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Abstract— Because data from a variety of wearout mechanisms is 

confounded in circuits, we apply machine learning techniques to 

detect the parameters of competing failure mechanisms in ring 

oscillators, which more closely mimic circuit behavior than test 

structures. This is the first known application using data analysis 

to distinguish competing wearout mechanisms in circuit-level 

data. To quickly and efficiently analyze failure data, we propose 

to use maximum likelihood estimation to separately determine the 

parameters of each underlying distribution by only observing the 

time-to-failure of samples. The quasi-Newton method is used to 

update and optimize the parameter extraction. 

Index Terms—Failure analysis; Quasi-Newton optimization; 

Time-dependent dielectric breakdown (TDDB); Wearout; 

Weibull distribution 

I. INTRODUCTION  

Because emerging technologies, such as autonomous 

vehicles and wearable sensors for health monitoring, are 

becoming increasingly interrelated with public safety, the need 

for the assessment of highly reliable complex systems is 

important. To meet this demand, it is important to not just 

check if test structure data meet lifetime requirements, but to 

also test circuit-like test structures, such as ring oscillators.  

Because of the presence of confounded wearout mechanisms 

in circuit-like test structures, new data analysis methods are 

required.  In this work, machine learning techniques are used 

to analyze failure data.  

Ring oscillators and other small circuit blocks, which have 

behaviors similar to circuits, can be used to test for failure 

modes.  However, unlike test structures that isolate failure 

modes, in circuits, various wearout mechanisms are 

convoluted with each other.  Generally, invasive diagnostic 

methods for failure analysis, such as transmission electron 

microscopy (TEM), e-beam, or scanning electron microscopy 

(SEM), are used to study the failure modes, which require 

samples to be cut open, for example, using focused ion beam 

(FIB) techniques [1], [2]. When devices are built at the FinFET 

node or smaller, the metrology for TEM and other failure 

analysis techniques can become intricate and complex, 

requiring significant time to prepare and analyze samples. This 

causes a wait time to receive the failure results and high costs, 

which can impact product costs if done too often.  Therefore, 

it is necessary to find a quick and non-invasive method to 

separate the causes of failure, so that efforts for process 

improvement can be prioritized. 

This work uses 14nm FinFET ring oscillators as the circuit 

vehicle to extract wearout data, caused by a wide variety of 

wearout mechanisms, including time-dependent dielectric 

breakdown (TDDB), electromigration (EM), and stress-

induced voiding (SIV).  The ring oscillators are based on the 

14nm FinFET pdk technology node design kit jointly 

developed by IBM, GlobalFoundries (GF), and Samsung. We 

use lifetime simulation of circuits [3]-[5] to generate the data 

sets to test our methodology.  The lifetime simulation models 

are calibrated to test structure data.  They take into account the 

stress of layout geometries and transistors, based on circuit 

operating conditions.   

Using the data on time-to-failure of samples, maximum 

likelihood estimation analysis (MLE) [6] and the Weibull 

distribution are applied to detect the Weibull parameters of the 

primary and secondary wearout mechanisms, which are 

competing and independent of each other. We investigate the 

application of the quasi-Newton method and modifications to 

the Davidon-Fletcher-Powell (DFP) algorithm for 

implementing MLE. 
In the next section, we provide background information on 

machine learning and the quasi-Newton method algorithm that 
we will use to extract parameters.  Section 3 summarizes the 
wearout models and circuit example used in this paper.  Section 
4 discusses the modeling of competing and independent 
wearout mechanisms, followed by its application to our circuits 
in Section 5. Section 6 summarizes the parameter extraction 
method, followed by a discussion in Section 7. The paper 
concludes in Section 8 with a summary.   

II. MACHINE LEARNING 

Machine learning is an automated data analysis method 

that uses algorithms to iteratively learn from data and improve 

performance measure, such as prediction accuracy, patterns 

and/or key trends [7]. The advantages for using machine 

learning include quicker, faster, scalable, and more cost-

effective analysis of complex data. For reliability applications, 

in this work, machine learning is also used to identify model 

parameters based on collected time-to-failure data. 
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The quasi-Newton and gradient descent methods are the 

two most common updating techniques in machine learning 

[8], [9]. We employ the quasi-Newton method instead of a 

gradient descent method in MLE to find the parameters of the 

competing Weibull distributions.  The quasi-Newton method, 

which is a second-order method, uses fewer steps to find the 

optimal value, taking more time to execute each step, while the 

gradient descent method, which is a first-order method, has the 

opposite properties [10]. The gradient descent is more suitable 

when there is a large data set or numerous parameters (ex. 

millions of samples or thousands of parameters), whereas the 

quasi-Newton method is used for problems with the opposite 

characteristics.  Generally, industrial data sets vary from on the 

order of 10 to 1000 samples, and there are usually two wearout 

mechanisms that are most dominant. Therefore, only a few 

parameters need to be determined.  Consequently, we have 

chosen to use the quasi-Newton method in our examples. 

A. Quasi-Newton Method 

The quasi-Newton method is a class of optimization 
algorithms that can find the minima or maxima of functions. It 
is based on Newton’s method, which uses the first and second 
derivative (Hessian matrix) values to find the roots of a 
function. Newton’s method can be thought of as similar to a 
gradient descent method with the addition of using second-
order information to change the step size and direction. This 
addition of the Hessian information can help avoid descent 
directions that plateau too quickly. Newton’s method is 
generally computationally expensive and slow, because it is 
more difficult to calculate the second derivative. The quasi-
Newton method overcomes this problem by approximating the 
Hessian matrix instead of computing it directly. A variety of 
algorithms are available that involve different approximation 
methods for the Hessian matrix.   

B. Algorithms for the Quasi-Newton Method 

Two of the most common updating algorithms are the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Davidon-

Fletcher-Powell (DFP) algorithms. Both algorithms are almost 

the same, differing only in the Hessian matrix update, and are 

complementary [11], [12]. Because our data set is generally on 

the order of 10 to 1000 samples, we use the DFP algorithm, 

which is less complicated than BFGS in computation. DFP uses 

the secant method to approximate the Hessian matrix. The 

complete procedure and modifications will be discussed in 

Section VI. 

III. WEAROUT MODELS AND CIRCUIT EXAMPLE 

Wearout mechanisms for devices, which include front-
end/middle-end/back-end of line time-dependent dielectric 
breakdown (FEOL/MOL/BEOL TDDB), electromigration 
(EM), and stress-induced voiding (SIV) can be described using 
the Weibull distribution with two parameters. The parameters 
are the characteristic lifetime, η, which is the time-to-failure of 
a sample at 63% failure probability, and the shape parameter, β, 
which describes the spread of the distribution of failure 
samples. 

A. TDDB 

Front-end of the line time-dependent dielectric breakdown 

(FEOL TDDB, also referred to as GTDDB) occurs when traps 

build up in the gate oxide region, and can be modeled as [13], 

[14]: 

η = 𝐴𝐹𝐸𝑂𝐿(𝑊𝐿)−1 𝛽⁄ 𝑒−1 𝛽⁄ 𝑉𝑎+𝑏𝑇𝑒𝑥𝑝 (
𝑐𝑇+𝑑

𝑇2 ) 𝑠−1 (1) 

where a, b, c, d, and 𝐴𝐹𝐸𝑂𝐿  are process-dependent constants. 

V, T, and s are the voltage, temperature, and probability of 

stress, respectively. W and L are the width and length of the 

device. Experimental data were used to determine the 

constants [15]. 

Back-end of line time-dependent dielectric breakdown 

(BEOL TDDB, also referred to as BTDDB) occurs in the 

dielectric region between adjacent metal interconnect lines, 

described as [3]: 

𝜂 = 𝐴𝐵𝐸𝑂𝐿𝐿𝑖
−1 𝛽⁄

𝑒𝑥𝑝(−𝛾𝐸𝑚 + 𝐸𝑎/𝑘𝑇)𝑠−1 (2) 

where 𝐴𝐵𝐸𝑂𝐿  is a constant that depends on the dielectric 

material properties, 𝐿𝑖 is the vulnerable length (distance where 

metals are parallel to each other), T is temperature, 𝛾 

(8.723113 cm/MV) is the field acceleration factor, k is the 

Boltzmann constant, s is the probability of stress, 𝐸𝑎  is 

activation energy (~0.5eV), and m is ½  for the √𝐸 model [16]. 

The electric field is dependent on voltage and distance between 

the conductors, 𝑆𝑖 , i.e., 𝐸 = 𝑉/𝑆𝑖 . The parameters are from 

experimental data [17].  

Middle-of-the-line time-dependent dielectric breakdown 

(MOL TDDB, also referred to as MTDDB) is now of a concern 

due to dimension scaling and structure change in FinFET 

devices. It occurs in the spacing between the gate and 

source/drain contacts, and is modeled similarly to BEOL 

TDDB [18]: 

𝜂 = 𝐴𝑀𝑂𝐿𝐿𝑖
−1 𝛽⁄

𝑒𝑥𝑝(−𝛾𝐸𝑚 + 𝐸𝑎/𝑘𝑇)𝑠−1 (3) 

where 𝐴𝑀𝑂𝐿  is a constant, 𝐸𝑎 is activation energy (~0.5eV), γ 

(8.723113 cm/MV) is the field acceleration factor, and m is 1 

for the E model [19]. The other parameters are similar to the 

BEOL TDDB model, and the parameters are from 

experimental data [19], [20]. 

B. EM 

Electromigration (EM) is the dislocation of atoms in 

interconnect metals from the momentum transfer of electrons, 

modeled as [21]: 

𝜂 = 𝐴𝐸𝑀𝐽−𝑛𝑒𝑥𝑝(𝐸𝑎/𝑘𝑇) (4) 

where 𝐴𝐸𝑀 is a constant, T is temperature, J is current density, 

𝐸𝑎  is activation energy (0.85eV for copper [22]), n=1 (void 

growth), and k is Boltzmann constant. The experimental data 

for the parameters is from [21]. 

C. SIV  

Stress-induced voiding (SIV) is device failure from the 

formation of voids by directionally biased motion of atoms 

induced from thermal mechanical stress between the metal and 

dielectric as follows [23]: 

𝜂 = 𝐴𝑆𝐼𝑉𝑊−𝑀(𝑇𝑜 − 𝑇)−𝑁𝑒𝑥𝑝(𝐸𝑎/𝑘𝑇) (5) 

where W is linewidth, M is geometry stress component, 𝑇𝑜 is 

stress-free temperature, T is temperature, N is thermal stress 



 

 

component,  𝐸𝑎  is activation energy, and 𝐴𝑆𝐼𝑉  is a constant. 

The experimental data for the parameters is from [24]. 

D. Ring Oscillator Circuit  

Because signals propagate through a circuit in various ways 

depending on the circuit design, the stress probabilities for 

each circuit will be different. The stress probability is the 

percentage of time the circuit is under stress. As shown in Fig. 

1, the ring oscillator is composed of identical inverters and 

physical connections. For all three TDDB mechanisms, the 

duty cycle was calculated through Cadence Virtuoso and 

SPICE simulations to all have the same value of 0.5 for both 

NMOS and PMOS devices in each stage. Because the duty 

cycle determines the percentage of time the NMOS or PMOS 

is on, this is equivalent to calculating the stress probabilities 

for the TDDB mechanisms for each device in the circuit. The 

characteristic lifetime of the circuit can be calculated by [5]: 

1 = ∑ (
𝜂𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝜂𝑖

)
𝛽𝑖

𝑛

𝑖=1

 (6) 

where 𝜂𝑖, i=1, …, n are the characteristic lifetimes of all the 

devices; and 𝛽𝑖 , i=1, … n are the corresponding shape 

parameters. Since all devices are identical, with identical 

structures,  

𝜂𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = (𝑥 ∗ 𝜂𝑖
−𝛽

)
−1 𝛽⁄

 (7) 

where x is the number of stages in the ring oscillator, and 𝜂𝑖 is 

η of an invertor, 𝜂𝑖𝑛𝑣 =  (𝜂𝑝𝑚𝑜𝑠
−𝛽

+ 𝜂𝑛𝑚𝑜𝑠
−𝛽

)
−1 𝛽⁄

 .   

However, for EM, the degradation is dependent on the 

current flowing through the backend layers, and the current is 

the stress. For the case of a ring oscillator circuit, the current is 

only present instantaneously when the device is turned on to 

pull internal nodes to power or the ground rail. The average 

current density, J, in (4), is computed based on the 

instantaneous current. For SIV, the temperature is the stress.  

 

VDD VDD VDD

1st stage 2nd stage nth stage 
 

Fig.1. The circuit diagram of an n-stage ring oscillator  

IV. COMPETING WEAROUT MECHANISMS 

Competing wearout mechanisms occur when failures are 
due to more than one degradation mode. These mechanisms 
are independent of each other. Suppose mechanism 1 (primary 
breakdown mode) has a probability density function, f1(t) and 
cumulative distribution function, F1(t). The survival function 
is R1(t) = 1 - F1(t). Similarly, mechanism 2 (secondary 
breakdown mode) has the probability density function, f2(t); 
cumulative distribution function, F2(t); survival function,  

R2(t) = 1 - F2(t). The competing failure probability density 
function, f(t), can be described as below [6]. 

f(t) = P{T1 = t, T2 ≥ t} ∪ P{T1 ≥ t, T2 = t} 

      = P(T1 = t,T2 ≥ t) + P(T1≥t, T2 = t )  

      = P(T1 = t) P( T2 ≥ t) + P(T1 ≥ t) P(T2 = t)  

      = f1(t) * R2 (t) + f2 (t) * R1(t)                                       (8) 
The competing failure probability density function should 

not be confused with the mixed Weibull probability density 
function, which has a similar equation shown below [25]: 

f(t) = a * f1(t) + b * f2(t)                                                                                (9) 

where a and b are the mixing weights. The mixed Weibull 
probability density function is where the breakdown occurs 
due to both mechanisms being present at the same time. 
However, the competing Weibull probability density function 
is where only one mechanism contributes to the breakdown at 
a specific failure time, but the cause could be either from 
mechanism 1 or 2, not both.  

V. PARAMETER EXTRACTION FOR COMPETING WEAROUT 

MECHANISMS 

In order to develop our methodology, we consider 3 ring 

oscillator structures, with the Weibull parameters for each set 

of competing mechanisms shown in Table I. Set I is based on 

a 11-stage ring oscillator, where the dominant and secondary 

wearout mechanisms are GTDDB and BTDDB, respectively. 

The dominant mechanism is the one that has the highest 

number of failures. Set 2 is based on a 501-stage ring oscillator, 

with EM being the dominant mechanism, and SIV as the 

secondary wearout mechanism. Set 3 is based on a 331-stage 

ring oscillator, with GTDDB as the dominant mechanism, and 

MTDDB as the secondary mechanism. 

To model the failure distribution of these competing 

mechanisms, a point is picked randomly from each distribution. 

The smaller value is set as the lifetime, because it is the 

dominant wearout mechanism that fails first at that time point. 

Then, the points are plotted as ordered pairs: (ln(t1), ln(-ln(1-

( 1

2𝑁
))), (ln(t2), ln(-ln(1-( 3

2𝑁
))), etc. Sample sizes N of 10, 100, 

and 1000 were generated for each set.  The resulting datasets 

are shown in Fig. 2.   

For a small sample size of 10, generally the failure times 

will be scattered closer together in the middle. When the 

sample sizes are increased, there is a higher probability of 

getting failure times at the extreme ends, with a lower or higher 

failure time. As the sample sizes are increased further to 1000, 

this results in the failure points landing closer together to the 

true Weibull parameters due to the sampling time range being 

enlarged, which is also why the accuracy in prediction 

increases for larger data sets. 

VI. METHODOLOGY TO EXTRACT COMPETING WEIBULL 

PARAMETERS  

A. Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is a method that 
determines the parameters of a model from given observations, 
which would be failure times in our examples, by finding the 
parameter values that maximizes the likelihood or highest  

 



 

 

TABLE I 

COMPETING WEIBULL PARAMETERS FOR RING OSCILLATORS 

Set # Ring Oscillator 

Type 

Mechanism 1 

(Primary) 

β1 η1 

(yrs) 

Mechanism 2 

(Secondary) 

β2 η2 

(yrs) 

1 11-STAGE GTDDB 1.64 101.1959 BTDDB 1.9 149.8532 

2 501-STAGE EM 1.2 25.1296 SIV 1.2 30.2113 

3 331-STAGE GTDDB 1.64 12.6963 MTDDB 0.98 23.1412 

 

 

 N=10 N=100 N=1000 

Case 1 

   

Case 2 

   

Case 3 

  
 

Fig. 2.  Distributions of data for the three case studies (x axis: unit years), varying sample size. P is probability. The pink markers 

correspond to the primary wearout mechanism, while the black markers correspond to the secondary wearout mechanism. 

 

probability of getting the observations given the parameters. 

The intuition is that the estimate which explains the data best 

will be the best estimator. MLE is employed to estimate the 

competing Weibull parameters for each set of distributions 

from Fig. 2.  

The likelihood function for uncensored data can be 

simplified from [6] as: 

       ℒ(𝜃)  =  𝐶 ∏ 𝑓(𝑡𝑖)
𝑁
𝑖=1                                                         (10) 

where θ is the set of competing Weibull parameters, β1, β2, η1, 
η2, and the log likelihood function can be written as  

 ln ℒ(𝜃)  =  ∑ ln 𝑓(𝑡𝑖) + ln 𝐶𝑁
𝑖=1                                   (11) 

where C is a constant. 
The derivatives can also be simplified from [6] as: 

𝜕 ln ℒ(𝜃)

𝜕𝛽1
 =  ∑ {

𝑑𝑅1(𝑡𝑖)

𝑑𝛽1
𝑓2(𝑡𝑖)  + 

𝑑𝑓1(𝑡𝑖)

𝑑𝛽1
𝑅2(𝑡𝑖)}𝑁

𝑖=1 /𝑓(𝑡𝑖)    (12) 

𝜕 ln ℒ(𝜃)

𝜕𝛽2
 =  ∑ {𝑅1(𝑡𝑖)

𝑑𝑓2(𝑡𝑖)

𝑑𝛽2
 +  𝑓1(𝑡𝑖)

𝑑𝑅2(𝑡𝑖)

𝑑𝛽2
}𝑁

𝑖=1 /𝑓(𝑡𝑖)    (13) 

𝜕 ln ℒ(𝜃)

𝜕𝜂1
 =  ∑ {

𝑑𝑅1(𝑡𝑖)

𝑑𝜂1
𝑓2(𝑡𝑖)  + 

𝑑𝑓1(𝑡𝑖)

𝑑𝜂1
𝑅2(𝑡𝑖)}𝑁

𝑖=1 /𝑓(𝑡𝑖)    (14) 

𝜕 ln ℒ(𝜃)

𝜕𝜂2
 =  ∑ {𝑅1(𝑡𝑖)

𝑑𝑓2(𝑡𝑖)

𝑑𝜂2
 +  𝑓1(𝑡𝑖)

𝑑𝑅2(𝑡𝑖)

𝑑𝜂2
}𝑁

𝑖=1 /𝑓(𝑡𝑖)    (15) 

𝑑𝑅𝑘(𝑡)

𝑑𝛽𝑘
 = −𝑅𝑘(𝑡) (

𝑡

𝜂𝑘
)

𝛽𝑘
ln (

𝑡

𝜂𝑘
)                                     (16) 

𝑑𝑓𝑘(𝑡)

𝑑𝛽𝑘
 =   (

𝑡

𝜂𝑘
)

𝛽𝑘−1

𝑅𝑘(𝑡) {(
1

𝜂𝑘
) + (

𝛽𝑘

𝜂𝑘
) ln (

𝑡

𝜂𝑘
)} −

                        𝑓𝑘(𝑡) (
𝑡

𝜂𝑘
)

𝛽𝑘
ln (

𝑡

𝜂𝑘
)                                       (17) 

𝑑𝑅𝑘(𝑡)

𝑑𝜂𝑘
 =  𝑅𝑘(𝑡) (

𝛽𝑘

𝜂𝑘
) (

𝑡

𝜂𝑘
)

𝛽𝑘
                                           (18) 

𝑑𝑓𝑘(𝑡)

𝑑𝜂𝑘
 =  (

𝛽𝑘

𝜂𝑘
)

2

(
𝑡

𝜂𝑘
)

𝛽𝑘−1

𝑅𝑘(𝑡) {−1 + (
𝑡

𝜂𝑘
)

𝛽𝑘
}             (19) 

where k=1 or 2. 

B. Quasi-Newton Algorithm 

The quasi-Newton method using the Davidon-Fletcher-

Powell algorithm is used to optimize eq. (11).  

Our implementation is shown in Fig. 2.  We made 

modifications to step 3 by choosing a step size different from 

conventional choices that find the step size through quadratic 

interpolation [6]. The quadratic interpolation method may be 

better suited for large data sets on the order of millions of 

samples, because it should converge faster than a fixed step 

size. However, sample sizes for reliability tests in industry 

usually range from 10 to 1000 samples, so the relatively small 

sample size here may cause the quadratic interpolation method 

to be stuck or lost in local minima/maxima points during the 

changing step size calculations. In this case, switching to a 



 

 

fixed constant step size can be considered, since the speed is 

still fast due to the relatively small sample size.  For our cases, 

using the quadratic interpolation method often resulted in 

changing step sizes that could not converge. However, when 

we choose our step size to be a fixed constant, such as 

α=0.0001, the algorithm would converge easily. 

 

Algorithm Procedure [6]  

1. Initial condition: 𝜃0 = [𝛽1, 𝛽2, 𝜂1, 𝜂2]𝑇, 𝐿0 = 𝑙𝑛𝐿(𝜃0) 

2. Set optimization direction: 

 𝑑𝑖 = −𝑆𝑖𝑔𝑖, where 𝑆𝑖 = 𝐼(𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑚𝑎𝑡𝑟𝑖𝑥),  

𝑔𝑖 =  − ∇ ln 𝐿 (𝜃𝑖)𝑇, i=0 

3. Line search: 𝜃𝑖+1 = 𝜃𝑖 + 𝛼𝑖𝑑
𝑖, where 𝛼𝑖 is the optimal 

step length 

4. Calculate parameters for Hessian matrix and new 

direction: 

𝑝𝑖 = 𝛼𝑖𝑑
𝑖,  𝑔𝑖+1 =  − ∇ ln 𝐿 (𝜃𝑖+1)𝑇, 𝑞𝑖 = 𝑔𝑖+1 − 𝑔𝑖  

5. Estimate inverse Hessian matrix: 

 𝑆𝑖+1 = 𝑆𝑖 +
𝑝𝑖𝑝𝑖𝑇

𝑝𝑖𝑇𝑞𝑖 −
𝑆𝑖𝑞𝑖𝑞𝑖𝑇𝑆𝑖

𝑞𝑖𝑇𝑆𝑖𝑞𝑖  

6. Find set of Weibull parameters: Set i=i+1. If i=4 

(number of Weibull parameters) then go to Step 7; 

otherwise go back to step 2. 

7. Iteration procedure for optimization and stop 

condition: 

If |ln 𝐿(𝜃𝑖) − 𝐿0| <  𝜀, then stop. Otherwise, set  

𝐿0 = ln 𝐿 ( 𝜃𝑖), i=0 and go back to step 2. 

Fig. 3.  Implementation of the maximum likelihood based 

parameter extraction algorithm.   

VII. ANALYSIS OF EXTRACTED COMPETING WEIBULL 

PARAMETERS  

A. Case Studies 

The initial conditions for β and η were both varied at the 

same increments for both competing mechanisms at the same 

time for sample sizes of 10, 100, and 1000. For example, in set 

1, the β and η of both mechanisms were both set at 5% 

deviation from the initial condition, and MLE was employed 

to obtain the estimation results. Then, this procedure was 

repeated by setting both β and η of both mechanisms at 10% 

deviation from the initial condition, and the process was 

repeated again increasing the deviation by 5% each time up to 

the 15% deviation from the initial condition. The entire 

procedure was also repeated for deviation from -5% to -15% 

from the initial condition. For a sample size of 10, usually the 

MLE was unable to separate the competing Weibull 

parameters after deviating more than ±5%. For the sample 

sizes of 100 and 1000, the MLE usually was unable to separate 

the competing Weibull parameters beyond ±15%.  The results 

are shown in Table II.   

For all three competing mechanism sets, regardless of 

sample size, the error in estimation of β values is not correlated 

to the amount of deviation in the initial guess. However, the 

percentage error in the estimated η values corresponds 

proportionally to the deviation in the initial guess. For both 

cases, there may be an occasional point where there is a large 

error, which may be due to the MLE being stuck in a local 

minimum. 

In all sets, the MLE was able to distinguish between the two 

competing mechanisms. However, the initial guess should be 

within ±5% of the final result if the sample size is 10 for more 

accurate results.  When the sample size is increased to 100, the 

initial condition can be farther from the final solution, i.e., 

± 15%, while still being able to separate the competing 

mechanisms. Generally, when the sample size is increased 

further from 100 to 1000, the accuracy in determining the β 

values does not have much of an effect, but the accuracy in 

determining η is increased slightly. Sometimes, the range of 

competing Weibull parameters may be known beforehand due 

to previous experience. In this case, taking the average of all 

calculated estimated parameters over the range in deviations in 

initial conditions may lower the estimated errors, as shown in 

Table III. 

B. Application to Accelerated Testing 

To study the competing mechanisms in accelerated testing, 

the 9-stage ring oscillator for GTDDB vs EM was chosen as 

an in-depth case study, because these were the only two 

detectable mechanisms over the test domain. The selectivity of 

each mechanism, which is defined as the probability of that 

mechanism failing first at the corresponding voltage and 

temperature, can found by using the Monte Carlo method, by 

using the steps described in Section V over all temperature and 

voltage conditions, as shown in Fig. 4.  

To pick a GTDDB dominant region, the test condition of 

2V, 37oC was selected, with GTDDB β=1.64, η= 26.92 min 

and EM β=1.2, η= 94.42 min, respectively, which has a 

GTDDB selectivity of 0.826. To pick an EM dominant region, 

the test condition of 2V, 32oC was selected, with GTDDB 

β=1.64, η= 160.49 min and EM β=1.2, η= 94.64 min, 

respectively, which has an EM selectivity of 0.7. For a region 

with a selectivity of 0.5 for both GTDDB and SIV, the test 

condition of 2V, 34oC was selected, with GTDDB β=1.64, η= 

87.79 min and EM β=1.2, η= 94.55 min, respectively. These 

test conditions were picked to ensure that the ring oscillators 

failed in a reasonable and short time range.  

 
(a) 

 
(b) 

Fig. 4. Selectivity for 9-stage ring oscillator (a) GTDDB and 

(b) EM      



 

 

TABLE II 

Maximum and Average Errors in Parameter Estimation vs Respective Deviations in Initial Conditions for Case Studies  

Case 
Sample 

Size 
Mechanism Parameter 

Max 

Error 

% Error 

in Initial 

Condition 

at Max 

Error 

Average of 

Absolute 

Error 

for All 

Deviations 

in Initial 

Conditions 

Corresponding 

Ranges used  

for Deviations 

in Initial 

Conditions 

#1  

(11-stage 

RO) 

10 

GTDDB 
β -16.605% -5% 13.409% 

-5% to +5% 
η 5.044% 5% 4.984% 

BTDDB 
β 9.747% -5% 8.127% 

η 5.008% 5% 4.993% 

100 

GTDDB 
β -25.868% 15% 12.356% 

-15% to +15% 
η 15.008% 15% 9.914% 

BTDDB 
β -61.884% 15% 37.969% 

η 14.997% 15% 9.973% 

1000 

GTDDB 
β 30.550% 15% 9.717% 

-15% to +15% 
η 14.728% 15% 9.865% 

BTDDB 
β 52.369% 10% 30.178% 

η 14.935% 15% 9.960% 

#2 

(501-

stage 

RO) 

10 

EM 
β -65.037% -5% 40.957% 

-5% to +5% 
η -5.298% -5% 5.211% 

SIV 
β -50.348% -5% 32.752% 

η -5.211% -5% 5.132% 

100 

EM 
β -16.275% -15% 10.360% 

-15% to +15% 
η 15.361% 15% 9.342% 

SIV 
β -18.458% 15% 6.076% 

η 14.902% 15% 9.485% 

1000 

EM 
β -8.036% -5% 4.472% 

-15% to +15% 
η -14.509% -15% 8.310% 

SIV 
β -14.855% 15% 8.227% 

η -14.701% -15% 9.174% 

#3 

(331-

stage 

RO) 

10 

GTDDB 
β -22.072% -5% 20.770% 

-5% to +5% 
η 6.140% 5% 4.692% 

MTDDB 
β 58.133% -5% 43.308% 

η 4.986% 5% 4.876% 

100 

GTDDB 
β -35.044% -10% 11.019% 

-15% to +15% 
η -14.191% -10% 8.458% 

MTDDB 
β 79.540% -10% 23.848% 

η -15.135% -15% 9.958% 

1000 

GTDDB 
β -25.465% -15% 9.110% 

-15% to +15% 
η -11.228% -15% 8.293% 

MTDDB 
β 72.419% -15% 19.656% 

η -14.658% -15% 9.635% 

 



 

 

TABLE III 

Averaged Estimated Values Over All Deviations in Initial Conditions vs Respective Errors for Case Studies 

Case 
Sample 

Size 
Mechanism Parameter 

Average of All  

Estimated Values 

Error of Averaged  

Estimated Value 

#1  

(11-

stage 

RO) 

10 

GTDDB 
β 1.420 -13.409% 

η 101.256 0.060% 

BTDDB 
β 2.054 8.127% 

η 149.876 0.015% 

100 

GTDDB 
β 1.517 -7.526% 

η 101.283 0.086% 

BTDDB 
β 2.229 17.341% 

η 149.891 0.025% 

1000 

GTDDB 
β 1.667 1.653% 

η 101.272 0.075% 

BTDDB 
β 2.205 16.047% 

η 149.894 0.027% 

#2 

(501-

stage 

RO) 

10 

EM 
β 0.709 -40.957% 

η 25.108 -0.087% 

SIV 
β 0.807 -32.752% 

η 30.187 -0.079% 

100 

EM 
β 1.115 -7.080% 

η 25.327 0.785% 

SIV 
β 1.166 -2.818% 

η 30.354 0.471% 

1000 

EM 
β 1.205 0.416% 

η 24.894 -0.938% 

SIV 
β 1.164 -3.036% 

η 30.093 -0.393% 

#3 

(331-

stage 

RO) 

10 

GTDDB 
β 1.299 -20.770% 

η 12.880 1.448% 

MTDDB 
β 1.404 43.308% 

η 23.167 0.110% 

100 

GTDDB 
β 1.586 -3.308% 

η 12.794 0.768% 

MTDDB 
β 1.184 20.782% 

η 23.121 -0.089% 

1000 

GTDDB 
β 1.505 -8.202% 

η 12.262 -3.418% 

MTDDB 
β 1.148 17.100% 

η 23.082 -0.254% 

 

 

 

 



 

 

TABLE IV 

Maximum and Average Errors in Parameter Estimation vs Respective Deviations in Initial Conditions  

for Accelerated Testing Application 

Case 
Sample 

Size 
Mechanism Parameter 

Max 

Error 

% Error in 

Initial 

Condition at 

Max Error 

Average of 

Absolute Error for 

All Deviations in 

Initial Conditions 

Corresponding 

Ranges used for 

Deviations in 

Initial Conditions 

GTDDB 

dominant 

10 

GTDDB 
β -20.79% -5% 20.71% 

-5% to +5% 
η -4.33% -5% 3.84% 

EM 
β 9.06% -5% 7.67% 

η -5.19% 5% 3.25% 

100 

GTDDB 
β -24.17% 5% 19.03% 

-15% to +15% 
η 13.82% 15% 7.58% 

EM 
β 7.94% 5% 5.43% 

η 17.03% -10% 9.38% 

1000 

GTDDB 
β -36.63% 10.00% 19.21% 

-15% to +15% 
η 14.96% 5% 9.04% 

EM 
β 31.99% -10% 12.67% 

η 10.80% -15% 7.90% 

EM 

dominant 

10 

EM 
β 26.71% 5% 26.57% 

-5% to +5% 
η 29.72% 5% 29.12% 

GTDDB 
β -17.16% 5% 17.13% 

η -5.34% 5% 4.92% 

100 

EM 
β -6.73% -5% 6.59% 

-15% to +15% 
η -15.62% 15% 14.59% 

GTDDB 
β 27.75% -10% 25.61% 

η -14.98% -15% 9.88% 

1000 

EM 
β 8.30% -10% 7.57% 

-15% to +15% 
η 2.77% -10% 1.23% 

GTDDB 
β -11.36% 15% 7.66% 

η 44.13% 15% 18.90% 

GTDDB 

& EM 

Selectivity 

of 0.5 

10 

GTDDB 
β -14.31% 5% & -5% 14.31% 

-5% to +5% 
η 18.16% -5% 17.66% 

EM 
β 17.11% 5% & -5% 17.11% 

η 14.64% 5% 14.13% 

100 

GTDDB 
β 18.90% -15% 16.46% 

-15% to +15% 
η -10.46% 5% 7.91% 

EM 
β 1.25% -5% 1.10% 

η 9.86% 15% 5.26% 

1000 

GTDDB 
β -22.07% -10% 9.39% 

-15% to +15% 
η -5.69% 10% 2.61% 

EM 
β 34.37% -15% 14.42% 

η 6.57% -5% 3.28% 



 

 

 

The analysis for the 9-stage ring oscillator at accelerated 

conditions is summarized in Table IV. Similar to the case 

studies, the MLE was able to discern between the two 

competing Weibull parameters. Since the MLE can distinguish 

at 50% selectivity with low absolute error, then it is not 

necessary to do testing at the GTDDB dominant and EM 

dominant conditions to find these failure modes, which can 

lower the sample sizes and costs. If the difference in η for the 

two mechanisms is larger than an order of magnitude, such as 

when the dominant mechanism has a selectivity of 90%, it will 

become difficult for MLE to distinguish the parameters for the 

two mechanisms, because there will be few samples coming 

from the non-dominant mechanism. The maximum error for 

the case studies and accelerated conditions does not have any 

correlation with the deviations in initial conditions, which may 

be due to the MLE being stuck in a local minimum. However, 

if necessary, the MLE algorithm can be further optimized by 

changing the step size and error limit for stopping the 

calculation, which may further decrease the errors.  

VIII. CONCLUSIONS 

Maximum likelihood estimation and Weibull distribution 
were used to distinguish primary and secondary wearout 
mechanisms for 14nm FinFET ring oscillators through quasi-
Newton algorithms. The error in estimation of β values for both 
mechanisms are uncorrelated to the error in initial condition 
values, and the error in estimation of η values for both 
mechanisms were found to be directly correlated to the error in 
initial condition values. For a sample size of 10, the wearout 
mechanisms were able to be distinguished up to a deviation 
error of  ±5% from the actual value for the initial condition, 
while the sample sizes of 100 and 1000 could be separated for 
up to a deviation error of  ±15% from the actual value for the 
initial condition. This is the first known procedure for 
separating wearout mechanisms in circuit level data using 
machine learning applications, which provides a quick and non-
invasive method to perform failure analysis at low costs. 
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