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Abstract

Finding the optimal treatment regime (or a series of sequential treatment regimes)
based on individual characteristics has important applications in areas such as precision
medicine, government policies and active labor market interventions. In the current lit-
erature, the optimal treatment regime is usually defined as the one that maximizes the
average benefit in the potential population. This paper studies a general framework
for estimating the quantile-optimal treatment regime, which is of importance in many
real-world applications. Given a collection of treatment regimes, we consider robust
estimation of the quantile-optimal treatment regime, which does not require the ana-
lyst to specify an outcome regression model. We propose an alternative formulation
of the estimator as a solution of an optimization problem with an estimated nuisance
parameter. This novel representation allows us to investigate the asymptotic theory of
the estimated optimal treatment regime using empirical process techniques. We derive
theory involving a nonstandard convergence rate and a non-normal limiting distribu-
tion. The same nonstandard convergence rate would also occur if the mean optimality
criterion is applied, but this has not been studied. Thus, our results fill an important
theoretical gap for a general class of policy search methods in the literature. The paper
investigates both static and dynamic treatment regimes. In addition, doubly robust
estimation and alternative optimality criterion such as that based on Gini’s mean dif-
ference or weighted quantiles are investigated. Numerical simulations demonstrate the
performance of the proposed estimator. A data example from a trial in HIV+ patients
is used to illustrate the application.

KEY WORDS: dynamic treatment regime; nonstandard asymptotics; optimal treatment

regime; precision medicine; quantile criterion.

!Lan Wang is Professor and Yu Zhou is graduate student, School of Statistics, University of Min-
nesota, Minneapolis, MN 55455. Emails: wangx346@Qumn.edu and zhou0269@umn.edu. Rui Song is As-
sociate Professor, Department of Statistics, North Carolina State University, Raleigh, NC 27695. Email:
rsong@ncsu.edu. Ben Sherwood is Assistant Professor, School of Business, University of Kansas. Email:
ben.sherwood@ku.edu. Dr. Sherwood’s work was done when he was a graduate student at University of
Minnesota. Wang’s research is partly supported by NSF DMS-1512267 and DMS-1712706. Song’s research is
partly supported by NSF DMS-1555244 and NCI P01 CA142538. We thank the Co-Editor Nicholas Jewell,
the AE and two anonymous referees for their constructive comments which help us significantly improve the
paper. We also thank Dr. Shannon Holloway at North Carolina State University for proofreading the paper
and providing many helpful comments.



1 Introduction

A treatment regime can be described as a function from the space of covariates to the set
of treatment options. Depending on the application, a treatment can represent a drug, a
device, a program, a policy, an intervention or a strategy. The problem of estimating an
optimal treatment regime has recently received considerable attention. Medical doctors have
long been interested in tailoring a patient’s medical treatment according to the individual’s
unique genetic information, health history, environmental exposure, needs and preferences.
Economists are interested in finding the most effective active labor market programs (job
search training, computer training, etc.) for an unemployed job seeker (Frolich (2008),
Behncke et al. (2009), Staghgj et al. (2010), Wunsch (2013)). In political science, researchers
are interested in selecting the best strategies (personal visits, phone calls, mailings, etc.) to
increase voter turnout (Gerber and Green (2000), Imai and Ratkovic (2013)).

Existing work on estimating an optimal treatment regime has mainly focused on the
mean-optimal treatment regime, which if followed by the whole population would yield the
largest average outcome (assuming a larger outcome is preferable). Popular approaches
for estimating mean-optimal treatment regimes include model-based methods such as Q-
learning (Watkins and Dayan, 1992; Murphy, 2005b; Chakraborty et al., 2010; Moodie and
Richardson, 2010; Goldberg and Kosorok, 2012; Song et al., 2015), A-learning (Robins et al.,
2000; Murphy, 2003, 2005a), and model-free or policy search methods (Robins and Rot-
nitzky, 2008; Orellana and Robins, 2010; Zhang et al., 2012a; Zhao et al., 2012, 2015a).
Other relevant work includes Robins (2004); Moodie et al. (2007, 2009); Henderson et al.
(2010); Cai et al. (2011); Qian and Murphy (2011); Thall et al. (2011); Imai and Ratkovic
(2013); Huang et al. (2015); Tao and Wang (2017), among others. We refer to the recent
books (Chakraborty and Moodie, 2013; Kosorok and Moodie, 2016) and review articles (Qian
et al., 2012; Chakraborty and Murphy, 2014; Laber et al., 2014; Schulte et al., 2014; Wal-

lace and Moodie, 2014) for a more comprehensive list of references. In econometrics, an



independent line of interesting work explored a decision theory framework for estimating
statistical treatment rules (Manski, 2004; Dehejia, 2005; Hirano and Porter, 2009; Stoye,
2009; Bhattacharya, 2009; Bhattacharya and Dupas, 2012; Tetenov, 2012).

In a variety of applications, criteria other than the mean (or the average) may be more
sensible. When the outcome has a skewed distribution (e.g., survival time of patients), it may
be desirable to consider the treatment regime that maximizes the median of the distribution
of the potential outcome. Sometimes, the tail of the potential outcome distribution is of
direct importance. When evaluating government job training programs to improve earnings,
policy makers may ask which program does best to improve earnings on the lower tail. An
optimal treatment regime with respect to the tail criterion is even more attractive if the
sacrifice is little at the central part of the potential outcome distribution as compared to
the mean-optimal treatment regime. A simple numerical example illustrating phenomenon
of this nature is given in Section 2. The same numerical example also reveals that the
mean-optimal treatment regime may work poorly (or even have detrimental effect) at the
tails.

In this paper, we study a general framework for estimating the quantile-optimal treat-
ment regime in both static and dynamic settings, the latter of which involves estimating
a sequence of treatment regimes that may vary over time based on a longitudinal study.
Given a class of treatment regimes, we consider a robust estimator of the quantile-optimal
treatment regime that does not require specifying an outcome regression model. By now, it
has been widely recognized (Qian and Murphy, 2011; Zhang et al., 2012a; Zhao et al., 2012;
Matsouaka et al., 2014; Zhao et al., 2015b) that a fundamental challenge in estimating the
optimal treatment regime is specifying a reliable outcome model, which describes how the
treatment and covariates influence the outcome and how they interact with each other. A
misspecified outcome model can result in biased estimation of the optimal treatment regime.

The difficulty of specifying outcome models is more pronounced when estimating the optimal



dynamic treatment regime using longitudinal data, for which model-based approaches would
require specifying a sequence of outcome models, one for each decision point. However,
complete nonparametric estimation of optimal treatment regimes suffers from the curse of
dimensionality and does not provide easy-to-interpret treatment regimes.

Although some recent work has made important contributions to estimating the optimal
treatment regime without an outcome model (Robins and Rotnitzky, 2008; Robins et al.,
2000; van der Laan et al., 2005; Orellana and Robins, 2010; Zhang et al., 2012a, 2013; Zhao
et al., 2012, 2015b), they have considered only the mean-optimal criterion and have not
studied the asymptotic distribution of the estimated optimal treatment regime. In fact, as
will be shown later in the paper, the classical asymptotic theory does not apply to this class
of estimators even for the mean-optimal criterion.

We propose a novel formulation of the estimator as a solution of an optimization problem
with an estimated nuisance parameter. This representation allows us to further investigate
the asymptotic theory of the estimated optimal treatment regime using empirical processes
techniques. Our study reveals that the theory involves nonstandard asymptotics. We have
rigorously established that: (1) the estimated parameter indexing the quantile-optimal treat-
ment regime converges at a cube-root rate to a nonnormal limiting distribution that is char-
acterized by the maximizer of a centered Gaussian process with a parabolic drift; and (2)
the value function corresponding to the quantile optimal treatment regime can be estimated
at an O,(n~'/?) rate. This new framework is broad in the sense that it also provides an al-
ternative formulation of the mean optimal criterion, for which the same type of nonstandard
asymptotics would arise. Thus, we fill an important gap in the literature. Moreover, the
framework can be adapted to alternative criteria such as those based on weighted quantile or
Gini’s mean difference (Section 1.2 of online supplement). The main practical advantage of
the proposed estimator is that it circumvents the difficulty of specifying a reliable outcome

regression model, which has undue influence on estimating the optimal treatment regime.



We also investigate doubly robust estimation (Section 1.1 of online supplement), which can
incorporate an outcome regression model when it is available.

In the causal inference context, several authors have considered estimating the quantile
treatment effects for comparing several pre-determined treatment regimes (Rubin, 1974;
Rosenbaum and Rubin, 1983; Hogan and Lee, 2004; Chernozhukov and Hansen, 2005; Zhang
et al., 2012b). These authors have not investigated the fundamental problem of estimating
the optimal treatment regimes in the quantile framework, which is much more complex
than estimating the quantile specific treatment effect when the treatment assignment is
given. Potentially, the recent work on discrete Q-learning in Moodie et al. (2014) can be
applied to first estimate the probabilities and then invert them to estimate quantiles, but this
application has not been systematically studied. Linn et al. (2015) independently considered
estimating quantile-optimal treatment regime. However, their approach depends on applying
threshold interactive model-based Q-learning at a sequence of thresholding values and then
performing inversion. The method requires specifying the underlying outcome models and is
computationally intensive even for homoscedastic error outcome models. Furthermore, Linn
et al. (2015) has not studied the asymptotic theory we considered here.

The rest of the paper is organized as follows. The quantile-optimal treatment regime is
proposed in Section 2. The estimation procedure and asymptotic distribution are introduced
in Section 3. Section 4 investigates quantile-optimal dynamic treatment regimes. Simulation
studies and a data example are reported in Section 5. Section 6 considers doubly robust
estimation and alternative optimality criteria. The proofs are given in the Appendix. Ad-
ditional technical details and numerical results can be found in the online supplement. The
methods proposed in this paper can be implemented using the R package quantoptr (Zhou

et al., 2017).



2 Quantile-optimal treatment regime

Let A be the binary variable denoting treatment (0 or 1 corresponding to two treatment
options), and let Y denote the outcome. Without loss of generality, we assume that a
larger value of the outcome is preferable. To evaluate the treatment effect, we consider the
potential or counterfactual outcome framework (Neyman (1990), Rubin (1978)) for causal
models. Let Y*(1) be the potential outcome had the subject been assigned to treatment
1; and Y*(0) be the potential outcome had the subject been assigned to treatment 0. For
each individual in the sample, we observe either Y*(1) or Y*(0), but not both. It is assumed
that the observed outcome is Y = Y*(1)A + Y*(0)(1 — A), that is, the observed outcome is
the potential outcome corresponding to the treatment the subject actually receives. This is
often referred to as the consistency assumption in causal inference. We also adopt the stable
unit treatment value assumption (Rubin (1986)), that is, a subject’s outcome of receiving a
treatment is not influenced by the treatments received by other subjects.

Let X denote an [-dimensional vector of covariates. A treatment regime is defined as
a function d(X), that maps the covariates vector X to the set of treatment options, here
{0,1}. For example, d(X) = I(X < 3/5) would assign a subject with X = 0.2 to treatment 1.
Given treatment regime d(X), the corresponding potential outcome is Y*(d) = Y*(1)d(X) +
Y*(0)(1—d(X)), that is, Y*(d) is the outcome one would observe if a subject with covariate
value X is assigned to treatment 1 or 0 following treatment regime d(X). We assume
that (Y*(1),Y™*(0)) is independent of A conditional on X (unconfoundedness assumption,
Rosenbaum and Rubin (1983)), which is automatically satisfied in randomized trials.

Given a collection D of treatment regimes, the optimal treatment regime is typically
defined as the one that maximizes the average of the potential outcome: E(Y™*(d)). Here,

we consider a new quantile-optimal treatment regime, which is defined as

arg mal’deDQr(Y*(d))> (1)



Table 1: Mean, 0.25 quantile and 0.10 quantile of the potential outcomes corresponding to
six different treatment regimes (based on a Monte Carlo experiment with 10° observations).

Regime (1) (2) (3) () (5 (6) (7
mean 1.50 2.40 2.37 2.00 1.78 2.00 1.74
Qoos 0.80 1.10 1.14 1.01 0.91 -0.02 0.59
Qoo 0.16 -0.03 0.20 0.33 0.26 -2.29 -0.81

where 7 € (0,1) is the quantile level of interest and @Q,(Y*(d)) is the 7th quantile of Y*(d),
specifically, Q,(Y*(d)) = inf{t : F*(t) > 7} with F* denoting the distribution function of
Y*(d).

To illustrate how the quantile-optimal treatment regime differs from the mean-optimal
treatment regime, we consider a simple but instructive example. The outcome, Y;, satisfies
YV, =14+3A4;+X; — bAX; + (1 4+ A; + 24, X;)e;, where ¢, ~ N(0,1), X; ~ Uniform|0, 1],
and A; = 1 (or 0) if subject i receives treatment (or control). We consider the following
six treatment regimes: (1) A; =0, Vi; (2) A = I(X; < 3/5); (3) A = I(X; < 1/2); (4)
A, = I(X; <1/5); (5) A = I(X; < 1/10); (6) A; = 1,V 4; and (7) random assignment
P(A; =1) =0.5. It is easy to derive that treatment regime 2 is the mean-optimal treatment
regime. Table 1 summarizes the mean, the 0.25 quantile (Qo25) and 0.10 quantile (Qo.10)
of the potential outcome distribution corresponding to each of the six treatment regimes,
based on a Monte Carlo experiment with 10° observations. We observe that regime 3 is the
best if one is interested in maximizing the first quartile of the potential outcome distribu-
tion; whereas regime 4 performs best with respect to the 0.10 quantile. If we consider the
hypothetical setting where the outcome is the survival time of cancer patients, then regime 2
(mean-optimal treatment regime) may have detrimental effect for patients at the lower tail,
corresponding to weaker patients. Regime 3 significantly improves the survival time of the
patients at the lower tail, while its mean value is comparable to that of regime 2. Thus,
regime 3 is preferable if doctors wish to improve the life span of more severely ill patients

without sacrificing the average treatment benefit of the population.



3 Estimation and large sample theory

3.1 Estimating quantile-optimal treatment regime

To explain the idea, we first consider a randomized trial with two treatment options (denoted
by 1 and 0). Extensions to observational studies and dynamic treatment regimes will be
discussed later. The observed data {X;,Y;, A;}, 7= 1,...,n, are independent and identically
distributed copies of { X, Y, A}. Our aim is to estimate the quantile-optimal treatment regime
given a class of feasible treatment regimes D = {I(X73>0) : 3 € B}, where 3 indexes
different treatment regimes and B is a compact subset of R!. This class of single-index
decision rules has been popular in practice (Zhang et al., 2012a, 2013; Zhao et al., 2012) due
to its simplicity and interpretability. It is straightforward to show that this class contains the
mean-optimal treatment regime corresponding to some popular choices of outcome models.
For example, for the outcome model E(Y|A, X) = Bo+ 51 X1 + 52X + A(Bs + 54 X1 + 55 X2),
the corresponding mean-optimal treatment regime is I(83+ [, X1+ 5 X2 > 0). An alternative
class of treatment regimes that are practically appealing is the class of thresholding rules of
the form I(X; > f1,...,X; > ), for some constants (i, ..., ;. Even for these relatively
simple forms, asymptotic theory for the estimated optimal treatment regime, no matter what
the criterion is, is nontrivial. It is worth pointing out that it is not necessary that the class
of candidate treatment regimes includes the theoretically global optimal treatment regimes,
as the interpretability of the treatment regime is often of fundamental importance.

We will focus on the single-index treatment regimes, as the theory for the threshold-
ing decision rules is similar and simpler. Given a 3 € B, let d(X,5) = I[{XT8 > 0}
be the treatment regime indexed by J, which is sometimes denoted by dg for notational
simplicity. For a quantile level of interest 7 (0 < 7 < 1), we would like to estimate
Bo = arg maxgep@, (Y *(dg)), the parameter indexing the quantile-optimal treatment regime.

To do so, we make use of an induced missing data framework motivated by Zhang et al.



(2012a). Let C(B) = Ad(X,5) + (1 — A)(1 —d(X,B)). In the induced missing data frame-
work, the “full data” of interest, but not completely observed, are {Y*(ds), X}; and the
observed data are {C(5),C(8)Y*(dp), X} = {C(B),C(B)Y,X}. If C(B) =1, then potential
outcome Y*(dg) is observed; if C'(5) = 0 then Y*(dp) is “missing”. Furthermore, Y*(dg) and
C(B) are independent conditional on X. Thus, the induced missing data structure satisfies

the missing at random assumption. Let

~

Q+(8) = argminn™' 3 | Ci(B)pr(Y; - a), (2)

=1

where p,(u) = u(t—1(u < 0)) is the quantile loss function. As stated in the following lemma
(proof given in the online supplement), @T(ﬁ) is a consistent estimator of the 7th quantile

of Y*(dﬁ)

Lemma 1. If condition (C1) in Section 3.3 is satisfied, then we have Q. (8) — Q-(Y*(dg))

in probability, ¥ (5 € B.
The estimator for 3y that corresponds to the quantile-optimal treatment regime is

o~

B, = argmax @7(6). (3)

BeB

The estimated quantile-optimal treatment regime is d = I(XTB > (). Section 2.1 of the

online supplement provides the calculation details.

3.2 Alternative formulation of the proposed estimator

As the treatment regimes involve indicator functions, the nonsmoothness leads to nonstan-
dard asymptotics even when the mean criterion is used. The asymptotic theory is challenging
and involves a cube-root convergence rate and a non-normal limiting distribution, see Sec-

tion 3.3 for details. Even for the mean criterion, the asymptotic distribution theory of



the estimated optimal treatment regime has not yet been systematically developed in the
literature.

To facilitate the development of theory, we introduce a novel reformulation that rep-
resents the quantile-optimal treatment regime parameter estimator (3) as a solution of an
optimization problem with an estimated nuisance parameter. To motivate the reformulation,

let

my = SUP{m : SﬁlGIIﬁB? Pg('vﬁam) > (1 - T)/2}7 (5)
Bo = ar%géax Pg(-, B, mo). (6)

The function g(-, 8, m) is motivated by the first-order condition of the maximization problem
in (2). For a randomized trial, P(C(8) = 1|X) = P(C(B) = 0|X) = 1. Thus, P(g(-, 3,m)) =
s P(Y*(dg)>m), which is equal to 57 if m = Q. (Y*(dg)). For any given 3, because g(-, 5, m)
is monotonically decreasing in m, it follows that Q.(Y*(dg)) is the largest value of m such
that Pg(-,3,m) is greater than or equal to 1_TT Therefore, mq defined in (5) is the largest
achievable 7th quantile of Y*(dg) over 5 € B; and (3, defined in (6) is the population value
of the parameter that indexes the optimal treatment regime.

Now, let P, denote the empirical expectation, that is, P, f(Z) =n~'>"" | f(Z;), where
Zyy ..., Zy is a random sample and f(-) is an arbitrary function. Then, m, = sup{m :
supgep Pog(-, 5,m) > (1 — 7)/2} is the estimator of the largest achievable Tth quantile of

Y*(dg) over the class of treatment regimes under consideration. We have the following

alternative expression of the estimator in (3):

~

B, = argmax P,g(-, B, My). (7)
BEB

In other words, En is the value of  at which the supremum of P,g(-, 8, m,) is achieved,



thus it is the estimator of the parameter that indexes the optimal treatment regime. This
reformulation was partly motivated by the least median of squares estimator of Rousseeuw
(1984). A benefit of this reformulation is that we also obtain the convergence rate of m,,
which is the estimator for the maximally achievable value function (here, the maximally

achievable 7th quantile of the potential outcome) as a by product (see Lemma 2 in Section

3.3).

3.3 Asymptotic properties
We assume the following regularity conditions.

(C1) Potential outcomes Y*(1) and Y*(0) both have continuous distributions with bounded,

continuously differentiable density functions.

(C2) The population parameter indexing the optimal treatment regime, 3, € R!, which
satisfies ||3g|| = 1, where || - || denotes the Euclidean norm, is unique and is an interior

point of B, a compact subset of the parameter space.

C3) X has a continuously differentiable density function f(-). The angular components
( g
of X, considered as a random element of the unit sphere S in R!, has a bounded,

continuous density with respect to the surface measure on S.

(C4) Let ¢(X,d) = Six(mo + 0) — Sox(mo + 6), where S; x(-) and Sy x(-) denote the
conditional survival functions of Y*(1) and Y*(0) given X, respectively; and ¢(X,0)
and f(X) denote the gradients with respect to X. The I x [ matrix V =1 [ T{X75, =

0HF(X)q(X,0) + q(X,0)f(X))' BoX X do is positive definite, where o is the surface

measure on the hyperplane {X : XT3, = 0}.

Condition (C1) is a standard assumption on the potential outcomes in causal inference.
Condition (C2) is an identifiability condition for 5y. Conditions (C3) and (C4) are technical

conditions to evaluate the quadratic drift and covariance function of the Gaussian process

10



that are used to characterize the asymptotic distribution of 3,. The matrix V in (C4)
characterizes the quadratic drift of the Gaussian process. These two conditions are similar
to those in Example 6.4 of Kim and Pollard (1990). In particular, condition (C3) is mainly
imposed for the convenience of calculating the derivative of the surface integral in the proof
of Lemma 2. It can be relaxed to allow some of the components of X to be discrete at the
expense of a more complex expression for V. The new formulation in Section 3.2 connects the
problem of estimating 3y to the class of estimation problems with cube root asymptotics (Kim
and Pollard, 1990). However, the result of Kim and Pollard (1990) is not directly applicable
because our estimator of 3y contains an estimated nuisance parameter m,,. Lemma 2 below
shows that Bn nearly maximizes the objective function in (7) in which m,, is replaced by the

limiting value my.

Lemma 2. Under conditions (C1)-(C4),
(1), = mo + Op(n~1/2).

(2) Pog (-, By mo) > supges Pag (-, B,mo) — 0,(n~/3).

The first part of Lemma 2 shows that m, has a root-n convergence rate. This result
is of independent interest as it tells us how well we could estimate the theoretically largest
achievable value of the criterion function. The details of the derivation of the lemma are given
in the Appendix. Lemma 2 confirms that En nearly maximizes P,g(-, 3, mg). This allows
us to further derive the asymptotic distribution of Bn, which is expressible as a functional
of two-sided Brownian motion with a quadratic drift. This result is stated in the following

theorem.

Theorem 1. Assume conditions (C1)-(C4) are satisfied. Then, n1/3(§n — o) converges in
distribution to arg max,Z(t), where the process Z(t) = —3t"Vi+W(t), V is an | x I positive
definite matriz and W (t) is a centered Gaussian process with continuous sample paths and
covariance kernel function K(-,-). The expressions for V and K(-,-) are given in the proof

of the theorem in the Appendiz.
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Remark 1. Tf the mean-optimal criterion is of interest, then we let g*(-, 5, 1) = C(B)(Y — )
and fi, = sup{y : supgeg Pog*(, B, 11)>0}. The estimated parameter indexing the mean-
optimal treatment regime has the representation B\inean = argr%ax P.g (-, B, itn). Tt is
straightforward to adapt the techniques developed in this paper tjeshow that the estimated
parameter indexing the mean-optimal treatment regime has a non-standard convergence rate
and a non-normal limiting distribution. This fills an important gap in the literature.

Remark 2. 1If the observed data arise from observational studies, the above formulation
and theory can be extended using propensity score weighting. For observational studies,
we have Y*(dg) LC(f8)| X, which is guaranteed under the common causal inference assump-
tion {Y*(1),Y*(0)} L A|X. Thus, the “missing at random” assumption is satisfied in the
induced missing data framework of Section 3.1. Let 7(X) = P(A = 1]X), then the propen-
sity score P(Cs = 1]|X) has the expression 7(X)d(X, ) + (1 — 7(X))(1 — d(X, 8)). We

denote the propensity score by 7.(X, ) for notational simplicity. We then estimate the

Tth quantile of Y*(dg) by Q.(3) = argininn_l i ﬁcc(ggi)ﬁ)PT(Yi — a), where 7.(X;, ) is
an estimator of the propensity score 7.(X, 3). A simple way to obtain 7.(X;, 5) is to esti-
mate m(X) based on {A;, X;}, i =1,...,n, using logistic regression, which models 7(X) as
7(X,7) = exp(XT7)/(1 + exp(XT7)). One may also use semiparametric or nonparametric

models, which renders greater flexibility but demands heavier computation. The estimated

parameter indexing the quantile-optimal treatment regime is given by argmax QT(B).
BEB

4 Quantile-optimal dynamic treatment regimes

When treating chronic medical conditions, it is frequently necessary to vary the treatment
(e.g., drug type, dose) over time according to how the patient responds to the previous
treatment. This motivates us to consider estimating the quantile-optimal dynamic treat-
ment regime (DTR) using data from longitudinal studies, which can also help catch possible

delayed treatment effects. Comparing with the static treatment regime discussed earlier,
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a new challenge is the presence of time-dependent covariates that may be simultaneously
confounders and intermediate variables.

Consider a two-stage longitudinal study in which the subject receives treatment A; €
{0,1} at stage 1 and treatment Ay € {0,1} at stage 2. We are interested in the outcome
at the end of the study. We would like to estimate the optimal DTR d = (d;,ds), where
d; can depend on the realized covariates and treatment history before the jth decision,
j = 1,2. The baseline vector of covariates is denoted by X;, the potential outcomes are
denoted by {X;(dy),Y*(d)}, where X;(dy) is the covariate information between decisions
dy; and dy had the subject received treatment d;, and Y*(d) is the potential outcome had
the subject received treatment d = (dy,dy). As before, we define the quantile-optimal DTR
as dOPY = argr%axQT(Y*(d)). Let H = {X1} and Hy = {X;, A1, X2}. We adopt the no
unmeasured Coenfounder or sequential ignorability assumption (Robins (1997)), that is, given
any regime (aq,as), A1 L{X;(a1),Y*(a1,a2)}|H; and A LY*(ay,as)|Hs. In other words,
treatment A; received in the jth stage (j = 1, 2) is independent of any future (potential)
covariate or outcome conditional on the history. We also adopt the positivity assumption,
that is, there exist positive constants ¢; < ¢y such that ¢; < P(A; = a|H;) < ¢, with
probability one, for a € {0,1}, j = 1,2. Assume that the class of candidate treatment regimes
is indexed by & = (87,7")T € B = By x By, d¢ = (dg, d,), where dg(H,) = [(H{ 3 > 0) and
d,(Hy) = I(Hi~v > 0).

The observed data are denoted by {X;1, A;1, Xio, Ai2, Y;}, 0 = 1,...,n, where X;; denotes
the baseline vector of covariates for subject i, A;; is the treatment subject ¢ receives at stage
1, X2 denotes the vector of intermediate information observed between the two stages, A;,
is the treatment subject i receives at stage 2, and Y; is the observed outcome for subject ¢ (as
before, a larger value is preferred). To estimate the optimal treatment regime, we consider

a similar induced missing data structure, as motivated by Zhang et al. (2013). For a given

treatment regime d, the “full data” are (Xi, X;(dg), Y*(d¢)). Let C¢ = oo if Ay = dg and
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Ay = d,. In this case, (X1,X5,Y) = (X3, X;(dg), Y*(de)), and we observe the potential
outcome. Let Cg = 2 if A; = dg but Ay # d¢ (dropout before decision 2); and let Cs = 1
if Ay # dg and Ay # d¢ (dropout before decision 1). Note that this induced missing data
structure mimics the monotone dropout scenario for longitudinal data. We can verify that
the setup satisfies the missing at random assumption, that is, missingness may be related to
the observed information but is conditionally independent of what is missing.

Let m(Hy) = P(A; = 1| Hy) and my(Hy) = m(Xo,a2) = P(Ay = 1| Xy, a5), where
X, = (XTI, X7 is an I-dimensional vector. It is important to note that H, depends on
the treatment received at the first stage. If the subject receives A, = a; € {0,1} at the
first stage, we sometimes write Hy as Hs(a;) = { X1, a1, X2} to emphasize the dependence,
for which case Xy = XJ(a1) by the consistency assumption. Similarly, for A, = dg(H,), we
sometimes write Hy as Hy(dg) = {dp(X1), X2}. The potential outcomes correspond to dg

are denoted by {X1, X;(ds(X1)),Y*(de)} or simply {X5(ds),Y"(de)}.
I(Ce=00)

P(Ce¢=00|H>)

Y*(de). Note that C¢ = oo if and only if A; = dg(X;) and Ay = d,(H2(dg)), in other words,

As before, we would minimize Pn< pr(Y — a)) to estimate the 7th quantile of
Hy = Hs(dg) or the observed history is the potential history corresponding to dg. Thus, in

the above inverse probability weighted quantile loss function

P(Ce = co|Hy) = P(C¢ = 00| Xy, X;(ds(X1)))
= P(Ar = dg| X1, X5(ds(X1))P(Az = dy | Ay = ds(X7), X7, X5 (ds(X1)))

= P(Al = dﬁ}Xl)P(AQ = d’y’HQ(dﬁ))

where P(A; = dg|X1) = [m(H1)ds + (1 — i (H1))(1 — dg)] and P(Ay = d,|Hs(dg)) =
[72(Ha(dg))dy + (1 — ma(Ha(dg)))(1 — d,)]. For notational simplicity, we denote P(C¢ =

0o|Hs) by m(§). Formally, the estimate of the 7th quantile of Y*(d¢) is given by @T(S) =

m(£)

of @T(g ) is established in the online supplement. The estimator of the parameter indexing the

argminn =ty " pr(Y;—a), where C¢ ; is the value of C for subject i. The consistency
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optimal DTR from the class D is defined as E = arjgrr;af @T(é). The estimated quantile-
optimal treatment regime is d; = (dg, d5). e

In the following, we assume that the data arise from a SMART (sequential, multiple,
assignment randomized trials), which has been recommended as a standard design for optimal
DTR estimation (Lavori and Dawson, 2000; Murphy, 2008). For a SMART, m(H;) and
m1(Hy) are both known by design, thus 7(¢) is known for any given & Let g(-,{,m) =
I(ff(goo)f(Y > m) and m,, = sup{m : sup; P.g(-,§,m) > (1 —7)}. We have the following

alternative expression: En = argmax P,g(-,&,my). Let mg = sup{m : sup; Pg(-,{,m) >
3

(1—7)} and & = argmax Pg(-,&, mp). Under similar conditions as for Theorem 1, it can be
3
derived that the limiting distribution of n'/3(&, — &) is that of the maximizer of a centered

Gaussian process with a quadratic drift.

Theorem 2. Under conditions (C1*)—(C4*) given in the online supplement, n'/3(&, — &)
converges in distribution to arg max,Z*(t), where the process Z*(t) = —3t"V*t + W*(t), V*
is an | X 1 positive definite matriz and W*(t) is a centered Gaussian process with continuous
sample paths and covariance kernel function K*(Cy,Cy). The expressions for V* and K*(-,-)

are given in the online supplement.

5 Numerical results

5.1 Simulations

Example 1 (single-stage optimal treatment regime). We compare estimating the
conventional mean-optimal treatment regime and quantile-optimal treatment regime in this
example. We generate random data from the model ¥ = 1+ X; — Xy + Xg + e 4
AB=5X1 42X —3X3+ X)) +(1+ A1+ X; + Xo+ X3+ Xy)) €, where X, (k=1,...,4)
are independent Uniform(0,1) random variables and € ~ N (0,1) is independent of the

covariates. The binary treatment indicator A satisfies log (P (A = I‘X) /P (Az- = OIX) ) =
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Table 2: Population parameters and summary values for optimal treatment regimes under
different criteria for Example 1 based on a Monte Carlo experiment with n = 10°.

o m 2 13 4 Qmean (Qo2s Qo
mean criterion 0.43 -0.72 0.29 -0.43 0.14 3.99 2.28 0.55
0.25qt criterion 0.42 -0.60 0.41 -0.43 -0.34 3.79 246 1.18
0.1qt criterion 0.27 -0.68 0.38 -0.43 -0.37 3.44 2.36  1.55

Columns 2-6 are values of the 7;’s of the optimal treatment regimes corresponding to different criteria. The last three

columns are the mean, 0.25 quantile and 0.1 quantile of the potential outcomes if the optimal treatment regime is applied.

—0.5—=0.5 (X1 4+ Xo + X3+ Xy), where X = (X3,...,Xy).

We consider the class of treatment regimes I(ny + n? X > 0), where (19,71, ...,m4)"
has Ly-norm 1. Let p(a,X) = E(Y|A = a,X), where @ € {0,1}. The mean optimal
treatment regime is given by I(u(1, X) > (0, X)). In our example, it is 1(3 —5X; +2X, —
3X3 + X4 > 0), which belongs to our class of candidate treatment regimes. We compare
the proposed method with two popular methods for estimating the mean-optimal treatment
regime: a model-based approach and a model-free approach. For the model-based approach
we impose models for u(a, X) and then estimate the mean-optimal treatment regime by
I(f(1, X) > [1(0, X)), where fi is the estimated value of u. We consider two posited models
for p(a,X): (1) correctly specified regression function py (a, X) = v + nX1 + 7Xe +
Y3 X3 +yae i +a (45 + 76 X1 + 17 X2 + 18 X3 + 79 Xy) ; and (2) misspecified regression function
fom (@, X) = exp [y0 + 11.X1 + 72Xo + 13.X5 + a (74 + 75 X1 + 76 Xo + 77 X5 + 13 X4)] . For the
model-free approach, we consider the estimator in Zhang et al. (2012a). We denote these
three estimators by mean_ RG,, mean_ RG,,,, and mean_ZTLD, respectively.

For the quantile criteria, we consider 7 = 0.25 and 0.1, and denote the corresponding
criterion as 0.25qt criterion and 0.10qt criterion, respectively. We do not have a closed
form expression for the quantile-optimal treatment regime. In Table 2, based on a Monte
Carlo experiment with sample size 10, we report the values of the 7,’s indexing the optimal

treatment regimes corresponding to different criteria; the last three columns of the table
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Table 3: Estimated optimal treatment regimes (mean criterion, 0.25 quantile criterion and
0.1 quantile criterion) and their corresponding value functions for Example 1.

Method n o m 72 73 T Qmean Qo2 Qo
mean_RGM 500 0.42 -0.71 0.28 -0.41 0.14 3.99 2.29 0.56

(0.10) (0.07) (0.13) (0.11) (0.12) (0.21) (0.19) (0.40)

1000 043 -0.71 029 -043 014 399 228  0.52
(0.06) (0.05) (0.09) (0.08) (0.09) (0.14) (0.13) (0.27)

mean RG,, 500 026 -071 030 -0.38 037 396 223 0.5
(0.11)  (0.08) (0.12) (0.12) (0.12) (0.21) (0.19) (0.38)

1000 027 -0.71 031 -0.39 037 397 222  0.62
(0.08) (0.06) (0.09) (0.08) (0.09) (0.15) (0.13) (0.27)

mean ZTLD 500 0.36 -0.63 031 -0.38 0.2 431 231 0.63
(0.2) (0.14) (0.24) (0.2) (0.27) (0.21) (0.21) (0.53)

1000 0.38 -0.67 029 -04 017 418 229 0.6
(0.15) (0.11) (0.19) (0.15) (0.19) (0.13) (0.16) (0.47)

0.25qt 500  0.38 -0.57 037 -037 -031 385 265 1.3
criterion (0.15) (0.14) (0.19) (0.18) (0.2)  (0.26) (0.16) (0.39)
1000 04  -0.59 035 -043 -0.28 381 257 1.31
(0.12) (0.12) (0.17) (0.12) (0.15) (0.18) (0.11) (0.28)

0.10qt 500 024 -056 03  -04 -033 35 245 1.75
criterion (0.23)  (0.2) (0.25) (0.22) (0.25) (0.26) (0.16) (0.15)
1000 027 -0.61 032 -044 -0.33 347 242  1.68
(0.18) (0.14) (0.22) (0.15) (0.19) (0.18) (0.11) (0.11)

The numbers in the parenthesis are standard deviations. The last three columns are the estimated mean, 0.25 quantile and

0.1 quantile of the potential outcome if the estimated optimal treatment regime is applied. The three methods mean RG,,,
mean_ RGy,,, and mean_ZTLD denote the mean-optimal treatment regime estimators using the model-based approach with
correctly specified regression model, the model-based approach with incorrectly specified regression model and the approach of

Zhang et al. (2012a), respectively.
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contain the mean, the 0.25 quantile and the 0.1 quantile of the outcomes if the corresponding
optimal treatment regime is applied. These values will serve as our gold standard.

Table 3 summarizes the estimated optimal treatment regimes corresponding to the mean
mean _RG

criterion (using mean RG and mean ZTLD, respectively), the 0.25qt cri-

Mt Hm

terion and the 0.10qt criterion for sample sizes n =500 and 1000. The last three columns of
Table 3 report the estimated mean, the 0.25 quantile and the 0.1 quantile of the outcomes
if the estimated optimal treatment regime is applied. We observe the model-based approach
for estimating the mean-optimal treatment regime is sensitive to the specified regression
model and can be biased when the regression model is misspecified (mean_ RG,,,, gives very
biased estimators for 1y and 7). Also, the estimated optimal treatment regimes (and their
achievable performance in terms of the value of the criterion functions) using the model-free

approach get closer to the ideal ones reported in Table 2 as the sample size increases.

Example 2 (two-stage DTR). We generate random data from the following model Y = 14
Xi+A; [1-3(X1 = 0.2)°]+Xo+A5 [1 = 5(Xy — 0.4)°] +(14+0.54; — A, X1 +0.54, — Ay X»)e,
where € ~ N (0,0.4), X; ~ Uniform (0,1), Xs|{X1, A4} ~ Uniform (0.5X;,0.5X; 4+ 0.5),
Ay| Xy ~ Bernoulli (expit (—0.5 4+ X1)), and As|{X1, A1, X2} ~ Bernoulli (expit (—1 4+ X3))
with expit(t) = e'/(1 + €'). We consider sequential treatment regimes of the form (A;, As),
where A; = I{X; <m}, and Ay = [{Xs <n}. We note that this class contains the
mean-optimal sequential treatment regimes which are given by A; = I (X; < 0.777) and

AQ = [(XQ < 0847)

The popular Q-learning procedure relies on specification of models for the so-called Q-
functions. In this example, we compare with standard application of Q-learning based on lin-
ear models, that is, the Q-functions are specifies as Q; (Hy, As; i) = Hgoﬁt,o —|—AtHglﬂt,1, t=

1,2, where Hyo = (1, X1, Ay, X141, Xo)", Hyy = (1,X,)", Hip = (1,Xy)", and Hy;, =
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Table 4: Population parameters and summary values for optimal treatment regimes under
different criteria for Example 2 based on a Monte Carlo experiment with n = 10°.

Method M M2 Qmean Qoso  Qors
Mean criterion 0.777 0.847 3.331 3.323 3.821

0.50qt criterion 0.753 0.808 3.327 3.327 3.827
0.75gt criterion 0.729 0.795 3.322 3.325 3.828

Columns 2-3 are values of the n;’s of the optimal treatment regimes corresponding to different criteria. The last three

columns are the mean, median and 0.75 quantile of the potential outcomes if the optimal treatment regime is applied.

(1,X1)T. We note that in practice the Q-learning procedure usually misspecifies the Q-
function. We also compare with the model-free approach for estimating the mean-optimal
dynamic treatment regime (Zhang et al. (2013)).

Table 4 reports the parameters indexing the optimal treatment regimes and the corre-
sponding mean, median and 0.75 quantile of the outcome if the optimal treatment regime
is applied, based on a Monte Carlo experiment with sample size 10°. Table 5 summa-
rizes the estimated parameters indexing the optimal treatment regimes and their estimated
performance corresponding to different criteria for sample sizes n = 500, 1000, based on 400
simulation runs. The estimated optimal treatment regimes and their achievable performance

are quite close to the ideal ones reported in Table 4, particularly when the sample size is large.

5.2 ACTG175 data analysis

We illustrate the proposed quantile-optimal treatment regime estimation method on the
ACTG175 data set from the R package speff2trial, which contains measurements on 2139
HIV-infected patients. The patients were randomized to four treatment arms: zidovudine
(AZT) monotherapy, AZT+didanosine (ddl), AZT+zalcitabine(ddC), and ddI monotherapy.
The goal of the original clinical trial was to evaluate whether treatment of HIV infection
with one drug (monotherapy) was the same as, better than, or worse than treatment with

two drugs (combination therapy) in patients with CD4 T cells between 200 and 500/mm?
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Table 5: Estimated optimal treatment regimes and their corresponding estimated value
functions under different criteria for Example 2.

Method n m 12 Qmean Qo.50 Qo.75
mean_ Qlearning 500  0.755(0.041) 1.176(0.294) 3.319(0.090) 3.309(0.102) 3.815(0.122)
1000 0.752(0.027) 1.131(0.144) 3.321(0.065) 3.305(0.07) 3.819(0.079)
mean_ZTLD 500 0.773(0.073) 0.846(0.067) 3.370(0.095) 3.376(0.097) 3.862(0.118)
1000 0.768(0.055) 0.852(0.059) 3.356(0.065) 3.354(0.068) 3.848(0.081)
0.50qt criterion 500 0.751(0.08)  0.815(0.079) 3.357(0.090) 3.391(0.102) 3.858(0.119)
1000 0.750(0.062) 0.813(0.069) 3.343(0.063) 3.366(0.068) 3.849(0.081)
0.75qt criterion 500 0.734(0.108) 0.785(0.103) 3.328(0.095) 3.331(0.109) 3.892(0.123)
1000 0.723(0.084) 0.795(0.095) 3.322(0.067) 3.326(0.075) 3.865(0.077)

The numbers in the parenthesis are standard deviations. The last three columns are the estimated mean, median and 0.75 quantile of
the potential outcome if the estimated optimal treatment regime is applied. The mean_Qlearning method stands for the mean-optimal
treatment regime estimator using the Q-learning approach. The mean_ZTLD method is the mean-optimal treatment regime estimator
using Zhang et al. (2013).
(Hammer et al., 1996). Figures 1 and 2 of the online supplement display the histograms of
the response variable (CD4 count at week 96) for each of the two treatment arms for different
subgroups of patients for which the subgroups are formed by the observed values of the CD4
count at week 0 or baseline weight. The varying shapes of the histograms across different
ranges of both covariates indicate heteroscedastic treatment effects. It is also observed that
the distribution of the response variable tends to be asymmetric and skewed to the right.
A basic conclusion from the study is for patients who had taken AZT before entering
the trial, treatments with ddI or AZT + ddI are better than continuing to take AZT alone.
There are n = 562 patients with full CD4 information that had taken AZT before the study
and received AZT+ddI or ddI monotheraphy in this trial. Motivated by the aforementioned
finding, we consider the problem of how to assign treatment to the patients who had taken
AZT before, either to the AZT-+ddl combination therapy or to the ddI monotheraphy. The
quantitative outcome is the CD4 count at 96+ 5 weeks from baseline (denoted as ¢d496) as
CD4 count represents a vital signal for disease progression for HIV-infected patients. The
treatment indicator A; is set to 1 if patient ¢ is assigned to the AZT + ddI therapy, and A; is

set to 0 if the patient is assigned to the ddI monotheraphy. Because this trial is randomized,
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Table 6: Estimated optimal treatment regimes and summary values for ACTG175 data
analysis.

Method o Ui U Qoso Qo2s Qmean

0.50qt criterion -0.571 0.691 0.444 360 220 3754
0.25qt criterion -0.210 0.958 -0.194 333 263  346.5
Mean criterion -0.526 0.799 0.292 331 219  403.9

the propensity score m; = n~ 1> A; = 0.48 is taken as a constant for all subjects.

Two covariates are considered for estimating the optimal treatment regimes: X; (baseline
weight of patient, measured in kg) and X, (baseline CD4 T cell count, denoted by cd40). It
has been observed that body weight has a significant role on AZT pharmacokinetic profile.
Burger et al. (1994) reported that AZT clearance is significantly lower in patients with a
lower body weight, which indicates a qualitative interaction with AZT. In medicine, drug
clearance is a pharmacokinetic measurement of the rate at which the active drug is removed
from the body, and drug clearance is correlated with the time course of a drug’s action
(Hammer et al., 1996).

Let X = (X1, X3), where both X; and X, are standardized to the interval [0,1]. We con-
sider the class of candidate regimes of the form I {ny + m X; + 1. X2 < 0}, where (19, 71,12) €
(—1,1)°. When the decision rule takes the value 1, the patient is assigned to the AZT+ddI
combination therapy; otherwise the patient is assigned to the ddI monotheraphy. For iden-
tifiability, we impose the restriction ||n|| = 1. We estimate the optimal treatment regimes
using the median criterion, quartile criterion and the mean criterion. The median criterion
is motivated by the robustness consideration; the quartile criterion is motivated by the de-
sire to improve the treatment effect for weaker patients. Table 6 summaries the estimated
optimal treatment regimes for the three criteria.

The estimated median of the potential outcome when the median-optimal treatment
regime is applied is 360; whereas the median of the observed outcome is 339.5. The estimated

first quartile of the potential outcome when the 0.25qt criterion is applied is 263; whereas
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the 0.25 quartile of the observed outcome is 237. The estimated mean of the potential
outcome when the mean-optimal treatment regime is applied is 403.9; whereas the mean of
the observed outcome is 355. Figure 3 of the online supplement depicts the three estimated
regimes graphically, from which we observe that they are dramatically different from each

other.

6 Conclusions and discussions

In a variety of applications, it is of interest to consider a treatment regime that maximizes
the median or other quantile of the potential outcome distribution. This paper studies ro-
bust estimation of quantile-optimal static/dynamic treatment regimes. We propose a novel
representation that expresses the parameter indexing the optimal treatment regime as a
solution to an optimization problem with a nuisance parameter. Employing this representa-
tion and empirical process techniques, we prove that the estimated parameter indexing the
quantile-optimal treatment regime has a nonstandard convergence rate and a non-normal
limiting distribution. Our approach does not rely on the specification of an outcome re-
gression model. We also investigate the doubly robust estimator for the quantile-optimal
treatment regime, which can improve the estimation efficiency when a reliable outcome re-
gression model is available (Section 1.1 of the online supplement).

Our proposed novel representation applies to a general class of policy search estimators for
optimal treatment regimes defined by a general class of criteria. In particular, our approach
can be applied to investigate the asymptotic distribution for the estimators of the mean-
optimal treatment regimes in Zhang et al. (2012a, 2013) and fill in an important gap in the
theory. The aforementioned nonstandard asymptotics will also arise when the mean-optimal
criterion is used. For alternative criteria, we discuss optimal treatment regimes defined by the
Gini’s mean difference criterion and the weighted quantile criterion in the online supplement,

where an outline of the theory and some numerical examples are provided.
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It is worth noting that the nonstandard asymptotics discussed in this paper are different
from the nonregular asymptotics for Q-learning estimators. The Q-learning method models
the stage-specific conditional mean functions and is a popular indirect method for estimating
mean-optimal treatment regimes. Consider the Q-learning method in a two-stage dynamic
setting and denote the estimated parameters indexing the optimal treatment regimes for the
two stages as (1@1,@@2). The asymptotic distribution for @@2 is standard but the asymptotic
distribution for 1&1 is nonregular in the sense that it does not converge uniformly over the
parameter space (Robins, 2004; Chakraborty et al., 2010; Laber et al., 2014). The asymptotic
distribution of @@1 can change abruptly from being asymptotically normal to being non-
normal depending on whether a certain event occurs with probability zero or not. This
happens because zﬂl is a nonsmooth function of 152. The results in this paper and those
in the literature on Q-learning demonstrate the challenges of asymptotic theory for optimal
treatment regimes estimation. In general, classical asymptotic theory is no longer applicable.

An interesting future research direction is to investigate estimating quantile-optimal
treatment regimes for survival data, where the response variable is randomly censored. Cen-
sored data arise in diverse fields such as economics, medicine and sociology. For example, in
a clinical trial censoring occurs when a study ends before all patients experience the event
of interest. Several authors (Goldberg and Kosorok (2012); Zhao et al. (2015¢); Geng et al.
(2015); Jiang et al. (2016)) recently studied estimating optimal treatment regimes with sur-
vival outcomes but have not considered the quantile criterion. When censoring is heavy,
it can be difficult to estimate the mean survival time accurately but it is often possible to

reliably estimate the median and the lower quantiles.
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Appendix: Technical Proofs

We provide below the proofs of Lemma 2 and Theorem 1. The proofs of Lemma 1, Theorem
2, and derivation of the theory for Section 6.2 are given in the online supplement.

Proof of Lemma 2. (1) Note that g(-, 8,m) = [AI(XT8 > 0)+ (1— A)I(XTB < 0)]I(Y —
m > 0). The classes {I(XT3 > 0) : 8 € B} and {I(Y —m > 0) : m € R} are both VC
subgraph classes and hence bounded Donsker classes. Therefore, the class {g(-,3,m) : f €

B, m € R} is Donsker (van der Vaart and Wellner (1996)). We thus have

sSup |Png(7ﬁvm) - Pg(a/Bam)l = Op(n_l/Q)' (8>

BeB,meR
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We denote the supremum at the left side of the above expression as A,,. For any given f3,
Pg(-,5,m) is a decreasing function of m. Hence the assumption about the density ensures
that there exists a constant x; > 0 such that supgep Pg(-, 3,mo + €) < 1_TT — K€, for each
small enough € > 0. Taking ¢ = A, /k, for all n sufficiently large, it follows from (8) that
supgep Png (s, B, mo+2Ay/k1) < An—kl_TT—/ﬁﬁ—? = 1—77 This implies m,, < mo+A,,/k; for all
n sufficiently large. Similarly, there exists a constant k3 > 0 such that supgcg Py(-, 8, m0 —
€) > 1777 + kige, for all small enough € > 0. If follows that supgey Pog(-, 8,m0 — Ap/K2) >
A, + 1—77 + :‘12%—; = (1 —7)/2 for all n sufficiently large. This implies m,, > mq — A, /K2
for all n sufficiently large. Since A, = O,(n~?), we have Mm,, = mg + O,(n"'/?).
(2) Observing (i) En = argr%ax Pog(-, B, my,), (ii) 8 = By uniquely maximizes Pg(-, 8, mg) and
(iil) supgep ’Png(~,ﬁ,ﬁzn)ﬁi Pg(-,ﬁ,m0)| = 0,(1), we conclude that B\ is consistent for 3y by
applying standard arguments of the M estimation theory (simple modification of Theorem
5.7 in van der Vaart (1998)). Next, we will show f, — 8y = O,(n~Y/3).

Let 0 = (87,0)T, where 6 = m—mq, and h(-, 3,8) = C(B)I{Y —mo—3 > 0} —C(B) I{Y —
mog — 0 > 0}. By definition, B\n = argmax P,h(-, 5, m, — mp). We will consider a Taylor

BeB
expansion of Ph(-,3,6) around 0y = (8,0)T. Note that h(-, 8p,0) = 0 and that

E[C(B)I{Y —mg— 6 > 0}]
= %E{I(XTB >0)[(Y —mg—0>0)|A=1} + %E{[(XTﬁ <0)I(Y —mo—6>0)|A=0}
— %E{](XTB > 0)S1x(mo +6)} + %E{I(XTB < 0)So.x(mo +0)}

= %E{](XTB > O)(Sly)((mo —0—(5) — So,X(mo + 5))} + %E{So7x(7710 + 5)},

where 51 x () and Sy x(+) are the conditional survival functions of Y*(1) and Y*(0) given X,

respectively. Let ¢(X,0) = S1 x(mo + &) — So x(mo + 9), then

B(h(-.3,8)) = 3 E{(I(X"B > 0) ~ I(X" By > 0))q(X.)}.
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It is easy to see 2 E(h(-, [, 5))%:60’5:0 = 0 and 59_522E<h<"ﬁ’5))’ﬁ:[3076:0 = 0. Note that
the transformation Ty = (I — ||8]|7288%)(I — BofBd) + ||8l|7 86, where I denotes the
identity matrix, maps the region A = {X73; > 0} onto A(B) = {XTS > 0}, taking OA
to JA(B). The surface measure oz on A(S) has the constant density ps(X) = 87 5o/|I5||
with respect to the image of the surface measure o = o, under 7T3. The outward pointing
unit vector normal to A(S) is the standardized vector —(/||5|| and along OA the derivative
(0/08)T5(X) reduces to —||B]|2[BXT + (8T X)I]. Using the result from Section 10.7 of

Loomis and Sternberg (1968) on derivatives as surface integrals, we have

0 1

g P, 8.8)) = 181267 3o(T + 11311 285") [ HX" 0 = 0)alTa(X), ) (Tul(X) Xdo.

Note that we have %E(h(~,ﬁ, 5)”6:6076:0 = 0 because E(h(-,3,0)) is maximized at 5 = f.
Combining with the observation that Tj,(X) = X along {X7 8, = 0}, we have [ I{X7j, =

0H(X,0)f(X)Xdo = 0. Using this and the fact ||5o|| = 1, we have

85%5TE(h<"5’ Nl s=pysm0 = —% /I{XTﬂo = 0}(F(X)q(X,0) + ¢(X,0)f(X)" B X X do,

where (X, 0) and f(X) denote the gradients with respect to X. Also,

0? 1 .
85T86E<h<"ﬁ’ )| s=po-0 = B /I{X Bo = 0}(s1,x(mo) — s0,x(mo)) f(X)Xdo,

where 51 x and sg x are the derivatives of S; x and Sy x with respect to J, respectively. We

write
82
and a; = aﬁaTQasE(h(', B, 5)>‘B:Bo,5:07 then the Taylor expansion of Ph(-, 3,6) around (5, 0)
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has the form

PR(.6,0) = —5(8 = )" V(5 — fo) +al (5 = Bo)d + (16 = 5ol +0(). (10)

For a given positive constant R, let Hr = supjg_g, <z |1(-, 8,9)|. We observe that h(-, 3,0) is
nonzero if and only if C'() and C(5) take different values. Hence, Hr < supjjg_g,<r {I(X"3 >
0> XTBy) + I(XTBy > 0> XT,B)}. The envelope function Hpy is bounded by an indicator
function of a pair of multidimensional wedge shaped regions, each subtending an angle of
order O(R), from which we deduce that E(H%) = O(R). The conditions of Lemma 4.1 of
Kim and Pollard (1990) are satisfied. Hence, for each fixed € > 0, uniformly for ||0 —6,|| < R,
Poh(:,B,0) < Ph(-, 8,0) + €(||8 — Bo]|* + 6%) + O,(n~%?). Combining with the upper bound
in (10), we have P,h(-, 8,0) < —($Amin(V) — €)[|18 = Bol [> + [la1||]|3 — Boll|8] + (e + 0(1))6* +
0,(n=%3), where Apin(V) denotes the smallest eigenvalue of V. Choosing € = A\pin(V)/4,

we derive that

0 = Pnh(a 507 f’\ln - mO) S Pnh<'73m mn - mO)

< = Prin (VB = ol + 00 1B = oll + Oyl

Completing the square in HB\n — Bol|, we derive that \|§n — Bol| = O,(n=1/3).

Next, we show that B\n nearly maximizes P,h(-, 3,0). A similar argument as above shows
that P|h(-,01) — h(-,02)] = O(||01 — 63]|) for 61, 05 near Oy. It follows from Lemma 4.6 of
Kim and Pollard (1990) that the process J,(-, o, v) = n*3(P, — P)h(-, By + an™/3, yn=1/3)
satisfies the stochastic equicontinuity condition of Theorem 2.3 of Kim and Pollard (1990).
Since n'/3(M,, —mg) = 0,(1), this implies that for 3 uniformly in a O(n~*/?) neighborhood of
Bos Jn (-, n3(B = Bo), nt/3(My, — mg)) — Ju(-,n/3(B — Bo), 0) = 0,(1). That is, P,h(-, 3, M, —
mo) = Poh(-, B,0) + Ph(-, B, My, —mq) — Ph(-, 3,0) 4 0,(n~%/3), uniformly over an O,(n=1/3)

neighborhood of ;. Within such a neighborhood, Taylor expansion similarly as before
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shows that Ph(-, 3, M, — mo) — Ph(-, 3,0) = 0,(n~%/3). Suppose B3, = argmax P,h(-, 3,0).
BeB

An analysis similar to that for 3, shows that 3, = O, (n~1/?). Hence,

Pnh(u gna O) = Pnh(u B\na T/an - mO) - Op(n_2/3) Z Pnh(v gn; T/an - mO) - Op(n_2/3)

= Pnh(v gn? O) - Op(n72/3)7

where the inequality follows because B, = argr%ax P.h(-, B, my,—myg). Therefore, P,h(:, B, 0) >
SUPgep P.h(-,3,0) — op(n*Q/?’). O .

Proof of Theorem 1. Following Lemma 2(2), to find the asymptotic distribution of
n1/3(3n — fo), it suffices to apply the main theorem of Kim and Pollard (1990) to the one pa-
rameter process {h(-,3,0) : € B}. Recall that h(-,5,0) = C(B)I{Y > mo} — C(Bo)I{Y >
mo}. In the following, we will verify conditions (iv) and (v) of the main theorem of Kim and
Pollard (1990). Other conditions of the theorem are relatively easier and can be checked
using similar techniques as those in the proof of Lemma 2.

For condition (iv), it can be shown that dBdBTE(h( —V, where V is defined

|BB

in (9) in the proof of Lemma 2. Next, we calculate the kernel function in condition (v).

Similarly as in the calculation in the proof of Lemma 2, for each C;, Cy in R!, and ¢ > 0,

tP|h /30+ﬁ 0) (- 60+@ o)‘

- tP{|C’ Bo + Ci /) — C(Bo + Co/1)|T(Y > mo)}

- %tP{]I(XT(BO +Cy/t) > 0) — I(XT(By + Ca/t) > 0)|I(Y*(1) > mo)}
+1tp{ [1(XT(By + C1/t) < 0) — I(X" (By + Caft) < 0)|I(Y*(0) > mo)}

= tP{ SlX mo) —f‘S()X mg ‘] BO"’Ol/t) > O) (XT(/BO+CQ/t) > O)‘}

To evaluate the above expression, we make use of the local coordinates (Example 6.4 of Kim

and Pollard (1990)), for which we define (1) = /1 — ||7]|?80 + 7, where 7 is orthogonal to
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Bo and ranges over a neighborhood of the origin. It is noted that as the parameter space
is on the sphere (||Go|| = 1, ||5]] = 1), such a decomposition can be obtained by taking
7 = 7(8) = ToB, where Ty = I — By8T. Then we can write 3 = (8 3)8s + Tof3 such that
B3 = /T—Tl7[P and BiToB = 0. Also, 7(fo + C1/t) = ToCi/t, (o + Caft) = ToCa/t.
Similarly, we can decompose X as X = rfy + Z for some random variable r and random
vector Z, with Z being orthogonal to 8y. Let Cf = TyCy € Ty, k = 1,2, then XT(8y+C1/t) =
(rBo + Z2)T (\/1 = ||CF]I2/#2B0 + C1/t) = ry/1 = [|CF[[2/82 + ZTC; /t. Let p(-,-) be the joint
density function of (r, Z), which can be deduced from the density of X, With a change of
variable w = tr, tP{ (S1,x(mo) + So.x(mo) ‘[ T(By+C1/t) > 0) = I(XT(By+ Cy/t) >0)|}

is equal to

/ / 1= 2705 — (|G /)2 > w > —Z7Ci(1 — ||C5 /)12
(S1,29+2(mo) + So,2 5o+ 2(mo) )p(w/t, Z)dwdZ
+ / / I{ = Z7C: (1 — |G/ > w > — 2751 — |CE IR/ )

(S1,28042(m0) + So,2 6012(mo) ) p(w/t, Z)dwdZ.

Integrating over w and letting ¢ — oo to get lim;_, tP}h(-, Bo+C1/t,0)—h(-, Bo+Cs/t,0) ‘2 =
J1Z27(Cr=C5)[(S1,2(m0)+S0,2(m0) ) p(0, Z)dZ = [ |Z7(C1—C4)|(S1,2(m0)+S0,2(m0))p(0, Z)dZ.
We denote this limit as L(C} —C5). Using the identity 2zy = z%+y*—(z—y)?, we deduce that
the limiting covariance kernel function can be written as K(Cq, Co) = limy_,o, tP{h -, Bo +
C /4, 0)h(-, Bot+Ca/t/t,0)} = limy 0 3P| (-, Bo+C1 /t,0)—=h(-, Bo, 0)|*+limy e 2P| (-, o+
Cz/t,())—h(-,ﬂo,O)f—limHoo%limHootP\h(-,ﬁo+Cl/t,0)—h(-,ﬁo+Cg/t, 0)|° = L(L(Cy)+
L(C5) — L(Cy — C5)). The asymptotic distribution of n'/3(B, — Bo) then follows by applying

the main theorem of Kim and Pollard (1990) OJ
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