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SUMMARY

We consider a heteroscedastic regression model in which some of the regression coefficients
are zero but it is not known which ones. Penalized quantile regression is a useful approach for
analyzing such data. By allowing different covariates to be relevant for modeling conditional
quantile functions at different quantile levels, it provides a more complete picture of the con-
ditional distribution of a response variable than mean regression. Existing work on penalized
quantile regression has been mostly focused on point estimation. Although bootstrap procedures
have recently been shown to be effective for inference for penalized mean regression, they are not
directly applicable to penalized quantile regression with heteroscedastic errors. We prove that a
wild residual bootstrap procedure for unpenalized quantile regression is asymptotically valid for
approximating the distribution of a penalized quantile regression estimator with an adaptive L
penalty and that a modified version can be used to approximate the distribution of Li-penalized
quantile regression estimator. The new methods do not need to estimate the unknown error den-
sity function. We establish consistency, demonstrate finite sample performance, and illustrate the
applications on a real data example.

Some key words: Adaptive lasso; Confidence interval; Lasso; Penalized quantile regression; Wild bootstrap.

1. INTRODUCTION

We consider the quantile regression model Y; = :UZ-TBO +¢ (t=1,...,n), where x; =
(Ti0, ity - - - ,xip)T with x;0 = 1 is the ¢th nonstochastic design point in RP, and ¢; is a random
error with probability density f; and the th quantile equal to zero. The unknown regression co-
efficient 8, = (Boo, So1, - - - » ﬁop)T may depend on 7, but we omit such dependence in notation
for simplicity. Quantile regression was proposed by Koenker & Bassett (1978) and has become a
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2 L. WANG, I. VAN KEILEGOM, AND A. MAIDMAN

popular alternative to least squares regression. Conditional quantiles are of interest in a variety of
applications, such as the conditional median of medical expenditure or a low conditional quantile
of birth weight. Comparing such quantiles for a range of 7 values enables researchers to obtain
a more complete picture of the conditional distribution than mean regression and is particularly
useful for analyzing heterogeneous data. See Koenker (2005) and Koenker et al. (2017).

We suppose that some of the covariates are irrelevant for modeling the 7th conditional quan-
tile but we have no prior information on which. In such a setting, penalized quantile regression
has been proven to avoid over-fitting by shrinking the estimated coefficients of irrelevant covari-
ates toward zero. Here, we focus on the asymptotic regime where the number of predictors p is
fixed while the sample size n goes to infinity. Asymptotic theory for penalized quantile regres-
sion in this setup was recently studied by Zou & Yuan (2008) for independent and identically
distributed random errors, and Wu & Liu (2009), who established the asymptotic distribution of
penalized quantile regression estimator for the adaptive Ly penalty (Zou, 2006) and considered
an extension to the general heteroscedastic error setting. However, these works have not consid-
ered estimation of the standard error of the estimated penalized quantile regression coefficients.
The asymptotic distribution of Li-penalized quantile regression has a positive probability mass
at zero for the component for which the true regression parameter has a zero value. Inference
based directly on asymptotic theory is not convenient. On the other hand, the adaptively L;-
penalized quantile regression estimator enjoys the oracle property under regularity conditions:
the zero coefficients are estimated as exactly zero with probability approaching unity and the
nonzero coefficients have the asymptotic normal distribution we would obtain if we knew in ad-
vance which coefficients are zero. However, convergence to the oracle distribution is often slow
and results in inaccurate confidence intervals (Chatterjee & Lahiri, 2013).

In practice, a two-step procedure is commonly used to construct confidence intervals. First, pe-
nalized quantile regression is applied to select variables. Then the model is refitted with selected
variables only to construct confidence intervals. Such a procedure does not account for uncer-
tainties involved in variable selection and generally tends to produce wider confidence intervals,
as demonstrated in our simulation study.

These challenges motivate us to develop a wild residual bootstrap-based inference approach
for penalized quantile regression with L, or adaptive L1 penalty. Our work is mostly related to
Chatterjee & Lahiri (2010, 2011, 2013) and Camponovo (2015) on bootstrapping penalized esti-
mators in the least squares regression setting. An alternative perturbation method for inference on
regularized regression estimates was studied in Minnier et al. (2011). Chatterjee & Lahiri (2010)
proved that standard bootstrap is inconsistent for estimating the distribution of the L; penalized
least squares estimator when one or more of the components of the regression parameter vector
are zero; the failure of the naive paired bootstrap was proved in Camponovo (2015). Modified
residual and paired bootstraps were proposed in Chatterjee & Lahiri (2011) and Camponovo
(2015), respectively. Chatterjee & Lahiri (2013) demonstrated that although the adaptively pe-
nalized least squares estimator enjoys the oracle property, inference based directly on the oracle
distribution is often inaccurate and more accurate inference can be obtained via a residual boot-
strap. However, these bootstrap methods do not directly apply to the quantile regression setting
due to the nonsmoothness of the quantile loss function and the heteroscedastic error distribution.
We prove that a wild residual bootstrap procedure proposed by Feng et al. (2011) for unpenalized
quantile regression is asymptotically valid for approximating the distribution of the quantile re-
gression estimator with adaptive L penalty. Furthermore, a modified version of this wild residual
bootstrap procedure can be used to approximate the distribution of L; penalized quantile regres-
sion. Our derivation of the bootstrap consistency theory for penalized quantile regression uses
techniques substantially different from that of Feng et al. (2011).
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2. INFERENCE FOR ADAPTIVE L{-PENALIZED QUANTILE REGRESSION
2-1.  Quantile regression with adaptive Ly penalty

The unpenalized quantile regression estimator for 3, is 8 = (B, - - - ,Bp)T, where
- n
B= argﬁminz p-(Yi =z} B) (1)
i=1

and p,(u) = u{r — I(u < 0)} is the quantile loss function. Under general regularity conditions,
3 is asymptotically normal. The asymptotic covariance matrix of 3 depends on the unknown
conditional density function of ¢; (Koenker, 2005).

Often not all covariates collected are relevant for modeling the 7th conditional quantile, that
is, some of the components of 3, are zero. Let A = {1 < j <p: fy; # 0} be the index set
of the nonzero coefficients. Let |A| = ¢ be the cardinality of the set A. Without loss of gen-
erality, we assume that the last p — ¢ components of /3, are zero; that is, we can write 3, =

(8L, 01 ,)*, where 0,_4 denotes a (p — ¢)- dimensional vector of zeros, and A = {1,...,¢}.
Let X = (x1,...,2,)T be the n x (p + 1) matrix of covariates, where 7 , ..., 2L are the rows

of X. We also write X = (1, Xy,...,X,), where 1, X1, ..., X, are the columns of X and 1
represents an n-vector of ones. Define X 4 to be the submatrix of X that consists of its first
q + 1 columns; and define X 4 to be the submatrix of X that consists of its last p — ¢ columns.
Similarly, let x; 4 be the subvector that contains the first ¢ + 1 entries of x;.

The quantile regression estimator with the adaptive L, penalty performs simultaneous estima-
tion and variable selection by minimizing a penalized quantile loss function, i.e.,

n p
5:argénin{ZpT(Yi—ﬂciTﬁ)JrAnij\ﬂj!}? 2
i=1 =1

where A, >0 is a tuning parameter, and w; = |Bj|_7 are the adaptive weights (y >
0). Write 8 = (So,...,8,)T and A= {1 <j<p:pj#0}. Let B, be the subvector that
contains the first (¢ + 1) elements of 3. Let Dy = lim, oo n? Yo Axg;‘ and D =
limy, oo™ 1300 fi(0)z; A%TA’ where f;(0) is the density function of ¢; evaluated at zero. The

following properties of 5 were established in Wu & Liu (2009).

LEMMA 1. Assume Condition 2 of Section 2.2 is satisfied. If n=/2\,, — 0 and n(’=1/2),, —
00, then the adaptive Li-penalized quantile regression estimator E enjoys the oracle property.
That is,

(i) pr(A=A) = 1asn — oo;
(ii) n*2(B) — Boy) — N{0441,7(1 — 7)Dy ' Do Dy '} in distribution as n — co.

The result in Lemma 1 is referred to as the oracle property: with probability approaching one
the zero coefficients of 3, are identified as zero and the nonzero coefficients are identified as
nonzero; and we can estimate the nonzero subvector of 3, as efficiently as if we know the true
model in advance. The proof of Lemma 1 is given in the Supplementary Material.

2-2. A wild residual bootstrap procedure and its consistency

We use a wild residual bootstrap procedure to approximate the asymptotic distribution of 5
Our procedure is motivated by the work of Feng et al. (2011) for unpenalized quantile regression.
To obtain the wild bootstrap sample, we follow the steps below.

85

90

95

100

1056

110

115

120



125

130

135

140

145

150

155

4 L. WANG, I. VAN KEILEGOM, AND A. MAIDMAN

1. We first calculate the residuals from the adaptively penalized quantile regression: é; = Y; —
2T (i =1,...,n) and obtain § by (2).

2. Let € = r;|é;|, where r; (i = 1,...,n) are generated as a random sample from a distribution
with a cumulative distribution function G satisfying Conditions 3-5 below.

3. We generate the bootstrap sample as Y;* = x?ﬁ +e (G=1,...,n).

Using the bootstrap sample, we recalculate the adaptively penalized quantile regression esti-
mator as

n p
B :argmin{pr(Yg*—z?ﬁ)—l-/\nZwﬂﬁﬂ}, (3)
B i=1 j=1
where w} = |B;|_“f, B = (ﬁg, ... ,B;)T is the ordinary quantile regression estimator recom-

puted on the bootstrap sample. For j =1,...,p and 0 < a < 1, let d;(am and d;(lfaﬂ)

be the (a/2)-th and (1 — «/2)-th quantiles of the bootstrap distribution of n'!/ 2(5; - B])

respectively. We can estimate d;(a/ 2 and d;(lfa/ 2 from a large number of bootstrap samples.

An asymptotic 100(1 — )% bootstrap confidence interval for Sy;, j=1,...,p, is given
by [Bj — nil/Zdj(l_a/z),Ej — nfl/Qd;(a/z)]. As in Feng et al. (2011), we work under the
following technical conditions:

Condition 1. The true value (3 is an interior point of a compact set in RP. The density of ¢;,
denoted by f;(-), is Lipschitz continuous and is bounded away from 0 and oo in a neighborhood
around O for all ;

Condition 2. limyeon 'Y 0 mzl — By and lim,eon ' Y0, fi(0)zzl — By
for some positive definite matrices By and Bj. Furthermore, >, ||z;||®> = O(n) and
maxi<i<p ||zi|| = O(n'/*), where || - || is the Euclidean norm;

Condition 3. for some strictly positive constants ¢; and ¢y, sup{r € G:r <0} = —¢; and
inf{r € G : r > 0} = co, where G is the support of the weight distribution G;

Condition 4. the weight distribution G satisfies f0+°° r~ldG(r) = — fEOO r~1dG(r) = 1/2 and
E¢(|r]) < oo, where the expectation is taken under G;

Condition 5. the 7th quantile of the distribution G is zero.

Theorem 1 shows that the conditional distribution of n!/2 (B* — E) provides an asymptotically
valid approximation of that of n'/2(3 — ). Let A* = {j = 1,...,p: By # 0}, and let B: be the

subvector that contains the first ¢ + 1 elements of 5* Letr = {ry,...,r,} be the random boot-
strap weights and z = {z1,..., 2z, } be the random sample. By the wild bootstrap mechanism,
the distribution of 7 is independent of that of z. Let pr, denote the probability under the joint
distribution of z, and let pr,,, denote the probability of r conditional on z.

THEOREM 1. If Conditions 1-5 and the assumptions of Lemma 1 are satisfied, then
pry(A* = A) = 1+ op_(1). Furthermore,

sup [pr,j. {n'/2(B1 = B1) <t} = pro{n'*(8, — Bon) < 1} = opr. (1),

Remark 1. Conditions 1 and 2 are slightly weaker than the corresponding conditions in Feng
et al. (2011). Under Condition 5, conditional on the data, €; has the 7th quantile equal to zero.
Conditions 3 and 4 ensure that the asymptotic distribution of the bootstrap estimator, condi-
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tional on the data, matches the unconditional asymptotic distribution of the original adaptively
penalized quantile regression estimator, which depends on the unknown error density function. A
simple weight distribution that satisfies Conditions 3-5 is the two-point distribution with prob-
abilities 1 — 7 and 7 at » = 2(1 — 7) and —27, respectively. Another example given in Feng
et al. (2011) is the distribution which for 1/8 <7 < 7/8, g(r) =G'(r) = —rI(—27 —1/4 <
r<-=27+1/4)+rl{2(1 —7)—1/4 <r <2(1—7)+1/4}. We propose several other dis-
tributions that satisfy these conditions in the Supplementary Material.

Remark 2. By definition n/2(3" — 8) minimizes Q7 (5), where Q%(8) = .1, {p-(er —
n=12z78) — pr(€)} + An Z;’:l w; (B; + n=125;) — 8j1), The crux of the proof of Theorem
1 is to show that conditional on the data,

—6TH +6"B16/2, §;=0forj > g,
+00, otherwise,

@ (0) = Q°(0) = {

in probability, where H ~ N{0,7(1 — 7)By}. Then the results follow from epi-convergence
theory, see the unpublished technical reports of Geyer (On the asymptotics of convex stochastic
optimization, technical report, 1996) and Knight (Epi-convergence in distribution and stochastic
equi-semicontinuity, technical report, 1999).

Remark 3. As pointed out by a referee, Leeb & Potscher (2008) and Potscher & Schneider
(2009) revealed that the distribution of adaptive lasso and other shrinkage-type estimators cannot
be estimated uniformly in a shrinking neighborhood of the underlying parameter values. In the
setting we consider, the number of covariates is fixed. We assume the smallest nonzero signal is
not diminishing to zero when the sample size increases. Furthermore, as in Chatterjee & Lahiri
(2011), we do not claim the bootstrap based estimator of the distribution of adaptive lasso to be
uniformly consistent over any diminishing neighborhood of underlying parameter values. See
also Remark 3 of Chatterjee & Lahiri (2011).

Remark 4. For the adaptive lasso, the coverage probability of the confidence interval ap-
proaches unity, because the wild residual bootstrap distribution approximates the adaptive lasso
estimator distribution, which identifies zero coefficients as exactly zero with probability ap-
proaching unity.

3. MODIFIED WILD RESIDUAL BOOTSTRAP FOR L PENALIZED QUANTILE REGRESSION
We also consider the L; or lasso penalized quantile regression estimator

n p
B:argﬁmin{Zpr(Yi—$?5)+)\nzmj‘}v *
i=1 Jj=1

where A\, > 0 is a tuning parameter. The asymptotic distribution of B follows that of the mini-
mizer of a random process, which is specified in the following lemma.

LEMMA 2. Under Condition 2 and ifn_l/Q)\n — Ao >0,

p
nY2(B — B,) — arg min [_ 6TH +8TB16/2+ Mo Y {16;11(Boj = 0)
6 j:l

+6;sign(Bo;) 1 (Bo; # 0)}} ,
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6 L. WANG, I. VAN KEILEGOM, AND A. MAIDMAN

in distribution as n — oo, where H is defined in Remark 2.

The proof is given in the Supplementary Material. For L1-penalized mean regression, Chatterjee
& Lahiri (2010) proved that the asymptotic distribution of the naive residual bootstrapped lasso
estimator is a random measure on RP and that the bootstrap is inconsistent whenever the regres-
sion parameter vector contains one or more zeros. An explanation of this phenomenon is that
the lasso estimates the sign of nonzero coefficients correctly with high probability, but estimates
the zero coefficients to be positive or negative with positive probabilities. The naive residual
bootstrap fails to reproduce the sign of zero coefficients with high probability. To remedy this,
Chatterjee & Lahiri (2010) proposed a thresholding procedure, which we adapt.

Our procedure proceeds as follows. Let {a,} be a sequence of numbers such that a, +
(n=1/2logn)a; ' — 0 as n — oc. For example, a,, = cn~°, for some ¢ > 0, 0 < § < 1/2. For

B defined in (1), we consider the thresholded estimator B* = (Bg, . ,B;)T, where Bg =3,
and B;‘ = BjI(]Bj\ >ap) forj=1...,p.Let & =Y, —:cZTB* (i=1,...,n). Let €* = ;&
(i =1,...,n), where the bootstrap weights r; satisfy Conditions 3—5. We choose to threshold

the ordinary quantile regression estimator directly. Alternatively, we may threshold the lasso esti-
mator B, which will yield the same asymptotic results for the bootstrapped estimator but requires
an additional tuning parameter for the lasso.

The bootstrap sample is generated by Y,** = me* + €™ (i =1,...,n). We then recalculate
the L, penalized quantile regression estimator using the bootstrap sample:

~ %

n p
B *—argﬂmin{ZpT(Yi**—xiTﬁ)—i—)\nZ@-\}. 5)
i=1 j=1

Nkok

Theorem 2 below shows that the conditional distribution of n'/2(j
totically valid approximation of that of n/2(3 — j,).

- B*) provides an asymp-

THEOREM 2. If Conditions 1-5 and the assumptions of Lemma 2 are satisfied, then

sup Ipr, . {n'2(B" = B7) <t} — pr{n/?(B — By) < t}] = opr. (1)

4. NUMERICAL RESULTS
4-1. Monte Carlo studies

We study the accuracy of 95% confidence intervals constructed by our bootstrap procedures.
For the adaptive L, penalty, we select the tuning parameter \,, by minimizing a Bayesian infor-
mation criterion (Lee et al., 2014) and consider v = 1, 2. For the L; penalty, we select A,, by
cross-validation and consider two choices of a,. One choice adopts a data-driven approach that
minimizes the estimated mean squared error E*(HB** - B*H?), where E* is the average over
bootstrap samples; see Section 5.2 of Chatterjee & Lahiri (2011) and Remark 2 of Camponovo
(2015). The other choice is the empirical choice a, = n~'/3, which is motivated by the rate
required by the asymptotic theory. The bootstrap random weights r; are generated from the two-
point distribution described in Feng et al. (2011); see Remark 1. We also tried alternative weight
distributions and found the results similar.

We compare the new methods with the confidence intervals from the oracle model, from the
full model, and from the two-step procedure described in Section 1 with adaptive lasso or lasso
applied in the first step. The oracle procedure is not implementable in real data analysis. For
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Table 1. Empirical coverage probabilities (x100) and average interval lengths (in
parentheses) for nominal 95% confidence intervals

B =07 1(r) B =025 Bs =0-5 Br=1 Bo =2 Zeros TP FP
T =05 n = 100
New ALl 92-0 (0-33)  94-6(0-15)  93-2(0-17) 953 (0-13) 92-7(0-14) 97-4(0-06) 4 03
New AL2 90-6 (0-42)  95-0(0-15) 93-6(0-17) 95-1(0-13) 92.5(0-14) 983 (0-06) 4 03
New L1 907 (0-28)  92:9(0-15) 924 (0-18) 949 (0-15) 91.2(0-16) 93-5(0-11) 4 33
New L2 922(029)  93-7(0-16) 93-6(0-19) 96:1(0-16) 94.5(0-17) 955(0-12) 4 33
Full RS 94.8 (0:59)  95:9(021) 967 (024) 962 (021) 96:1(022) 959(021) 4 6
Full WB 91.0(0:54)  97-4(0-18) 95:9(022) 97-6(0-18) 94.6(0-20) 96:1(0-19) 4 6
TS AL RS 94.8 (0-51) 966 (021) 963 (027) 97-1(023) 95.6(023) 982(026) 4 03
TSALWB  91.5(047)  955(0-16) 942(021) 96:0(0-17) 92:4(0-19) 97.7(021) 4 03
TSLRS 94.1(0:52)  962(022) 95-6(027) 96:0(023) 954 (024) 963(026) 4 33
TSL WB 92-1(0-49)  94.7(0-18) 94-3(022) 95-9(0-19) 93-3(020) 958(021) 4 33
Oracle RS - 97-1(0-21)  97-9(0-26)  97-0 (0-20)  97-2 (0-18) - 4 0
Oracle WB - 97-7 (0-15)  95-9(0-19)  98-2(0-15)  97-2 (0-16) - 4 0
T =07 n = 250

New AL 89-6 (0-35)  94-8(0-10) 92:2(0-09) 94.9 (0-08) 93-6(0-09) 987(0-04) 5 01
New AL2 89-8 (0-34)  94-1(0-09) 91-7(0-09) 95-0(0-08) 93-1(0-09) 99-0(0-04) 5 01
New L1 90-1(0:34) 944 (0-10) 942(0-10) 954 (0-08) 951 (0-09) 954(0:06) 5 26
New L2 907 (0:35)  94.9(0-10) 942 (0-10) 954 (0-08) 951 (0-09) 959 (0:06) 5 26
Full RS 949 (0:39) 968 (0-12) 953(0-12) 958(0-10) 964 (0-11) 959(0-11) 5 5
Full WB 90:6 (0:37) 963 (0-11)  95.5(0-11) 97-3(0-09) 961 (0-11) 962(0-10) 5 5
TS AL RS 93.8(0:37)  954(0-12) 96:1(0-10) 959 (0-11) 964 (0-12) 988 (0-11) 5 01
TSALWB  91.7(0:35) 952 (0-11) 95.7(0-09) 958 (0-10) 96:5(0-11) 989 (0-11) 5 01
TSLRS 93.8(0:37)  950(0-12) 953 (0-11) 962 (0-11) 955(0-12) 961 (0-11) 5 26
TSL WB 91-2(0:35)  94-8(0-12) 952(0-10) 957 (0-11) 968 (0-12) 96:0(0-10) 5 26
Oracle RS 94-0 (0-38)  96-8 (0-11)  95-3(0-11)  95-9 (0-09)  96-4 (0-10) - 5 0
Oracle WB  90-8 (0-36)  95-7 (0-10)  94-9 (0-10)  96-6 (0-08)  96-4 (0-10) - 5 0

New ALI: proposed method with adaptive L1 penalty (y = 1); New AL2: proposed method with adaptive L1 penalty (v = 2);
New L1: proposed method with L1 penalty (data-driven choice of a); New L2: proposed method with L penalty (an, =
n—1/ 3); Full RS: full model with rank-score method; Full WB: full model with wild residual bootstrap; TS AL RS: two-
step procedure, adaptive L1 (v = 1) followed by rank-score method; TS AL WB: two-step procedure, adaptive L1 (v = 1)
followed by wild residual bootstrap; TS L RS: two-step procedure, lasso followed by rank-score method; TS L WB: two-
step procedure, lasso followed by wild residual bootstrap; Oracle RS: oracle model with rank-score method; Oracle WB:
oracle model with wild residual bootstrap; Zeros: the reported average coverage probability (length) is the average for all zero
coefficients; TP: average number of true positives; FP: average number of false positives.

these competing methods, we consider confidence intervals obtained by the rank score method
and by the wild bootstrap method in the R package quantreg (Koenker, 2016).

Let Y =0-25X340-5X5 + X7 4+ 2X2 + X1&, where £ ~ N(0,1) denotes the random error.
Let X = ()?1, e ,)Z'lo)T ~ Nip(0, I,). We set X; = (I)()?l), where ® is the standard normal
cumulative distribution function, and X; = )~(i for ¢ = 2,...,10. We consider estimating the
conditional median and the 0-7 conditional quantile of Y. Note that the variable X is inactive
for estimating the conditional median and is active for estimating the 0-7 conditional quantile.
Let 3= (B1,...,B10)" be the vector of quantile regression coefficients. We have 33 =0-25,
Bs =05, 7 =1, Bg = 2, Bo = B4 = Pg = Bs = P10 = 0 for both quantiles, 3; = 0 for the con-
ditional median and 3; = ®~1(0-7) for the 0-7 conditional quantile.

We perform 1000 simulations with 400 bootstrapped samples for each. We report sample size
n = 100 for estimating the conditional median and size 250 for estimating the 0-7 conditional
quantile, as it is known to be more challenging to estimate a higher quantile than to estimate the
median. Table 1 summarizes the simulation results. The standard errors of the coverage proba-
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8 L. WANG, I. VAN KEILEGOM, AND A. MAIDMAN

Table 2. Analysis of ozone data: wild residual-based 95% bootstrapped confidence in-
tervals for the 0.5 and 0.7 conditional quantiles

7 =05 T =07

New ALl New AL2 New L New AL1 New AL2 New L
Intercept (2-26, 2-31) (2-26, 2-30) (226, 2-31) (2:37,2:41) (2-37,2:41) (2-37,2:42)
1 (—=0-13, —0-08) (—0-12, —0-09) (—0-10, —0-10) (—=0-12, —0-08) (—0-12, —0-08) (—0-10, —0-10)
T9 (0-15, 0-22) (0-14, 0-20) (0-18, 0-24) (0-16, 0-22) (0-16, 0-22) (0-21, 0-26)
T3 (0-04, 0-12) (0-05, 0-12) (0-07, 0-08) (0-06, 0-15) (0-06, 0-15) (0-08, 0-09)
Ty 0, 0) (—=0-01, 0-01) 0, 0) (—=0-01,0) (—=0-01,0) 0, 0)
5 0, 0) (0-01, 0-03) (0-02, 0-02) (—=0-01,0) (—=0-01,0) 0, 0)
Tg 0, 0) 0, 0) 0, 0) (0-01, 0-05) (0-01, 0-05) (0-03, 0-03)
T7 0, 0) (—0-01, 0-01) 0, 0) (0, 0-01) (—0-01, 0-01) 0, 0)
T8 0, 0) (—0-01, 0-01) 0, 0) (—0-03, —0-01) (—0-03,0) (—0-02, —0-02)
Tg 0, 0) (—0-01, 0-01) 0, 0) (0, 0-02) (0, 0-02) 0, 0)
10 0, 0) (0, 0-04) (0-01, 0-02) (0, 0-01) (0, 0-01) (—0-01, 0)

New ALI: proposed method with adaptive L; penalty (v = 1); New AL2: proposed method with adaptive L1 penalty (y = 2);
and New L: proposed method with L1 penalty (data-driven choice of ay).

bilities are below 0.01 and the standard errors of the confidence interval lengths are below 0.005
for all cases. We also report the average number of nonzero coefficients correctly identified to
be nonzero and the average number of zero coefficients incorrectly identified to be nonzero. For
the two-step procedure, we only report results for v = 1 if adaptive lasso is applied in Step 1 as
the results for v = 2 are similar. Additional simulation results are given in the Supplementary
Material.

The wild residual bootstrap procedures achieve the specified coverage probability. For the L
penalty, the two choices of a,, yield similar results. The adaptive L; penalty produces sparser
models than the L; penalty does. The resulting confidence intervals are generally shorter than
those based on the full model or the two-step procedure. For the adaptive lasso, the coverage
probability of the confidence interval for zero coefficients is close to one, see Remark 4. Similar
numerical findings for adaptive lasso penalized least square regression were reported in Minnier
et al. (2011) and Camponovo (2015).

4.2. A real data example

We analyze data on the effects of ozone on school children’s lung growth (Thorst et al., 2004).
The study was carried out from February 1996 to October 1999 in South Western Germany on
school children initially in first and second primary school classes. The data we analyze contain
a subset of 496 children with complete data at three examinations (Buchholz et al., 2008).

The response variable is the forced vital capacity of the lung. We consider the ten explanatory
variables with the largest inclusion probabilities using the bootstrap procedure from De Bin
et al. (2015): gender, x1; height at pulmonary function testing, xo; weight at pulmonary function
testing, x3; maximal nitrogen oxide value of last 24 hours before pulmonary function testing, x4;
wheezing or whistling in the chest, x5; shortness of breath, zg; whether patient lives in a village
with high ozone values, z7; sensitization to pollens, xg; sensitization to dust mite allergens, xg;
and age at March 1, 1996, x1p.

Table 2 reports 95% confidence intervals for each covariate from bootstrapping penalized
quantile regression with the adaptive L; and L penalties for estimating the conditional median
and the conditional 0.7 quantile. For both methods, the variables x1, x5 and x3 are identified as
significant at both quantiles.
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APPENDIX: PROOFS OF THEOREMS 1 AND 2

We use £ and var® to denote expectation and variance conditional on the sample z. Let F,. . and 270
var,. . be the expectation and variance with respect to the joint distribution of r and z. Let pr denote
the probability under the joint distribution; and let pr, , denote the probability of r conditional on z. A
random variable R, is said to be o, (1) if for any €,6 > 0, pr_{pr, . (|Rn| > €) > 0} — 0, as n — oo,
and opr (1) is the regular notion with respect to the joint distribution of r and z. Lemma 3 from Cheng
& Huang (2010) will be used repeatedly to allow for the transition of various stochastic orders in different 275
probability spaces.

Let Vi(0) =30, {pr(ef —n=Y22Ts) — p.(ef)}. Let ¢, (u) =7 —I(u<0). It follows from
Knight (1998) and Koenker (2005) that

n _1/2m?5

VE(6) = —n1/2 ZzT(wT Z / (I(c < s)— I(ct <0)}ds

LEMMA Al. Under the conditions of Theorem 1,

Sl;tlp |prr\z{Vlyfn(5) S t} - prz{_éTH S t}’ = Oprz(1)° (Al)

The proof of Lemma A1 is given in the Supplementary Material. 280

LEMMA A2. Under the conditions of Theorem 1,
Vi (6) = 6" B16/2 4 05, (1). (A2)
Proof. Recall € = r;|é;| and €; = ¢; — x] (B Bo)- We will show that

sup [V, (6,0) — 8" B1§/2| = o5, (1),
beB
n—1/2,T .
where V3, (6,0) = >0, [0 0 {I(rile; —n=1/2*2Tb| < s) — I(r; < 0)}ds, with B a compact
set and 7 > 0. Since pr_{n'/27"(3 — B,) € B} — 1, the result of the lemma follows. By Lemma 3 of
Cheng & Huang (2010), it suffices to show that 285

sup [V, (8,0) — 6" B16/2| = o, (1)
beB

We will use Theorem 2.11.9 in van der Vaart & Wellner (1996). For a fixed € > 0, divide the set B in
O(g72P) cubes of the form C}, = H?:l[bj,krl» bjk,) with k = (k1,... k)T, kj =1,...,0(¢7?) for
j=1,...,p,and bjp, —bjr, 1 < 2. Then, writing V5, (8,b) = Z?zl v;p, we will show that

ZE”< sup o = v ?) < (A3)
Indeed, for fixed i and for b, b" € C, |vs — v |? is bounded above by
o1/ T5 )
‘/ I(rile; —n= Y2270 < §) — I(rile; — n~ Y2210 | < s)}ds‘
n=124T§
I(zFs > O)nil/zxzﬂé/ 1 [ I(rsle; — n V24T < 5) — I(rile; —n /22T | < s)|ds
0

/21,76,
+I(zl6 < O)n_1/2|aciT6|/ |1(rsle; — n Y2 T < —s) — I(ryle; —n~ /22T < —s)|ds.
0
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200 Let us focus on the first term above, as the second term is similar. The first term equals

—I/QmT(S
i

I(xzrd > 0,7 > O)n_l/QxZT(S/ ’I(—s/m + n_1/2+"xlrb <e€ <sfri+ n_1/2+7’x?b)
0
—I(=s/ri +n 2T < ¢ < s/ri + 07TV ds
n=1/25T§
< I(xls>0,r; > O)n’l/le%/ {!I(ei < s/ry +n VAT — I(e; < s/ri + 02TV
0

+I(er < —s/ri +n7VPTh) — I(e; < —s/ri + n71/2+nI¢Tb,)|}dS

12,7

< I(xls>0,r; > O)n_1/2x?§/ [{I(ei < s/ri+n V2Tl — I(e; < s/ri + n_1/2+7’x;bk,1)}
0

+{I(e; < —s/ri + n~YV2e ) — (e < —s/ri + n*1/2+”:cink_1)}}ds,

where for notational simplicity we assume that all components of z; are positive. Hence,

n
Z Er,z( sup ‘Uib — Viv |2)
=1

b,b' eCy
n n71/2\w?6\
<n71/2 Z |z} 8| // {{Fl(s/r +n 24Ty — Fy(s/r + nfl/%”xfbk,l)}
i=1 0
+{F;(—s/r + n~ YTy ) — Fi(—s/r + n_l/”"x?bk_l)}} dsdG(r)

n
<2on~t Z |2T 6120~V 2T by — by_q| sup fi(t) < e,
P teN;
for some 0 < ¢ < oo, for n < 1/2, where N; is a neighborhood of 0 such that supsen, fi(t) < oo; see

Condition 1. This verifies (A3).
Let Njj(e, B, Ly) be the bracketing number of B, i.e., the minimal number of sets N in a partition

B =U}:, Bej such that Y7, B { supy yep. (vip — viry)?} < % forj = 1,..., N.. Forany 6, | 0,

On On
/ {log Ny (e, B, LINZW/2 de < c/ {log(e~#)}1/2de — 0.
0 0

Since the partition of B does not depend on n and since sup,c g |vis| — 0 for all 4, it follows from
25 Theorem 2.11.9 in van der Vaart & Wellner (1996) that V5, (6,b) — E,. .{V5,(0,b)} converges weakly in
£>(B) provided it converges marginally, where £>°(B) is the space of bounded functions from B to R

equipped with the supremum norm.
To check convergence of V5, (8, b) for fixed b € B, it suffices to show that E,. . { V5", (8,b)} — 67 B16/2
and var,. ,{V5: (6,b)} — 0. Note that

Er{V5,(0,0)}

n n_1/2:cT5

= Er (EI[Z/O Il = nV2T0 < 5) — (rs < 0) s )
oo N nfl/zw?(s
= / Z/ {Fi(s/r+n~V22Tb) — Fy(=s/r +n=2%12Tb) } I(2T6 > 0)dsdG(r)

0 nfl/zziT(s
+/ Z/ {1 - Fi(s/r+n~Y2"12Tb) + Fi(—s/r +n~/*2Tb) — 1} (2] < 0)dsdG(r)
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say, where F; denotes the distribution of ¢;.
—1/2 T 5

Wy = /OOO . / {f:(0) 23/r}[(w?6> 0)dsdG(r)

)

+ / / S ) — £(0)Y28/r1(2TS > 0)dsdG(r) = Wiy + Wi,
say, where t* is between —n /2276 + n~1/2t12Th and n= /227§ + n~/?+12Th. Note that
Wi :/ rdG(r Zf (n=Y2276)21 (276 > 0) = 6T{n_12f2 Yo T I(2T6 > 0)}4.
0 i=1

By Condition 1, there exists a positive constant c such that

-1/2, T(S
[Wia| < c/ / n~ V22T ) + n_1/2+”|xin\)25/rl(m;fp(5 > 0)dsdG(r)

gc{/o 2dG(r)}( ~%(18]| max ||ml|\){5T{n 1ZxxTI 275> 0) }5}

=1

+ef /000 =G} = 0 s, ) [57 S e 15 > 1)) 0

1<i<n 4
=1

as Conditions 3 and 4 imply that fooo r=2dG(r) is bounded, and by Condition 2 we
have n—1/2t7 maxj<;<n ||zi|| =0 for n small enough. Similarly, we can show W;=
LT n Y fi(0)2 2l I(2T6 < 0)}6 + o(1). Hence, E, .{Vs,(6,b)} — 0" Bi6/2 as n — cc.
To show var,. ,{V5:,(0,b)} — 0, we have

n n71/21?5
var, {V5,(0,b)} = Zvarnz {/ {I(rle; — n~ V2T < 5) — I(r; < 0)}ds]
i=1 0

= (721131l e i l1) Er V3 (5.0)),

nil/zx?(s 2
{I(nlez' _ n‘1/2+”$in| <s)—I(r; < 0)}ds}

n~1/2,T
where the last equality follows because [ i {I(rile; —n=Y/242Tb| < s) — I(r; <0)}ds
is always nonnegative. Since n~'/2max;<, ||z;|| = 0 and E,_{Vy(6,b)} — 6" B1§/2, we have
var, . {V,(0,b)} — 0 as n — oo. This finishes the proof. [J

Proof of Theorem 1. Recall that Q;;(8) = Y"1, {p-(ef —n~122]8) — pr(ef)} + A 20 ]*(|BJ +
n'/26;] —|B5]), where w} = [B;|=7, B" = (B, By,-...B,)7 is th~6* ordinary quantile regression esti-
mator computed from the bootstrap sample, v > 0. We have n'/ 2(B —B) =arg ming Q5 (5). Let A,
denote the event that the adaptive lasso estimator 3 correctly estimated all the zero components of 3, i.e.,
Ay isthesetof all w € Qsuch that {j:1 < j <p,5;(w) =0} ={g+1,...,p}. Then it follows from

Lemma 1 that pr(A, ) — 1 as n — oo. There exists a subsequence {ny} such that pr(Ay, i.0.) = 0. Let
Q2§ be the union of limsup,, A;,, and the event on which (A1) or (A2) fails to hold, then pr(£2o) = 1.

For any fixed w € Qp, there exists n,, > 1 such that for all n > n,, {j:1<j<p, Bn] w)=0}=

300
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310
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{¢+1,...,p}. Hence on g, as n — oo,

—6TH +6"B16/2, S441=---=0,=0,

400, otherwise,

Qr(0) = Q*(0) = {

in probability. Following the same argument as in Lemma 1 and applying epi-convergence theory see the
unpublished technical reports of Geyer (On the asymptotics of convex stochastic optimization, technical
report, 1996) and Knight (Epi-convergence in distribution and stochastic equi-semicontinuity, technical
report, 1999), the result is established by the equivalent representation of bootstrap consistency in (23.2)
of van der Vaart (1998). [J

Proof of Theorem 2. Let A, = {||B* — Boll < en~'/?log(n)} for some given positive constant
c. Since S is n'/?-consistent, we have pr(A,) — 1. Let Q5" (8) = Y1, {p- (e —n~1/22T5) —

oo (€0} 4 A S0, (1F: + n=1/25;| — 1), then nt/2(5" — B') minimizes Q3 (9). Let V,*(9) =
S dpr(er —al's/n'/?) — p-(ef*)}. We can write

’1/21T5

n n n
Vi (8) = —n /2 Zx?&/}T(ef*) + Z/ {I(* <s)—1I(e* <0)}ds
i=1 i=170
= Vi (6) + Vo, (9).
Similarly as in the proof of Lemma Al,

sup Ipr, . (V2 (8) < t} — pr.{—6"H < t}] = oy (1).

Similarly as in the proof of Lemma A2, V3*(8) = 67 B16/2 + oy (1). For n sufficiently large, on the
event A, sign(BJ"-‘) = sign(fo;) and BJ* = Boj forj=1,...,¢;and BJ* =0forj=¢g+1,...,p. Condi-

tional on the data, \,, Z§=1 {|BJ* +8;/n'/?| — |BJ*|} — X ?:1 {|5J|I(BJ* =0)+ 5jsign([30j)l(5;‘ +
0)}.Forany 1 < j <p,

pr{ 16,115} = 0) + djsign(Bo;) I(F; # 0) = [6;11(Bo; = 0) + &sign(Bo;)I (Bo; #0)}
> Pf{\5j|f(5f = 0) + &;sign(Bo; )1 (5} # 0) = |8;1(Bo; = 0) + ;sign(Bos)I(Bo; # 0)’An} = 1,

as n — oo. Therefore, conditional on the data, as n — oo,

p
Qi (6) = —0"H + 6" B16/2 4+ Xo > {16;11(Bo; = 0) + &;sign(Bo; ) 1(Bo; # 0)},

j=1

in distribution. Following the same argument as in Lemma 2 and applying epi-convergence theory, see the
unpublished technical reports of Geyer (On the asymptotics of convex stochastic optimization, technical
report, 1996) and Knight (Epi-convergence in distribution and stochastic equi-semicontinuity, technical
report, 1999), the result is established by the equivalent representation of bootstrap consistency in (23.2)
of van der Vaart (1998). [
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs, additional examples of random
weight distributions and simulation results.
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