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Abstract 

The effects of cilium length on the dynamics of cilia motion were investigated by high-speed video 

microscopy of uniciliate mutants of the swimming alga, Chlamydomonas reinhardtii. Cells with short cilia 

were obtained by deciliating cells via pH shock and allowing cilia to reassemble for limited times. The 

frequency of cilia beating was estimated from motion of the cell body and of the cilium. Key features of 

the ciliary waveform were quantified from polynomial curves fitted to the cilium in each image frame. 

Most notably, periodic beating did not emerge until the cilium reached a critical length between 2-4 µm. 

Surprisingly, in cells that exhibited periodic beating, the frequency of beating was similar for all lengths 

with only a slight decrease in frequency as length increased from 4 µm to the normal length of 10-12 

µm. The waveform average curvature (rad/µm) was also conserved as the cilium grew. The mechanical 

metrics of ciliary propulsion: force, torque, and power all increased in proportion to length. Mechanical 

efficiency of beating appeared to be maximal at the normal wild-type length of 10-12 μm. These 

quantitative features of ciliary behavior illuminate the biophysics of cilia motion and, in future studies, 

may help distinguish competing hypotheses of the underlying mechanism of oscillation. 
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Introduction  

Motile cilia are highly conserved organelles that generate propulsive, oscillatory waveforms to propel 

cells or move fluids (1). The shape and characteristic frequency of the beating cilium are regulated by 

different components of its cytoskeletal structure: the 9+2 axoneme (2). The axoneme consists of a 

central pair of two singlet microtubules transiently connected by radial spokes to the surrounding nine 

doublet microtubules, which are in turn connected to each other by the nexin-dynein regulatory complex 

(N-DRC). Minus-end directed dynein motor proteins anchored on one doublet exert forces on the 

neighboring doublet, which leads to relative sliding of the doublets and axonemal bending in the shape 

of propulsive waveforms (3, 4).  

While the main structures of the axoneme have been identified by electron microscopy (5, 6) or cryo-

electron tomography (cryo-ET) (7-11), the mechanisms that lead to a propulsive, oscillatory waveform 

remain incompletely understood. A number of distinct hypotheses have been proposed to explain the 

mechanism of waveform generation (12-17). Some of these hypotheses (12, 13, 15-17) are formulated 

as mathematical models, which include length as a key physical parameter. Theoretical predictions of 

the effect of length on ciliary beat frequency and waveform are therefore possible. The current study 

focuses on experimental measurement of the effects of ciliary length on waveform during regrowth. 

These data can be compared to quantitative predictions from mathematical models and used to evaluate 

the underlying hypotheses. Questions addressed include: (i) Is a critical length required for periodic 

beating, and if so, what is it? (ii) How does length affect beat frequency? (iii) Does the shape of the 

waveform change as length increases, or does it simply scale? (iv) How does the mechanical output 

(force, torque and power) of the cilium change with length? 

The unicellular alga, Chlamydomonas reinhardtii, which uses two cilia to swim toward a light source, is 

an excellent model system to study ciliary mechanics. Historically, these organelles were called flagella 

but the community henceforth agreed on using cilium and cilia for Chlamydomonas. Its ciliary beating is 

almost two-dimensional (2D) (18), which allows recording of the entire cilium within the focal plane of a 

standard optical microscope (19, 20). Wild-type Chlamydomonas assemble two cilia that are 10 to 12 µm 

long (21). Cilia of Chlamydomonas can experimentally be removed from the cell body using a variety of 

methods including mechanical shear or chemical stress (22, 23). The cells immediately begin to grow 
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new cilia as the stress ends (24, 25). We chose to induce deciliation by subjecting the cells to an acid 

shock. This process allows us to record cilia at different length during the regrowth process. Cilia elongate 

up to its normal length in about 90 minutes (26). The uni1 mutant strain assembles only one cilium, and 

the beating of its unique cilium creates a rotation of the cell body around an axis in a plane perpendicular 

to the plane of beating (27). The ciliary waveform of the uni1 mutant slightly varies from the wild-type 

biciliate waveform as calculated from isolated axoneme (28, 29). Nevertheless, uniciliate cells show 

ciliary configurations similar to cilia of biciliated cells. (18, 27, 30) 

Using a previously described method (19), we acquired and analyzed cilia waveforms. Briefly, ciliary 

motion is recorded with high-speed video-microscopy with a digital camera system and bright field 

optics. High-resolution, mathematical quantitative descriptions of the waveform of the cilia by a smooth 

surface of ciliary tangent angle can be extracted from the videos (Fig. 1).  

The evolution of the ciliary beat was quantified by a set of parameters that described the waveform as 

length increases. First, periodicity of the ciliary beating was determined from the normalized auto-

covariance of the ciliary tangent angle. For periodically-beating cilia, beat frequency was measured from 

both body and cilia motion. In periodic cilia, a characteristic average waveform was defined and 

analyzed. Kinematic parameters (angle, curvature, and velocity) were extracted from the average 

waveform. Global force, torque, and power generated by the cilium were estimated from cilia motion 

(20) and compared to estimates from body motion. In addition, internal forces attributable to dynein 

motor protein activity were estimated from the waveform, using previous measurements of viscous 

resistive force coefficients, flexural modulus, and shear stiffness (31).  

We find that periodic beating of cilia occurs only after a critical length is reached. Once beating begins, 

frequency is conserved, changing by only a few percent as length triples. The average curvature of the 

cilium is also strikingly consistent. Our analysis suggests that the intrinsic mechanics of the axoneme are 

stable during growth, and that increasing length alone can explain many qualitative changes in the 

waveform of the growing cilium. 
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Materials and Methods  

Cell culture and deciliation 

Chlamydomonas reinhardtii cells were grown as previously described (32). The uniciliate mutant strain 

uni1-2 was generated from meiotic crosses, as described by Dutcher (33). Cells were grown on agar plate 

for 48 hours in Sager and Granick rich liquid medium supplemented with sodium acetate (34) at 25C in 

constant light. Prior to recording, cells were suspended for 3 hours in a medium lacking nitrogen adapted 

from Medium I of Sager and Granick (34) to promote gametogenesis.  

Short cilia were obtained by deciliation followed by regrowth for controlled duration. Deciliation was 

obtained by acid shock (23, 25). Medium (1 mL) containing cells was vortexed in an Eppendorf tube. 

Acetic acid (7 µL; 0.5 N) was added to the medium which was then vortexed for 45 seconds. Potassium 

hydroxide (3.5 µL; 0.5 N) was then used to buffer the solution. Finally, cells were vortexed (2g) for 3 

minutes at 20C and resuspended in rich liquid medium for ciliary regrowth. Cells were pipetted from 

the tube every 5 minutes during the 90 minutes of regrowth to be recorded under the microscope.  

Video-microscopy  

All bright-field microscopy was carried out in a climate-controlled room maintained at 21C. For each 

recording, 10 µL from medium containing cells were pipetted onto a slide, and a cover slip (18 x 18 mm) 

was placed for recording under a Zeiss Axiophot with a 100x Neofluar oil-immersion objective lens (Carl 

Zeiss AG, Oberkochen, Germany). With these procedures, the thickness of the fluid layer is consistently 

~30 µm. Microscope settings were adjusted to provide the greatest contrast between the cilium and 

background of every single cell with a visible beating cilium. Videos were recording using a Phantom 

Miro eX2 camera and Phantom Camera Control Application 2.6 (Vision Research, Inc, Wayne, NJ, USA). 

Videos were captured at 2000 frames per second with 320 x 240 resolution and an exposure time of 200 

µs. Approximately 7000 frames were captured in the buffered memory of the camera, with ~3500 frames 

before the trigger and ~3500 frames after the trigger. Roughly 1000 frames (0.5 sec) displaying typical 

beating were extracted and saved in uncompressed AVI format at 15 frames per second.  The choice to 

keep and analyze 1000 frames was a necessary compromise due to practical constraints on analysis time 

and data storage capacity. 
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Analysis Protocol  

Videos were analyzed using a custom-made program written in Matlab R2016a (The Mathworks, 

Natick, MA, USA) modified from the version previously published (19). From each video, a sequence of 

201 consecutive frames (0.1 sec) was stored as a 3D matrix of pixel intensity values. Each pixel had a 

spatial resolution of 169 x 169 nm and the temporal resolution between 2 consecutive time points was 

0.5 ms. For slower moving cilia, in order to observe longer cycles of beating, movies were down-sampled 

up to 10 times to analyze a longer time interval. 

Analysis of the ciliary waveform involved several steps. First, the motion of the cell body was 

characterized and a Cartesian frame (𝑥, 𝑦) was defined based on the cilium proximal end (Fig. 1B). Then 

positions of points on the cilium were extracted from the video. After analysis of periodicity, in regularly-

beating cells, an average characteristic beat was computed. Waveform kinematic parameters, global 

forces, and internal forces were then calculated as described in the following sections. Parameters and 

symbols used in the analysis are listed in Table 1.  

Analysis of cell body motion  

Rigid-body motion of the cell was estimated as previously described (19). Briefly, each frame of the video 

was compared to rotated templates of the first image to define angles and displacements of the cell 

body (Fig. 1A). The rotation analyzed was always counter-clockwise; if the cell rotated clockwise, each 

video frame was flipped to reverse rotation direction. The cell body rotation rate Ω (revolutions per 

second, rps) and the ciliary beat frequency 𝑓𝑏  (Hz) were obtained from the time series of angular 

correction (𝜙). If the cell body did not rotate, Ω and 𝑓𝑏 were set to 0. If no peak was detected in the FFT 

of the rotation angle, 𝑓𝑏 was set to 0 as well.  
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TABLE 1. List of parameters and symbols. 

Symbol Parameter Unit 

𝐿 Length μm 

𝑠 Axial coordinate along the cilium (𝑠 = 0 at base, 𝑠 = 𝐿 at tip) μm 

𝜙 Angle of body rotation rad 

Ω Cell body average rotation rate rps 

𝑓𝑏 Frequency estimated from 𝜙 Hz 

𝜃 Tangent angle of cilium rad 

𝑎𝑐 Normalized auto-covariance of 𝜃  

𝜏 Time lag in auto-covariance of 𝜃 ms 

𝑓𝑐 Ciliary beat frequency estimated from 𝜃 Hz 

𝜅 Curvature, 𝜕𝜃 𝜕𝑠⁄  rad-μm 

𝐹𝑐𝑥 , 𝐹𝑐𝑦 Ciliary net force in 𝑥- and 𝑦-direction pN 

𝑃𝑐 Power generated by cilium aW 

𝑀𝑐 Torque applied by cilium, estimated from waveform pN-μm 

𝐹𝑏𝑥 , 𝐹𝑏𝑦 Viscous force estimated from body motion  pN 

𝑃𝑏 Power dissipated by body motion aW 

𝑀𝑏 Torque estimated from body motion pN/μm 

𝐸𝐼 Bending rigidity pN-m2 

𝑘𝜃 Shear stiffness pN/rad 

𝐹𝑑𝑦𝑛𝑒𝑖𝑛 net dynein force (moment per unit length) pN 

𝐹𝑏𝑒𝑛𝑑𝑖𝑛𝑔 force required to produce elastic bending of doublets pN 

𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠 force required to overcome viscous drag pN 

𝐹𝑠ℎ𝑒𝑎𝑟 force required to overcome resistance to shear pN 

(∙)̅̅ ̅ Average value of waveform parameter (∙)  

(∙)̃ Amplitude (std. deviation) of waveform parameter (∙)  
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Mathematical description of the cilium position  

Manual tracing followed by automated curve-fitting was used to provide a quantitative description of 

the cilium in space and time. As noted by others (35) fully automatic detection of Chlamydomonas cilia, 

especially shorter cilia, is difficult because of contrast variations; typically a bright “halo” surrounds the 

cell body. After correction of body motion, a rectangular region of interest (ROI) where the ciliary beating 

occurred was cropped by the user (Fig. 1A). The proximal end of the cilium (base) was defined manually 

by the user using a Matlab custom-made graphical interface.  

A movie of the 199 frames displaying the ROI was saved in AVI format (uncompressed, 50 frames per 

second) for manual tracing of the position of the cilium. The user traced the position of the cilium on 

each frames of the video using ImageJ (36) brush tool (1-pixel width, cyan color) and an Intuos pen 

tablet (Wacom Technology Corporation, Vancouver, WA, Canada). The traced video was saved under 

AVI format (uncompressed, 15 frames per second) 

The traced video was re-uploaded into Matlab and the cloud of traced points was stored as an array 

of Cartesian coordinates. The length of the cilium 𝐿 was calculated and the points were fitted by a simple 

polynomial function 𝜃(𝑠) as described previously (19). The order of this polynomial fit was chosen as a 

function of the cilium length: for a cilium shorter than 3 µm, a second order polynomial function was 

used, a third order polynomial function was used for a cilium length between 3 and 6 µm and finally a 

fourth order polynomial for longer cilium. Each fit was performed using one point per pixel traced to 

calculate the fitting error. Varying the order of the polynomial with cilium length provided an 

approximately consistent ratio between the number of points used in the fit and the number of free 

parameters. Examples (Fig S1 in Supplemental Material) show that the waveforms obtained by fitting 

with polynomials of different order are typically qualitatively and quantitatively quite similar, but 

reducing the order prevents over-fitting of short cilia.  

Characteristic average beat  

An auto-covariance function 𝑎(𝑠, 𝜏 ) was estimated for the waveform angle 𝜃(𝑠, 𝑡)  at each spatial 

location, 𝑠, along the cilium using the Matlab function xcov. An average autocovariance function for 

the flagellum 𝑎𝑐(𝜏) was computed by averaging 𝑎(𝑠, 𝜏) over the spatial dimension, 𝑠. The average peak 
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of the auto-covariance at non-zero lag (𝑎̂𝑐) was used as a marker of periodicity and to find the period of 

ciliary beating (Fig. 2). Ciliary beat frequency 𝑓𝑐  (Hz) is estimated from this period of beating. The 

theoretical value of 𝑎̂𝑐 is 1.0 for perfect periodicity and each time point perfectly superimposed on each 

other; a peak of approximately 0.8 was typical of all periodic beats (Fig. 2A). If no peak was detected 

because none of signal were superimposing (Fig. 2B) or if the value of the peak was < 0.15, 𝑎̂𝑐 and 𝑓𝑐  

were both set to 0, and the cilium was considered non-periodic.  

In periodically-beating cilia, values of the waveform angle 𝜃  from successive beats were averaged 

together to reconstruct a characteristic cycle of beating for which the parameters of waveforms could 

be calculated. We reconstruct a Cartesian coordinate (𝑥, 𝑦) such as the proximal end of the cilium is (0,0) 

and the 𝑥-axis correspond to the direction of the forward swimming of a biciliate cell and the 𝑦-axis its 

normal (Fig. 1B).  

Waveform parameters and local forces  

As described earlier (19, 28, 29), the surface 𝜃(𝑠, 𝑡) of the ciliary angle versus time and space can be 

used to extract key features illustrating the kinematics of the cilium. We calculated the average curvature 

𝜅̅ (rad/µm) (𝜅 =  𝜕𝜃 𝜕𝑠⁄ ; 𝜅̅ = mean(𝜅)), the bend amplitude 𝜃̃ = std(𝜃) (rad), or the magnitude of the 

accumulated bend (which can be interpreted as a normalized average curvature) |𝜅̅𝐿| (rad). The average 

and standard deviation were estimated over both space and time, using respectively the Matlab 

functions mean2 and std2 to operate on the two-dimensional numerical arrays 

The propulsive forces exerted by the cilium were estimated from the ciliary waveform. The normal and 

tangential components of the force per unit length applied by the cilium on the fluid (𝑓𝑁 and 𝑓𝑇, pN/μm) 

are related by resistive force coefficients (𝑐𝑁 and 𝑐𝑇) to the corresponding components of velocity 𝑣𝑁 

and 𝑣𝑇, normal and tangential, respectively, to the axis of the cilium (𝑓𝑁 = 𝑐𝑁𝑣𝑁 and 𝑓𝑇 = 𝑐𝑇𝑣𝑇) (13, 

37). Previously-obtained estimates of these coefficients (𝑐𝑁 = 0.0015 and 𝑐𝑇 = 0.0007 pN-s/µm2) (20) 

are used in this study. The values of local resistive force can be transformed to Cartesian coordinates 

(𝑓𝑥 , 𝑓𝑦) and integrated to calculate the net forces of the cilium applied on the cell body in both 𝑥- and 𝑦-

direction 𝐹𝑐𝑥 =  ∫ 𝑓𝑥𝑑𝑠
𝐿

0
 and 𝐹𝑐𝑥 =  ∫ 𝑓𝑦𝑑𝑠

𝐿

0
 (pN). The power generated by the cilium 𝑃𝑐 =  ∫ (𝑓𝑥𝑣𝑥 +

𝐿

0

𝑓𝑦𝑣𝑦)𝑑𝑠 (aW) and the torque applied by the cilium to the cell body 𝑀𝑐 = ∫ (𝑓𝑦𝑟𝑐𝑥 − 𝑓𝑥𝑟𝑐𝑦)𝑑𝑠
𝐿

0
 (pN-µm) 
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with 𝑟𝑐 the relative positions of the point on the cilium with respect to the center of the cell body were 

calculated as well.  

In the low Reynolds number regime, inertia may be neglected, so that the forces exerted by the cilium 

are balanced by the viscous drag of the body. Estimates of viscous forces and torque on the cell body 

(drag) and power dissipated by cell body motion were obtained from the formulas below for a prolate 

ellipsoid in Stokes flow (20, 38, 39).  

𝐹𝑏𝑥 = 6𝜋𝜇𝑎𝑣𝑏𝑥 × 𝐶𝑓1     Eq.1 

𝐹𝑏𝑦 = 6𝜋𝜇𝑎𝑣𝑏𝑦 × 𝐶𝑓2  

𝑀𝑏 = 8 𝜋𝜇𝑎𝑏2𝜔 × 𝐶𝑓3 

𝑃𝑏 = 𝑀𝑏𝜔 + 𝐹𝑏𝑥𝑣𝑏𝑥 + 𝐹𝑏𝑦𝑣𝑏𝑦 

where 𝑎 and 𝑏 corresponded to the major and minor axis of the ellipsoidal cell body, 𝑣𝑏 the velocities of 

the body translation, 𝜔 the instantaneous angular velocity of the body rotation (𝜔 =  𝑑𝜙 𝑑𝑡⁄ ) and the 

parameters 𝐶𝑓𝑖 are functions of the eccentricity (see in Supplemental Materials). The equations of forces 

and torque generated by the cilium assumed that the beating plane is parallel to the surface of the 

sample. The main evidence for the validity of this assumption is that the cilium remains in the focal plane 

of the microscope throughout multiple cycles of beating. However, small deviations from planarity may 

occur, and may be responsible for some of the variance in our data.   

Estimation of internal forces 

Internal forces due to dynein motor protein activity are balanced by the elastic bending of the 

microtubule doublets and central pair, the viscous drag on the cilium from the surrounding fluid and the 

internal shear forces due to deformation of passive elements such as nexin links and radial spokes. Each 

process contributes a corresponding net moment (pN-µm) per unit length (µm). Since these quantities 

have units of force (pN-µm/µm = pN) they are represented by the symbols 𝐹___:  

𝐹𝑑𝑦𝑛𝑒𝑖𝑛 = 𝐹𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠 +  𝐹𝑠ℎ𝑒𝑎𝑟  Eq.2 
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The internal force due to dynein activity can be estimated by calculating the terms on the right-hand side 

of (Eq.2) using approximate relationships and values from prior studies. Elastic bending moment per unit 

length, 𝐹𝑏𝑒𝑛𝑑𝑖𝑛𝑔, can be directly calculated from the local derivative of curvature of the cilium and the 

flexural rigidity (𝐸𝐼, pN-m2). The local viscous contribution to bending, 𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠, at any axial location on 

the cilium is calculated by integrating the viscous force per unit length from that location to the distal 

end of the cilium and taking the normal component, 𝐹𝑁. Finally, elastic shear, 𝐹𝑠ℎ𝑒𝑎𝑟, can be estimated 

from the product of the tangent angle of the cilium and shear stiffness (𝑘𝜃, pN/rad).  

𝐹𝑑𝑦𝑛𝑒𝑖𝑛 =  −𝐸𝐼 
𝜕2𝜃

𝜕𝑠2
+ 𝐹𝑁 + 𝑘𝜃𝜃  

Bending rigidity (𝐸𝐼) and shear stiffness (𝑘𝜃) were measured in wild-type cilia by Xu, et al. (31). As a first-

order approximation for estimation of internal dynein force, all cilia were assumed to have the flexural 

rigidity and shear stiffness previously measured in normal length wild-type cilia, respectively 𝐸𝐼 = 840 

pN-µm2 (mean ± std. dev. = 840 ± 280 pN-µm2) and 𝑘𝜃 = 40 pN/rad (39.3 ± 6.0 pN/rad) (31, 40).  

Comparison to predictions of mathematical models 

In addition, a limited set of simulations were performed in order to help interpret experimental 

observations in the context of different hypotheses of the mechanism of ciliary oscillation. Four 

mathematical models, in the form of partial differential equations (PDEs) that describe the bending of 

thin elastic beams immersed in viscous fluid and driven by internal, active dynein force, were simulated, 

each based on a different underlying hypothesis: (i) a model in which dynein is dynamically regulated by 

curvature, as described by Hines and Blum (13); (ii) a model in which dynein is regulated by inter-doublet 

spacing, following the “geometric-clutch” hypothesis of Lindemann (15) as implemented by Bayly and 

Wilson (41); (iii) a model in which dynein is NOT regulated, but oscillations are produced by a viscoelastic 

instability under steady dynein loading (17). In addition, (iv) the oscillatory behavior of a simple beam in 

viscous fluid with a distributed tangential (“follower”) axial load was simulated, as an example of a 

classical dynamic instability (42-44) (methodological details and parameters are in Supporting Material). 

Statistical analysis 

For a given waveform parameter, (∙), the average value, denoted by an overbar (∙)̅̅ ̅, and the amplitude 

of its oscillations (RMS, or standard deviation), denoted by a tilde (∙)̃, are estimated. All cells (deciliated 
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or not) were considered as one group for statistical analyses. We created a classification of seven groups, 

based on ciliary length, with 2 µm sub-range intervals (Table 2). At least 50 beating cilia were recorded 

for each sub-range of length. Anova on ranks statistical tests were performed between the different sub-

range of length using SigmaPlot (Systat Software, San Jose, CA). Significant differences reported in the 

manuscript have a p-value < 0.05.  

 TABLE 2. Number of movies and statistics for cilia length with different lengths. (𝑛=388) 

Length 

range (µm) 

Number of 

movies 

Length  

mean ± std. dev. (µm) 

[0, 2] 51 1.5 ± 0.3 

[2, 4] 57 2.9 ± 0.6 

[4, 6] 53 5.2 ± 0.5 

[6, 8] 59 7.2 ± 0.5 

[8, 10] 63 9.0 ± 0.5 

[10, 12] 55 11.0 ± 0.6 

[> 12] 50 13.2 ± 1.0 

 

Results and Discussion  

Data overview 

We recorded and analyzed 388 videos of beating cilia of uniciliate Chlamydomonas cells. Only cilia with 

apparent beating were recorded. 151 movies of beating cilia were recorded after 3 hours of 

gametogenesis. The length of these cilia varied from 6.4 to 16.3 µm. To record a wider range of ciliary 

length, 237 movies of beating cilia during the regrowth process were recorded following the deciliation 

protocol described above. In these cells ciliary length varied from 0.8 to 11.9 µm. Due to the bright “halo” 

around the cell body, cilia shorter than one micron were seldom possible to record with enough contrast 

for analysis. The regrowth rate of cilia (length vs time) was compatible with rates reported in the 

literature (45-48) (results not shown). Characteristic videos of each sub-range of length (Movies S1-S7) 

are available in the Supporting Material.  
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Cell body motion  

We analyzed body motion in all 388 movies of ciliary beating. As described by Bayly, et al., (19) the cell 

body exhibited a generally increasing angle of rotation, 𝜙, with small superimposed oscillations. The cell 

body rotation rate Ω significantly increased with length (Fig. 3A). We also estimated the body rotation 

rate during power stroke and recovery stroke independently (Fig. 3C); rotation rates of the cell body 

during both the power and recovery phases also increased with length. As expected, cell body rotation 

is positive during the power stroke, and significantly faster than the negative rotation observed in the 

recovery phase. No rotation was observed for cilia shorter than 2 µm. The beat frequency 𝑓𝑏 extracted 

from the body motion was typically equal to zero or significantly reduced for cilia shorter than 2 µm. For 

cilia longer than 4 µm, 𝑓𝑏 reached values around 60 Hz (59.9 ± 14.4 Hz) (Fig. 3B). Results summarized in 

Fig. 3B suggest that a key transition occurs around 4 µm and that cilia longer than 4 µm consistently 

exhibit periodic beating.  

Periodicity of beating from analysis of cilia motion 

We analyzed the periodicity of beating using the normalized auto-covariance of cilia angle, 𝜃, from fitted 

waveforms (Fig. 2). Cilia shorter than 2 µm were never found to be periodic by this measure. Cilia 

between 2 and 4 µm length exhibited more variable periodicity. Cilia longer than 4 µm were usually 

periodic (no significant difference were found between the different length groups) (Fig. 4A). Those 

results suggest, again, that a change in ciliary behavior occurs around 4 µm. This critical length for 

periodic beating is consistent with the observation of Goldstein, et al., (49) that a critical length of 3 

microns was required to observe a phase correlation between the two cilia of wild-type Chlamydomonas. 

Taken together, these two studies suggest that coordination between the two cilia can only be achieved 

if both cilia beat periodically.  

In total, 307/388 cilia analyzed were periodic. Non-periodic cilia included 51/51 cilia between 0 and 2 

µm, 28/57 cilia between 2 and 4 µm and 2/53 cilia between 4 and 6 µm (Fig. 4B).  
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Waveform analysis during periodic beating  

All waveform parameters reported are estimated for the characteristic beat, and are computed over the 

length of the cilium and the duration of the beat. Thus waveform parameters are only reported for 

periodic ciliary beating (𝑛=307; cilia considered non-periodic are excluded).  

Mathematical descriptions (polynomial coefficients of the average waveform) were obtained for 307 

periodic-beating cilia. Fig. 5A shows a representative waveform for each group of length (respectively 

3.3 µm, 5.1 µm, 7.1 µm, 9.1 µm, 11.0 µm and 13.1 µm). The specific waveforms in Fig. 5A were selected 

from each sub-range of length because the length 𝐿, the bend amplitude, 𝜃̃, the average curvature 𝜅̅ 

and the amplitude of oscillations in both 𝑥- and 𝑦-direction (𝑥̃, 𝑦̃) of each waveform were the closest to 

the average value within each respective sub-range. These plots represent the shape of the waveform 

at regular intervals of 1/10 of a cycle. The dimensional versions of the waveform (Fig. 5A) illustrate the 

consistency in physical curvature in cilia of different lengths. Similarities in dimensional geometric 

quantities, like curvature (rad/µm) can be seen in these consistently-scaled versions of the waveform 

(i.e., similar radii of curvature can be observed in both short and long cilia).  The non-dimensional 

waveforms (Fig. 5B) highlight qualitative differences in shape, particularly for cilia shorter than 4 µm.   

Waveform quantitative parameters 

Beat frequency: The inverse of the time lag corresponding to the peak auto-covariance in cilia angle was 

used to quantify the ciliary beat frequency, 𝑓𝑐, from waveform data. For longer cilia 𝑓𝑐  was consistently 

near 60 Hz (mean ± std. dev. for all movies = 60.6 ± 13.6 Hz), exhibiting a slight decrease as length 

increased. Shorter cilia exhibit higher variability (Fig. 6A). This is consistent with prior estimates; the beat 

frequency in wild-type Chlamydomonas cilia has previously been reported to be 69.6 ± 8.7 Hz (19), 62.0 

± 2.7 Hz (50) or 63 ± 6 Hz (29). The beat frequencies estimated from cilia angle are also consistent with 

the frequencies independently estimated from the cell body motion (Fig. S2A). For cilia longer than 4 µm 

the ratio of frequency estimated from body motion to frequency of cilia motion 𝑓𝑏 𝑓𝑐⁄  is typically very 

close to 1.0 (mean ± std. dev 0.98 ± 0.15), as expected. Interestingly in short (2-4 µm) cilia the ratio was 

significantly different from 1 (Fig. S2B); apparently, even if the short cilium beats periodically, the 

frequency of beating is not reliably transmitted to the body motion.  
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Waveform shape. The bend amplitude (𝜃̃ = std(𝜃)) increased with cilium length (Fig. 6B). The average 

curvature 𝜅̅ (averaged over the length of the cilium and the full cycle of beating) was approximately 

conserved even for shorter cilia, at a value near -0.2 rad/µm (mean ± std. dev for all movies was -0.21 ± 

0.07 rad/µm) (Fig. 6C). These values are consistent with previously-reported curvature values (-0.17 ± 

0.005 rad/µm for cilia 12.8 ± 1.5 µm long) (28, 29). The magnitude of the accumulated bend |𝜅̅𝐿| can be 

interpreted as a dimensionless curvature (curvature normalized by length). Because average curvature 

was fairly consistent at all lengths, |𝜅̅𝐿| increased significantly with increasing cilia length (Fig. 6D). These 

observations are consistent with analogous observations of curvature and accumulated bend during 

maturation of cilia in human airway epithelial cells (51). We compared the shapes of the short periodic 

cilia 2-4 µm (𝑛 = 29) with the proximal region (first 4 µm) of longer cilia (𝑛 = 278). The bend amplitude 

𝜃̃, in short cilia was about half 𝜃̃ of the value in proximal regions of longer cilia (mean ± std dev. 0.31 ± 

0.15 vs 0.62 ± 0.14 rad, respectively). The mean curvature 𝜅̅ was smaller for the short cilium than the 

proximal region of long cilia (-0.19 ± 0.15 vs -0.26 ± 0.08 pN/ µm, respectively). The magnitude of 

accumulated bend |𝜅̅𝐿| of short cilia was also smaller than the analogous measure in the proximal 

sections of longer cilia calculated with 𝐿 = 4 µm (0.66 ± 0.40 vs 1.03 ± 0.32 rad, respectively). These 

observations make sense as the proximal region of longer cilia is affected by forces applied to distal 

sections.  

Force, torque and power generated by the cilium  

At low Reynolds numbers, the normal and tangential components of the force applied by the cilium to 

the fluid are related by resistive coefficients (𝑐𝑁 and 𝑐𝑇) to the corresponding components of velocity 

(20), as described above. Integrating the normal and tangential components of the force over the cilium, 

we calculated the net force in 𝑥- and 𝑦-directions, respectively 𝐹𝑐𝑥 and 𝐹𝑐𝑦. The force 𝐹𝑐𝑥 corresponds to 

the force along the swimming direction if the cell had two cilia. The mean value and amplitude of force 

oscillations in both 𝑥- and 𝑦-directions increased with length (Fig. S3). More importantly for uniaxial 

cilium (since the cell rotates with little translation), the torque applied by the cilium to the cell body 𝑀𝑐 

and the power generated by the cilium 𝑃𝑐  were also calculated. Both the mean value of torque 𝑀̅𝑐 and 

the amplitude of torque oscillations 𝑀̃𝑐 increased in proportion to length (Fig. 7A & B). The same trend 
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was observed for the average power 𝑃̅𝑐 and the amplitude of oscillations of instantaneous power 𝑃̃𝑐  (Fig. 

7C & D).  

Torque and power estimates derived from cilia motion and body motion are compared (Fig. 8). The 

torque generated by the cilium, 𝑀𝑐, should balance the drag torque estimated from cell body rotation, 

𝑀𝑏. The torque estimates in Fig. 8A & B are approximately consistent with this principle, falling generally 

along the line of identity, although the lines of best fit suggest estimates of 𝑀𝑏 are slightly (10-20%) 

higher than 𝑀𝑐. This inequality may be due to small errors in the assumed resistive force coefficients, 

which were estimated in a previous study (20), or to the effects of outliers. The ratio 𝑀̃𝑏/𝑀̃𝑐 was around 

1 in average (mean ± std. dev for all movies was 1.09 ± 0.67 and median was 1.01). In contrast, power 

dissipated by body motion, 𝑃𝑏, is systematically much less than the power generated by the cilium, 𝑃𝑐, 

reflecting the propulsive efficiency of this system (Fig. 8C & D). Notably, the average power dissipated 

by body motion 𝑃𝑏 was around a third of the average power generated by the cilium 𝑃𝑐. The ratio of the 

power amplitudes 𝑃̃𝑏/𝑃̃𝑐  was close to 0.5 for all ranges of length (mean ± std. dev for all movies was 0.47 

± 0.29 and median was 0.42), although some differences were observed between the different length 

ranges. These differences in the power ratio 𝑃̃𝑏/𝑃̃𝑐 are statistically significant between cilia in the length 

range 10-12 µm and those in the ranges (2-4 µm), (6-8 µm) and (> 12 µm). Differences in this power ratio 

are close to significant between the (10-12 µm) range and the (4-6 µm) range (𝑝 = 0.08). Comparing 

cilia of lengths in the (10-12 µm) and (8-10 µm) ranges there were not significant differences (𝑝 = 1.0). 

Taken together, we believe the evidence suggests (though it does not conclusively demonstrate) 

optimality of the (10-12 µm) length range (the normal length range for cilia in Chlamydomonas (21)). 

Internal forces  

Internal forces within the cilium generated by dynein molecular motors were estimated from the 

contributions of the three separate opposing forces, which are viscous drag, elastic shear and elastic 

bending. While both drag and shear forces increase with cilium length, these components are much 

smaller than the force required to bend the doublets (Fig. 9). Thus, the net dynein force appears to be 

largely dedicated to overcoming the resistance to local elastic bending. For growing cilia of different 

length, the amplitude of oscillatory dynein force 𝐹̃𝑑𝑦𝑛𝑒𝑖𝑛 (over the entire cilium during the full cycle of 

beating) was roughly conserved around 200 pN (mean ± std. dev 197.7 ± 52.9 pN). (We note that this 
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observation relies on the assumption that the physical parameters: resistive force coefficients, shear 

stiffness and flexural rigidity, do not change as the cilium regrows). 

The values of the dynein force estimated by the current approach (waveform analysis) are comparable 

to the values for cilia or sperm reported in the literature, as measured by manipulation with glass micro-

needles (52-54) or estimated by atomic force microscopy (55, 56). The force per dynein head was 

estimated from the average net dynein force by invoking several approximations and assumptions. Using 

the axoneme diameter (𝑑𝑐 = 0.2 𝜇𝑚) as the characteristic length associated with the dynein bending 

moment (54, 57), the dynein force density 𝐹̃𝑑𝑦𝑛𝑒𝑖𝑛 𝑑𝑐⁄ ≈ 1000 pN/µm. If we assume that only one 

doublet pairs is active at a time, and that 19 dynein heads (4 triple-headed outer dynein arms, 1 double-

headed and 5 single-headed inner dynein arms) repeat every 96 nm, we extrapolate than 198 dynein 

heads/µm are active. These assumptions lead to a force of ≈ 5 pN per dynein head. Alternatively, if we 

assume force is generated by four-doublet pairs with center-to-center distance of approximately 50 nm, 

we obtain a similar result.  This estimate (5 pN/head) remains a rough upper bound, as it does not 

account for the detailed internal mechanics of the axoneme (17); in particular it does not account for 

the possibility that that some doublets may experience compressive loads while others may be in 

tension. The estimate is in reasonably good agreement with dynein forces estimated by other methods 

in mucociliary tissue (56, 58), ciliate outer arms dynein (59), sperm (54, 60, 61) or cytoplasmic dynein 

(62, 63). Importantly, estimation of the internal force from waveform analysis does not require any type 

of mechanical perturbation to the cilium.  

Comparison to published mathematical models 

To help interpret these measurements in the context of existing hypotheses of waveform generation, 

cilia motion was simulated using three previously published mathematical models of cilia beating (13, 

15, 17) and a simple model of oscillatory motion, a tangentially loaded beam (Supporting Material). Using 

most parameters from the original publications, none of the mathematical models replicated the 

experimental data exactly, but each of the models exhibited key features observed in our experimental 

data.  

Plots of simulated beat frequency 𝑓𝑝 vs length 𝐿 are shown in Fig. 10. In each case, if cilium length was 

below a critical value, no oscillations occurred. Above the critical length, 𝐿𝑐 , oscillations occurred at 
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frequencies which varied mildly with length. In two models (HB, Fig. 10A and VF, Fig. 10C), beat 

frequency decreased with length for the range of lengths, 𝐿, between 𝐿𝑐  and 𝐿𝑚𝑎𝑥  = 15 µm. These 

models more closely reproduced the experimental trend in beat frequency, where a slight decrease was 

observed with cilium length. With the current set of parameters, the VF model (Fig. 10C) reached a static 

equilibrium shape (i.e., did not oscillate) for lengths > 13 µm. For the GC model (Fig. 10B), oscillation 

frequency increased slightly. For the AB model (Fig. 10D), the frequency increased initially for 𝐿 > 𝐿𝑐  

and reached a plateau. With the listed parameters, based primarily on the original studies, no model 

perfectly replicated the experimentally-observed behavior. The discrepancies between the sliding 

control model and observed behavior are consistent with previous studies showing that the sliding 

control simulations of ciliary beating (16) do not replicate well the ciliary waveforms of Chlamydomonas 

(64, 65). However, qualitative features of observed cilia function, such as a critical length for periodic 

beating and a stable beat frequency with increasing length, were observed in all the models.  

While outside the scope of the current experimental study, we expect that each of these models could 

be refined to better match the critical length and frequency of oscillation, as well as waveform shape. 

The ability of such models to reproduce trends in behavior as length and other parameters are varied 

could be addressed systematically in future studies. 

Limitations  

Drag coefficients of short cilia cells. In Fig. 3C (cell body rotation rate during power stroke and recovery 

stroke), and in Fig. 8C, the ratio of torque estimated from body motion to torque generated by the cilium 

is similar for short cilia (4, 6 µm) and long cilia (> 6 µm). This ratio  is close to unity, for both moderately 

short and long cilia using the resistive coefficients (20).  This strongly suggests that the drag coefficients 

from the prior study are applicable to both short and long flagella from this paper. However, for very 

short flagella (< 4 µm) the lack of reliable, periodic body motion prevents us from repeating the analysis 

of (20), which was based on comparing the cilium-generated forces and torques to observations of body 

motion, to check the estimates of torque and force generated by very short flagella.  

Uniciliated versus wild-type biciliated Chlamydomonas. Uniciliate cells were used to facilitate recording 

of the waveform, although cilia behavior may differ somewhat in uniciliate compared to biciliate cells. 

Experiments show that wild-type biciliate Chlamydomonas synchronize the two cilia between at least 
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two modes of beating (66-68). Geyer, et al. reported that the cilia can be synchronized by “cell-body 

rocking” with minimal direct hydrodynamic interactions between cilia (69), while others have shown that 

cilia coordination can be achieved solely through hydrodynamic coupling (70) transmitted to the cell by 

basal bodies (71). These studies show that ciliary beating in biciliate cells is modulated by factors that 

are absent in uniciliates. Estimates of the “equivalent” swimming speeds of uniciliate cells are much 

lower than the known swimming speeds of wild type biciliate cells (72) (see Supplemental Material), due 

to different hydrodynamic conditions on the cilium. However, cilia of uniciliate cells retain the 

fundamental ciliary structure and behavior, and in practice are much more convenient for detailed 

studies of the waveform.  

Structure and composition of the proximal region. As the cilium regrows, the structure and protein 

composition of the axoneme might vary. The proximal region of the mature cilium has a different 

composition than distal regions (73-75). Short cilia during regrowth appear to show some analogous 

differences (76). While beyond the scope of the current study, a detailed investigation of the 

ultrastructure and composition of the short, regenerating cilium would complement the current 

observations.  

Gametes vs. vegetative cells. Gamete cells were used in our experiment because the rate of ciliation is 

usually greater than vegetative cells and cell preparation was facilitated. We note that Lefebvre, et al., 

(46) showed that the ciliary protein pool was smaller for gametes; also cilia regrowth was slower in 

gametes than in vegetative cells (45, 46). Nevertheless, cilia in gametes regrow to the same extent as 

cilia in vegetative cells (46) and there is no evidence that the ciliary internal structure in gametes is 

different from cilia in vegetative cells (77, 78). 

Long-cilia mutant. We did not study cilia behavior in extremely long cilia such as those of lf mutants (50, 

79, 80). In the current study, using wild-type cells we observed that rotation rate and forces applied by 

the cilium increased with length. However (10-12 µm) cilia had the highest power efficiency ratio, 𝑃̃𝑏/𝑃̃𝑐  

(Fig. 8F); a slight decrease in this ratio was observed for longer cilia (>12 µm). Ciliary beat frequency also 

decreased slightly for longer (>12 µm) cilia (Fig. 6A). Those results are compatible with the work of 

Khona, et al., on long-cilia mutants (50). In the prior study four lf mutants were analyzed and displayed 

a reduced beat frequency (by 8-16%) as well as a reduced swimming velocity (by 26-57%) for cilia length 
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longer than 18 µm. Taken together, these results suggest that ciliary length is optimized in the normal 

wild-type cell and that shorter or longer cilia propel the cell with lower efficiency.  

Conclusion  

Periodic beating initiates as cilia become longer than 2-4 µm, which suggests that a critical length is 

necessary for cilia oscillations. In periodically-beating cilia, beat frequency is consistent over the normal 

range of cilium length, decreasing by a few percent as length increases from 4 µm to 12 µm. Average 

curvature is also conserved in Chlamydomonas cilia at different lengths, so, the waveform shapes of 

short cilia differ qualitatively from the waveforms of longer cilia. The local mechanical behavior of the 

cilium is stable over this length range, and thus differences in cilia length alone can explain qualitative 

changes in the ciliary waveform.  In future studies, these data may help distinguish competing 

hypotheses of the mechanism of ciliary oscillation.  
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Figures captions  

FIGURE 1. Example of analysis of body motion and cilium waveform. (A) The first video frame shows the 

translation of the center of the cell body (cyan curve) and cell body rotation 𝜙(𝑡) (red arrow) over the duration 

of the video. (B) Cropped area highlighting the cilium. The polynomial fit of the cilium is shown in cyan; its base is 

marked by a red circle. The Cartesian coordinate system based on the cilium proximal end is shown in black.  

FIGURE 2. Quantification of periodicity of ciliary beating. Example plots of the normalized auto-covariance of cilia 

tangent angle, 𝑎(𝜏), plotted vs. time lag, 𝜏; the period of beating is defined by the first peak of magnitude greater 

than a specified threshold (0.15), at a non-zero lag 𝑎̂𝑐 (red circle). (A) Example from cell with periodic beating, (B) 

Example from cell with non-periodic beating. 

FIGURE 3. Analysis of body motion for each range of ciliary length. (A) Cell body average rotation rate Ω 

(revolutions per second, rps). (B) Beat frequency estimated from body motion 𝑓𝑏 (Hz). (C) Average rotation rate Ω 

(rps) of the cell body during power and recovery stroke. (* significantly different (p<0.05), NS: Non-Significant. 

Statistical analysis by Anova on ranks). 

FIGURE 4. Analysis of periodicity of cilia motion for each range of ciliary length. (A) Value of the peak normalized 

auto-covariance 𝑎̂𝑐  computed from waveform angle 𝜃. Values <0.15 are considered to represent non-periodic 

behavior. (B) Percentage of periodic cilia motion.  

FIGURE 5. Representative ciliary waveforms for each length range. (A) Top row - Waveforms with dimensions in 

μm, reproduced to scale. (B) Bottom row - Dimensionless (scaled) waveforms. 

FIGURE 6. Parameters estimated from the tangent angle of the waveform, for periodically-beating cilia in each 

range of ciliary length. (A) Ciliary beat frequency 𝑓𝑐 (Hz) estimated from tangent angle. (B) Bend amplitude 𝜃̃ (rad). 

(Inset illustrates the mean value (blue, overbar) (∙)̅̅ ̅ and amplitude (red, tilde) (∙)̃ of a periodic parameter). (C) 

Average curvature 𝜅̅ (rad/𝜇m). (D) Magnitude of accumulated bend (curvature normalized by length) |𝜅̅𝐿| (rad). 

FIGURE 7. Global measures of power and torque developed by the cilium for each length range. (A) Average 

torque applied by the cilium about the center of the cell body 𝑀̅𝑐  (pN- (B) Amplitude of variation in the 

instantaneous torque applied by the cilium to the cell body 𝑀̃𝑐 (pN-𝜇m). (C) Average power 𝑃̅𝑐 (aW) generated by 

the cilium. (D) Amplitude of variation in instantaneous power generated by the cilium 𝑃̃𝑐 (aW). 

FIGURE 8. Comparison between torque and power estimates calculated from cell body motion and cilia 

waveform. (A). Average torque estimated from body motion 𝑀̅𝑏  (pN-µm) vs average torque estimated from 

waveform 𝑀̅𝑐  (pN-µm). (B) Amplitude of variation in instantaneous torque estimated from cell body motion 𝑀̃𝑏 

(pN-µm) vs amplitude of torque estimated from waveform 𝑀̃𝑐 (pN-µm). (C). Ratio 𝑀̃𝑏/𝑀̃𝑐 for each range of ciliary 

length. (D) Average power dissipated by cell body 𝑃̅𝑏 (aW) vs average power generated by the cilium 𝑃̅𝑐 (aW). (E). 

Amplitude of variation in instantaneous power dissipated by cell body 𝑃̃𝑏 (aW) vs amplitude of power generated 

by the cilium 𝑃̃𝑐 (aW) (grey dashed lines are the lines of identity, 𝑦 = 𝑥; the red lines depict least-squares fits). (F) 

Ratio 𝑃̃𝑏/𝑃̃𝑐 for each range of ciliary length. 
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FIGURE 9. Amplitudes of specific contributions to internal forces within the cilium, estimated from the ciliary 

waveform, for each length range. (A) Amplitude of force (torque per unit length) required to overcome viscous 

drag 𝐹̃𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (pN). (B) Amplitude of force required to overcome resistance to shear 𝐹̃𝑠ℎ𝑒𝑎𝑟 (pN). (C) Amplitude of 

force required to produce elastic bending of doublets and central pair 𝐹̃𝑏𝑒𝑛𝑑𝑖𝑛𝑔 (pN). (D) Amplitude of net dynein 

force 𝐹̃𝑑𝑦𝑛𝑒𝑖𝑛 (pN).  

FIGURE 10. Predicted frequency 𝒇𝒑  (Hz) vs length 𝑳  ( 𝛍 m) in simulations of ciliary oscillations from four 

mathematical models. (A) The curvature-controlled (HB) model. (B) The geometric clutch (GC) model. (C) The 

viscoelastic flutter (VF) model. (D) An axially-loaded beam (AB) model. 


