 0].
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Figure 2: Attacker’s mixed strategy for different attack targets in
attacker-defender zero-sum two-player game for IEEE 30 bus system
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Figure 3: Defender’s mixed strategy for different defending targets in
attacker-defender zero-sum two-player game for IEEE 30 bus system

Figure 2 and 3 show the proportion of times that the attacker

and the defender should attack and defend different targets.

In figure 2, we can see that, tripping target z2z4 has the

maximum probability of taking this action (65% probability)

while target z1z2, z1z3, z1z4 and z3z6 is having the proba-

bilities to be considered as the actions are 3%, 20%, 6% and

18% respectively. And figure 3 is showing defender’s mixed

strategies for the defense actions. From the figure, we can see

that defending target z1z6 has the maximum probability of

41% to choose this target to defend. Target z1z3, z2z5, z3z4
and z3z6 are having the probabilities to be defended by the

defender for 4%, 21%, 16% and 18% times of its action. For

example, the attacker’s strategy is z2z4 with 65% probability

and the defender’s strategy is z1z3 with 4% probability. With

these strategies for attacker and defender obtained generation

loss will be 58.8 MW . In another case, attacker’s strategy of

z2z4 (65% probability) and defender’s strategy of z1z6 (41%
probability) causes generation loss of 52.8 MW .

B. Simulation Study : Reinforcement Learning

Reinforcement learning can solve the one-shot game follow-

ing the formulas from section III-B. The simulation results are

given and explained here. 6 bus system has been considered

as the benchmark.

Table V: Parameter information for the two-player zero-sum game
between attacker and defender in 6 bus system.

Parameter Values

Test Case 6 bus system
Number of total transmission lines 11
Number of target transmission lines 4 (30% of total transmission lines)

Maximum generation loss 210 MW
Attacker’s optimal action Transmission line - 5
Defender’s fixed action Transmission line - 2

Gamma, γ 0.9
Epsilon, ε 0.4

Total iterations 1000

Table V gives the value of the parameters considered for

game formulation and simulation in 6 bus system. Here,

epsilon, ε ensures that the agent in the game environment

explores enough states to find the optimal action. The value

of epsilon ranges from zero to one. Here, the value of ε = 0.4
makes sure that, the agent (attacker) follows exploration for

40% of the total iterations and rest of the iterations are fol-

lowed by epsilon-greedy policy. The total number of iterations

considered here is 1000. This number of iterations varies

according to the number of transmission lines. For smaller

test power systems, the number of maximum iterations is

comparatively smaller than for the bigger test power systems

(such as IEEE 300 bus system). Generation loss is considered

as the reward , R(a, d, s) in solving two-person zero-sum game

using reinforcement learning.
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Figure 4: Attacker’s cumulative Q value per iteration in the two-
player zero-sum game between attacker and defender in smart grid
security for 6 bus system (average of 10 runs).

Figure 4 shows the value of the game in the process of

value iteration. As, the value of epsilon, ε = 0.4, the agent

will randomly explore all the possible actions within first 400



iterations to find the optimal action policy for the attacker.

From the figure, the optimal action for the attacker is trans-

mission line 5 while the defender is defending transmission

line 2. This attack will cause 210 MW of generation loss.

After analyzing this game result, we can conclude that, for 6
bus system, with the target of 30% of total transmission line

failures, the attacker should attack line number 5 while the

defender is defending line number 2. This attack will cause

generation loss of 210 MW for 6 bus system. Now, we have

the information that, for any randomly defended transmission

line, attacker’s optimal policy is attacking transmission line

5. Now we will increase the defender’s strength by defending

transmission line 5 and observe the attacker’s optimal action. It

is found that, while defending transmission line 5, the attacker

chooses transmission lines 1 or 2 or 3. Because switching these

transmission lines cause the same amount of generation loss.

And this amount is 90.25 MW . As a result, the game value

decreases and comes down to 902.5.

V. CONCLUSION

In this paper, we proposed two methods to solve the game in

smart grid security problem. First, linear programming algo-

rithm is used in a multi-line-switching attack scenario. Second,

reinforcement learning is used for single-line-switching attack

scenario. In the first case, pre-calculation of the generation

loss is obtained from the system model. In the second case,

we don’t need any precalculation, and this solution is actually

online and data-driven. Also, in reinforcement learning based

solution for the one-shot game, the defender’s action policy

is learned from the attacker’s action in the history. Linear

programming shows the attacker’s and defender’s mixed strat-

egy to find the optimal actions and their probability to take

those actions. Reinforcement learning shows the optimal attack

action in the presence of static defender’s action for smart grid

security.
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