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Abstract— Because data from a variety of wearout mechanisms is
confounded in circuits, we apply machine learning techniques to
detect the parameters of competing failure mechanisms in ring
oscillators, which more closely mimic circuit behavior than test
structures. This is the first known application using data analysis
to distinguish competing wearout mechanisms in circuit-level
data. To quickly and efficiently analyze failure data, we propose
to use maximum likelihood estimation to separately determine the
parameters of each underlying distribution by only observing the
time-to-failure of samples. The quasi-Newton method is used to
update and optimize the parameter extraction.

Index Terms—TFailure analysis; Quasi-Newton optimization;
Time-dependent dielectric breakdown (TDDB); Wearout;
Weibull distribution

L INTRODUCTION

Because emerging technologies, such as autonomous
vehicles and wearable sensors for health monitoring, are
becoming increasingly interrelated with public safety, the need
for the assessment of highly reliable complex systems is
important. To meet this demand, it is important to not just
check if test structure data meet lifetime requirements, but to
also test circuit-like test structures, such as ring oscillators.
Because of the presence of confounded wearout mechanisms
in circuit-like test structures, new data analysis methods are
required. In this work, machine learning techniques are used
to analyze failure data.

Ring oscillators and other small circuit blocks, which have
behaviors similar to circuits, can be used to test for failure
modes. However, unlike test structures that isolate failure
modes, in circuits, various wearout mechanisms are
convoluted with each other. Generally, invasive diagnostic
methods for failure analysis, such as transmission electron
microscopy (TEM), e-beam, or scanning electron microscopy
(SEM), are used to study the failure modes, which require
samples to be cut open, for example, using focused ion beam
(FIB) techniques [1], [2]. When devices are built at the FinFET
node or smaller, the metrology for TEM and other failure
analysis techniques can become intricate and complex,
requiring significant time to prepare and analyze samples. This
causes a wait time to receive the failure results and high costs,
which can impact product costs if done too often. Therefore,
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it is necessary to find a quick and non-invasive method to
separate the causes of failure, so that efforts for process
improvement can be prioritized.

This work uses 14nm FinFET ring oscillators as the circuit
vehicle to extract wearout data, caused by a wide variety of
wearout mechanisms, including time-dependent dielectric
breakdown (TDDB), electromigration (EM), and stress-
induced voiding (SIV). The ring oscillators are based on the
14nm FinFET pdk technology node design kit jointly
developed by IBM, GlobalFoundries (GF), and Samsung. We
use lifetime simulation of circuits [3]-[5] to generate the data
sets to test our methodology. The lifetime simulation models
are calibrated to test structure data. They take into account the
stress of layout geometries and transistors, based on circuit
operating conditions.

Using the data on time-to-failure of samples, maximum
likelihood estimation analysis (MLE) [6] and the Weibull
distribution are applied to detect the Weibull parameters of the
primary and secondary wearout mechanisms, which are
competing and independent of each other. We investigate the
application of the quasi-Newton method and modifications to
the  Davidon-Fletcher-Powell ~ (DFP)  algorithm  for
implementing MLE.

In the next section, we provide background information on
machine learning and the quasi-Newton method algorithm that
we will use to extract parameters. Section 3 summarizes the
wearout models and circuit example used in this paper. Section
4 discusses the modeling of competing and independent
wearout mechanisms, followed by its application to our circuits
in Section 5. Section 6 summarizes the parameter extraction
method, followed by a discussion in Section 7. The paper
concludes in Section 8 with a summary.

II.  MACHINE LEARNING

Machine learning is an automated data analysis method
that uses algorithms to iteratively learn from data and improve
performance measure, such as prediction accuracy, patterns
and/or key trends [7]. The advantages for using machine
learning include quicker, faster, scalable, and more cost-
effective analysis of complex data. For reliability applications,
in this work, machine learning is also used to identify model
parameters based on collected time-to-failure data.



The quasi-Newton and gradient descent methods are the
two most common updating techniques in machine learning
[8], [9]. We employ the quasi-Newton method instead of a
gradient descent method in MLE to find the parameters of the
competing Weibull distributions. The quasi-Newton method,
which is a second-order method, uses fewer steps to find the
optimal value, taking more time to execute each step, while the
gradient descent method, which is a first-order method, has the
opposite properties [10]. The gradient descent is more suitable
when there is a large data set or numerous parameters (ex.
millions of samples or thousands of parameters), whereas the
quasi-Newton method is used for problems with the opposite
characteristics. Generally, industrial data sets vary from on the
order of 10 to 1000 samples, and there are usually two wearout
mechanisms that are most dominant. Therefore, only a few
parameters need to be determined. Consequently, we have
chosen to use the quasi-Newton method in our examples.

A. Quasi-Newton Method

The quasi-Newton method is a class of optimization
algorithms that can find the minima or maxima of functions. It
is based on Newton’s method, which uses the first and second
derivative (Hessian matrix) values to find the roots of a
function. Newton’s method can be thought of as similar to a
gradient descent method with the addition of using second-
order information to change the step size and direction. This
addition of the Hessian information can help avoid descent
directions that plateau too quickly. Newton’s method is
generally computationally expensive and slow, because it is
more difficult to calculate the second derivative. The quasi-
Newton method overcomes this problem by approximating the
Hessian matrix instead of computing it directly. A variety of
algorithms are available that involve different approximation
methods for the Hessian matrix.

B. Algorithms for the Quasi-Newton Method

Two of the most common updating algorithms are the
Broyden—Fletcher—Goldfarb—Shanno (BFGS) and Davidon-
Fletcher-Powell (DFP) algorithms. Both algorithms are almost
the same, differing only in the Hessian matrix update, and are
complementary [11], [12]. Because our data set is generally on
the order of 10 to 1000 samples, we use the DFP algorithm,
which is less complicated than BFGS in computation. DFP uses
the secant method to approximate the Hessian matrix. The
complete procedure and modifications will be discussed in
Section VI.

III.  WEAROUT MODELS AND CIRCUIT EXAMPLE

Wearout mechanisms for devices, which include front-
end/middle-end/back-end of line time-dependent dielectric
breakdown (FEOL/MOL/BEOL TDDB), electromigration
(EM), and stress-induced voiding (SIV) can be described using
the Weibull distribution with two parameters. The parameters
are the characteristic lifetime, #, which is the time-to-failure of
a sample at 63% failure probability, and the shape parameter, f,
which describes the spread of the distribution of failure
samples.

A. TDDB

Front-end of the line time-dependent dielectric breakdown
(FEOL TDDB, also referred to as GTDDB) occurs when traps
build up in the gate oxide region, and can be modeled as [13],
[14]:

N = AppoL (WL) Ve /By attTexp (T 51 (1)
where a, b, ¢, d, and Apgp; are process-dependent constants.
V, T, and s are the voltage, temperature, and probability of
stress, respectively. W and L are the width and length of the
device. Experimental data were used to determine the
constants [15].

Back-end of line time-dependent dielectric breakdown
(BEOL TDDB, also referred to as BTDDB) occurs in the
dielectric region between adjacent metal interconnect lines,

described as [3]:

n = ApeouL; P exp(=yE™ + Eq/kT)s ™" 2
where Aggop 1S a constant that depends on the dielectric
material properties, L; is the vulnerable length (distance where
metals are parallel to each other), T is temperature, y
(8.723113 cm/MV) is the field acceleration factor, k is the
Boltzmann constant, s is the probability of stress, E, is
activation energy (~0.5¢V), and m is % for the vE model [16].
The electric field is dependent on voltage and distance between
the conductors, S;, i.e., E = V/S;. The parameters are from
experimental data [17].

Middle-of-the-line time-dependent dielectric breakdown
(MOL TDDB, also referred to as MTDDB) is now of a concern
due to dimension scaling and structure change in FinFET
devices. It occurs in the spacing between the gate and
source/drain contacts, and is modeled similarly to BEOL
TDDB [18]:

n = AyouL; P exp(—yE™ + Eo/kT)s ™ (3)
where Ay, 1S a constant, E, is activation energy (~0.5eV), y
(8.723113 cm/MV) is the field acceleration factor, and mis 1
for the E model [19]. The other parameters are similar to the
BEOL TDDB model, and the parameters are from
experimental data [19], [20].

B. EM

Electromigration (EM) is the dislocation of atoms in
interconnect metals from the momentum transfer of electrons,
modeled as [21]:

n = Apu) "exp(Eq/kT) “4)
where Ag), is a constant, T is temperature, J is current density,
E, is activation energy (0.85eV for copper [22]), n=1 (void
growth), and k is Boltzmann constant. The experimental data
for the parameters is from [21].

C. SIv

Stress-induced voiding (SIV) is device failure from the
formation of voids by directionally biased motion of atoms
induced from thermal mechanical stress between the metal and
dielectric as follows [23]:

n=AsyW™M(T, = T)Nexp(E,/kT) (5)
where W is linewidth, M is geometry stress component, T, is
stress-free temperature, 7 is temperature, N is thermal stress



component, E, is activation energy, and Ag;, is a constant.
The experimental data for the parameters is from [24].

D. Ring Oscillator Circuit

Because signals propagate through a circuit in various ways
depending on the circuit design, the stress probabilities for
each circuit will be different. The stress probability is the
percentage of time the circuit is under stress. As shown in Fig.
1, the ring oscillator is composed of identical inverters and
physical connections. For all three TDDB mechanisms, the
duty cycle was calculated through Cadence Virtuoso and
SPICE simulations to all have the same value of 0.5 for both
NMOS and PMOS devices in each stage. Because the duty
cycle determines the percentage of time the NMOS or PMOS
is on, this is equivalent to calculating the stress probabilities
for the TDDB mechanisms for each device in the circuit. The

characteristic lifetime of the circuit can be calculated by [5]:
n

1 Z <ncircuit)‘8i ©
= M
where 71;, i=1, ..., n are the characteristic lifetimes of all the
devices; and B;, i=1, ... n are the corresponding shape
parameters. Since all devices are identical, with identical
structures,

-1
Ncircuit = (X * 77;3) ” )
where x is the number of stages in the ring oscillator, and 7; is
. -8 -8 \ VB
n of an invertor, Niny = (Mymos + Mrmos) )

However, for EM, the degradation is dependent on the
current flowing through the backend layers, and the current is
the stress. For the case of a ring oscillator circuit, the current is
only present instantaneously when the device is turned on to
pull internal nodes to power or the ground rail. The average
current density, J, in (4), is computed based on the
instantaneous current. For SIV, the temperature is the stress.

1t stage 2nd stage nth stage

Fig.1. The circuit diagram of an n-stage ring oscillator

IV. COMPETING WEAROUT MECHANISMS

Competing wearout mechanisms occur when failures are
due to more than one degradation mode. These mechanisms
are independent of each other. Suppose mechanism 1 (primary
breakdown mode) has a probability density function, fi(t) and
cumulative distribution function, Fi(t). The survival function
is Ri(t) = 1 - Fi(t). Similarly, mechanism 2 (secondary
breakdown mode) has the probability density function, f(t);
cumulative distribution function, F»(t); survival function,

Ra(t) = 1 - Fa(t). The competing failure probability density
function, f(t), can be described as below [6].

f(t) ZP{T1=t, TzZt} U P{T1Zt, Tzzt}
=P(Ti=t,T,>t) + P(Ti>t, To=t)
=P(Ti=t)P(T2>1t) + P(T: > t) P(T2=1t)
=fi() * R () + £2(0) * Ry(t) ®)
The competing failure probability density function should
not be confused with the mixed Weibull probability density
function, which has a similar equation shown below [25]:

ft)y=a * fi(t) + b * fi(t) ©

where a and b are the mixing weights. The mixed Weibull
probability density function is where the breakdown occurs
due to both mechanisms being present at the same time.
However, the competing Weibull probability density function
is where only one mechanism contributes to the breakdown at
a specific failure time, but the cause could be either from
mechanism 1 or 2, not both.

V. PARAMETER EXTRACTION FOR COMPETING WEAROUT
MECHANISMS

In order to develop our methodology, we consider 3 ring
oscillator structures, with the Weibull parameters for each set
of competing mechanisms shown in Table 1. Set I is based on
a 11-stage ring oscillator, where the dominant and secondary
wearout mechanisms are GTDDB and BTDDB, respectively.
The dominant mechanism is the one that has the highest
number of failures. Set 2 is based on a 501-stage ring oscillator,
with EM being the dominant mechanism, and SIV as the
secondary wearout mechanism. Set 3 is based on a 331-stage
ring oscillator, with GTDDB as the dominant mechanism, and
MTDDB as the secondary mechanism.

To model the failure distribution of these competing
mechanisms, a point is picked randomly from each distribution.
The smaller value is set as the lifetime, because it is the
dominant wearout mechanism that fails first at that time point.
Then, the points are plotted as ordered pairs: (In(t;), In(-In(1-
G))s (In(t2), In(-In(1-(%))), etc. Sample sizes N of 10, 100,
and 1000 were generated for each set. The resulting datasets
are shown in Fig. 2.

For a small sample size of 10, generally the failure times
will be scattered closer together in the middle. When the
sample sizes are increased, there is a higher probability of
getting failure times at the extreme ends, with a lower or higher
failure time. As the sample sizes are increased further to 1000,
this results in the failure points landing closer together to the
true Weibull parameters due to the sampling time range being
enlarged, which is also why the accuracy in prediction
increases for larger data sets.

VI. METHODOLOGY TO EXTRACT COMPETING WEIBULL
PARAMETERS

A. Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method that
determines the parameters of a model from given observations,
which would be failure times in our examples, by finding the
parameter values that maximizes the likelihood or highest



TABLE I
COMPETING WEIBULL PARAMETERS FOR RING OSCILLATORS

Set# | Ring Oscillator Mechanism 1 Bi ni Mechanism 2 )7 n2
Type (Primary) (yrs) (Secondary) (yrs)
1 11-STAGE GTDDB 1.64 101.1959 BTDDB 1.9 149.8532
501-STAGE EM 1.2 25.1296 SIV 1.2 30.2113
3 331-STAGE GTDDB 1.64 12.6963 MTDDB 0.98 23.1412
N=10 N—100 N=1000
z - GTDDB sample i ~GTDDB sarnple ﬁ « GTDDB sample
| - BTDDB sample - BTDDB sample + BTDDB sample
= 2 —GTDDB, = 1.64,  =101.1959) ~ —~ 2[—GTDDB, 3= 1.64, n =101.1959 - = 2| -GTDDB, /= 1.64, 5 =101.1959
8. (l—BTDDB, 5=1.9,1,=149.8532 | . - o | —BTDDB, 7=1.9, ,,=1w.asai// & 0/ —BTDDB, 3 =1.9, ; =149.8532
Case 1 T 4t I 4 e = 4
£ .l = £ 5 =
-8 -8 1—:: {
1% 1 2 3 4 5 6 1% 1 2 3 4 5 o 1 2 | 3 N 5
In(t) In(t) n(t)
6 6 6
« EM sample - EM sample al® EM sample
4. SIV sample Afl. SIV sample * SIV sample
= 2[—EM, g=1.2,=25.1296 = 2[—EM, = 1.2, 4 =25.1296, = 2[—EM, 3=1.2, 5=25.1296
o g|—slv, g=1.2, 1=30.2113 L o pl—SIv, #=1.2 5 =30.2113 / o =SV, 4=1.2 1=30.2113
T2 i ) — )
Case2 =4 T . o
c £ £
= 5 = % ] .
8 £ 8
1“-4 3 2 4 0 1 2 3 4 5 & 1“—4 3 2 14 0 1 2 3 4 5 6 10—4 3 2 4 0
In(t) In(t) ln(ﬂ
s * GTDDB sample 5 + GTDDB sample s '31",,3:“'""‘,"
« MTDDB sa_mple _ * MTDDB sample . . sample .
g e ko e B = R
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Fig. 2. Distributions of data for the three case studies (x axis: unit years), varying sample size. P is probability. The pink markers
correspond to the primary wearout mechanism, while the black markers correspond to the secondary wearout mechanism.

probability of getting the observations given the parameters.
The intuition is that the estimate which explains the data best
will be the best estimator. MLE is employed to estimate the
competing Weibull parameters for each set of distributions
from Fig. 2.

The likelihood function for uncensored data can be
simplified from [6] as:

L) = CITL, f(t) (10)

where 6 is the set of competing Weibull parameters, 1, 2, 711,
72, and the log likelihood function can be written as

InL@® = ¥V, Inf(t)+ InC (11)
where C is a constant.
The derivatives can also be simplified from [6] as:
2 = I TR A + TEERW/F) (12)
9B
8 InL(6 i i
a2 = B {R) B fl(t )"RZ“ T ) (13)
O = w1 + LR} /() (14)
6771 = i
) 1;:2(9) _ {Rl(t)dfz(tl) + fl(t)dRz(tl)}/f(ti) (15)
dRj(t) B t
e —Rk(t)( ) n(ﬁ) (16)

T2 = () R+ CImG) -

@ () (L) a”
WO g ey (B )(g)ﬁk 1o
w0 (@ hof @) o

where k=1 or 2.

B. Quasi-Newton Algorithm

The quasi-Newton method using the Davidon-Fletcher-
Powell algorithm is used to optimize eq. (11).

Our implementation is shown in Fig. 2. We made
modifications to step 3 by choosing a step size different from
conventional choices that find the step size through quadratic
interpolation [6]. The quadratic interpolation method may be
better suited for large data sets on the order of millions of
samples, because it should converge faster than a fixed step
size. However, sample sizes for reliability tests in industry
usually range from 10 to 1000 samples, so the relatively small
sample size here may cause the quadratic interpolation method
to be stuck or lost in local minima/maxima points during the
changing step size calculations. In this case, switching to a



fixed constant step size can be considered, since the speed is
still fast due to the relatively small sample size. For our cases,
using the quadratic interpolation method often resulted in
changing step sizes that could not converge. However, when
we choose our step size to be a fixed constant, such as
0=0.0001, the algorithm would converge easily.

Algorithm Procedure [6]

1. Initial condition: 8° = [B;, 5,,11,1,]7, L° = InL(8°)

2. Set optimization direction:

d' = —S;g', where S; = I(the unit matrix),

gt= —VInL (897, i=0

3.Line search: 01! = 9! + a;d’, where q; is the optimal

step length

4. Calculate parameters for Hessian matrix and new

direction:

pi - aidi, gi+1 = —VinlL (9i+1)T’ q; = gi+1 _ gi

5. Estimate inverse Hessian matrix:

T g igiTs,

Siv1 = S+ gizTqu - S;zTZiqfl
6. Find set of Weibull parameters: Set i=i+1. If i=4
(number of Weibull parameters) then go to Step 7;
otherwise go back to step 2.

7. Iteration procedure for optimization and stop
condition:

If |InL(8") — L°| < &, then stop. Otherwise, set

L° =1InL (8", i=0 and go back to step 2.

Fig. 3. Implementation of the maximum likelihood based

parameter extraction algorithm.

VII. ANALYSIS OF EXTRACTED COMPETING WEIBULL

PARAMETERS
A. Case Studies

The initial conditions for £ and 5 were both varied at the
same increments for both competing mechanisms at the same
time for sample sizes of 10, 100, and 1000. For example, in set
1, the p and 7 of both mechanisms were both set at 5%
deviation from the initial condition, and MLE was employed
to obtain the estimation results. Then, this procedure was
repeated by setting both § and # of both mechanisms at 10%
deviation from the initial condition, and the process was
repeated again increasing the deviation by 5% each time up to
the 15% deviation from the initial condition. The entire
procedure was also repeated for deviation from -5% to -15%
from the initial condition. For a sample size of 10, usually the
MLE was unable to separate the competing Weibull
parameters after deviating more than +£5%. For the sample
sizes of 100 and 1000, the MLE usually was unable to separate
the competing Weibull parameters beyond +15%. The results
are shown in Table II.

For all three competing mechanism sets, regardless of
sample size, the error in estimation of S values is not correlated
to the amount of deviation in the initial guess. However, the
percentage error in the estimated #x values corresponds
proportionally to the deviation in the initial guess. For both
cases, there may be an occasional point where there is a large

error, which may be due to the MLE being stuck in a local
minimum.

In all sets, the MLE was able to distinguish between the two
competing mechanisms. However, the initial guess should be
within +5% of the final result if the sample size is 10 for more
accurate results. When the sample size is increased to 100, the
initial condition can be farther from the final solution, i.e.,
+ 15%, while still being able to separate the competing
mechanisms. Generally, when the sample size is increased
further from 100 to 1000, the accuracy in determining the S
values does not have much of an effect, but the accuracy in
determining # is increased slightly. Sometimes, the range of
competing Weibull parameters may be known beforehand due
to previous experience. In this case, taking the average of all
calculated estimated parameters over the range in deviations in
initial conditions may lower the estimated errors, as shown in
Table I11.

B. Application to Accelerated Testing

To study the competing mechanisms in accelerated testing,
the 9-stage ring oscillator for GTDDB vs EM was chosen as
an in-depth case study, because these were the only two
detectable mechanisms over the test domain. The selectivity of
each mechanism, which is defined as the probability of that
mechanism failing first at the corresponding voltage and
temperature, can found by using the Monte Carlo method, by
using the steps described in Section V over all temperature and
voltage conditions, as shown in Fig. 4.

To pick a GTDDB dominant region, the test condition of
2V, 37°C was selected, with GTDDB f=1.64, = 26.92 min
and EM f=1.2, #= 94.42 min, respectively, which has a
GTDDB selectivity of 0.826. To pick an EM dominant region,
the test condition of 2V, 32°C was selected, with GTDDB
p=1.64, 5= 16049 min and EM p=1.2, = 94.64 min,
respectively, which has an EM selectivity of 0.7. For a region
with a selectivity of 0.5 for both GTDDB and SIV, the test
condition of 2V, 34°C was selected, with GTDDB f=1.64, =
87.79 min and EM p=1.2, n= 94.55 min, respectively. These
test conditions were picked to ensure that the ring oscillators
failed in a reasonable and short time range.
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Fig. 4. Selectivity for 9-stage ring oscillator (a) GTDDB and
(b) EM
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TABLE II
Maximum and Average Errors in Parameter Estimation vs Respective Deviations in Initial Conditions for Case Studies

Average of
% Error Absolute Corresponding
Sample Max in Initial Error Ranges used
Case np Mechanism Parameter Condition for All for Deviations
Size Error . ] i
at Max Deviations in Initial
Error in Initial Conditions
Conditions
GTDDB S -16.605% -5% 13.409%
10 n 5.044% 5% 4.984% 59 to +5%
-J70 10 ()
S 9.747% -5% 8.127%
BTDDB
n 5.008% 5% 4.993%
< . 0 0 . (V]
GTDDB S 25.868% 15% 12.356%

(ll#lt 100 7 15.008% 15% 9.914% L% to +15%
-stage - 0
Ro)g BTDDE J -61.884% 15% 37.969% ’ ’

n 14.997% 15% 9.973%
GTDDB B 30.550% 15% 9.717%
1000 n 14.728% 15% 9.865% 15% to +15%
- 0
BTDDE B 52.369% 10% 30.178% ’ ’
n 14.935% 15% 9.960%
o S -65.037% -5% 40.957%
n -5.298% -5% 5211%
10 -5% to +5%
o B -50.348% -5% 32.752%
n -5.211% -5% 5.132%
s -16.275% -15% 10.360%
#2 EM
(501- 0 n 15.361% 15% 9.342% (55 i TS
- 0
stage SIv B -18.458% 15% 6.076% ’ ’
RO) n 14.902% 15% 9.485%
EM S -8.036% -5% 4.472%
T n -14.509% -15% 8.310% 5% o 150
- 0
v B -14.855% 15% 8.227% ’ ’
n -14.701% -15% 9.174%
GTDDB S -22.072% -5% 20.770%
n 6.140% 5% 4.692%
10 -5% to +5%
MTDDE S 58.133% -5% 43.308%
n 4.986% 5% 4.876%
43 GTDDB S -35.044% -10% 11.019%
(331- 100 n -14.191% -10% 8.458% 15% to +15%
- 0
stage VTDDE B 79.540% -10% 23.848% ’ ’
RO) 7 -15.135% 15% 9.958%
GTDDB B -25.465% -15% 9.110%
n -11.228% -15% 8.293%
1000 -15% to +15%
MTDDB S 72.419% -15% 19.656%
n -14.658% -15% 9.635%




TABLE III
Averaged Estimated Values Over All Deviations in Initial Conditions vs Respective Errors for Case Studies

Sample . Average of All Error of Averaged
Case Size N Estimated Values Estimated Value
_ 0
GTDDB B 1.420 13.409%
10 n 101.256 0.060%
0
BTDDB B 2.054 8.127%
n 149.876 0.015%
_ 0,
#1 GTDDB B 1.517 7.526%
(11- 100 n 101.283 0.086%
stage 0
RO) BTDDB B 2.229 17.341%
n 149.891 0.025%
0
GTDDB B 1.667 1.653 0/0
1000 Z’ 101.272 0.075f,
BTDDE 2.205 16.047%
n 149.894 0.027%
- 0
o B 0.709 40.957%
10 n 25.108 -0.087%
_ o
SIV B 0.807 32.752%
n 30.187 -0.079%
#2 EM B L115 -7.080%
(501- 0 n 25.327 0.785%
stage B 1.166 2.818%
RO) SIvV
n 30.354 0.471%
0
— B 1.205 0.416f
o Z 24.894 -0.938 0/
i 1.164 -3.036%
n 30.093 -0.393%
_ 0
GTDDB B 1.299 20.770%
10 n 12.880 1.448%
0
MTDDE B 1.404 43.308%
n 23.167 0.110%
_ 0,
43 GTDDB B 1.586 3.308%
(331- 100 " 12.794 0.768%
stage 0
RO) MTDDE B 1.184 20.782%
n 23.121 -0.089%
_ 0,
GTDDB B 1.505 8.202%
_ 0,
1000 Z 12.262 3.418%
0
MTDDE 1.148 17.100%
n 23.082 -0.254%




for Accelerated Testing Application

TABLE IV
Maximum and Average Errors in Parameter Estimation vs Respective Deviations in Initial Conditions

% Error in

Average of

Corresponding

Case Sample Mechanism | Parameter Max Initial Absolute Error for Ranges used for
Size Error Condition at All Deviations in Deviations in
Max Error Initial Conditions Initial Conditions
GTDDEB B -20.79% -5% 20.71%
1 -4.33% -5% 3.84%
10 -5% to +5%
. B 9.06% -5% 7.67% ot
7 -5.19% 5% 3.25%
B 24.17% 5% 19.03%
GTDDB
GTDDB n 13.82% 15% 7.58%
. 100 -15% to +15%
dominant EM )i 7.94% 5% 5.43%
7 17.03% -10% 9.38%
GTDDEB B -36.63% 10.00% 19.21%
7 14.96% 5% 9.04%
1000 -15% to +15%
8 31.99% -10% 12.67% olo T
EM 7 10.80% -15% 7.90%
EM B 26.71% 5% 26.57%
7 29.72% 5% 29.12%
_50 V)
i R B 17.16% 5% 17.13% ke
n -5.34% 5% 4.92%
B -6.73% -5% 6.59%
M n -15.62% 15% 14.59%
EM 100 -15% to +15%
dominant GTDDE B 27.75% -10% 25.61%
n -14.98% -15% 9.88%
M B 8.30% -10% 7.57%
n 2.77% -10% 1.23%
1000 -15% to +15%
GTDDE B -11.36% 15% 7.66%
n 44.13% 15% 18.90%
B -14.31% | 5% & -5% 14.31%
GTDDB
7 18.16% -5% 17.66% . \
10 o B 17.11% | 5% & -5% 17.11% -3% 10 +5%
n 14.64% 5% 14.13%
GTDDE B 18.90% -15% 16.46%
GTDDB
-10.46% 59 7919
& EM 100 1 ° o o -15% to +15%
Selectivity B 1.25% -5% 1.10%
of 0.5 M 7 9.86% 15% 5.26%
B 22.07% -10% 9.39%
GTDDB 5.69% 10% 2.61%
1000 '7 D70 ° 270 15% to +15%
EM B 34.37% -15% 14.42%
7 6.57% -5% 3.28%




The analysis for the 9-stage ring oscillator at accelerated
conditions is summarized in Table IV. Similar to the case
studies, the MLE was able to discern between the two
competing Weibull parameters. Since the MLE can distinguish
at 50% selectivity with low absolute error, then it is not
necessary to do testing at the GTDDB dominant and EM
dominant conditions to find these failure modes, which can
lower the sample sizes and costs. If the difference in # for the
two mechanisms is larger than an order of magnitude, such as
when the dominant mechanism has a selectivity of 90%, it will
become difficult for MLE to distinguish the parameters for the
two mechanisms, because there will be few samples coming
from the non-dominant mechanism. The maximum error for
the case studies and accelerated conditions does not have any
correlation with the deviations in initial conditions, which may
be due to the MLE being stuck in a local minimum. However,
if necessary, the MLE algorithm can be further optimized by
changing the step size and error limit for stopping the
calculation, which may further decrease the errors.

VIIL

Maximum likelihood estimation and Weibull distribution
were used to distinguish primary and secondary wearout
mechanisms for 14nm FinFET ring oscillators through quasi-
Newton algorithms. The error in estimation of § values for both
mechanisms are uncorrelated to the error in initial condition
values, and the error in estimation of # values for both
mechanisms were found to be directly correlated to the error in
initial condition values. For a sample size of 10, the wearout
mechanisms were able to be distinguished up to a deviation
error of +5% from the actual value for the initial condition,
while the sample sizes of 100 and 1000 could be separated for
up to a deviation error of +15% from the actual value for the
initial condition. This is the first known procedure for
separating wearout mechanisms in circuit level data using
machine learning applications, which provides a quick and non-
invasive method to perform failure analysis at low costs.

CONCLUSIONS
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