Circuit-Level Reliability Simulator for Front-End-of-
Line and Middle-of-Line Time-Dependent Dielectric
Breakdown in FInFET Technology

Kexin Yang, Taizhi Liu, Rui Zhang, Linda Milor

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA USA
kyang70@gatech.edu

Abstract— This paper presents a lifetime simulator for both
Front-End-of-Line (FEOL) time dependent dielectric breakdown
(TDDB) and the newly emerging Middle-of-Line (MOL) time
dependent dielectric breakdown for FinFET technology. A lifetime
assessment flow for digital circuits and microprocessors is
proposed for the target wearout mechanisms, and its associated
vulnerable feature extraction algorithms are discussed in detail.
Our simulator incorporates the detailed electrical stress,
temperature, linewidth of each standard cell within the digital
circuit and microprocessor. Also, FEOL TDDB and MOL TDDB
lifetimes are combined in the calculation of TDDB lifetime. Circuit
designers can use the resulting lifetime information to guide and
improve their circuits to make them more robust and reliable way.

Keywords—time-dependent dielectric breakdown; lifetime
simulator; wearout; frontend-of-line dielectric breakdown; middle-
of-line breakdowny; digital circuit; microprocessor; reliability

[. INTRODUCTION

Traditional FEOL time-dependent dielectric breakdown
(FEOL TDDB) is one of the main concerns for advanced CMOS
technology. Accurate circuit lifetime assessment due to TDDB
has become an significant part of the circuit design process. A
new source of breakdown is Middle-of-Line (MOL) dielectric
breakdown, which is breakdown between the polysilicon/high-k
control gate (PC) and diffusion contacts (CA) [1]. MOL TDDB
is a growing concern for semiconductor device reliability. It is
necessary to investigate and perform detailed lifetime analysis
of MOL TDDB in state-of-art FinFET technology.

This paper presents a simulator that can be used to assess
logic circuit lifetime due to not only the traditional FEOL
TDDB, but also the above mentioned MOL TDDB in FinFET
technology. There are studies of MOL TDDB on dielectric
materials [2], [3]. A budget-based MOL reliability management
in FinFET technology is proposed in [4]; however, the authors
declare that voltage does not have a strong impact on MOL
TDDB, and assume a fixed voltage for the lifetime calculation.
The assumption may be broken by compact standard cell layout
and frequently switching activity, where the voltage difference
between two segments plays an important role. In addition, no
study has been conducted to investigate the vulnerable feature
extraction algorithms in MOL TDDB in both digital circuits and
Microprocessors.

In previous FEOL system-level reliability studies,
researchers have studied bias temperature instability (BTI) [5],
[6], hot carrier injection (HCI) [7], [8], FEOL TDDB [9], [10].
None have considered MOL TDDB at the system-level which
involves the extraction of vulnerable features of MOL TDDB in
a circuit layout. In addition, most of the studies are conducted
with traditional CMOS technology and fail to consider the state-
of-art FinFET technology.

A methodology to link device level wearout models of MOL
TDDB and FEOL TDDB to circuit lifetime is introduced in this
work. The MOL TDDB vulnerable features in a FinFET are
presented. The corresponding algorithms to extract such
vulnerable features in a standard cell are discussed in detail. Our
simulator runs in three steps. First, it characterizes the standard

=1 FEOL
==! TDDB_ |

Si

Fig. 1. FinFET cross-section.

cell library corresponding to a given FinFET technology library
(generating vulnerable features for each standard cell). After
that, the simulator combines the vulnerable features with cell
activity and the temperature profile to calculate TDDB lifetime
of standard cells. The last step combines the lifetime of
vulnerable features caused by both FEOL and MOL TDDB.

To demonstrate our simulator’s functionality, the lifetime
simulator is used to study the lifetime distribution for an 8-bit
FFT circuit and a Leon3 processor implemented with FinFET
technology. For the Leon3, we also consider the impact of use
scenarios on the lifetime of the microprocessor.

The rest of this paper is organized as follows. Section 2
presents the wearout models used for TDDB. Section 3 describes
the extraction algorithm in detail. Section 4 presents the lifetime
simulator using an FFT circuit and the Leon3 microprocessor as
examples. The paper is concluded in Section 5.

II. DEVICE-LEVEL WEAROUT MODELS

Fig. 1 shows the breakdown paths of FEOL TDDB and MOL
TDDB. FEOL TDDB is the breakdown between the gate and
source or drain; whereas MOL TDDB is the breakdown between
the gate and its adjacent contact or active interconnect layer.

A. FEOL TDDB Model

FEOL TDDB is described as the build-up of traps in the gate
oxide as a function of time under voltage and thermal stress. We
use the hard breakdown (HBD) model to characterize the
transistor lifetime distribution. For ultra-thin (<5nm) gate
dielectrics, the time-to-failure due to gate-oxide degradation can
be derived by connecting the oxide degradation model to the
Weibull failure distribution function [11] which is described by
a shape parameter, § and a characteristic lifetime n, which is the
time-to-failure at the 63% probability point, i.e.,

1 1
N = Apx()Pe BV Texp(G+)57t (1)
where W and L are the device width and length, respectively, s
is the probability of stress, T is temperature, V' is gate voltage,
and a, b, ¢, d, and A, are fitting parameters, which include the
activation energy between 0.6 and 0.9 eV. The constants in (1)

are determined using test structure data at high temperatures and
voltages [9].

v 3 GIL [l Gae }

l/ LAe—— -
Fig. 2. 3D inverter view of MOL TDDB and FEOL TDDB.

B. MOL TDDB Model

Although Back-End-Line TDDB (BTDDB) is not discussed
in this paper, the device-level lifetime model for MOL TDDB is
similar to that of BTDDB [12] as follows:

n = Ayrppsl; 1/BL9XP(_VEm + E,/kT) 2
where Ayor ops 1S a constant that depends on the material
properties of the dielectric, v is the field acceleration factor;
electric filed is a function of voltage, V" and the linespace, S;, i.e.,
E=V/S;, and m is 1 for the E model [13]. L; is the vulnerable
length and £, is the activation energy (~0.5e¢V). The temperature
dependence is modelled with the Arrhenius relationship [14],
where k is the Boltzmann constant. The parameters are obtained
from experimental data from [1], [14].

III. VULNERABLE FEATURE EXTRACTION

In this section, the algorithms that are used to extract
vulnerable features in each standard cell for TDDB are
introduced. As shown in Section 2, the device-level models for
FEOL TDDB and MOL TDDB are different; thus, we need to
develop a unique algorithm to extract vulnerable features due to
each type of TDDB. In this study, FreePDK15 [15] was
implemented and used as a case study for FinFET technology.
In Fig. 1, a cross-section view of a FinFET transistor is
presented. The blue dashed squares stand for locations for MOL
TDDB, while FEOL TDDB is represented by the purple dashed
squares. A detailed 3D illustration of TDDB in a layout in
FinFET technology can be found in Fig. 2, which uses an
inverter’s layout as an example.

A. FEOL TDDB Vulnerable Feature Extraction

To characterize device’s FEOL TDDB lifetime, we only
need to obtain the transistor’s width (W) and channel length (L).
We can get the transistor’s size information for each standard
cell from the spice netlist. Notice instead of using the width (W)
directly from the netlist, which represents the drawn width of the
source and drain, we should calculate the effective width [16] as
follows,

Werr = Trin + 2Hyin 3)
where Tj, is the fin thickness and Hj, is the fin height.

To take the number of fins into account, we obtain the total
effective width,

Wefstotat = Nrin " Werr “4)
where ny, is number of fins in the transistor.

B. MOL TDDB Vulnerable Feature Extraction

We need to analyze and extract MOL TDDB vulnerable
features from each standard cell layout. From Fig 1, there are
two types of MOL TDDB features; one is the GATE-AIL1 pair
and the other is the GIL-AIL2 pair. Our simulator needs to find
all the existing vulnerable features.

As shown in Fig 3, ; and S; are indicated. The yellow square
represents the AIL1 layer; the red square stands for the gate. The
blue dashed square is the vulnerable feature and our goal to
extract these vulnerable features. In our simulator, only the
nearest vulnerable features are extracted, since the further ones
are separated by poly segments in the middle and the electric
field between them will be shielded. The vulnerable features are

1

1
———————

1

1

1
———————

1

(@ (b) ©
Fig. 3. Illustration of MOL TDDB vulnerable features.

Fig. 4. Point inclusion problem.

divided into three categories. In Fig. 3(a), there is no overlap
between a GATE-AILI pair. We call this the “nonoverlap” case
(no vulnerable feature exists). In Fig. 3(b) and 3(c), when there
are vulnerable features, we call this the “overlap” relationship.
Fig 3(b) and 3(c) are the full “overlap” and partial “overlap”
situations, respectively. A vulnerable feature only exists in the
“overlap” situation, and thus, our algorithm will detect this
situation.

For layout generation, we have used the NanGate 15nm
Open Cell Library [17]. To identify the vulnerable features in a
standard cell layout, we should find out the pin to which the
corresponding segment (GATE or AIL1 layer) is connected.
This is because the layout needs to be linked to the netlist and
activity information for when the circuit is running benchmarks.

In the layout file, the pin connection is stored as a single point
coordinate (x, y), while a polygon is stored as its vertices’
coordinates: bottom left corner (Left, Bottom), and the upper
right corner (Right, Top). Therefore, we need to start by finding
the top layer to which the pin is directly connected and continue
the process downward in the stack. In a standard cell, in most
cases, the top layer will be a metal layer (M1 or M2) depending
on the type of cell being analyzed.

Some layers are drawn as rectangle segments with four
vertices, and the others are drawn as polygons which contain
more than four vertices. The situation where there are irregular
geometries adds complexity to our problem, and we introduce
the point inclusion algorithm to determine the direct layer to
which a pin is connected.

In our simulator, the ray-casting algorithm [18] has been
implemented to find the connected layer. If the number of
crossings is odd, the point is inside a polygon. Fig 4 gives a set
of example points which we need to test. The Python
implementation of the ray-casting algorithm to determine
whether a point is inside a polygon is presented in Fig. 5.

After finding the pin’s directly connected layer’s segment,
we start to process downward to find all the layers to which the
pin is connected. There are two types of overlap we could find
in a standard cell layout, which are illustrated in Fig 6. Fig 6(a)
shows the overlap situation that only happens between GIL and
GATE, while most of the overlap situations are presented in Fig
6(b).

The overlap between two rectangles is easy to implement and
its corresponding algorithm is shown in Fig. 7. The proof of the
“if statement” is by contradiction. Any one of the following four
cases guarantee that no overlap exists between rectangles A and
B:

Algorithm 1: point inclusion algorithm

Input: polygon (poly), point (p)
Output: whether the test point is inside the polygon
def PinPoly(poly, p):
nvert = number of vertex in the polygon
festx =p.x
testy =p.y
result = false
i=0
j=nvert-1
while (i < nvert):
if (((poly. Vertex[i].y > testy) = (poly.Vertex[j]l.y > testy))
and (festx < (poly.Vertex(j].x - poly.Vertex[i].x)
* (testy-poly. Vertex[i].y) / (poly. Vertex[j].y-poly. Vertex[i].y)

+ self. Vertex[i].x)):
result = lresult

j=i

i=it+1

return result

Fig. 5. Point inclusion algorithm.

GIL
M1

Vo
Overlap

(a) (b)
Fig. 6. Overlap of layer and via.

Algorithm 2: rectangle overlap determination

Input: rectangle A (RectA), rectangle B (RectB)

Output: whether the two rectangles overlap

if (RectA.Left < RectB.Right and RectA.Right > RectB.Left and
RectA.Top > RectB.Bottom and RectA. Bottom < RectB.Top):
return frue

else:
return false

end

Fig. 7. Overlap determination algorithm.

Case #1: If A’s left edge is to the right of B’s right edge (A
is totally to the right of B).

Case #2: If A’s right edge is to the left of B’s left edge (A is
totally to the left of B).

Case #3: If A’s top edge is below B’s bottom edge (A is
totally below B).

Case #4: If A’s bottom edge is above B’s top edge (A is
totally above B).

As for the second situation in Fig. 6(b), we can utilize the
poly inclusion algorithm to do the job. That is, if one of the via’s
vertices is inside the polygon, then the two overlap. Once the
layer connection determination is finished, we store the pin’s
connected layers for each standard cell in a Python dictionary
named “std_cell info”.

As mentioned before, the cell layout is composed of multiple
polygons with their corresponding vertices. To extract the
vulnerable features in Fig. 8, we use the vulnerable feature
extraction algorithm which is presented in Fig. 9.

We perform vulnerable feature extraction only if the
“overlap” configuration of a GATE-AILI pair exists. If an
GATE-AIL1 pair overlaps, the maximum y value of the bottom
left corner of the GATE and AIL1, max(G.Bottom, A.Bottom)

G.Top

ATop -
G.Bottom -------
A.Bottom

Si

A.Left A.Right

Fig. 8. Vulnerable feature extraction.

Algorithm 3: vulnerable feature extraction

Input: standard cell layout information (.txt file)
Output: vulnerable feature for each standard cell
for each pin in standard cell:
for each pin in std_cell infolpin'] (pin!= pin’):
if max(G. Bottom, A. Bottom) < min(G. Top, A.Top):
Li=min(G. Top, A.Top) - max(G.Bottom, A.Bottom)
X coord = sort([G.Left, G.Right, A.Left, A.Right])
Si=X coord[2] - X coord[1]
end
end

end
#std cell info is a dictionrary which stores each pin connected layers

Fig. 9. Vulnerable feature extraction algorithm.

Tech Library e
l Netlist Vulnerable T
Synthesis L > Feature
Tool Extractor
l Layout v
RTL Process-Voltage-
: Thermal Thermal Temperature-TDDB ——
Netlist Simulator > Profile ERESE > Circuit Lifetime
Simulator
FPGA Activity & }

Stress Profile

Test Vectors/
Benchmarks

Fig. 10. Framework for the reliability simulator. Yellow boxes
are data and blue boxes are tools.

must be less than the minimum y value of the upper right corner
of GATE and AIL1, min(G.Top, A.Top).
The vulnerable length L; is computed as follows,
L; = min(G.Top, A.Top)
—max(G. Bottom, A. Bottom) (5)
To extract the linespace Si between the GATE-AILI1 pair, we
sort the horizontal coordinates and put them into an array
X coord[] first. After sorting, the linespace can be easily
computed by the subtraction of the middle two elements,
S; = X_coord[2] — X_coord[1] (6)

IV. LIFETIME SIMULATOR

The framework of our reliability simulator is presented in
Fig. 10. This figure describes the tool flow needed to compute
lifetime. The left most part of the figure includes the tools needed
to determine operating profiles, such as activity, duty cycle, and
temperature for each net, while the circuit is supplied with a set
of random input vectors. The blocks on the right combine the
operating profiles together to determine the lifetime. The
lifetime is first computed for individual standard cells, and then
these lifetimes are combined to find the lifetime of the whole
circuit.

For FEOL TDDB and MOL TDDB, the significant factors
are activity, voltage (VDD), temperature, and the vulnerable
features. For activity tracking, the circuit netlist is loaded onto
an FPGA for emulation [19]. The resulting state probabilities
and toggle rates of the I/O ports are recorded. By using
PrimeTime [20] activity propagation, we obtain the state
probabilities and toggle rates for all the internal nets. The state
probabilities are the key parameters to determine the lifetime of

100000

10000 -
S
2
€ 1000 -
2
= 100
]
()
10 - I
1]
R R, Y, S, SR, S, S . R L Y, ST, S, JE L I SR PRy e
eoj &/‘l@Z&Z@%@,&m{\&ig{@j;)@j\;&’@»t&iov-z\oﬂfi&% 3‘;&1&’
& o
& F PSS TEFFFFTE e
Fig. 11. FFT standard cell count.
100000 -
10000 -
=
3
E 1000 -
3
z
= 100 -
]
(9
10 -
1]

P AP PP PP PP PPN P PPN Y
,ﬂ/‘\gx‘\(}/s‘/ & PV LYD& Q:"’QV'/Q:"/O’\'/
‘0.;8‘ TETFHFFEE Ty ¢ Tes

Fig. 12. Leon3 standard cell count.

Fig. 13. The average temperature distribution of Leon3 while
running a standard benchmark.

each layout feature, since signal states determine the time that
each layout feature is under stress.

An 8-bit FFT circuit and a Leon3 microprocessor are
implemented in FreePDK15 in this paper to demonstrate the
functionality of our simulator. Synthesis is done with Synopsys
Design Compiler [21], with the standard library with 69 different
standard cells. After synthesis, the FFT circuit is composed of
38 types of standard cells and their corresponding top 20 cells in
terms of their count are shown in Fig. 11. The Leon3 has 18 types
of standard cells, and Fig. 12 shows the cell count.

Using the net activity and RC information from the layout,
we can find the power consumed by each component of the
Leon3 microprocessor. To determine the thermal distribution,
we consider the self-heating effects of FinFETs [22] and supply
the power consumption data to COMSOL. The temperature
distribution when Leon3 is running a standard benchmark is
shown in Fig. 13. We associate this temperature profile with
every standard cell in the microprocessor to calculate lifetime.

The FFT circuit is supplied with randomly generated inputs
and the circuit continuously performs the Fast Fourier
Transformation on the data. For the Leon3, we consider the
degradation under different use scenarios, as shown in Fig. 14.
The use scenarios have different fractions of time when the
system is in three modes: operation, standby, and off [23]. The
activity profiles during the operation mode are determined by
running benchmarks [24]. Our experimental results use a
combination of standard benchmarks.

100% —
80% — — — —
60% — — — —
m Off
40% o S o _ mStandby
u Operation

o L-Il
0% -

General Office Gaming Corporate

Usage Work

Fig. 14. The use scenarios provided by Intel [23].

stress prob , ;)' stress prob .
- a,b,cin: 0.1 Wi = a,b,cin: 0.1 A~
0.9999 | abcin:0.5 = a,b,cin: 0.5 P
2 0.9 L2bsin:09 209999/ _ abcin: 0.9
3 05 a 0.9
38 8 o5
3 [3
o 0.1 o 0.1
0.01 0.01
10" 10™ 10"® 10* 108 108 10"

Lifetime (seconds)

(@) (b)

Fig. 15. Standard cell lifetime distribution for the FA (full adder) in
the FFT circuit: (a) FEOL TDDB and (b) MOL TDDB.

First, we calculate the FEOL TDDB lifetime of a single
device using (1) and the MOL TDDB lifetime of a single feature
using (2). To combine different device lifetimes in a standard
cell, we assume a standard cell is composed of n devices (n
features for MOL TDDB), each modelled with a Weibull
distribution, for each wearout mechanism. The characteristic
lifetime of the cell, 7.y , is a combination of Weibull
distributions and is the solution of [25]-[27]:

1= Z?:l(ncell/ni)ﬁi (7
where 1;,i = 1, ..., n are the characteristic lifetimes of all of the
devices; and B;,i=1,..,n are the corresponding shape
parameters. Similarly [27]:

Beeu = Z?:l Bi(ncell/ni)ﬁi ®)
If the shape parameter is the same for each device (feature),
which is typically assumed,

Neell = (Z?:l Th—ﬁ) e ©

To calculate the FEOL TDDB lifetime of a standard cell, we
need to obtain the gate-source voltage, V,, for each transistor
and analyze each transistor’s gate stress probability p. The
lifetime of a transistor is a function of its stress probability,
which in turn depends on the input pattern probabilities.

As for the MOL TDDB lifetime calculation, we should
analyze the circuit’s layout. For each adjacent GATE-AILL1 pair,
we need extract the linespace S; and vulnerable length L;, as
shown in Fig. 8. After that, for each GATE-AIL1 pair, the
vulnerable feature pair (S;, L;) is associated with the poly-contact
voltage difference V. The stress probability of a single dielectric
segment feature is calculated as follows:

Protar = P1° (1 —p2) + 02 (1 —py) (10)
where p; and p; are the probabilities of the poly and contact
being at logic “1”, respectively.

By using (7) — (10), we get the characteristic lifetime of
FEOL TDDB and MOL TDDB for every standard cell in the
FFT circuit and the Leon3 microprocessor, which is shown in
Figs. 15 and 16. The standard cell lifetime distributions are
simply combinations of the transistor/layout feature lifetimes of
all of the transistors and layout features in the standard cell. The
input probabilities for each logic state for the standard cell
propagate to internal nodes within the cell and determine the
stress of transistors and layout features. As we can see in the
figures, the lifetimes of the full adder cell and the OR gate are
divided by the probability range for logic “1” at the inputs and
plotted with a lognormal plot. We can partition the other

Lifetime (seconds)

stress prob .
- a1a2:01 .

stress prob ”
- al1,a2:0.1 P

0.9999 || = a1,a2:05 ¢ 0.9999 || = a1,a2:05
2> a1,a2:0.9 > a1,a2:0.9
= 09 = 0.9
? 05 | 05
3 3
T 04 01
0.01 0.01
10" 10 10" 10* 10° 10 10"

Lifetime (seconds) Lifetime (seconds)

(@ (b)

Fig. 16. Standard cell lifetime distribution for the OR2_ X1 cell in
Leon3: (a) FEOL TDDB and (b) MOL TDDB.

1.0E+16

LoEs14 WW
—MTDDB
—GTDDB
1.0E+10

1.0E+08 M—*‘W\/\/\\[\,\

1.0E+06

1.0E+12

Lifetime (seconds)

> O P9 WU, S A I L Qi ’\¢ Vv o
+§\°;‘.Q3}.0°’.}~ é +e +°'\j~ \)3. bjogt u.}.&*.&*"b &i“ N'ogj.qyx
+° <g8‘ « \‘\; S ev\ °e\> & .@o © t\& Vs\ ®

Fig. 17. FFT circuit FEOL TDDB and MOL TDDB characteristic
lifetime for each type of standard cell and its lifetime limiting cell
(shown in the red dashed circle). The confidence bound indicate
variation in characteristic lifetime due to activity for each cell.

—_
0 TOBME e —— —
C 1.0E+16
o
o
(2
- —GTDDB
o 1.0E+12
§ 1.0E+10
-
& 1.0e+08
i
1.0£406
e e e e e T e P
P PP S F S L S PSS
CFIFTFEFTEFSS s

Fig. 18. Leon3 FEOL TDDB and MOL TDDB characteristic
lifetime for each type of standard cell. The confidence bounds
indicate variation in characteristic lifetime due to activity for each
cell.

standard cells in the same way and fit their corresponding
lifetimes with the lognormal distribution.

Regression is used to determine the parameters of the
lognormal distribution. After regression, each standard cell is
shown as a mean and standard deviation of the characteristic
lifetime in Figs. 17 and 18.

Since the lifetime of each type of standard cell is calculated,
we can proceed to calculate the circuit’s failure probability at
time . We model each of the standard cell lifetimes with a
lognormal distribution, for each wearout mechanism and its
corresponding activity range. For n standard cells, there are n
failure rates, F;, i = 1, ..., n, where F; is the cumulative
probability of the lognormal distribution. These » failure rates
contribute a reliability defect density d;, which must be added
together to find the failure probability of the whole circuit. The
failure probability of the whole circuit Fy. is a combination of
lognormal distributions and is calculated as follow [28]:

d; = —In(1 — F;(¢t)) (11)
Frotar =1 — exp_zdi (12)

For each (y;, 0;) pair, we can obtain a F; by looking up the
cumulative probability for a normal distribution. By using (11)
and (12), we can combine standard cell lifetimes for FEOL
TDDB and for MOL TDDB together, since they are independent
mechanisms. The calculated failure probabilities are shown in
Fig. 19.

[y
|

- —
k)
i 0.8
3
° 0.6
a
P 0.4
S
302 —FFT
= —Leon3
0
0 2 4 6 8 10 12

Time (Years)

Fig. 19. FFT and Leon3 failure probability.

2.1E+09 —General
Gaming
1.6E409 Office

|—Corporate

1.1E+09

6.0E+08

Lifetime (seconds)

1.0E+08
+++”+”¢¢¢¢*>P+“’+"+“’#¢##¢
9&\9 \Io&%« & Q‘@meweﬁo‘*o‘pv S
& 6‘ s«e\\eeo &

Fig. 20. Leon3 MOL TDDRB lifetime for different use

scenarios.
o 8E+17 —General
)
T Gaming
[= N
) Office
g 6E+17 —Corporate
2
-
[}
.g 4E+17
=)
&
=
2E+417
¢¢f¢¥$*¢399$ f*&@@
S o\ & N O ©
® &K N & év & .\3\ A

Fig. 21. Leon3 FEOL TDDB lifetime for different use
scenarios.

From Figs. 17 and 18, we can see in the result that MOL
TDDB is dominant. This result is technology dependent, since
in FinFET technology, the layout is more compact, and thus the
linespace and vulnerable length become smaller, which
translates into a severe degradation due to MOL TDDB. On the
other hand, FEOL TDDB is more sensitive to voltage, and the
voltage scaling helps to alleviate the impact of FEOL TDDB.

To consider the use scenario impact on the Leon3, the stress
during operation is computed based on activities when the Leon3
runs a standard benchmark. It idles with a random state in
standby mode and powers down for the off mode. Shown in Fig.
20, we can conclude that MOL TDDB is more sensitive to use
scenarios while, as observed in Fig. 21, FEOL TDDB is not
sensitive. The vulnerable features in MOL TDDB are associated
with two pins in a standard cell, while for FEOL TDDB, each
device is only associated with its gate voltage; and thus, the
disturbance of two pins will have a larger impact than just one.

In addition, one can find from Fig. 20 that not all standard
cells have the same lifetime degradation under different
scenarios; and thus, itis possible for a circuit designer to choose
specific types of cell over others to ensure a longer lifetime in
certain applications.

After assessing all the cell lifetimes in a circuit under
different use scenarios; it is possible to replace the lifetime
limiting standard cells with the ones with longer lifetime. As we
can see in Fig. 17, for the FFT circuit, the “INV_X16” cell is the
lifetime limiting cell in the FFT circuit, and thus, we could use
16 “INV_X1” cells to replace the “INV_X16” cell to achieve the
same functionality with a higher lifetime. The layout of
“INV_X16” is more compact and has more vulnerable features

>o
.
O ——— 16inverters .
L]
L]
_>o—

Fig. 22. Using cells with longer lifetime to replace a lifetime
limiting cell to improve the lifetime of the circuit.

T — Do

Fig. 23. Using a inverter and a NAND gate to replace a NOR.

in the layout, which causes a lower lifetime. An illustration is
shown in Fig. 22; if the inverter is operated at 50% duty cycle,
we can increase the lifetime by 6.75X while increasing the area
by 2.67X. In addition, further optimization is possible if we
characterize each standard cell in the technology library and find
a combination of cells that has the same function with a longer
lifetime, at the expense of possibly more area and power. Fig. 23
gives another example which uses a combination of cells to
replace a NOR gate in the circuit.

V. CONCLUSION

This paper investigates not only the traditional reliability
concern, FEOL TDDB, but also the newly emerging wearout
mechanism, MOL TDDB. A novel lifetime simulator for
FinFET technology is proposed for target wearout mechanisms.
The shrinking feature size leads to severe degradation caused by
MOL TDDB because of its sensitivity to alignment errors. On
the other hand, the voltage scaling alleviates the impact of FEOL
TDDB and MOL TDDB.

With reliability simulation, a circuit designer can use the
information to redesign a circuit or redraw the layout in a more
robust and reliable way; also, a circuit designer can use
application specific information to choose certain cells that have
longer lifetimes than others. It is also possible to use the lifetime
information to add some constraints on circuits to ensure the
circuit’s performance over the product lifetime.

This work gives a framework to identify the lifetime limiting
cell in a circuit; further optimization on trade-off between power,
area and lifetime of circuit needs further investigation. Also, in
this study only the FEOL TDDB and MOL TDDB are
considered. Future work can add more wearout mechanisms,
such as BTI and HCI in the frontend-of-line, together with the
backend-of-line wearout mechanisms: backend TDDB,
electromigration (EM) and stress induced voiding (SIV).

REFERENCES

[1] F. Chen, Carole Graas, Michael Shinosky, Kai Zhao, Shreesh Narasimha,
Xiao Hu Liu, Chunyan Tian, “Breakdown data generation and in-die
deconvolution methodology to address BEOL and MOL dielectric
breakdown challenges,” Microelectronics Reliability, vol. 55, no. 12, pp.
2727-2747, 2015.

[2] F. Chen, Carole Graas, Michael Shinosky, Chuck Griffin, Roger
Dufresne, Ronald Bolam, Cathryn Christiansen, Kai Zhao, Shreesh
Narasimha, Chunyan Tian, Choon-Leong Lou, “New breakdown data
generation and analytics methodology to address BEOL and MOL
dielectric TDDB process development and technology qualification
challenges,” IEEE Int. Reliability Physics Symp., 2014, pp. 3A.1.1-
3A1.11.

[3] E. Wu, J. Stathis, B. Li, B. Linder, K. Zhao, and G. Bonilla, “A critical
analysis of sampling-based reconstruction methodology for dielectric
breakdown systems (BEOL/MOL/FEOL),” IEEE Int. Reliability Physics
Symp., 2015, pp. 2A.2.1-2A.2.11, 2015.

[4] and J. C. Ahn, Jae-Gyung, Ming Feng Lu, Nitin Navale, Dawn Graves,
Gamal Refai-Ahmed, Ping-Chin Yeh, “Product-level reliability estimator

with budget-based reliability management in 16nm technology,” IEEE Int.
Reliability Physics Symp., 2017, pp. 3A-3.1-3A-3.6.

[10]

[11]

[12]

[13]

[14]

[17]

(18]

[19]

[20]

(21]

[22]

{23]

[24]

[25]

[26]

(27]

(28]

W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, “The
impact of NBTI effect on combinational circuit: modeling, simulation,
and analysis,” IEEE Trans. on Very Large Scale Integration Systems, vol.
18, no. 2, pp. 173-183, 2010.

T. Liu, C.-C. Chen, and L. Milor, “Comprehensive Reliability-Aware
Statistical Timing Analysis Using a Unified Gate-Delay Model for
Microprocessors,” IEEE Trans. on Emerging Topics in Computing, 2016.

W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan, and Y.
Cao, “Compact modeling and simulation of circuit reliability for 65-nm
CMOS technology,” IEEE Trans. on Device and Materials Reliability,
vol. 7, no. 4, pp. 509517, 2007.

Y. Wang, S. Cotofana, and L. Fang, “A unified aging model of NBTI and
HCI degradation towards lifetime reliability management for nanoscale
MOSFET circuits,” IEEE/ACM Int. Symp. on Nanoscale Architectures,
2011, pp. 175-180.

X. Li, J. Qin, and J. B. Bernstein, “Compact modeling of MOSFET
wearout mechanisms for circuit-reliability simulation,” IEEE Trans. on
Device and Materials Reliability, vol. 8, no. 1, pp. 98-121, 2008.

K. Yang and L. Milor, “Impact of stress acceleration on mixed-signal gate
oxide lifetime,” IEEE Int. Mixed-Signals Testing Workshop, 2015.

C.-C. Chen and L. Milor, “System-level modeling and microprocessor
reliability analysis for backend wearout mechanisms,” Design,
Automation & Test in Europe Conf. & Exhibition, 2013, pp. 1615-1620.

G. S. Haase and J. W. McPherson, “Modeling of interconnect dielectric
lifetime under stress conditions and new extrapolation methodologies for
time-dependent dielectric breakdown,” IEEE Int. Reliability Physics
Symp., 2007, pp. 390-398.

K.-Y. Yiang, H. W. Yao, and A. Marathe, “TDDB Kinetics and their

Relationship with the E-and\ E-models,” Int. Interconnect Technology
Conf., 2008, pp. 168-170.

T. Kauerauf, A. Branka, G. Sorrentino, P. Roussel, S. Demuynck, K.
Croes, K. Mercha, J. Bommels, Z. Tokei, and G. Groeseneken,
“Reliability of MOL local interconnects,” IEEE Int. Reliability Physics
Symp., 2013, pp. 2F.5.1-2F.5.5.

NCSU, “FreePDK15.” [Online]. Available:
https://www.eda.ncsu.edu/wiki/FreePDK 15:Contents. [Accessed: 01-Jan-
2017].

J.-W. Yang and J. G. Fossum, “On the feasibility of nanoscale triple-gate
CMOS transistors,” IEEE Trans. on Electron Devices, vol. 52, no. 6, pp.
1159-1164, 2005.

NanGate, “NanGate FreePDK 15 Open Cell Library.” [Online]. Available:
http://www.nangate.com/?page id=2328. [Accessed: 01-Jan-2017].

R. J. Segura and F. R. Feito, “An algorithm for determining intersection
segment-polygon in 3D,” Computers & Graphics, vol. 22, no. 5, pp. 587—
592, 1998.

C.-C. Chen, S. Cha, T. Liu, and L. Milor, “System-level modeling of
microprocessor reliability degradation due to BTI and HCI,” IEEE Int.
Reliability Physics Symp., 2014, pp. CA.8.1-CA.8.9.

“PrimeTime.” [Online]. Available:
https://www.synopsys.com/implementation-and-
signoft/signoff/primetime.html. [Accessed: 01-May-2017].

“Design Compiler.” [Online]. Available:

https://www.synopsys.com/support/training/rtl-synthesis/design-
compiler.html. [Accessed: 01-May-2017].

“C.0.M.S.0.L. Multiphysics,Heat Transfer Module User’s Guide Version
5.2, COMSOL,” 2015.

R. Kwasnick, A. E. Papathanasiou, M. Reilly, A. Rashid, B. Zaknoon, and
J. Falk, “Determination of CPU use conditions,” Int. Reliability Physics
Symp., 2011, pp. 2C.3.1-2C.3.6.

“Mibench benchmark.” [Online]. Available:
http://vhosts.eecs.umich.edu/mibench//. [Accessed: 01-May-2017].

M. Bashir and L. Milor, “Towards a chip level reliability simulator for
copper/low-k backend processes,” Design, Automation and Test in
Europe, 2010, pp. 279-282.

M. Bashir, D. H. Kim, K. Athikulwongse, S. K. Lim, and L. Milor,
“Backend low-k TDDB chip reliability simulator,” Int. Reliability Physics
Symp., 2011, pp. 2C.2.1-2C.2.10.

M. Bashir, L. Milor, D. H. Kim, and S. K. Lim, “Methodology to
determine the impact of linewidth variation on chip scale copper/low-k
backend dielectric breakdown,” Microelectronics Reliability, vol. 50, no.
9, pp- 1341-1346, 2010.

L. Milor and C. Hong, “Area scaling for backend dielectric breakdown,”

IEEE Trans. on Semiconductor Manufacturing, vol. 23, no. 3, pp. 429—
441, 2010.

	I. Introduction
	II. Device-level wearout models
	A. FEOL TDDB Model
	B. MOL TDDB Model

	III. Vulnerable Feature Extraction
	A. FEOL TDDB Vulnerable Feature Extraction
	B. MOL TDDB Vulnerable Feature Extraction

	IV. Lifetime Simulator
	V. Conclusion
	References

