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Abstract—Spiking neural networks (SNNs) are of interest
for applications for which conventional computing suffers
from the nearly insurmountable memory-processor bottle-
neck. This work presents a stochastic SNN architecture that is
based on specialized logic-in-memory synaptic units to create
a unique processing system that offers massively parallel
processing power. Our proposed synaptic unit consists of
strained magnetic tunnel junction (MTJ) devices and tran-
sistors. MTJs in our synapse are dual purpose, used as both
random bit generators and as general purpose memory. Our
neurons are modeled as integrate-and-fire components with
thresholding and refraction. Our circuit is implemented using
CMOS 28nm technology that is compatible with the MTJ
technology. Our design shows that the required area for
the proposed synapse is only 3.64 pm’/unit. When idle, the
synapse consumes 675pW. When firing, the energy required
to propagate a spike is 8.87f]. We then demonstrate a SNN
that learns (without supervision) and classifies handwritten
digits of the MNIST database. Simulation results show that
our network presents high classification efficiency even in
the presence of fabrication variability.

Index Terms—Spiking Neural Network, Magnetic Tun-
nel Junction, Straintronics, Stochastic Synapse, Handwritten
Digit Recognition

I. INTRODUCTION

N the field of machine learning, the combination of

growing data sets and (deep) learning schemes with neural
networks has shown human level results in tasks such as
recognition and classification [1], [2]. This performance level,
however, comes at the cost of significantly increased demand
for computational power.

The Von Neumann model [3] is employed in traditional
computing architectures, which, in tandem with Moore’s
law, has provided an exponential reduction in the cost of
computation. However, while significant increases have been
seen in processor speed, significant overheads are incurred
from growing memory hierarchies (caches) for leveraging the
available processor speed: time and space locality dictates
how efficient data can be accessed and at which energy cost.
As CMOS scaling continues, however, it is apparent that
for the current 14/16nm node and beyond that any further
performance gain [4], [5] for logic will only increase the
performance gap between the processor and the memory.
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Due to the aforementioned issues, a hardware solution
that satisfies the processing requirements for machine learn-
ing must depart with the traditional computing paradigm.
A promising solution is neuromorphic computation using
hardware that is tailored for neural networks [6] and can
present better energy efficiency.

Neural networks can be broadly classified into three differ-
ent generations. The first generation is the perceptron, where
the activation function is a Heaviside step function. In the
second generation, many non-linear smooth activation func-
tions such as sigmoidal, radial basis functions, and rectified
linear unit became popular. These are widely used in back
propagation learning of multilayer neural networks. Neurons
of the third generation employ an activation function that
integrates binary spikes over time, thus mimicking the spar-
sity of the previous generation in an efficient manner that
lends itself well to efficient hardware implementation. These
neurons are also referred to as integrate-and-fire neurons
because of their summing and thresholding nature and have
been used to build today’s most complex neuromorphic
hardware systems, such as IBM’s TrueNorth [7].

The added temporal dimension allows spiking neurons [8],
[9] to emulate the previous generation’s neurons by encoding
values as a spike rate, and thus they have been shown to be at
least as computationally powerful as their first and second
generation peers. The temporal dimension allows different
encoding schemes [10], [11] and is very promising for tasks
in which temporal information needs to be processed [12].
Currently, recurrent spiking neural networks (SNNs) are
at the cutting edge of neuromorphic computing. However,
very few have been physically implemented as circuits [7],
[13]-[15]. Recently, novel beyond-CMOS designs have been
explored to achieve better density and power efficiency [16]-
[18], sometimes even at the cost of accuracy.

A cutting-edge neuromorphic circuit is difficult to demon-
strate as a superior architecture when implemented purely
in CMOS (i.e., with transistors). For example, the sheer
number of synapses required for a few-node neural network
requires intricate connections and routing, all of which can
be relatively expensive to achieve with CMOS-only solutions.
The use of a memristive crossbar [19] has been a topic
of extensive research in the past decade. In such crossbar
architecture, analog voltages are weighted and summed at
the output node. Although the crossbar alone consumes
low energy, the overhead due to repeated conversions from
analog to digital (and vice-versa) can be expensive in terms
of power and can require significant circuit area. Moreover,
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especially for a large scale crossbar, parasitic resistance
reduces the accuracy of the network. Analog summation
also suffers from mismatches and variations in the circuitry
itself, such that the performance of a neural network with
mismatched analog neurons is significantly impacted. On the
other hand, fully digital implementations (that do not suffer
from mismatch) cannot represent node values as a continuum
of voltage values, therefore requiring many bits to represent
the same data.

In this work, we describe a novel probabilistic synapse and
demonstrate its use in a neural network that mitigates the
aforementioned challenges. A magnetic tunnel junction (MTJ)
that we have augmented to respond to mechanical strain
from a piezoelectric material is utilized to create artificial
synapses. These augmented MTJs are used to uniquely serve
as both storage devices and random bit generators for the
neural network. Of equal importance is the design of mostly-
digital CMOS circuitry that is employed to overcome the mis-
match and other non-idealities corresponding to fabricated
MT]Js.

The overall synapse circuit that is formed enables us to
build a unique spiking neural network when combined with
CMOS-only neurons. Importantly, the non-volatile storage
provided by the MT]Js allows for local access (i.e., there is no
shared SRAM memory). When idle, there is effectively zero-
power consumption from memory storage. Variation in the
MT]J and CMOS portions of the synapses is assessed based
on literature’s measurement data for the former, and based
on modeling of a commercial 28nm CMOS technology for
the latter.

This paper is organized as follows: In Section II, the prop-
erties of augmented MT]Js as true random number generators
and memory are discussed. In Section III, the proposed neural
network architecture is presented — implementation details of
neurons and synapses are presented in subsections. Learning
and process variation issues are also discussed in Section IIL
Our hardware implementation results and experiments are
given in Section IV. Section V concludes the work.

II. MT]Js: BACKGROUND AND USE

MT]Js are magnetoresistive devices [20] that are typically
created by employing an insulating oxide layer such as
MgO sandwiched between two ferromagnetic layers, one
free layer, and one hard layer. The spin polarization of
the hard layer is pinned to a particular orientation by a
pinning layer. The spin polarization of the free layer can be
manipulated electrically, magnetically or by applying strain.
For an elliptical in-plane magnetic device, the stable states
are when the spin polarization of the free layer is at 0° or
180° angle with the major axis. If the spin orientation of
free and hard layer are in the same direction, the effective
resistance is Rp. The effective resistance is R4p when the
spin polarization of the hard layer and free layer are in the
opposite direction.

This type of device is used to create non-volatile magnetic
memories since these two states of the MT]J can effectively be
used to represent ones and zeros. The energy barrier between
these two states prevents spontaneous switching from one

state to another. Spin-transfer-torque (STT) [21] switching
mechanism is the most popular switching mechanism for
MT]Js. If the current density is above a critical current density,
the magnetization of the free layer surmounts the energy
barrier and a switch happens. Depending on the direction of
the current, the magnetization switches from anti-parallel to
parallel or from parallel to anti-parallel orientation, allowing
the MTJ to assume the resistance values Rp and Rap,
respectively. The ratio of these two resistances is defined as
Tunnel Magneto Resistance (TMR) and can be expressed as
TMR = (Rap— Rp)/Rp. These resistances as well as TMR
itself are important characteristics of MTJs and have a direct
impact on the neural network that we later demonstrate.

The augmented MTJ that we employ in our synapses
is a Straintronic MTJ (S-MT]J) that operates with voltage
generated strain, hence the energy requirement for writing is
significantly lower than in other forms of MTJs. By rotating
the magnetization of the free layer (either deterministically
or randomly), the S-MT]J state can be altered. S-MTJs have
been utilized as random number generators [22]-[24] as well
as memories [25].

A. MTJs as True Random Number Generators

A reliable source of uncorrelated random noise is a fun-
damental component of any stochastic system. Our spike
propagation is controlled by on-chip generated random bits.
The quality of randomness and the degree of correlation
across the chip affects the performance of the system [26].
A linear feedback shift register (LFSR) is the simplest form
of a pseudo random number generator [27], [28] in terms
of power and area consumption, although the periodicity is
limited by the length of the LFSR. Recently proposed strained
MT]Js [24] are perfectly suitable for generation of low cost
true random numbers that are uncorrelated.

S-MT]Js are an extremely power efficient source of random
bits since the state change is controlled by voltage generated
strain. Unlike STT MT]Js, switching is not deterministic for
the S-MT]J. Fig. 1a shows an elliptically shaped nano MTJ that
is delineated on top of a piezoelectric material. Here, W+ and
W- are two write ports associated with the two electrodes
on the piezoelectric material. R+ and R- are the read ports.
In this particular configuration, W- is grounded and the
write voltage is applied to W+ port. Due to inplane shape
anisotropy, the MT]J is bistable along its major axis. When
a voltage is applied to the W+ electrode, the MT]J settles at
90° orientation. When the voltage is removed from the W+
electrode, the MTJ goes into metastable state. Due to thermal
noise, the MTJ then settles to either 0° or 180° orientation
with a 50% probability. Fig. 1b shows the switching of an
S-MT]J under voltage generated strain. The device is 70 nm
x 55nm with a 1.625 nm thick oxide layer (MgO). Since the
switching probability is 50%, the MT] resistance will be R4p
or Rp with 50% probability. We highlight that the S-MT]J
settles due to thermal noise and that no other input stimuli
other than a short voltage pulse is required, granting the
S-MT] a desirable low-power writing characteristic.

An S-MT]J built with the properties described in [22] can
operate at the same voltage level used for logic supply
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Fig. 1: (a) Schematic of a Straintronic MTJ. (b) Switching
mechanism for TRNG under the application of voltage. Resis-
tance has been calculated using a 1.625 nm thick MgO layer
assuming a 100% TMR value [23].
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Fig. 2: Strain-induced complete magnetization reversal
scheme. (a) An elliptical Co nanomagnet is fabricated at the
intersection of the lines joining the centers of two pairs of
electrodes delineated on a poled piezoelectric substrate whose
bottom is grounded. (b) The timing diagram of the voltage
pulses at the two electrode pair [30].

(VDD = 0.9V for the 28 nm technology used in this work),
which allows for a seamless integration with CMOS. The
operating frequency is limited by the switching time of the
free layer of the MTJ under voltage generated stress. We
calculate the worst case switching time to be ~ 4.5 ns using
the parameters mentioned in [22]. We also find the energy
dissipation for writing to be approximately 1.4 fJ/bit. For
STT-MT]Js, the energy dissipation is typically in the order
of 100 fJ/bit [29], further evidencing the low-power nature
of S-MT]Js.

The S-MTJs described in here would allow for a clock
frequency of ~ 222 MHz. The speed of individual devices is
is not a limitation for the remainder of the circuit, as we will
later show that our network has a global clock rate (slow)
and a local clock rate (fast). The global clock rate is related
to updating the synapses while the local clock rate is related
to updating the neurons.

B. MTJs as Further Storage

S-MT]Js can also be utilized as non-volatile storage units.
With a modified configuration to act as a toggled memory,
deterministic writing can be performed by toggling the stored
bit. This type of toggle S-MTJs was proposed by [25] and
experimentally demonstrated recently in [30]. Due to its
voltage generated strain based writing methodology, storage
S-MT]Js still display low power consumption as when used
as a random bit generator.

In this modified S-MT]J, two pairs of electrodes (A, A’ and
B, B’) are delineated on top of a piezoelectric thin film, one
at 30° and the other at —30° angle with respect to the
major axis of the MTJ] as shown in Fig. 2a. The bottom
of the thin film is grounded. Voltage pulses are applied
on the two electrode pairs sequentially to modulate the
energy profile and toggle the current magnetic orientation
of the MT]J. This two-step method does not call for extreme
precision, is practical and error-resilient, and works with any
magnetostrictive material.

Fig. 2b shows the sequence of voltage pulses that has to be
applied to toggle the magnetic orientation. When a positive
voltage V1 (= V) is applied between the electrically shorted
first pair AA’ and ground, the MTJ is switched by the one-
third of the distance towards the opposite direction. Next, a
positive voltage V2 (= V1 = V) is applied between the second
pair BB’ and ground at time t1 and simultaneously turning
off the voltage (V1) at pair AA’ after a time t2. The MTJ
now rotates by another one-third of the distance towards
the opposite state. When all the voltages are turned off at
t3, the MTJ switches completely to the opposite state. This
performs the writing of one bit (say ‘1) from the other bit
(say ‘0’). There is no critical precision demand on t1, t2 or
t3, which makes the scheme practical to implement.

The only caveat of this S-MTJ configuration is that it has
to be read first such that a known bit can be written (i.e., by
deciding to keep the bit or to toggle it). This caveat would
impact a learning scheme, where it is expected that synaptic
weights will change dynamically. However, it has no impact
when the network is performing inference.

III. NEURAL NETWORK ARCHITECTURE

A feedforward SNN is used as a platform to demonstrate
the efficiency of the proposed synapse. The network archi-
tecture is shown in Fig 3. A two-layer architecture is used,
with an encoding layer and a output layer that performs
classification.

The encoding layer takes the input image and generates
a Poisson spike train with a rate that is proportional to
the pixel values. The encoding layer may well be a sensor
interface converting an analog input to digital spikes. Ex-
citatory feedforward synapses (shown as blue solid lines in
Fig. 3) propagate the spikes from the encoding layer to the
classification layer. Neurons of the classification layer are
laterally connected to each other by inhibitory connections
(shown as orange solid lines in Fig. 3). Thus, each neuron
tries to inhibit the others once it fires a spike, a desirable
feature for a network that performs classification.
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Fig. 3: Network configuration: A feedforward SNN. The
encoding layer generates a Poisson spike train while the
output neurons have lateral inhibitory connections.

For the sake of clarity, we classify spikes into pre-synaptic
and post-synaptic. A generated spike, regardless of the layer
it originates from, is called a pre-synaptic spike. After the
spike event is processed through the proposed synaptic unit,
it is called a post-synaptic spike. Post-synaptic spikes are then
accumulated at the neurons. Note that the synapse is inactive
unless a pre-synaptic spike occurs. A pre-synaptic spike ac-
tivates the synapse and is propagated with a probability that
is proportional to the weight of the corresponding synapse
[31]. Synapses are programmed with parameters learned from
an offline spike time-dependent plasticity (STDP) learning
scheme. STDP learning is generally considered hardware-
friendly and can be implemented on-chip for online learn-
ing. We next describe the hardware implementation of the
synapse and neuron units utilized in our architecture.

A. Proposed Probabilistic Synapse Unit

Our proposed synapse is a stochastic synapse, meaning
that the synaptic propagation is modulated stochastically by
the weight of the synapse. The output or the post-synaptic
spike event, S,y¢, can be denoted by

Sout =w X Sin (1)

where S;,, is the incoming or the pre-synaptic spike event
and w is the weight value of the corresponding synapse.
In hardware, the multiplication of the weight with the pre-
synaptic spike can be emulated by an ‘and’ gate. Let us
now discuss how the weight of an S-MTJ-based synapse is
determined.

In a traditional hardware implementation of a neural
network, weight coefficients would be stored as digital bits
in memory (preferably on-chip); each neuron is then asso-
ciated with a range of memory addresses that represent the
synapses it is connected to. These addresses would be fetched
on demand from the memory. We instead store the weights
in S-MT]Js that are local to the synapse and directly generate
post-synaptic spikes using a simple cross-coupled latch [32].

In this work, S-MTJs are configured in a manner so
that they can be either programmed to store weights or to
generate random numbers, both of which are critical for our
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Fig. 4: Proposed synapse. The cross-coupled latch functions
as a logic-in-memory element that compares Ry op t0 Ryetm.-
The value of Rgety, is determined by the MTJs that act as
memory. The value of R, switches in a truly random
mannetr.

proposed SNN. We will refer to these as Deterministic MTJ
and Probabilistic MT]J, respectively. The combined S-MT]J and
latch circuit has been proposed as a low power and efficient
source of random bits in [22], [24], which performs all the
operations in one simple circuit in the analog domain. The
proposed latch is shown in Fig. 4. The resulting output is
digital and ready to be used by the rest of the system. The
latch functions by comparing the equivalent resistances from
the Probabilistic MTJs (Rpr05) and from the Deterministic
MTJs (Rgetm). The MTJs are sized and binary-weighted to
represent a desired range of resistances. R,rop and Rgetm
are parallel combinations of 5 binary-weighted Probabilistic
MT]Js and Deterministic MTJs, respectively.

The resistance of an MT]J is inversely proportional to the
area of its elliptical cross section. By changing the length of
the major and minor axis, the MT] resistances can effectively
be modulated to be binary-weighted. The equivalent resis-
tances R0 and Rgetn, are compared by the cross-coupled
latch at the rising edge (from ‘0’ to ‘1’) of the pre-synaptic
spike. As shown in Fig. 4, the equivalent conductances of the
set of Probabilistic MTJs and of the set of Deterministic MT]Js
are

1

1 1 1 1 1
~ PoxR + P1 x2R + Pyx22R + P3x23R + Pyx21R

Rprob
Rdim = D01><R + Dl>1<2R + D2><122R + D3><123R + D4><124R
P,=(TMR+1) ifn'hbit=1
=1 ifntbit =0
= (TMR+1) ifn'hbit=1 ®)
=1 if ntbit =0

where R,qop and Rgesm represent the total resistances of
Probabilistic and Deterministic MTJs, respectively. R is the
parallel spin polarized MT]J resistance (Rp), and TMR is
the tunnel magneto resistance of the MTJs. Depending on
the spin polarization of the free layer with respect to that
of the hard layer, the effective resistance of the MTJ will
be either R4p or Rp. The n'" bit of the probabilistic array
or the deterministic array is denoted by ‘1’ when the MTJ
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resistance is Rap and ‘0’ when MT]J resistance is Rp. As
shown in Fig. 4, at the rising edge of the pre-synaptic spike
or ‘pre-spike’, the output Vo1 will be either 0 or 1 based on
the conductance at both sides.

The latch is activated when the pre-synaptic spike (denoted
as ‘pre-spike’) signal is logic ‘1’. Otherwise, the latch is in
standby mode consuming negligible power. This method is
specifically suitable for SNN as the spikes are sparse in
nature. When ‘pre-spike’ is logic ‘0’, the output nodes (Vo
and V) are pre-charged to VDD by the PMOS transistors
M1 and M2. When ‘pre-spike’ goes from logic ‘0’ to logic
‘1", the bias transistor (M7) switches on, and the pre-charged
transistors (M1 and M2) turn off. Based on the resistance
value on either side, the rate of falling of the voltages on the
two output terminals (Vo; and Vo) will be different. The side
that has lower resistance will fall faster than the other side,
and whenever one node falls below the switching threshold
of the cross-coupled inverter, positive feedback latches it in
that direction. For example, if Ryroh > Ryeim, at the rising edge
of the ‘pre-spike’, Vo, discharges faster than Vg,, and when
Voi falls below the switching threshold of the cross-coupled
inverters, M3 turns on and recharges Vg, to VDD and M6
discharges Vo, to ground.

In summary, the weight of the synapse is a function of
the conductances of both sides. If the programmed weight of
the Deterministic MTJs is greater than the random number
of the Probabilistic MTJs, a pre-synaptic spike propagates
through the synapse. Otherwise, a pre-synaptic spike is
not propagated. If the pre-synaptic spike is zero, the latch
is always pre-charged and the post-synaptic spike is zero,
irrespective of the weights.

It should be noted that the write paths of the S-MTJs are
electrically insulated from read paths, thus writing can be
performed irrespective of the state of the latch.

B. Neuron Unit

We use a simplified Izhikevich neuron [33] in our SNN.
The integrate-and-fire neuron shown in Fig. 5 sums all the
incoming spikes and produces an outgoing spike when a
threshold is surpassed. After a neuron successfully generates
a spike, the membrane potential is restored to the resting
potential and remains inactive for a specified refractory time.
Our neuron implementation also accounts for an optional
leak rate to be subtracted from the membrane potential
periodically.

In Fig. 5, the synaptic array represents the post-synaptic
spikes associated with each neuron. The post-synaptic spikes
are processed with a local high speed clock sequentially,
one after another. The spike counter consists of an up/down
counter. Each spike activates the up/down counter while the
event controller activates the up/down knob based on the
address of the incoming spikes. The feedforward spikes are
added to the counter while the lateral inhibitory spikes are
subtracted from the counter. The counter output acts as the
membrane potential (vy,e,) of the neuron. The membrane
potential is compared with a threshold (vyy,), and a spike is
generated based on the comparison. Upon firing, the neuron
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Fig. 5: Block diagram of a simplified integrate-and-fire neu-
ron. The neuron implementation is fully digital.

enters into a refractory state, and the membrane potential
restores the resting potential (v,.¢s¢). The simplified spike
response model for the neuron is expressed below.

Zf Ui,mem(t) > Uthr
S’L(t) = la Zf t> (tn—l + trefrac)a (4)
Ui,meer(t + 1) = Urest

where 5;(t) is the spike response at time ¢, ¢,,_; is the timing
of the last spike occurrence at the i*" neuron, Vi,mem 1S
the membrane potential of i!" neuron at time ¢, vy, is the
threshold voltage, and %,¢frqc is the refractory time.

The membrane potential of output neuron ¢’ at time ¢ is

n m
lat
Vimem = Z w]f’{S] - Zwk()li Sk: — Vleak (5)
j=1 k=1
where wf { is the excitatory feedforward connection weight

parameter from input node ‘j’ to output node ‘i’, wi®! is the
inhibitory lateral connection from node ‘k’ to node 7,55
and Sy are pre-synaptic spike events, n is the number of
input neurons and m is the number of output neurons.

The timing diagram of the neuron operation is shown
in Fig. 6. Each neuron processes the post-synaptic spikes
sequentially, followed by application of leak and threshold.
A spike is generated based on the membrane potential and a
pre-synaptic spike for the next cycle is sent to the synapses of
the output neurons as described in the previous subsection.
The proposed synaptic latch has to be pre-charged first by
applying a reset to the ‘pre-spike’ signal at each global cycle.

C. Spike Time Dependent Plasticity

STDP has been a popular method of learning in SNNs
due to its locally adaptive nature and biological plausibility.
We applied inhibitory and excitatory STDP [34]-[36] to train
a large network that utilizes our proposed synapses. These
results are later reported in Section IV-D.

One of the challenges of STDP is to select a learning
strategy and learning rate that leads to high quality of
classification. When considering online learning, specialized
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Fig. 6: Each neuron processes the incoming synaptic events
sequentially at a high frequency (local clock). The neuron
keeps processing and accumulating for as many cycles as
incoming synapses it is connected to. Thresholding is then
applied. A reset is applied at a slow frequency (global clock)
to allow the latches to be pre-charged. The neuron operation
is trivially implemented with a finite state machine.

structures have to be devised to keep track of the STDP
events (i.e., correlated pre-synaptic and post-synaptic spikes)
and the evolution of weights. These structures are rarely
useful for inference, and therefore impose a heavy overhead.

In our network, the input nodes are connected to the
neurons through excitatory synapses, and the neurons are
inhibited by each other through inhibitory synapses (see Fig.
3). Counters can be utilized to store STDP events [13]. At
each clock cycle, these learning counters perform a check
for pre- and post-synaptic spikes over a pre-defined window
of time. This operation has to be repeated over many clock
cycles due to the sparse nature of spikes.

After a training epoch is complete, the Deterministic MT]s
can be rewritten with new values before the next training
data is analyzed. Once the SNN has learned enough from
input data, the weights converge and each neuron of the
output layer becomes selective of only one class. Therefore,
we achieve unsupervised classification as the input data is
not labelled.

Hardware realization benefits from synaptic weights that
can be represented with a small amount of bits, as it leads
to small area and power. However, there is a compromise
between the number of bits and the learning of complex
patterns. In Fig. 4, we have purposefully drawn 5 resistors
in parallel as we determined that the associated range of
resistances can be feasibly fabricated today. In Section IV-D,
we show that learning is affected by this decision.

Finally, we highlight that all the weights of our proposed
SNN are positive, therefore it is not necessary to use an extra
bit for storing the weight sign.

D. MTF and CMOS Process Variation

Significant process variation occurs for scaled CMOS tech-
nologies whereby transistor dimensions, oxide thickness, and
threshold voltage are all possibly affected. These variations
shift the operation of the circuit from its expected/nominal
behavior. Considering the operation of the latch described
in Section III, it is apparent that mismatch-induced variation
is concerning due to the differential nature of the circuit.

MT]Js suffer from process variations as well, mostly due to
variations in size and oxide thickness [37].

The effect of the combined CMOS and MT]J process vari-
ations has to be taken into consideration for an individual
synaptic unit as well as for a complex network with many
synapses. The imperfections of CMOS transistors and MTJs
impact learning and inference, albeit in different ways and
degrees. In the next Section, we detail a series of experiments
we performed in order to assess and model the undesired
effects of process variation.

IV. EXPERIMENTS AND RESULTS
A. Synapse Implementation

As previously mentioned, the proposed synapse has 5
Deterministic MTJs and 5 Probabilistic MTJs. The MTJs are
arranged in parallel fashion. We assume a baseline resistance
of 10KOhm for each MT]J. Therefore, when a synapse is
programmed with the value ‘10000’ the equivalent resistance
is Req, = 20K||20K ||40K||80K||160K since the resistance
values are binary-weighted.

Once the individual MT] resistance is known, the range
of possible equivalent resistances seen by the latch circuit
is also known. The synapse CMOS circuitry can then be
optimized by performing transistor sizing. Transistor sizing
determines the node to node relationships that guarantee the
dual-purpose of the circuit, i.e., working as a latch and as a
sensor. Transistor sizing also determines the robustness of
the latch with respect to process variation. In the CMOS
technology utilized in this work, the minimum pre-shrink
size of a transistor is L=30nm and W=100nm. Our initial
implementation had all transistors sized as X1 (i.e., minimum
allowed size).

However, when X1 transistors are employed in a differen-
tial pair like the one present in our latch, mismatch becomes
a concern. Employing larger (wider) transistors is a well-
known strategy to minimize the effects of mismatch. The
transistor characteristics of our optimized synapse are given
in Table I. In this configuration, the synapse area is only
3.64 um?.

TABLE I: Transistor sizing of the synapse.

Transistor ID | Type | Sizing (width)
M1, M2 PMOS 3X
M3, M5 PMOS 3X
M4, M6 NMOS 2X
M7 NMOS 2X

In Table II, we provide power and energy characteristics
of the synapse when no MT]Js are being written. The CMOS
portion of the synapse is sized according to Table I. We
note that leakage power is the power consumed by the
synapse when in stand-by mode since no pre-synaptic spike
is occurring. Leakage power varies with temperature as
highlighted in In Table II. Conversely, the energy per spike
is measured assuming a pre-synaptic spike is taking place.
These values correspond to a synapse that is not equipped
with learning circuitry, i.e., it can only perform inference.
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TABLE II: Power and energy characteristics of the synapse.

Corner Leakage Energy per
power (pW) | spike (f])

Slow-Slow, 125C 2850.1 1.70

Typical, 25C 675.6 1.87

Fast-Fast, -40C 514.9 1.83

In addition to the energy dissipated per spike, the synapse
dissipates power when writing to the MT]Js. Deterministic
MT]Js are written only once if the network has been trained
offline. Due to the non-volatility of the MTJs, the weights
are persistent and do not need a ‘refresh’. Therefore, we
consider this energy to be negligible. On the other hand,
Probabilistic MTJs have to be written periodically during
runtime. This periodicity is determined by the global clock
rate that is much slower than the local clock rate. The energy
required to randomly switch all Probabilistic MTJs in one
synapse is approximately 7f]. Accounting for the subsequent
computation performed by the latch itself, a synapse may
dissipate as much as 8.87f] per propagated spike.

B. Neuron Implementation

In the analog domain, the integration or accumulation
of post-synaptic spikes at the neuron is often done by a
charge pump that stores charge in a capacitor. A leaky
behavior can be present due to the inherent parasitics or
any purposefully created current path. On the other hand,
in a digital neuron, integration can be achieved with a
counter that sums the incoming spikes. A digital comparator
can be used to compare the sum with a threshold and fire
accordingly. Additional circuitry is also required for modeling
the refractory period and the leak.

Moreover, in any advanced CMOS technology, an all-
digital implementation of neuron is beneficial since it does
not suffer from mismatch, while presenting an ease of im-
plementation with automated synthesis tools. Hence, a fully
digital approach has been taken to implement our neuron
using a commercial 28nm CMOS technology.

The neuron is designed using industry standard flows.
The hardware description is implemented in Verilog using a
finite state machine that captures the neuron cycle-by-cycle
operation (i.e., to integrate, apply leak, apply threshold, con-
sider refraction, and to finally start over). Logical synthesis,
placement, clock tree synthesis, and routing were performed
using foundry-provided standard cells. The power and area
estimations are a combination of the reports from the syn-
thesis tools and the estimation for the devices described in
this paper. We also assumed a backend integration process
where the MT]Js could fit on top of the CMOS circuitry.
The circuit has a global clock frequency of 83 MHz, i.e., the
spike generation frequency is 83 MHz for each neuron, while
the internal clock runs at 830 MHz. Each all-digital neuron
dissipates approximately 1mW while operating at 830 MHz
and takes an area of approximately 1400 um?. The gate count
for each neuron is approximately 1K gates.

C. Process Variation

Since the neurons of our network are digital, it is only
the synapse that has to be carefully designed with respect to
process variation. We analyzed the behavior of an individual
synapse under variation modeled from two sources:

e Process variation on the CMOS circuitry

o Resistance variation on the MTJ device

For the first source of variation, transistor mismatch
creates an offset at the source nodes of the cross-coupled
inverters of the synaptic latch. The input referred offset
of the latch biases one of the resistive arrays. We have
performed extensive Monte Carlo simulations following the
guidelines recommended by the foundry. In summary, it
means that the CMOS circuitry of the synapse was SPICE
simulated at different (global) corners for fast, typical, and
slow conditions, but also at varying degrees of mismatch
(local). A total of 10000 Monte Carlo runs were performed,
which is more than sufficient for a circuit with a handful of
transistors like the proposed latch. We do not introduce any
MT] resistance variation at this time in order to decouple the
results. We then programmed the synapse with resistance
values of Rprop = 10KOhm and Rgetn, = 5KOhm. It is
expected that, in ideal conditions, the synapse would spike
100% of the time whenever presented with a pre-synaptic
spike. However, we verify that CMOS imperfections can
sometimes overcome a large difference in MTJ resistance,
as detailed in Table III.

Mismatch-induced offset can be minimized by increasing
transistor width and/or length. Instead of using minimum
sized transistors, we resort to using oversized transistors as
detailed in Table I. We present results for the minimum sized
synapse as well as for the optimized version which employs
2X and 3X transistors. It is evident that increasing the
transistor size leads to a more robust implementation, with
an error rate in the order of only 2.3%. Further increasing the
transistor sizes leads to minimal improvement in robustness,
while incurring a significant penalty in area.

TABLE III: Effect of CMOS variation on the proposed
synapse.

Transistor sizing | # spikes | # no spikes | Error rate
min (1X) 9267 733 7.3%
optimized (2/3X) 9772 228 2.3%

As to variation on the MTJ devices, we highlight that it
presents itself as TMR variation (i.e., ratio of Rp to Rap)
and resistance variation (i.e., ratio of Rp,op t0 Rgetm). Any
variation in TMR affects the system significantly when the
TMR value is high' (> 1). We, therefore, simulate the
synapse with a low TMR (=1) in order to analyze the effect
of the resistance variation.

For a high TMR value, even a 10% variation can be significant and nearly
insurmountable to overcome. Although, with improved process fabrication,
the variations are expected to be much lower. The variation of MTJs
in industry production has been minimal in recent days. Cross-wafer
and wafer-wafer variability have been reduced to <1%. The sigma of the
distribution in MT]J resistance is around 1.5%. A detailed discussion of MT]J
variation is provided in [37].
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Fig. 7: Synapse spike rate versus ratio of Rprop t0 Rgetm for
TMR = 1, Rgetm = 10KOhm and R, is varied.

In Fig. 7, we plot the spike rate of a synapse versus
the resistance variation. We assume both resistances have
a nominal value of Rjetn, = Rprop = 10KOhm and apply
variation to Rp,op. When the ratio is 1, the synapse should
have a probability of firing of 50%. Given the results shown
in Table III, the non-idealities in the CMOS circuitry increase
the spike rate to approximately 52.8%. When the ratio is
greater than 1, the synapse should fire more often. A (pos-
itive) variation of 10% in R,o increases the firing rate to
approximately 70% as indicated by the callout on Fig. 7. Each
point represents the spike rate averaged over 10000 Monte
Carlo runs. Thus, a total of 160000 Monte Carlo simulations
were utilized to plot Fig. 7.

We only plot the cases where R, is greater than Rgeipm,
but the behavior is nearly identical for the opposite cases (i.e.,
Retm greater than R,,.p). The trendline present in Fig. 7
could be extended to represent the opposite cases as well.

In the following section, we present simulation exper-
iments that are performed on both ideal and non-ideal
neural networks. It must be noted that while Monte Carlo
simulations can be performed at circuit-level, the approach
does not scale to block- or chip-level simulations. It is then
necessary to model the CMOS variation and MT]J variation
as compact models that can be incorporated into a larger
SNN simulation. In the analysis that follows, we assumed
the variation in MTJ resistances to be a Gaussian distribution
with a mean of 10KOhm and (pessimistic) standard deviation
of 10%. For the CMOS variation, we devised a compact model
that utilizes a piecewise linear equation that captures the
probability of firing a spike when a spike is not expected to
occur. The equation has 6 pieces (all values are in KOhms):

1) Rprob in [4, 6], Rgetm = 5, Rprob < Rdet
Raetm = 5, Rprop > Rdet
Ryetm =~ 7.5, Rp'r‘ob < Rdet
Ryetm =~ 7.5, Rpmb > Rdet
prob in 8,1 ], Rdet’m ~ 10, Rprob < Rdet
6) Rprop in [8, 12], Rgetm ~ 10, Rprop > Rdet
These cases are necessary since the effect of the CMOS

variation on the spike rate is modulated by the range of the
MT]J resistances and their difference. We use three ranges,

N

prob in

) R (4, 6],
) R pmb in [6, 9],
) R (6, 9],
) R [

S W

prob in [6, 9

ul

centered around 5, 7.5, and 10KOhms.

D. Handwritten Digit Recognition

An SNN that performs digit recognition was built using
the synapses and neurons previously described. The input to
the SNN is an image with 784 pixels (28x28). Each grayscale
pixel assumes a value between 0-255. The MNIST database
[38] of handwritten digits has been used to train and test
the SNN. The database consists of a total of 60000 training
images and 10000 test images.

We make use of the BRIAN simulator [39] to describe our
network dynamics. We use biologically plausible ranges for
almost all of the network parameters. The authors of [40]
performed a study on STDP strategies and their associated
classification accuracy. We make use of their findings and
parameters to train our network?.

In order to assess the learning capability of our SNN, we
first build a network with 100 excitatory neurons and perform
offline training using ideal stochastic synapses. Notice how
this configuration leads to a neuron being connected to 784
excitatory synapses and 99 inhibitory synapses. In order to
compensate for this imbalance, the Poisson spike train that
represents the input data is dynamically adjusted. During
training, each input image is presented 3 times to the
network. In Fig. 8, we plot the weights of the excitatory
synapses after 2000 images are presented to the network
(i.e., 6000 training samples total). Each digit in the image
corresponds to 784 synapses organized as a 28x28 matrix. The
image is further arranged as a 10x10 matrix, where synapses
are grouped according to the neuron they are connected to. It
is clear that the network has already learned several patterns,
but the strength of the weights could still be improved.

However, if we were to perform online learning, the ability
of the network to learn is hindered by the imperfections of
the MT]Js and of the CMOS circuitry. We introduce these two
components as noise in the BRIAN simulation. The ‘noise
frequency’ is determined by the modelling we described
in Section IV-C. Our results are shown in Fig. 9, where
we provided the network with 6000 and 12000 training
samples. The noise introduced in the simulation delays the
convergence of the learning procedure. The result in Fig. 9 (a)
highlights how several digits are still noisy, as if no training
had been performed at all. By continuing to provide more
training samples, the weights start to converge as shown in
Fig. 9 (b). Notice that even when twice the amount of training
samples were provided, Fig. 9 (b) still presents many blurry
digits like the one highlighted in Fig. 9 (c), whereas Fig. 8
presents very few of those.

We proceed by measuring the classification performance
of the network during inference. We assume that training
was performed offline and on an ideal network. By doing so,
we avoid the loss of precision and increased training time
that is highlighted in Fig. 9. While learning was performed
offline and on ideal hardware, the double-precision weights
have to be mapped to the 5-bit synapses, i.e., they become

%The authors of [40] share their code and training parameters on
https://github.com/peter-u-diehl/stdp-mnist
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Fig. 8: Weights of the excitatory synapses after only 6000
training samples are provided. Most set of synapses already
settled to a clear prototypical input. The scale on the right
hand side represents the weight strength. The darker a pixel
is, the stronger the synaptic weight.

quantized between 0 and 31. This quantization leads to a loss
of accuracy as shown in Fig. 10. We trained the networks
composed of 100 and 400 neurons using all the 60000 images
of the MNIST database, each image being presented 3 times.
During inference, we used only the 10000 images from the
test set. We performed learning using two learning rates,
a_slow and «_fast, where the former matches the learning
rate used in [40] and the latter is 10 times faster. Each bar
corresponds to 5 runs of the whole test set (using different
random seeds). Error bars correspond to three-sigma in each
direction.

By comparing the blue bars to the yellow bars in Fig 10,
it becomes evident that a faster learning rate is detrimen-
tal to our SNN. With a slower learning rate, the ‘noise’
introduced from process variation has less impact on the
classification rate (synapses get more opportunities to learn
input patterns accurately). Another clear trend seen in the
results from Fig. 10 is that increasing the number of neurons
leads to much higher classification rates. By replicating
the experiments reported in [40], an average classification
rate of 91.5% is achieved (dark green bar). When the same
network structure is used, but the weights are mapped to
our binary-weighted synapses, the average classification rates
drops to 90.64% (light green bar). For the worst case of the
5 runs performed, our proposed SNN classified 947 digits
incorrectly.

V. CONCLUSION

We presented a novel probabilistic synapse which is inte-
grated with a fully-digital neuron to form a SNN. The de-
sign decisions and optimizations are discussed, from device-
level to system-level. The synapse’s logic-in-memory type
of architecture requires no separate memory access mecha-
nism. Instead, the proposed cross-coupled latch-based access
mechanism performs memory access (and computation) in

analog domain with significantly less power while generating
a digital output signal which can be seamlessly connected to
neurons of the network.

The integration of analog and digital domains exploits the
low-power nature from the S-MTJ and the ease of imple-
mentation of a digital system. Moreover, the non-volatility
of an MTJ makes it an interesting choice for a low-power
normally off device as the weights are persistent. An STDP-
based hardware friendly learning scheme is also discussed in
regards to the proposed system. Finally, the proposed MT]J-
based neural network shows remarkably promising power
and area efficiency. Its functionality is demonstrated by
unsupervised training and classification using the MNIST
database of handwritten digits.
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