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Abstract

Finding the optimal treatment regime (or a series of sequential treatment regimes)

based on individual characteristics has important applications in areas such as precision

medicine, government policies and active labor market interventions. In the current lit-

erature, the optimal treatment regime is usually de�ned as the one that maximizes the

average bene�t in the potential population. This paper studies a general framework

for estimating the quantile-optimal treatment regime, which is of importance in many

real-world applications. Given a collection of treatment regimes, we consider robust

estimation of the quantile-optimal treatment regime, which does not require the ana-

lyst to specify an outcome regression model. We propose an alternative formulation

of the estimator as a solution of an optimization problem with an estimated nuisance

parameter. This novel representation allows us to investigate the asymptotic theory of

the estimated optimal treatment regime using empirical process techniques. We derive

theory involving a nonstandard convergence rate and a non-normal limiting distribu-

tion. The same nonstandard convergence rate would also occur if the mean optimality

criterion is applied, but this has not been studied. Thus, our results �ll an important

theoretical gap for a general class of policy search methods in the literature. The paper

investigates both static and dynamic treatment regimes. In addition, doubly robust

estimation and alternative optimality criterion such as that based on Gini's mean dif-

ference or weighted quantiles are investigated. Numerical simulations demonstrate the

performance of the proposed estimator. A data example from a trial in HIV+ patients

is used to illustrate the application.
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1 Introduction

A treatment regime can be described as a function from the space of covariates to the set

of treatment options. Depending on the application, a treatment can represent a drug, a

device, a program, a policy, an intervention or a strategy. The problem of estimating an

optimal treatment regime has recently received considerable attention. Medical doctors have

long been interested in tailoring a patient's medical treatment according to the individual's

unique genetic information, health history, environmental exposure, needs and preferences.

Economists are interested in �nding the most e�ective active labor market programs (job

search training, computer training, etc.) for an unemployed job seeker (Frölich (2008),

Behncke et al. (2009), Staghøj et al. (2010), Wunsch (2013)). In political science, researchers

are interested in selecting the best strategies (personal visits, phone calls, mailings, etc.) to

increase voter turnout (Gerber and Green (2000), Imai and Ratkovic (2013)).

Existing work on estimating an optimal treatment regime has mainly focused on the

mean-optimal treatment regime, which if followed by the whole population would yield the

largest average outcome (assuming a larger outcome is preferable). Popular approaches

for estimating mean-optimal treatment regimes include model-based methods such as Q-

learning (Watkins and Dayan, 1992; Murphy, 2005b; Chakraborty et al., 2010; Moodie and

Richardson, 2010; Goldberg and Kosorok, 2012; Song et al., 2015), A-learning (Robins et al.,

2000; Murphy, 2003, 2005a), and model-free or policy search methods (Robins and Rot-

nitzky, 2008; Orellana and Robins, 2010; Zhang et al., 2012a; Zhao et al., 2012, 2015a).

Other relevant work includes Robins (2004); Moodie et al. (2007, 2009); Henderson et al.

(2010); Cai et al. (2011); Qian and Murphy (2011); Thall et al. (2011); Imai and Ratkovic

(2013); Huang et al. (2015); Tao and Wang (2017), among others. We refer to the recent

books (Chakraborty and Moodie, 2013; Kosorok and Moodie, 2016) and review articles (Qian

et al., 2012; Chakraborty and Murphy, 2014; Laber et al., 2014; Schulte et al., 2014; Wal-

lace and Moodie, 2014) for a more comprehensive list of references. In econometrics, an
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independent line of interesting work explored a decision theory framework for estimating

statistical treatment rules (Manski, 2004; Dehejia, 2005; Hirano and Porter, 2009; Stoye,

2009; Bhattacharya, 2009; Bhattacharya and Dupas, 2012; Tetenov, 2012).

In a variety of applications, criteria other than the mean (or the average) may be more

sensible. When the outcome has a skewed distribution (e.g., survival time of patients), it may

be desirable to consider the treatment regime that maximizes the median of the distribution

of the potential outcome. Sometimes, the tail of the potential outcome distribution is of

direct importance. When evaluating government job training programs to improve earnings,

policy makers may ask which program does best to improve earnings on the lower tail. An

optimal treatment regime with respect to the tail criterion is even more attractive if the

sacri�ce is little at the central part of the potential outcome distribution as compared to

the mean-optimal treatment regime. A simple numerical example illustrating phenomenon

of this nature is given in Section 2. The same numerical example also reveals that the

mean-optimal treatment regime may work poorly (or even have detrimental e�ect) at the

tails.

In this paper, we study a general framework for estimating the quantile-optimal treat-

ment regime in both static and dynamic settings, the latter of which involves estimating

a sequence of treatment regimes that may vary over time based on a longitudinal study.

Given a class of treatment regimes, we consider a robust estimator of the quantile-optimal

treatment regime that does not require specifying an outcome regression model. By now, it

has been widely recognized (Qian and Murphy, 2011; Zhang et al., 2012a; Zhao et al., 2012;

Matsouaka et al., 2014; Zhao et al., 2015b) that a fundamental challenge in estimating the

optimal treatment regime is specifying a reliable outcome model, which describes how the

treatment and covariates in�uence the outcome and how they interact with each other. A

misspeci�ed outcome model can result in biased estimation of the optimal treatment regime.

The di�culty of specifying outcome models is more pronounced when estimating the optimal
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dynamic treatment regime using longitudinal data, for which model-based approaches would

require specifying a sequence of outcome models, one for each decision point. However,

complete nonparametric estimation of optimal treatment regimes su�ers from the curse of

dimensionality and does not provide easy-to-interpret treatment regimes.

Although some recent work has made important contributions to estimating the optimal

treatment regime without an outcome model (Robins and Rotnitzky, 2008; Robins et al.,

2000; van der Laan et al., 2005; Orellana and Robins, 2010; Zhang et al., 2012a, 2013; Zhao

et al., 2012, 2015b), they have considered only the mean-optimal criterion and have not

studied the asymptotic distribution of the estimated optimal treatment regime. In fact, as

will be shown later in the paper, the classical asymptotic theory does not apply to this class

of estimators even for the mean-optimal criterion.

We propose a novel formulation of the estimator as a solution of an optimization problem

with an estimated nuisance parameter. This representation allows us to further investigate

the asymptotic theory of the estimated optimal treatment regime using empirical processes

techniques. Our study reveals that the theory involves nonstandard asymptotics. We have

rigorously established that: (1) the estimated parameter indexing the quantile-optimal treat-

ment regime converges at a cube-root rate to a nonnormal limiting distribution that is char-

acterized by the maximizer of a centered Gaussian process with a parabolic drift; and (2)

the value function corresponding to the quantile optimal treatment regime can be estimated

at an Op(n
−1/2) rate. This new framework is broad in the sense that it also provides an al-

ternative formulation of the mean optimal criterion, for which the same type of nonstandard

asymptotics would arise. Thus, we �ll an important gap in the literature. Moreover, the

framework can be adapted to alternative criteria such as those based on weighted quantile or

Gini's mean di�erence (Section 1.2 of online supplement). The main practical advantage of

the proposed estimator is that it circumvents the di�culty of specifying a reliable outcome

regression model, which has undue in�uence on estimating the optimal treatment regime.
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We also investigate doubly robust estimation (Section 1.1 of online supplement), which can

incorporate an outcome regression model when it is available.

In the causal inference context, several authors have considered estimating the quantile

treatment e�ects for comparing several pre-determined treatment regimes (Rubin, 1974;

Rosenbaum and Rubin, 1983; Hogan and Lee, 2004; Chernozhukov and Hansen, 2005; Zhang

et al., 2012b). These authors have not investigated the fundamental problem of estimating

the optimal treatment regimes in the quantile framework, which is much more complex

than estimating the quantile speci�c treatment e�ect when the treatment assignment is

given. Potentially, the recent work on discrete Q-learning in Moodie et al. (2014) can be

applied to �rst estimate the probabilities and then invert them to estimate quantiles, but this

application has not been systematically studied. Linn et al. (2015) independently considered

estimating quantile-optimal treatment regime. However, their approach depends on applying

threshold interactive model-based Q-learning at a sequence of thresholding values and then

performing inversion. The method requires specifying the underlying outcome models and is

computationally intensive even for homoscedastic error outcome models. Furthermore, Linn

et al. (2015) has not studied the asymptotic theory we considered here.

The rest of the paper is organized as follows. The quantile-optimal treatment regime is

proposed in Section 2. The estimation procedure and asymptotic distribution are introduced

in Section 3. Section 4 investigates quantile-optimal dynamic treatment regimes. Simulation

studies and a data example are reported in Section 5. Section 6 considers doubly robust

estimation and alternative optimality criteria. The proofs are given in the Appendix. Ad-

ditional technical details and numerical results can be found in the online supplement. The

methods proposed in this paper can be implemented using the R package quantoptr (Zhou

et al., 2017).
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2 Quantile-optimal treatment regime

Let A be the binary variable denoting treatment (0 or 1 corresponding to two treatment

options), and let Y denote the outcome. Without loss of generality, we assume that a

larger value of the outcome is preferable. To evaluate the treatment e�ect, we consider the

potential or counterfactual outcome framework (Neyman (1990), Rubin (1978)) for causal

models. Let Y ∗(1) be the potential outcome had the subject been assigned to treatment

1; and Y ∗(0) be the potential outcome had the subject been assigned to treatment 0. For

each individual in the sample, we observe either Y ∗(1) or Y ∗(0), but not both. It is assumed

that the observed outcome is Y = Y ∗(1)A+ Y ∗(0)(1− A), that is, the observed outcome is

the potential outcome corresponding to the treatment the subject actually receives. This is

often referred to as the consistency assumption in causal inference. We also adopt the stable

unit treatment value assumption (Rubin (1986)), that is, a subject's outcome of receiving a

treatment is not in�uenced by the treatments received by other subjects.

Let X denote an l-dimensional vector of covariates. A treatment regime is de�ned as

a function d(X), that maps the covariates vector X to the set of treatment options, here

{0, 1}. For example, d(X) = I(X ≤ 3/5) would assign a subject withX = 0.2 to treatment 1.

Given treatment regime d(X), the corresponding potential outcome is Y ∗(d) = Y ∗(1)d(X)+

Y ∗(0)(1− d(X)), that is, Y ∗(d) is the outcome one would observe if a subject with covariate

value X is assigned to treatment 1 or 0 following treatment regime d(X). We assume

that (Y ∗(1), Y ∗(0)) is independent of A conditional on X (unconfoundedness assumption,

Rosenbaum and Rubin (1983)), which is automatically satis�ed in randomized trials.

Given a collection D of treatment regimes, the optimal treatment regime is typically

de�ned as the one that maximizes the average of the potential outcome: E(Y ∗(d)). Here,

we consider a new quantile-optimal treatment regime, which is de�ned as

argmaxd∈DQτ (Y
∗(d)), (1)
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Table 1: Mean, 0.25 quantile and 0.10 quantile of the potential outcomes corresponding to
six di�erent treatment regimes (based on a Monte Carlo experiment with 106 observations).

Regime (1) (2) (3) (4) (5) (6) (7)
mean 1.50 2.40 2.37 2.00 1.78 2.00 1.74
Q0.25 0.80 1.10 1.14 1.01 0.91 -0.02 0.59
Q0.10 0.16 -0.03 0.20 0.33 0.26 -2.29 -0.81

where τ ∈ (0, 1) is the quantile level of interest and Qτ (Y
∗(d)) is the τth quantile of Y ∗(d),

speci�cally, Qτ (Y
∗(d)) = inf{t : F ∗(t) ≥ τ} with F ∗ denoting the distribution function of

Y ∗(d).

To illustrate how the quantile-optimal treatment regime di�ers from the mean-optimal

treatment regime, we consider a simple but instructive example. The outcome, Yi, satis�es

Yi = 1 + 3Ai + Xi − 5AiXi + (1 + Ai + 2AiXi)εi, where εi ∼ N(0, 1), Xi ∼ Uniform[0, 1],

and Ai = 1 (or 0) if subject i receives treatment (or control). We consider the following

six treatment regimes: (1) Ai = 0, ∀ i; (2) Ai = I(Xi ≤ 3/5); (3) Ai = I(Xi ≤ 1/2); (4)

Ai = I(Xi ≤ 1/5); (5) Ai = I(Xi ≤ 1/10); (6) Ai = 1,∀ i; and (7) random assignment

P (Ai = 1) = 0.5. It is easy to derive that treatment regime 2 is the mean-optimal treatment

regime. Table 1 summarizes the mean, the 0.25 quantile (Q0.25) and 0.10 quantile (Q0.10)

of the potential outcome distribution corresponding to each of the six treatment regimes,

based on a Monte Carlo experiment with 106 observations. We observe that regime 3 is the

best if one is interested in maximizing the �rst quartile of the potential outcome distribu-

tion; whereas regime 4 performs best with respect to the 0.10 quantile. If we consider the

hypothetical setting where the outcome is the survival time of cancer patients, then regime 2

(mean-optimal treatment regime) may have detrimental e�ect for patients at the lower tail,

corresponding to weaker patients. Regime 3 signi�cantly improves the survival time of the

patients at the lower tail, while its mean value is comparable to that of regime 2. Thus,

regime 3 is preferable if doctors wish to improve the life span of more severely ill patients

without sacri�cing the average treatment bene�t of the population.
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3 Estimation and large sample theory

3.1 Estimating quantile-optimal treatment regime

To explain the idea, we �rst consider a randomized trial with two treatment options (denoted

by 1 and 0). Extensions to observational studies and dynamic treatment regimes will be

discussed later. The observed data {Xi, Yi, Ai}, i = 1, . . . , n, are independent and identically

distributed copies of {X, Y,A}. Our aim is to estimate the quantile-optimal treatment regime

given a class of feasible treatment regimes D = {I(XTβ>0) : β ∈ B}, where β indexes

di�erent treatment regimes and B is a compact subset of Rl. This class of single-index

decision rules has been popular in practice (Zhang et al., 2012a, 2013; Zhao et al., 2012) due

to its simplicity and interpretability. It is straightforward to show that this class contains the

mean-optimal treatment regime corresponding to some popular choices of outcome models.

For example, for the outcome model E(Y |A,X) = β0 +β1X1 +β2X2 +A(β3 +β4X1 +β5X2),

the corresponding mean-optimal treatment regime is I(β3+β4X1+β5X2 > 0). An alternative

class of treatment regimes that are practically appealing is the class of thresholding rules of

the form I(X1 > β1, . . . , Xl > βl), for some constants β1, . . . , βl. Even for these relatively

simple forms, asymptotic theory for the estimated optimal treatment regime, no matter what

the criterion is, is nontrivial. It is worth pointing out that it is not necessary that the class

of candidate treatment regimes includes the theoretically global optimal treatment regimes,

as the interpretability of the treatment regime is often of fundamental importance.

We will focus on the single-index treatment regimes, as the theory for the threshold-

ing decision rules is similar and simpler. Given a β ∈ B, let d(X, β) = I{XTβ > 0}

be the treatment regime indexed by β, which is sometimes denoted by dβ for notational

simplicity. For a quantile level of interest τ (0 < τ < 1), we would like to estimate

β0 = argmaxβ∈BQτ (Y
∗(dβ)), the parameter indexing the quantile-optimal treatment regime.

To do so, we make use of an induced missing data framework motivated by Zhang et al.
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(2012a). Let C(β) = Ad(X, β) + (1 − A)(1 − d(X, β)). In the induced missing data frame-

work, the �full data� of interest, but not completely observed, are {Y ∗(dβ), X}; and the

observed data are {C(β), C(β)Y ∗(dβ), X} = {C(β), C(β)Y,X}. If C(β) = 1, then potential

outcome Y ∗(dβ) is observed; if C(β) = 0 then Y ∗(dβ) is �missing�. Furthermore, Y ∗(dβ) and

C(β) are independent conditional on X. Thus, the induced missing data structure satis�es

the missing at random assumption. Let

Q̂τ (β) = arg min
a

n−1

n∑
i=1

Ci(β)ρτ (Yi − a), (2)

where ρτ (u) = u(τ−I(u < 0)) is the quantile loss function. As stated in the following lemma

(proof given in the online supplement), Q̂τ (β) is a consistent estimator of the τth quantile

of Y ∗(dβ).

Lemma 1. If condition (C1) in Section 3.3 is satis�ed, then we have Q̂τ (β)→ Qτ (Y
∗(dβ))

in probability, ∀ β ∈ B.

The estimator for β0 that corresponds to the quantile-optimal treatment regime is

β̂n = argmax
β∈B

Q̂τ (β). (3)

The estimated quantile-optimal treatment regime is dβ̂ = I(XT β̂ > 0). Section 2.1 of the

online supplement provides the calculation details.

3.2 Alternative formulation of the proposed estimator

As the treatment regimes involve indicator functions, the nonsmoothness leads to nonstan-

dard asymptotics even when the mean criterion is used. The asymptotic theory is challenging

and involves a cube-root convergence rate and a non-normal limiting distribution, see Sec-

tion 3.3 for details. Even for the mean criterion, the asymptotic distribution theory of
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the estimated optimal treatment regime has not yet been systematically developed in the

literature.

To facilitate the development of theory, we introduce a novel reformulation that rep-

resents the quantile-optimal treatment regime parameter estimator (3) as a solution of an

optimization problem with an estimated nuisance parameter. To motivate the reformulation,

let

g(·, β,m) = C(β)I{Y −m>0}, (4)

m0 = sup{m : sup
β∈B

Pg(·, β,m) ≥ (1− τ)/2}, (5)

β0 = argmax
β∈B

Pg(·, β,m0). (6)

The function g(·, β,m) is motivated by the �rst-order condition of the maximization problem

in (2). For a randomized trial, P (C(β) = 1|X) = P (C(β) = 0|X) = 1
2
. Thus, P (g(·, β,m)) =

1
2
P (Y ∗(dβ)>m), which is equal to 1−τ

2
ifm = Qτ (Y

∗(dβ)). For any given β, because g(·, β,m)

is monotonically decreasing in m, it follows that Qτ (Y
∗(dβ)) is the largest value of m such

that Pg(·, β,m) is greater than or equal to 1−τ
2
. Therefore, m0 de�ned in (5) is the largest

achievable τth quantile of Y ∗(dβ) over β ∈ B; and β0 de�ned in (6) is the population value

of the parameter that indexes the optimal treatment regime.

Now, let Pn denote the empirical expectation, that is, Pnf(Z) = n−1
∑n

i=1 f(Zi), where

Z1, . . . , Zn is a random sample and f(·) is an arbitrary function. Then, m̂n = sup{m :

supβ∈B Png(·, β,m) ≥ (1 − τ)/2} is the estimator of the largest achievable τth quantile of

Y ∗(dβ) over the class of treatment regimes under consideration. We have the following

alternative expression of the estimator in (3):

β̂n = argmax
β∈B

Png(·, β, m̂n). (7)

In other words, β̂n is the value of β at which the supremum of Png(·, β, m̂n) is achieved,
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thus it is the estimator of the parameter that indexes the optimal treatment regime. This

reformulation was partly motivated by the least median of squares estimator of Rousseeuw

(1984). A bene�t of this reformulation is that we also obtain the convergence rate of m̂n,

which is the estimator for the maximally achievable value function (here, the maximally

achievable τth quantile of the potential outcome) as a by product (see Lemma 2 in Section

3.3).

3.3 Asymptotic properties

We assume the following regularity conditions.

(C1) Potential outcomes Y ∗(1) and Y ∗(0) both have continuous distributions with bounded,

continuously di�erentiable density functions.

(C2) The population parameter indexing the optimal treatment regime, β0 ∈ Rl, which

satis�es ||β0|| = 1, where || · || denotes the Euclidean norm, is unique and is an interior

point of B, a compact subset of the parameter space.

(C3) X has a continuously di�erentiable density function f(·). The angular components

of X, considered as a random element of the unit sphere S in Rl, has a bounded,

continuous density with respect to the surface measure on S.

(C4) Let q(X, δ) = S1,X(m0 + δ) − S0,X(m0 + δ), where S1,X(·) and S0,X(·) denote the

conditional survival functions of Y ∗(1) and Y ∗(0) given X, respectively; and q̇(X, 0)

and ḟ(X) denote the gradients with respect to X. The l× l matrix V = 1
2

∫
I{XTβ0 =

0}(f(X)q̇(X, 0) + q(X, 0)ḟ(X))′β0XX
Tdσ is positive de�nite, where σ is the surface

measure on the hyperplane {X : XTβ0 = 0}.

Condition (C1) is a standard assumption on the potential outcomes in causal inference.

Condition (C2) is an identi�ability condition for β0. Conditions (C3) and (C4) are technical

conditions to evaluate the quadratic drift and covariance function of the Gaussian process
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that are used to characterize the asymptotic distribution of β̂n. The matrix V in (C4)

characterizes the quadratic drift of the Gaussian process. These two conditions are similar

to those in Example 6.4 of Kim and Pollard (1990). In particular, condition (C3) is mainly

imposed for the convenience of calculating the derivative of the surface integral in the proof

of Lemma 2. It can be relaxed to allow some of the components of X to be discrete at the

expense of a more complex expression for V . The new formulation in Section 3.2 connects the

problem of estimating β0 to the class of estimation problems with cube root asymptotics (Kim

and Pollard, 1990). However, the result of Kim and Pollard (1990) is not directly applicable

because our estimator of β0 contains an estimated nuisance parameter m̂n. Lemma 2 below

shows that β̂n nearly maximizes the objective function in (7) in which m̂n is replaced by the

limiting value m0.

Lemma 2. Under conditions (C1)-(C4),

(1) m̂n = m0 +Op(n
−1/2).

(2) Png(·, β̂n,m0) ≥ supβ∈B Png(·, β,m0)− op(n−2/3).

The �rst part of Lemma 2 shows that m̂n has a root-n convergence rate. This result

is of independent interest as it tells us how well we could estimate the theoretically largest

achievable value of the criterion function. The details of the derivation of the lemma are given

in the Appendix. Lemma 2 con�rms that β̂n nearly maximizes Png(·, β,m0). This allows

us to further derive the asymptotic distribution of β̂n, which is expressible as a functional

of two-sided Brownian motion with a quadratic drift. This result is stated in the following

theorem.

Theorem 1. Assume conditions (C1)-(C4) are satis�ed. Then, n1/3(β̂n − β0) converges in

distribution to argmaxtZ(t), where the process Z(t) = −1
2
tTV t+W (t), V is an l× l positive

de�nite matrix and W (t) is a centered Gaussian process with continuous sample paths and

covariance kernel function K(·, ·). The expressions for V and K(·, ·) are given in the proof

of the theorem in the Appendix.
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Remark 1. If the mean-optimal criterion is of interest, then we let g∗(·, β, µ) = C(β)(Y − µ)

and µ̂n = sup{µ : supβ∈B Png
∗(·, β, µ)>0}. The estimated parameter indexing the mean-

optimal treatment regime has the representation β̂mean
n = argmax

β∈B
Png

∗(·, β, µ̂n). It is

straightforward to adapt the techniques developed in this paper to show that the estimated

parameter indexing the mean-optimal treatment regime has a non-standard convergence rate

and a non-normal limiting distribution. This �lls an important gap in the literature.

Remark 2. If the observed data arise from observational studies, the above formulation

and theory can be extended using propensity score weighting. For observational studies,

we have Y ∗(dβ)⊥C(β)
∣∣X, which is guaranteed under the common causal inference assump-

tion {Y ∗(1), Y ∗(0)} ⊥ A
∣∣X. Thus, the �missing at random� assumption is satis�ed in the

induced missing data framework of Section 3.1. Let π(X) = P (A = 1|X), then the propen-

sity score P (Cβ = 1
∣∣X) has the expression π(X)d(X, β) + (1 − π(X))(1 − d(X, β)). We

denote the propensity score by πc(X, β) for notational simplicity. We then estimate the

τth quantile of Y ∗(dβ) by Q̃τ (β) = argmin
a

n−1
∑n

i=1
Ci(β)

π̂c(Xi,β)
ρτ (Yi − a), where π̂c(Xi, β) is

an estimator of the propensity score πc(X, β). A simple way to obtain π̂c(Xi, β) is to esti-

mate π(X) based on {Ai, Xi}, i = 1, . . . , n, using logistic regression, which models π(X) as

π(X, γ) = exp(XTγ)/(1 + exp(XTγ)). One may also use semiparametric or nonparametric

models, which renders greater �exibility but demands heavier computation. The estimated

parameter indexing the quantile-optimal treatment regime is given by argmax
β∈B

Q̃τ (β).

4 Quantile-optimal dynamic treatment regimes

When treating chronic medical conditions, it is frequently necessary to vary the treatment

(e.g., drug type, dose) over time according to how the patient responds to the previous

treatment. This motivates us to consider estimating the quantile-optimal dynamic treat-

ment regime (DTR) using data from longitudinal studies, which can also help catch possible

delayed treatment e�ects. Comparing with the static treatment regime discussed earlier,
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a new challenge is the presence of time-dependent covariates that may be simultaneously

confounders and intermediate variables.

Consider a two-stage longitudinal study in which the subject receives treatment A1 ∈

{0, 1} at stage 1 and treatment A2 ∈ {0, 1} at stage 2. We are interested in the outcome

at the end of the study. We would like to estimate the optimal DTR d = (d1, d2), where

dj can depend on the realized covariates and treatment history before the jth decision,

j = 1, 2. The baseline vector of covariates is denoted by X1, the potential outcomes are

denoted by {X∗2 (d1), Y ∗(d)}, where X∗2 (d1) is the covariate information between decisions

d1 and d2 had the subject received treatment d1, and Y ∗(d) is the potential outcome had

the subject received treatment d = (d1, d2). As before, we de�ne the quantile-optimal DTR

as dopt = argmax
d∈D

Qτ (Y
∗(d)). Let H1 = {X1} and H2 = {X1, A1, X2}. We adopt the no

unmeasured confounder or sequential ignorability assumption (Robins (1997)), that is, given

any regime (a1, a2), A1⊥{X∗2 (a1), Y ∗(a1, a2)}|H1 and A2⊥Y ∗(a1, a2)|H2. In other words,

treatment Aj received in the jth stage (j = 1, 2) is independent of any future (potential)

covariate or outcome conditional on the history. We also adopt the positivity assumption,

that is, there exist positive constants c1 < c2 such that c1 ≤ P (Aj = a|Hj) ≤ c2, with

probability one, for a ∈ {0, 1}, j = 1, 2. Assume that the class of candidate treatment regimes

is indexed by ξ = (βT , γT )T ∈ B = B1 × B2, dξ = (dβ, dγ), where dβ(H1) = I(HT
1 β > 0) and

dγ(H2) = I(HT
2 γ > 0).

The observed data are denoted by {Xi1, Ai1, Xi2, Ai2, Yi}, i = 1, . . . , n, where Xi1 denotes

the baseline vector of covariates for subject i, Ai1 is the treatment subject i receives at stage

1, Xi2 denotes the vector of intermediate information observed between the two stages, Ai2

is the treatment subject i receives at stage 2, and Yi is the observed outcome for subject i (as

before, a larger value is preferred). To estimate the optimal treatment regime, we consider

a similar induced missing data structure, as motivated by Zhang et al. (2013). For a given

treatment regime dξ, the �full data� are (X1, X
∗
2 (dβ), Y ∗(dξ)). Let Cξ = ∞ if A1 = dβ and
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A2 = dγ. In this case, (X1, X2, Y ) = (X1, X
∗
2 (dβ), Y ∗(dξ)), and we observe the potential

outcome. Let Cβ = 2 if A1 = dβ but A2 6= dξ (dropout before decision 2); and let Cβ = 1

if A1 6= dβ and A2 6= dξ (dropout before decision 1). Note that this induced missing data

structure mimics the monotone dropout scenario for longitudinal data. We can verify that

the setup satis�es the missing at random assumption, that is, missingness may be related to

the observed information but is conditionally independent of what is missing.

Let π1(H1) = P (A1 = 1 | H1) and π2(H2) = π2(X2, a2) = P (A2 = 1 | X2, a2), where

X2 = (XT
1 , X

T
2 )T is an l-dimensional vector. It is important to note that H2 depends on

the treatment received at the �rst stage. If the subject receives A1 = a1 ∈ {0, 1} at the

�rst stage, we sometimes write H2 as H2(a1) = {X1, a1, X2} to emphasize the dependence,

for which case X2 = X∗2 (a1) by the consistency assumption. Similarly, for A1 = dβ(H1), we

sometimes write H2 as H2(dβ) = {dβ(X1), X2}. The potential outcomes correspond to dξ

are denoted by {X1, X
∗
2 (dβ(X1)), Y ∗(dξ)} or simply {X∗2 (dβ), Y ∗(dξ)}.

As before, we would minimize Pn

(
I(Cξ=∞)

P (Cξ=∞
∣∣H2)

ρτ (Y − a)
)
to estimate the τth quantile of

Y ∗(dξ). Note that Cξ =∞ if and only if A1 = dβ(X1) and A2 = dγ(H2(dβ)), in other words,

H2 = H2(dβ) or the observed history is the potential history corresponding to dβ. Thus, in

the above inverse probability weighted quantile loss function

P (Cξ =∞
∣∣H2) = P (Cξ =∞

∣∣X1, X
∗
2 (dβ(X1)))

= P (A1 = dβ
∣∣X1, X

∗
2 (dβ(X1)))P (A2 = dγ

∣∣A1 = dβ(X1), X1, X
∗
2 (dβ(X1)))

= P (A1 = dβ
∣∣X1)P (A2 = dγ

∣∣H2(dβ))

where P (A1 = dβ
∣∣X1) =

[
π1(H1)dβ + (1 − π1(H1))(1 − dβ)

]
and P (A2 = dγ

∣∣H2(dβ)) =[
π2(H2(dβ))dγ + (1 − π2(H2(dβ)))(1 − dγ)

]
. For notational simplicity, we denote P (Cξ =

∞
∣∣H2) by π(ξ). Formally, the estimate of the τth quantile of Y ∗(dξ) is given by Q̂τ (ξ) =

argmin
a

n−1
∑n

i=1
I(Cξ,i=∞)

π(ξ)
ρτ (Yi−a), where Cξ,i is the value of Cξ for subject i. The consistency

of Q̂τ (ξ) is established in the online supplement. The estimator of the parameter indexing the
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optimal DTR from the class D is de�ned as ξ̂ = argmax
ξ=(βT ,γT )T∈B

Q̂τ (ξ). The estimated quantile-

optimal treatment regime is dξ̂ = (dβ̂, dγ̂).

In the following, we assume that the data arise from a SMART (sequential, multiple,

assignment randomized trials), which has been recommended as a standard design for optimal

DTR estimation (Lavori and Dawson, 2000; Murphy, 2008). For a SMART, π1(H1) and

π1(H2) are both known by design, thus π(ξ) is known for any given ξ. Let g(·, ξ,m) =

I(Cξ=∞)

π(ξ)
I(Y > m) and m̂n = sup{m : supξ Png(·, ξ,m) ≥ (1 − τ)}. We have the following

alternative expression: ξ̂n = argmax
ξ

Png(·, ξ, m̂n). Let m0 = sup{m : supξ Pg(·, ξ,m) ≥

(1− τ)} and ξ0 = argmax
ξ

Pg(·, ξ,m0). Under similar conditions as for Theorem 1, it can be

derived that the limiting distribution of n1/3(ξ̂n − ξ0) is that of the maximizer of a centered

Gaussian process with a quadratic drift.

Theorem 2. Under conditions (C1∗)�(C4∗) given in the online supplement, n1/3(ξ̂n − ξ0)

converges in distribution to argmaxtZ
∗(t), where the process Z∗(t) = −1

2
tTV ∗t+W ∗(t), V ∗

is an l× l positive de�nite matrix and W ∗(t) is a centered Gaussian process with continuous

sample paths and covariance kernel function K∗(C1, C2). The expressions for V ∗ and K∗(·, ·)

are given in the online supplement.

5 Numerical results

5.1 Simulations

Example 1 (single-stage optimal treatment regime). We compare estimating the

conventional mean-optimal treatment regime and quantile-optimal treatment regime in this

example. We generate random data from the model Y = 1 + X1 − X2 + X3
3 + eX4 +

A (3− 5X1 + 2X2 − 3X3 +X4)+(1 + A (1 +X1 +X2 +X3 +X4)) ε, where Xk (k = 1, ..., 4)

are independent Uniform(0, 1) random variables and ε ∼ N (0, 1) is independent of the

covariates. The binary treatment indicator A satis�es log
(
P
(
A = 1

∣∣X) /P (Ai = 0
∣∣X) ) =

15



Table 2: Population parameters and summary values for optimal treatment regimes under
di�erent criteria for Example 1 based on a Monte Carlo experiment with n = 105.

η0 η1 η2 η3 η4 Qmean Q0.25 Q0.1

mean criterion 0.43 -0.72 0.29 -0.43 0.14 3.99 2.28 0.55
0.25qt criterion 0.42 -0.60 0.41 -0.43 -0.34 3.79 2.46 1.18
0.1qt criterion 0.27 -0.68 0.38 -0.43 -0.37 3.44 2.36 1.55

Columns 2-6 are values of the ηi's of the optimal treatment regimes corresponding to di�erent criteria. The last three

columns are the mean, 0.25 quantile and 0.1 quantile of the potential outcomes if the optimal treatment regime is applied.

−0.5− 0.5 (X1 +X2 +X3 +X4) , where X = (X1, . . . , X4)′.

We consider the class of treatment regimes I(η0 + ηTX > 0), where (η0, η1, . . . , η4)T

has L2-norm 1. Let µ(a,X) = E(Y |A = a,X), where a ∈ {0, 1}. The mean optimal

treatment regime is given by I(µ(1, X) > µ(0, X)). In our example, it is I(3− 5X1 + 2X2−

3X3 + X4 > 0), which belongs to our class of candidate treatment regimes. We compare

the proposed method with two popular methods for estimating the mean-optimal treatment

regime: a model-based approach and a model-free approach. For the model-based approach

we impose models for µ(a,X) and then estimate the mean-optimal treatment regime by

I(µ̂(1, X) > µ̂(0, X)), where µ̂ is the estimated value of µ. We consider two posited models

for µ(a,X): (1) correctly speci�ed regression function µt (a,X) = γ0 + γ1X1 + γ2X2 +

γ3X
3
3 +γ4e

X4+a (γ5 + γ6X1 + γ7X2 + γ8X3 + γ9X4) ; and (2) misspeci�ed regression function

µm (a,X) = exp [γ0 + γ1X1 + γ2X2 + γ3X
3
3 + a (γ4 + γ5X1 + γ6X2 + γ7X3 + γ8X4)] . For the

model-free approach, we consider the estimator in Zhang et al. (2012a). We denote these

three estimators by mean_RGµt , mean_RGµm and mean_ZTLD, respectively.

For the quantile criteria, we consider τ = 0.25 and 0.1, and denote the corresponding

criterion as 0.25qt criterion and 0.10qt criterion, respectively. We do not have a closed

form expression for the quantile-optimal treatment regime. In Table 2, based on a Monte

Carlo experiment with sample size 105, we report the values of the ηi's indexing the optimal

treatment regimes corresponding to di�erent criteria; the last three columns of the table

16



Table 3: Estimated optimal treatment regimes (mean criterion, 0.25 quantile criterion and
0.1 quantile criterion) and their corresponding value functions for Example 1.

Method n η̂0 η̂1 η̂2 η̂3 η̂4 Q̂mean Q̂0.25 Q̂0.1

mean_RGµt 500 0.42 -0.71 0.28 -0.41 0.14 3.99 2.29 0.56
(0.10) (0.07) (0.13) (0.11) (0.12) (0.21) (0.19) (0.40)

1000 0.43 -0.71 0.29 -0.43 0.14 3.99 2.28 0.52
(0.06) (0.05) (0.09) (0.08) (0.09) (0.14) (0.13) (0.27)

mean_RGµm 500 0.26 -0.71 0.30 -0.38 0.37 3.96 2.23 0.65
(0.11) (0.08) (0.12) (0.12) (0.12) (0.21) (0.19) (0.38)

1000 0.27 -0.71 0.31 -0.39 0.37 3.97 2.22 0.62
(0.08) (0.06) (0.09) (0.08) (0.09) (0.15) (0.13) (0.27)

mean_ZTLD 500 0.36 -0.63 0.31 -0.38 0.12 4.31 2.31 0.63
(0.2) (0.14) (0.24) (0.2) (0.27) (0.21) (0.21) (0.53)

1000 0.38 -0.67 0.29 -0.4 0.17 4.18 2.29 0.6
(0.15) (0.11) (0.19) (0.15) (0.19) (0.13) (0.16) (0.47)

0.25qt 500 0.38 -0.57 0.37 -0.37 -0.31 3.85 2.65 1.3
criterion (0.15) (0.14) (0.19) (0.18) (0.2) (0.26) (0.16) (0.39)

1000 0.4 -0.59 0.35 -0.43 -0.28 3.81 2.57 1.31
(0.12) (0.12) (0.17) (0.12) (0.15) (0.18) (0.11) (0.28)

0.10qt 500 0.24 -0.56 0.3 -0.4 -0.33 3.5 2.45 1.75
criterion (0.23) (0.2) (0.25) (0.22) (0.25) (0.26) (0.16) (0.15)

1000 0.27 -0.61 0.32 -0.44 -0.33 3.47 2.42 1.68
(0.18) (0.14) (0.22) (0.15) (0.19) (0.18) (0.11) (0.11)

The numbers in the parenthesis are standard deviations. The last three columns are the estimated mean, 0.25 quantile and

0.1 quantile of the potential outcome if the estimated optimal treatment regime is applied. The three methods mean_RGµt ,

mean_RGµm and mean_ZTLD denote the mean-optimal treatment regime estimators using the model-based approach with

correctly speci�ed regression model, the model-based approach with incorrectly speci�ed regression model and the approach of

Zhang et al. (2012a), respectively.
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contain the mean, the 0.25 quantile and the 0.1 quantile of the outcomes if the corresponding

optimal treatment regime is applied. These values will serve as our gold standard.

Table 3 summarizes the estimated optimal treatment regimes corresponding to the mean

criterion (using mean_RGµt , mean_RGµm and mean_ZTLD, respectively), the 0.25qt cri-

terion and the 0.10qt criterion for sample sizes n =500 and 1000. The last three columns of

Table 3 report the estimated mean, the 0.25 quantile and the 0.1 quantile of the outcomes

if the estimated optimal treatment regime is applied. We observe the model-based approach

for estimating the mean-optimal treatment regime is sensitive to the speci�ed regression

model and can be biased when the regression model is misspeci�ed (mean_RGµm gives very

biased estimators for η0 and η4). Also, the estimated optimal treatment regimes (and their

achievable performance in terms of the value of the criterion functions) using the model-free

approach get closer to the ideal ones reported in Table 2 as the sample size increases.

Example 2 (two-stage DTR). We generate random data from the following model Y = 1+

X1+A1

[
1− 3 (X1 − 0.2)2]+X2+A2

[
1− 5 (X2 − 0.4)2]+(1+0.5A1−A1X1+0.5A2−A2X2)ε,

where ε ∼ N (0, 0.4), X1 ∼ Uniform (0, 1), X2|{X1, A1} ∼ Uniform (0.5X1, 0.5X1 + 0.5),

A1|X1 ∼ Bernoulli (expit (−0.5 +X1)), and A2|{X1, A1, X2} ∼ Bernoulli (expit (−1 +X2))

with expit(t) = et/(1 + et). We consider sequential treatment regimes of the form (A1, A2),

where A1 = I {X1 < η1}, and A2 = I {X2 < η2}. We note that this class contains the

mean-optimal sequential treatment regimes which are given by A1 = I (X1 < 0.777) and

A2 = I (X2 < 0.847).

The popular Q-learning procedure relies on speci�cation of models for the so-called Q-

functions. In this example, we compare with standard application of Q-learning based on lin-

ear models, that is, the Q-functions are speci�es as Qt (Ht, At; βt) = HT
t,0βt,0 +AtH

T
t,1βt,1, t =

1, 2, where H2,0 = (1, X1, A1, X1A1, X2)T , H2,1 = (1, X2)T , H1,0 = (1, X1)T , and H1,1 =
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Table 4: Population parameters and summary values for optimal treatment regimes under
di�erent criteria for Example 2 based on a Monte Carlo experiment with n = 105.

Method η1 η2 Qmean Q0.50 Q0.75

Mean criterion 0.777 0.847 3.331 3.323 3.821
0.50qt criterion 0.753 0.808 3.327 3.327 3.827
0.75qt criterion 0.729 0.795 3.322 3.325 3.828

Columns 2-3 are values of the ηi's of the optimal treatment regimes corresponding to di�erent criteria. The last three

columns are the mean, median and 0.75 quantile of the potential outcomes if the optimal treatment regime is applied.

(1, X1)T . We note that in practice the Q-learning procedure usually misspeci�es the Q-

function. We also compare with the model-free approach for estimating the mean-optimal

dynamic treatment regime (Zhang et al. (2013)).

Table 4 reports the parameters indexing the optimal treatment regimes and the corre-

sponding mean, median and 0.75 quantile of the outcome if the optimal treatment regime

is applied, based on a Monte Carlo experiment with sample size 105. Table 5 summa-

rizes the estimated parameters indexing the optimal treatment regimes and their estimated

performance corresponding to di�erent criteria for sample sizes n = 500, 1000, based on 400

simulation runs. The estimated optimal treatment regimes and their achievable performance

are quite close to the ideal ones reported in Table 4, particularly when the sample size is large.

5.2 ACTG175 data analysis

We illustrate the proposed quantile-optimal treatment regime estimation method on the

ACTG175 data set from the R package speff2trial, which contains measurements on 2139

HIV-infected patients. The patients were randomized to four treatment arms: zidovudine

(AZT) monotherapy, AZT+didanosine (ddI), AZT+zalcitabine(ddC), and ddI monotherapy.

The goal of the original clinical trial was to evaluate whether treatment of HIV infection

with one drug (monotherapy) was the same as, better than, or worse than treatment with

two drugs (combination therapy) in patients with CD4 T cells between 200 and 500/mm3

19



Table 5: Estimated optimal treatment regimes and their corresponding estimated value
functions under di�erent criteria for Example 2.

Method n η1 η2 Q̂mean Q̂0.50 Q̂0.75

mean_Qlearning 500 0.755(0.041) 1.176(0.294) 3.319(0.090) 3.309(0.102) 3.815(0.122)
1000 0.752(0.027) 1.131(0.144) 3.321(0.065) 3.305(0.07) 3.819(0.079)

mean_ZTLD 500 0.773(0.073) 0.846(0.067) 3.370(0.095) 3.376(0.097) 3.862(0.118)
1000 0.768(0.055) 0.852(0.059) 3.356(0.065) 3.354(0.068) 3.848(0.081)

0.50qt criterion 500 0.751(0.08) 0.815(0.079) 3.357(0.090) 3.391(0.102) 3.858(0.119)
1000 0.750(0.062) 0.813(0.069) 3.343(0.063) 3.366(0.068) 3.849(0.081)

0.75qt criterion 500 0.734(0.108) 0.785(0.103) 3.328(0.095) 3.331(0.109) 3.892(0.123)
1000 0.723(0.084) 0.795(0.095) 3.322(0.067) 3.326(0.075) 3.865(0.077)

The numbers in the parenthesis are standard deviations. The last three columns are the estimated mean, median and 0.75 quantile of

the potential outcome if the estimated optimal treatment regime is applied. The mean_Qlearning method stands for the mean-optimal

treatment regime estimator using the Q-learning approach. The mean_ZTLD method is the mean-optimal treatment regime estimator

using Zhang et al. (2013).

(Hammer et al., 1996). Figures 1 and 2 of the online supplement display the histograms of

the response variable (CD4 count at week 96) for each of the two treatment arms for di�erent

subgroups of patients for which the subgroups are formed by the observed values of the CD4

count at week 0 or baseline weight. The varying shapes of the histograms across di�erent

ranges of both covariates indicate heteroscedastic treatment e�ects. It is also observed that

the distribution of the response variable tends to be asymmetric and skewed to the right.

A basic conclusion from the study is for patients who had taken AZT before entering

the trial, treatments with ddI or AZT + ddI are better than continuing to take AZT alone.

There are n = 562 patients with full CD4 information that had taken AZT before the study

and received AZT+ddI or ddI monotheraphy in this trial. Motivated by the aforementioned

�nding, we consider the problem of how to assign treatment to the patients who had taken

AZT before, either to the AZT+ddI combination therapy or to the ddI monotheraphy. The

quantitative outcome is the CD4 count at 96± 5 weeks from baseline (denoted as cd496) as

CD4 count represents a vital signal for disease progression for HIV-infected patients. The

treatment indicator Ai is set to 1 if patient i is assigned to the AZT + ddI therapy, and Ai is

set to 0 if the patient is assigned to the ddI monotheraphy. Because this trial is randomized,
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Table 6: Estimated optimal treatment regimes and summary values for ACTG175 data
analysis.

Method η̂0 η̂1 η̂2 Q̂0.50 Q̂0.25 Q̂mean

0.50qt criterion -0.571 0.691 0.444 360 220 375.4
0.25qt criterion -0.210 0.958 -0.194 333 263 346.5
Mean criterion -0.526 0.799 0.292 331 219 403.9

the propensity score πi = n−1
∑
Ai = 0.48 is taken as a constant for all subjects.

Two covariates are considered for estimating the optimal treatment regimes: X1 (baseline

weight of patient, measured in kg) and X2 (baseline CD4 T cell count, denoted by cd40). It

has been observed that body weight has a signi�cant role on AZT pharmacokinetic pro�le.

Burger et al. (1994) reported that AZT clearance is signi�cantly lower in patients with a

lower body weight, which indicates a qualitative interaction with AZT. In medicine, drug

clearance is a pharmacokinetic measurement of the rate at which the active drug is removed

from the body, and drug clearance is correlated with the time course of a drug's action

(Hammer et al., 1996).

Let X = (X1, X2), where both X1 and X2 are standardized to the interval [0,1]. We con-

sider the class of candidate regimes of the form I {η0 + η1X1 + η2X2 < 0} , where (η0, η1, η2) ∈

(−1, 1)3. When the decision rule takes the value 1, the patient is assigned to the AZT+ddI

combination therapy; otherwise the patient is assigned to the ddI monotheraphy. For iden-

ti�ability, we impose the restriction ‖η‖ = 1. We estimate the optimal treatment regimes

using the median criterion, quartile criterion and the mean criterion. The median criterion

is motivated by the robustness consideration; the quartile criterion is motivated by the de-

sire to improve the treatment e�ect for weaker patients. Table 6 summaries the estimated

optimal treatment regimes for the three criteria.

The estimated median of the potential outcome when the median-optimal treatment

regime is applied is 360; whereas the median of the observed outcome is 339.5. The estimated

�rst quartile of the potential outcome when the 0.25qt criterion is applied is 263; whereas
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the 0.25 quartile of the observed outcome is 237. The estimated mean of the potential

outcome when the mean-optimal treatment regime is applied is 403.9; whereas the mean of

the observed outcome is 355. Figure 3 of the online supplement depicts the three estimated

regimes graphically, from which we observe that they are dramatically di�erent from each

other.

6 Conclusions and discussions

In a variety of applications, it is of interest to consider a treatment regime that maximizes

the median or other quantile of the potential outcome distribution. This paper studies ro-

bust estimation of quantile-optimal static/dynamic treatment regimes. We propose a novel

representation that expresses the parameter indexing the optimal treatment regime as a

solution to an optimization problem with a nuisance parameter. Employing this representa-

tion and empirical process techniques, we prove that the estimated parameter indexing the

quantile-optimal treatment regime has a nonstandard convergence rate and a non-normal

limiting distribution. Our approach does not rely on the speci�cation of an outcome re-

gression model. We also investigate the doubly robust estimator for the quantile-optimal

treatment regime, which can improve the estimation e�ciency when a reliable outcome re-

gression model is available (Section 1.1 of the online supplement).

Our proposed novel representation applies to a general class of policy search estimators for

optimal treatment regimes de�ned by a general class of criteria. In particular, our approach

can be applied to investigate the asymptotic distribution for the estimators of the mean-

optimal treatment regimes in Zhang et al. (2012a, 2013) and �ll in an important gap in the

theory. The aforementioned nonstandard asymptotics will also arise when the mean-optimal

criterion is used. For alternative criteria, we discuss optimal treatment regimes de�ned by the

Gini's mean di�erence criterion and the weighted quantile criterion in the online supplement,

where an outline of the theory and some numerical examples are provided.
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It is worth noting that the nonstandard asymptotics discussed in this paper are di�erent

from the nonregular asymptotics for Q-learning estimators. The Q-learning method models

the stage-speci�c conditional mean functions and is a popular indirect method for estimating

mean-optimal treatment regimes. Consider the Q-learning method in a two-stage dynamic

setting and denote the estimated parameters indexing the optimal treatment regimes for the

two stages as (ψ̂1, ψ̂2). The asymptotic distribution for ψ̂2 is standard but the asymptotic

distribution for ψ̂1 is nonregular in the sense that it does not converge uniformly over the

parameter space (Robins, 2004; Chakraborty et al., 2010; Laber et al., 2014). The asymptotic

distribution of ψ̂1 can change abruptly from being asymptotically normal to being non-

normal depending on whether a certain event occurs with probability zero or not. This

happens because ψ̂1 is a nonsmooth function of ψ̂2. The results in this paper and those

in the literature on Q-learning demonstrate the challenges of asymptotic theory for optimal

treatment regimes estimation. In general, classical asymptotic theory is no longer applicable.

An interesting future research direction is to investigate estimating quantile-optimal

treatment regimes for survival data, where the response variable is randomly censored. Cen-

sored data arise in diverse �elds such as economics, medicine and sociology. For example, in

a clinical trial censoring occurs when a study ends before all patients experience the event

of interest. Several authors (Goldberg and Kosorok (2012); Zhao et al. (2015c); Geng et al.

(2015); Jiang et al. (2016)) recently studied estimating optimal treatment regimes with sur-

vival outcomes but have not considered the quantile criterion. When censoring is heavy,

it can be di�cult to estimate the mean survival time accurately but it is often possible to

reliably estimate the median and the lower quantiles.
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Appendix: Technical Proofs

We provide below the proofs of Lemma 2 and Theorem 1. The proofs of Lemma 1, Theorem

2, and derivation of the theory for Section 6.2 are given in the online supplement.

Proof of Lemma 2. (1) Note that g(·, β,m) =
[
AI(XTβ > 0)+(1−A)I(XTβ ≤ 0)

]
I(Y −

m > 0). The classes {I(XTβ > 0) : β ∈ B} and {I(Y − m > 0) : m ∈ R} are both VC

subgraph classes and hence bounded Donsker classes. Therefore, the class {g(·, β,m) : β ∈

B,m ∈ R} is Donsker (van der Vaart and Wellner (1996)). We thus have

sup
β∈B,m∈R

∣∣Png(·, β,m)− Pg(·, β,m)
∣∣ = Op(n

−1/2). (8)
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We denote the supremum at the left side of the above expression as ∆n. For any given β,

Pg(·, β,m) is a decreasing function of m. Hence the assumption about the density ensures

that there exists a constant κ1 > 0 such that supβ∈B Pg(·, β,m0 + ε) < 1−τ
2
− κ1ε, for each

small enough ε > 0. Taking ε = ∆n/κ1, for all n su�ciently large, it follows from (8) that

supβ∈B Png(·, β,m0+∆n/κ1) < ∆n+ 1−τ
2
−κ1

∆n

κ1
= 1−τ

2
. This implies m̂n < m0+∆n/κ1 for all

n su�ciently large. Similarly, there exists a constant κ2 > 0 such that supβ∈B Pg(·, β,m0 −

ε) ≥ 1−τ
2

+ κ2ε, for all small enough ε > 0. If follows that supβ∈B Png(·, β,m0 − ∆n/κ2) ≥

−∆n + 1−τ
2

+ κ2
∆n

κ2
= (1 − τ)/2 for all n su�ciently large. This implies m̂n ≥ m0 −∆n/κ2

for all n su�ciently large. Since ∆n = Op(n
−1/2), we have m̂n = m0 +Op(n

−1/2).

(2) Observing (i) β̂n = argmax
β∈B

Png(·, β, m̂n), (ii) β = β0 uniquely maximizes Pg(·, β,m0) and

(iii) supβ∈B
∣∣Png(·, β, m̂n)− Pg(·, β,m0)

∣∣ = op(1), we conclude that β̂ is consistent for β0 by

applying standard arguments of the M estimation theory (simple modi�cation of Theorem

5.7 in van der Vaart (1998)). Next, we will show β̂n − β0 = Op(n
−1/3).

Let θ = (βT , δ)T , where δ = m−m0, and h(·, β, δ) = C(β)I{Y −m0−δ > 0}−C(β0)I{Y −

m0 − δ > 0}. By de�nition, β̂n = argmax
β∈B

Pnh(·, β, m̂n − m0). We will consider a Taylor

expansion of Ph(·, β, δ) around θ0 = (βT0 , 0)T . Note that h(·, β0, 0) = 0 and that

E
[
C(β)I{Y −m0 − δ > 0}

]
=

1

2
E
{
I(XTβ > 0)I(Y −m0 − δ > 0)

∣∣A = 1
}

+
1

2
E
{
I(XTβ ≤ 0)I(Y −m0 − δ > 0)

∣∣A = 0
}

=
1

2
E
{
I(XTβ > 0)S1,X(m0 + δ)

}
+

1

2
E
{
I(XTβ ≤ 0)S0,X(m0 + δ)

}
=

1

2
E
{
I(XTβ > 0)(S1,X(m0 + δ)− S0,X(m0 + δ))

}
+

1

2
E
{
S0,X(m0 + δ)

}
,

where S1,X(·) and S0,X(·) are the conditional survival functions of Y ∗(1) and Y ∗(0) given X,

respectively. Let q(X, δ) = S1,X(m0 + δ)− S0,X(m0 + δ), then

E(h(·, β, δ)) =
1

2
E
{(
I(XTβ > 0)− I(XTβ0 > 0)

)
q(X, δ)

}
.
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It is easy to see ∂
∂δ
E(h(·, β, δ))

∣∣
β=β0,δ=0

= 0 and ∂2

∂δ2
E(h(·, β, δ))

∣∣
β=β0,δ=0

= 0. Note that

the transformation Tβ = (I − ||β||−2ββT )(I − β0β
T
0 ) + ||β||−1ββT0 , where I denotes the

identity matrix, maps the region A = {XTβ0 > 0} onto A(β) = {XTβ > 0}, taking ∂A

to ∂A(β). The surface measure σβ on ∂A(β) has the constant density ρβ(X) = βTβ0/||β||

with respect to the image of the surface measure σ = σβ0 under Tβ. The outward pointing

unit vector normal to A(β) is the standardized vector −β/||β|| and along ∂A the derivative

(∂/∂β)Tβ(X) reduces to −||β||−2[βXT + (βTX)I]. Using the result from Section 10.7 of

Loomis and Sternberg (1968) on derivatives as surface integrals, we have

∂

∂βT
E(h(·, β, δ)) =

1

2
||β||−2βTβ0(I + ||β||−2ββT )

∫
I{XTβ0 = 0}q(Tβ(X), δ)f(Tβ(X))Xdσ.

Note that we have ∂
∂β
E(h(·, β, δ))

∣∣
β=β0,δ=0

= 0 because E(h(·, β, 0)) is maximized at β = β0.

Combining with the observation that Tβ0(X) = X along {XTβ0 = 0}, we have
∫
I{XTβ0 =

0}l(X, 0)f(X)Xdσ = 0. Using this and the fact ||β0|| = 1, we have

∂2

∂β∂βT
E(h(·, β, δ))

∣∣
β=β0,δ=0

= −1

2

∫
I{XTβ0 = 0}(f(X)q̇(X, 0) + q(X, 0)ḟ(X))Tβ0XX

Tdσ,

where q̇(X, 0) and ḟ(X) denote the gradients with respect to X. Also,

∂2

∂βT∂δ
E(h(·, β, δ))

∣∣
β=β0,δ=0

=
1

2

∫
I{XTβ0 = 0}(s1,X(m0)− s0,X(m0))f(X)Xdσ,

where s1,X and s0,X are the derivatives of S1,X and S0,X with respect to δ, respectively. We

write

V = − ∂2

∂β∂βT
E(h(·, β, δ))

∣∣
β=β0,δ=0

(9)

and a1 = ∂2

∂βT ∂δ
E(h(·, β, δ))

∣∣
β=β0,δ=0

, then the Taylor expansion of Ph(·, β, δ) around (β0, 0)
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has the form

Ph(·, β, δ) = −1

2
(β − β0)TV (β − β0) + aT1 (β − β0)δ + o(||β − β0||2) + o(δ2). (10)

For a given positive constant R, let HR = sup||θ−θ0||≤R |h(·, β, δ)|. We observe that h(·, β, δ) is

nonzero if and only if C(β) and C(β0) take di�erent values. Hence,HR ≤ sup||θ−θ0||≤R
{
I(XTβ >

0 ≥ XTβ0) + I(XTβ0 > 0 ≥ XTβ)
}
. The envelope function HR is bounded by an indicator

function of a pair of multidimensional wedge shaped regions, each subtending an angle of

order O(R), from which we deduce that E(H2
R) = O(R). The conditions of Lemma 4.1 of

Kim and Pollard (1990) are satis�ed. Hence, for each �xed ε > 0, uniformly for ||θ−θ0|| ≤ R,

Pnh(·, β, δ) ≤ Ph(·, β, δ) + ε(||β − β0||2 + δ2) +Op(n
−2/3). Combining with the upper bound

in (10), we have Pnh(·, β, δ) ≤ −
(

1
2
λmin(V )− ε

)
||β−β0||2 + ||a1||||β−β0|||δ|+ (ε+ o(1))δ2 +

Op(n
−2/3), where λmin(V ) denotes the smallest eigenvalue of V . Choosing ε = λmin(V )/4,

we derive that

0 = Pnh(·, β0, m̂n −m0) ≤ Pnh(·, β̂n, m̂n −m0)

≤ −1

4
λmin(V )||β̂n − β0||2 +Op(n

−1/2)||β̂n − β0||+Op(n
−2/3).

Completing the square in ||β̂n − β0||, we derive that ||β̂n − β0|| = Op(n
−1/3).

Next, we show that β̂n nearly maximizes Pnh(·, β, 0). A similar argument as above shows

that P |h(·, θ1) − h(·, θ2)| = O(||θ1 − θ2||) for θ1, θ2 near θ0. It follows from Lemma 4.6 of

Kim and Pollard (1990) that the process Jn(·, α, γ) = n2/3(Pn − P )h(·, β0 + αn−1/3, γn−1/3)

satis�es the stochastic equicontinuity condition of Theorem 2.3 of Kim and Pollard (1990).

Since n1/3(m̂n−m0) = op(1), this implies that for β uniformly in a O(n−1/3) neighborhood of

β0, Jn(·, n1/3(β− β0), n1/3(m̂n−m0))− Jn(·, n1/3(β− β0), 0) = op(1). That is, Pnh(·, β, m̂n−

m0) = Pnh(·, β, 0) +Ph(·, β, m̂n−m0)−Ph(·, β, 0) + op(n
−2/3), uniformly over an Op(n

−1/3)

neighborhood of β0. Within such a neighborhood, Taylor expansion similarly as before
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shows that Ph(·, β, m̂n −m0) − Ph(·, β, 0) = op(n
−2/3). Suppose β̃n = argmax

β∈B
Pnh(·, β, 0).

An analysis similar to that for β̂n shows that β̃n = Op(n
−1/3). Hence,

Pnh(·, β̂n, 0) = Pnh(·, β̂n, m̂n −m0)− op(n−2/3) ≥ Pnh(·, β̃n, m̂n −m0)− op(n−2/3)

= Pnh(·, β̃n, 0)− op(n−2/3),

where the inequality follows because β̂n = argmax
β∈B

Pnh(·, β, m̂n−m0). Therefore, Pnh(·, β̂n, 0) ≥

supβ∈B Pnh(·, β, 0)− op(n−2/3). �

Proof of Theorem 1. Following Lemma 2(2), to �nd the asymptotic distribution of

n1/3(β̂n−β0), it su�ces to apply the main theorem of Kim and Pollard (1990) to the one pa-

rameter process {h(·, β, 0) : β ∈ B}. Recall that h(·, β, 0) = C(β)I{Y > m0} − C(β0)I{Y >

m0}. In the following, we will verify conditions (iv) and (v) of the main theorem of Kim and

Pollard (1990). Other conditions of the theorem are relatively easier and can be checked

using similar techniques as those in the proof of Lemma 2.

For condition (iv), it can be shown that ∂2

∂β∂βT
E(h(·, β, 0))

∣∣
β=β0

= −V , where V is de�ned

in (9) in the proof of Lemma 2. Next, we calculate the kernel function in condition (v).

Similarly as in the calculation in the proof of Lemma 2, for each C1, C2 in R
l, and t > 0,

tP
∣∣∣h(·, β0 +

C1

t
, 0
)
− h
(
·, β0 +

C2

t
, 0
)∣∣∣2

= tP
{∣∣C(β0 + C1/t)− C(β0 + C2/t)

∣∣I(Y > m0)
}

=
1

2
tP
{∣∣I(XT (β0 + C1/t) > 0)− I(XT (β0 + C2/t) > 0)

∣∣I(Y ∗(1) > m0)
}

+
1

2
tP
{∣∣I(XT (β0 + C1/t) ≤ 0)− I(XT (β0 + C2/t) ≤ 0)

∣∣I(Y ∗(0) > m0)
}

= tP
{

(S1,X(m0) + S0,X(m0))
∣∣I(XT (β0 + C1/t) > 0)− I(XT (β0 + C2/t) > 0)

∣∣}.
To evaluate the above expression, we make use of the local coordinates (Example 6.4 of Kim

and Pollard (1990)), for which we de�ne β(τ) =
√

1− ||τ ||2β0 + τ , where τ is orthogonal to
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β0 and ranges over a neighborhood of the origin. It is noted that as the parameter space

is on the sphere (||β0|| = 1, ||β|| = 1), such a decomposition can be obtained by taking

τ = τ(β) = T0β, where T0 = I − β0β
T
0 . Then we can write β = (βT0 β)β0 + T0β such that

βT0 β =
√

1− ||τ ||2 and βT0 T0β = 0. Also, τ(β0 + C1/t) = T0C1/t, τ(β0 + C2/t) = T0C2/t.

Similarly, we can decompose X as X = rβ0 + Z for some random variable r and random

vector Z, with Z being orthogonal to β0. Let C
∗
k = T0Ck ∈ T0, k = 1, 2, thenXT (β0+C1/t) =

(rβ0 + Z)T
(√

1− ||C∗1 ||2/t2β0 + C∗1/t
)

= r
√

1− ||C∗1 ||2/t2 + ZTC∗1/t. Let p(·, ·) be the joint

density function of (r, Z), which can be deduced from the density of X, With a change of

variable w = tr, tP
{

(S1,X(m0) +S0,X(m0))
∣∣I(XT (β0 +C1/t) > 0)− I(XT (β0 +C2/t) > 0)

∣∣}
is equal to

∫∫
I
{
− ZTC∗2(1− ||C∗2 ||2/t2)−1/2 > w ≥ −ZTC∗1(1− ||C∗1 ||2/t2)−1/2

}
(S1,w

t
β0+Z(m0) + S0,w

t
β0+Z(m0))p(w/t, Z)dwdZ

+

∫∫
I
{
− ZTC∗1(1− ||C∗1 ||2/t2)−1/2 > w ≥ −ZTC∗2(1− ||C∗2 ||2/t2)−1/2

}
(
S1,w

t
β0+Z(m0) + S0,w

t
β0+Z(m0)

)
p(w/t, Z)dwdZ.

Integrating over w and letting t→∞ to get limt→∞ tP
∣∣h(·, β0+C1/t, 0)−h(·, β0+C2/t, 0)

∣∣2 =∫
|ZT (C∗1−C∗2)|

(
S1,Z(m0)+S0,Z(m0)

)
p(0, Z)dZ =

∫
|ZT (C1−C2)|

(
S1,Z(m0)+S0,Z(m0)

)
p(0, Z)dZ.

We denote this limit as L(C1−C2). Using the identity 2xy = x2+y2−(x−y)2, we deduce that

the limiting covariance kernel function can be written as K(C1, C2) = limt→∞ tP
{
h(·, β0 +

C1/t, 0)h(·, β0+C2/t/t, 0)
}

= limt→∞
1
2
tP
∣∣h(·, β0+C1/t, 0)−h(·, β0, 0)

∣∣2+limt→∞
1
2
tP
∣∣h(·, β0+

C2/t, 0)−h(·, β0, 0)
∣∣2−limt→∞

1
2

limt→∞ tP
∣∣h(·, β0+C1/t, 0)−h(·, β0+C2/t, 0)

∣∣2 = 1
2

(
L(C1)+

L(C2)−L(C1−C2)
)
. The asymptotic distribution of n1/3(β̂n− β0) then follows by applying

the main theorem of Kim and Pollard (1990) �
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