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SUMMARY 15

We consider a heteroscedastic regression model in which some of the regression coefficients
are zero but it is not known which ones. Penalized quantile regression is a useful approach for
analyzing such data. By allowing different covariates to be relevant for modeling conditional
quantile functions at different quantile levels, it provides a more complete picture of the con-
ditional distribution of a response variable than mean regression. Existing work on penalized 20

quantile regression has been mostly focused on point estimation. Although bootstrap procedures
have recently been shown to be effective for inference for penalized mean regression, they are not
directly applicable to penalized quantile regression with heteroscedastic errors. We prove that a
wild residual bootstrap procedure for unpenalized quantile regression is asymptotically valid for
approximating the distribution of a penalized quantile regression estimator with an adaptive L1 25

penalty and that a modified version can be used to approximate the distribution of L1-penalized
quantile regression estimator. The new methods do not need to estimate the unknown error den-
sity function. We establish consistency, demonstrate finite sample performance, and illustrate the
applications on a real data example.

Some key words: Adaptive lasso; Confidence interval; Lasso; Penalized quantile regression; Wild bootstrap. 30

1. INTRODUCTION

We consider the quantile regression model Yi = xTi β0 + εi (i = 1, . . . , n), where xi =
(xi0, xi1, . . . , xip)

T with xi0 = 1 is the ith nonstochastic design point in Rp, and εi is a random
error with probability density fi and the τ th quantile equal to zero. The unknown regression co-
efficient β0 = (β00, β01, . . . , β0p)

T may depend on τ , but we omit such dependence in notation 35

for simplicity. Quantile regression was proposed by Koenker & Bassett (1978) and has become a
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popular alternative to least squares regression. Conditional quantiles are of interest in a variety of
applications, such as the conditional median of medical expenditure or a low conditional quantile
of birth weight. Comparing such quantiles for a range of τ values enables researchers to obtain
a more complete picture of the conditional distribution than mean regression and is particularly40

useful for analyzing heterogeneous data. See Koenker (2005) and Koenker et al. (2017).
We suppose that some of the covariates are irrelevant for modeling the τ th conditional quan-

tile but we have no prior information on which. In such a setting, penalized quantile regression
has been proven to avoid over-fitting by shrinking the estimated coefficients of irrelevant covari-
ates toward zero. Here, we focus on the asymptotic regime where the number of predictors p is45

fixed while the sample size n goes to infinity. Asymptotic theory for penalized quantile regres-
sion in this setup was recently studied by Zou & Yuan (2008) for independent and identically
distributed random errors, and Wu & Liu (2009), who established the asymptotic distribution of
penalized quantile regression estimator for the adaptive L1 penalty (Zou, 2006) and considered
an extension to the general heteroscedastic error setting. However, these works have not consid-50

ered estimation of the standard error of the estimated penalized quantile regression coefficients.
The asymptotic distribution of L1-penalized quantile regression has a positive probability mass
at zero for the component for which the true regression parameter has a zero value. Inference
based directly on asymptotic theory is not convenient. On the other hand, the adaptively L1-
penalized quantile regression estimator enjoys the oracle property under regularity conditions:55

the zero coefficients are estimated as exactly zero with probability approaching unity and the
nonzero coefficients have the asymptotic normal distribution we would obtain if we knew in ad-
vance which coefficients are zero. However, convergence to the oracle distribution is often slow
and results in inaccurate confidence intervals (Chatterjee & Lahiri, 2013).

In practice, a two-step procedure is commonly used to construct confidence intervals. First, pe-60

nalized quantile regression is applied to select variables. Then the model is refitted with selected
variables only to construct confidence intervals. Such a procedure does not account for uncer-
tainties involved in variable selection and generally tends to produce wider confidence intervals,
as demonstrated in our simulation study.

These challenges motivate us to develop a wild residual bootstrap-based inference approach65

for penalized quantile regression with L1 or adaptive L1 penalty. Our work is mostly related to
Chatterjee & Lahiri (2010, 2011, 2013) and Camponovo (2015) on bootstrapping penalized esti-
mators in the least squares regression setting. An alternative perturbation method for inference on
regularized regression estimates was studied in Minnier et al. (2011). Chatterjee & Lahiri (2010)
proved that standard bootstrap is inconsistent for estimating the distribution of the L1 penalized70

least squares estimator when one or more of the components of the regression parameter vector
are zero; the failure of the naive paired bootstrap was proved in Camponovo (2015). Modified
residual and paired bootstraps were proposed in Chatterjee & Lahiri (2011) and Camponovo
(2015), respectively. Chatterjee & Lahiri (2013) demonstrated that although the adaptively pe-
nalized least squares estimator enjoys the oracle property, inference based directly on the oracle75

distribution is often inaccurate and more accurate inference can be obtained via a residual boot-
strap. However, these bootstrap methods do not directly apply to the quantile regression setting
due to the nonsmoothness of the quantile loss function and the heteroscedastic error distribution.
We prove that a wild residual bootstrap procedure proposed by Feng et al. (2011) for unpenalized
quantile regression is asymptotically valid for approximating the distribution of the quantile re-80

gression estimator with adaptiveL1 penalty. Furthermore, a modified version of this wild residual
bootstrap procedure can be used to approximate the distribution of L1 penalized quantile regres-
sion. Our derivation of the bootstrap consistency theory for penalized quantile regression uses
techniques substantially different from that of Feng et al. (2011).
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2. INFERENCE FOR ADAPTIVE L1-PENALIZED QUANTILE REGRESSION 85

2·1. Quantile regression with adaptive L1 penalty
The unpenalized quantile regression estimator for β0 is β = (β0, . . . , βp)

T , where

β = arg min
β

n∑
i=1

ρτ (Yi − xTi β) (1)

and ρτ (u) = u {τ − I(u < 0)} is the quantile loss function. Under general regularity conditions,
β is asymptotically normal. The asymptotic covariance matrix of β depends on the unknown
conditional density function of εi (Koenker, 2005). 90

Often not all covariates collected are relevant for modeling the τ th conditional quantile, that
is, some of the components of β0 are zero. Let A = {1 ≤ j ≤ p : β0j 6= 0} be the index set
of the nonzero coefficients. Let |A| = q be the cardinality of the set A. Without loss of gen-
erality, we assume that the last p− q components of β0 are zero; that is, we can write β0 =
(βT01, 0

T
p−q)

T , where 0p−q denotes a (p− q)- dimensional vector of zeros, and A = {1, . . . , q}. 95

Let X = (x1, . . . , xn)T be the n× (p+ 1) matrix of covariates, where xT1 , . . . , x
T
n are the rows

of X . We also write X = (1, X1, . . . , Xp), where 1, X1, . . . , Xp are the columns of X and 1
represents an n-vector of ones. Define XA to be the submatrix of X that consists of its first
q + 1 columns; and define XAc to be the submatrix of X that consists of its last p− q columns.
Similarly, let xiA be the subvector that contains the first q + 1 entries of xi. 100

The quantile regression estimator with the adaptive L1 penalty performs simultaneous estima-
tion and variable selection by minimizing a penalized quantile loss function, i.e.,

β̃ = arg min
β

{ n∑
i=1

ρτ (Yi − xTi β) + λn

p∑
j=1

wj |βj |
}
, (2)

where λn > 0 is a tuning parameter, and wj = |βj |−γ are the adaptive weights (γ >
0). Write β̃ = (β̃0, . . . , β̃p)

T and Ã = {1 ≤ j ≤ p : β̃j 6= 0}. Let β̃1 be the subvector that
contains the first (q + 1) elements of β̃. Let D0 = limn→∞ n

−1∑n
i=1 xiAx

T
iA and D1 = 105

limn→∞ n
−1∑n

i=1 fi(0)xiAx
T
iA, where fi(0) is the density function of εi evaluated at zero. The

following properties of β̃ were established in Wu & Liu (2009).

LEMMA 1. Assume Condition 2 of Section 2.2 is satisfied. If n−1/2λn → 0 and n(γ−1)/2λn →
∞, then the adaptive L1-penalized quantile regression estimator β̃ enjoys the oracle property.
That is, 110

(i) pr(Ã = A)→ 1 as n→∞;
(ii) n1/2(β̃1 − β01)→ N{0q+1, τ(1− τ)D−11 D0D

−1
1 } in distribution as n→∞.

The result in Lemma 1 is referred to as the oracle property: with probability approaching one
the zero coefficients of β0 are identified as zero and the nonzero coefficients are identified as
nonzero; and we can estimate the nonzero subvector of β0 as efficiently as if we know the true 115

model in advance. The proof of Lemma 1 is given in the Supplementary Material.

2·2. A wild residual bootstrap procedure and its consistency
We use a wild residual bootstrap procedure to approximate the asymptotic distribution of β̃.

Our procedure is motivated by the work of Feng et al. (2011) for unpenalized quantile regression.
To obtain the wild bootstrap sample, we follow the steps below. 120
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1. We first calculate the residuals from the adaptively penalized quantile regression: ε̂i = Yi −
xTi β̃ (i = 1, . . . , n) and obtain β̃ by (2).

2. Let ε∗i = ri|ε̂i|, where ri (i = 1, . . . , n) are generated as a random sample from a distribution
with a cumulative distribution function G satisfying Conditions 3-5 below.

3. We generate the bootstrap sample as Y ∗i = xTi β̃ + ε∗i (i = 1, . . . , n).125

Using the bootstrap sample, we recalculate the adaptively penalized quantile regression esti-
mator as

β̃
∗

= arg min
β

{ n∑
i=1

ρτ (Y ∗i − xTi β) + λn

p∑
j=1

w∗j |βj |
}
, (3)

where w∗j = |β∗j |−γ , β
∗

= (β
∗
0, . . . , β

∗
p)
T is the ordinary quantile regression estimator recom-

puted on the bootstrap sample. For j = 1, . . . , p and 0 < α < 1, let d∗(α/2)j and d
∗(1−α/2)
j

be the (α/2)-th and (1− α/2)-th quantiles of the bootstrap distribution of n1/2(β̃
∗
j − β̃j),130

respectively. We can estimate d∗(α/2)j and d∗(1−α/2)j from a large number of bootstrap samples.
An asymptotic 100(1− α)% bootstrap confidence interval for β0j , j = 1, . . . , p, is given
by
[
β̃j − n−1/2d

∗(1−α/2)
j , β̃j − n−1/2d

∗(α/2)
j

]
. As in Feng et al. (2011), we work under the

following technical conditions:

Condition 1. The true value β0 is an interior point of a compact set in Rp. The density of εi,135

denoted by fi(·), is Lipschitz continuous and is bounded away from 0 and∞ in a neighborhood
around 0 for all i;
Condition 2. limn→∞ n

−1∑n
i=1 xix

T
i → B0 and limn→∞ n

−1∑n
i=1 fi(0)xix

T
i → B1

for some positive definite matrices B0 and B1. Furthermore,
∑n

i=1 ||xi||3 = O(n) and
max1≤i≤n ||xi|| = O(n1/4), where || · || is the Euclidean norm;140

Condition 3. for some strictly positive constants c1 and c2, sup{r ∈ G : r ≤ 0} = −c1 and
inf{r ∈ G : r ≥ 0} = c2, where G is the support of the weight distribution G;
Condition 4. the weight distribution G satisfies

∫ +∞
0 r−1dG(r) = −

∫ 0
−∞ r

−1dG(r) = 1/2 and
EG(|r|) <∞ , where the expectation is taken under G;
Condition 5. the τ th quantile of the distribution G is zero.145

Theorem 1 shows that the conditional distribution of n1/2(β̃
∗
− β̃) provides an asymptotically

valid approximation of that of n1/2(β̃ − β). Let Ã∗ = {j = 1, . . . , p : β̃∗j 6= 0}, and let β̃
∗
1 be the

subvector that contains the first q + 1 elements of β̃
∗
. Let r = {r1, . . . , rn} be the random boot-

strap weights and z = {z1, . . . , zn} be the random sample. By the wild bootstrap mechanism,150

the distribution of r is independent of that of z. Let prz denote the probability under the joint
distribution of z, and let prr|z denote the probability of r conditional on z.

THEOREM 1. If Conditions 1–5 and the assumptions of Lemma 1 are satisfied, then
prr|z(Ã

∗ = A) = 1 + oprz(1). Furthermore,

sup
t

∣∣prr|z{n1/2(β̃
∗
1 − β̃1) ≤ t} − prz{n1/2(β̃1 − β01) ≤ t}

∣∣ = oprz(1).

Remark 1. Conditions 1 and 2 are slightly weaker than the corresponding conditions in Feng155

et al. (2011). Under Condition 5, conditional on the data, ε∗i has the τ th quantile equal to zero.
Conditions 3 and 4 ensure that the asymptotic distribution of the bootstrap estimator, condi-
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tional on the data, matches the unconditional asymptotic distribution of the original adaptively
penalized quantile regression estimator, which depends on the unknown error density function. A
simple weight distribution that satisfies Conditions 3–5 is the two-point distribution with prob- 160

abilities 1− τ and τ at r = 2(1− τ) and −2τ , respectively. Another example given in Feng
et al. (2011) is the distribution which for 1/8 < τ < 7/8, g(r) = G′(r) = −rI(−2τ − 1/4 ≤
r ≤ −2τ + 1/4) + rI{2(1− τ)− 1/4 ≤ r ≤ 2(1− τ) + 1/4}. We propose several other dis-
tributions that satisfy these conditions in the Supplementary Material.

Remark 2. By definition n1/2(β̃
∗
− β̃) minimizes Q∗n(δ), where Q∗n(δ) =

∑n
i=1

{
ρτ (ε∗i − 165

n−1/2xTi δ)− ρτ (ε∗i )
}

+ λn
∑p

j=1w
∗
j

(
β̃j + n−1/2δj | − |β̃j |

)
, The crux of the proof of Theorem

1 is to show that conditional on the data,

Q∗n(δ)→ Q∗(δ) =

{
−δTH + δTB1δ/2, δj = 0 for j > q,

+∞, otherwise,

in probability, where H ∼ N{0, τ(1− τ)B0}. Then the results follow from epi-convergence
theory, see the unpublished technical reports of Geyer (On the asymptotics of convex stochastic
optimization, technical report, 1996) and Knight (Epi-convergence in distribution and stochastic 170

equi-semicontinuity, technical report, 1999).

Remark 3. As pointed out by a referee, Leeb & Pötscher (2008) and Pötscher & Schneider
(2009) revealed that the distribution of adaptive lasso and other shrinkage-type estimators cannot
be estimated uniformly in a shrinking neighborhood of the underlying parameter values. In the
setting we consider, the number of covariates is fixed. We assume the smallest nonzero signal is 175

not diminishing to zero when the sample size increases. Furthermore, as in Chatterjee & Lahiri
(2011), we do not claim the bootstrap based estimator of the distribution of adaptive lasso to be
uniformly consistent over any diminishing neighborhood of underlying parameter values. See
also Remark 3 of Chatterjee & Lahiri (2011).

Remark 4. For the adaptive lasso, the coverage probability of the confidence interval ap- 180

proaches unity, because the wild residual bootstrap distribution approximates the adaptive lasso
estimator distribution, which identifies zero coefficients as exactly zero with probability ap-
proaching unity.

3. MODIFIED WILD RESIDUAL BOOTSTRAP FOR L1 PENALIZED QUANTILE REGRESSION

We also consider the L1 or lasso penalized quantile regression estimator 185

qβ = arg min
β

{ n∑
i=1

ρτ (Yi − xTi β) + λn

p∑
j=1

|βj |
}
, (4)

where λn > 0 is a tuning parameter. The asymptotic distribution of qβ follows that of the mini-
mizer of a random process, which is specified in the following lemma.

LEMMA 2. Under Condition 2 and if n−1/2λn → λ0 ≥ 0,

n1/2(qβ − β0)→ arg min
δ

[
− δTH + δTB1δ/2 + λ0

p∑
j=1

{
|δj |I(β0j = 0)

+δjsign(β0j)I(β0j 6= 0)
}]
,
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in distribution as n→∞, where H is defined in Remark 2.

The proof is given in the Supplementary Material. For L1-penalized mean regression, Chatterjee190

& Lahiri (2010) proved that the asymptotic distribution of the naive residual bootstrapped lasso
estimator is a random measure on Rp and that the bootstrap is inconsistent whenever the regres-
sion parameter vector contains one or more zeros. An explanation of this phenomenon is that
the lasso estimates the sign of nonzero coefficients correctly with high probability, but estimates
the zero coefficients to be positive or negative with positive probabilities. The naive residual195

bootstrap fails to reproduce the sign of zero coefficients with high probability. To remedy this,
Chatterjee & Lahiri (2010) proposed a thresholding procedure, which we adapt.

Our procedure proceeds as follows. Let {an} be a sequence of numbers such that an +
(n−1/2 log n)a−1n → 0 as n→∞. For example, an = cn−δ, for some c > 0, 0 < δ < 1/2. For
β defined in (1), we consider the thresholded estimator qβ

∗
= (qβ∗0 , . . . ,

qβ∗p)T , where qβ∗0 = β0200

and qβ∗j = qβjI(|qβj | > an) for j = 1 . . . , p. Let qεi = Yi − xTi qβ
∗

(i = 1, . . . , n). Let ε∗∗i = ri|qεi|
(i = 1, . . . , n), where the bootstrap weights ri satisfy Conditions 3–5. We choose to threshold
the ordinary quantile regression estimator directly. Alternatively, we may threshold the lasso esti-
mator qβ, which will yield the same asymptotic results for the bootstrapped estimator but requires
an additional tuning parameter for the lasso.205

The bootstrap sample is generated by Y ∗∗i = xTi
qβ
∗

+ ε∗∗i (i = 1, . . . , n). We then recalculate
the L1 penalized quantile regression estimator using the bootstrap sample:

qβ
∗∗

= arg min
β

{ n∑
i=1

ρτ (Y ∗∗i − xTi β) + λn

p∑
j=1

|βj |
}
. (5)

Theorem 2 below shows that the conditional distribution of n1/2(qβ
∗∗
− qβ

∗
) provides an asymp-

totically valid approximation of that of n1/2(qβ − β0).

THEOREM 2. If Conditions 1–5 and the assumptions of Lemma 2 are satisfied, then210

sup
t

∣∣prr|z{n1/2(qβ
∗∗
− qβ

∗
) ≤ t} − prz{n1/2(qβ − β0) ≤ t}

∣∣ = oprz(1).

4. NUMERICAL RESULTS

4·1. Monte Carlo studies
We study the accuracy of 95% confidence intervals constructed by our bootstrap procedures.

For the adaptive L1 penalty, we select the tuning parameter λn by minimizing a Bayesian infor-
mation criterion (Lee et al., 2014) and consider γ = 1, 2. For the L1 penalty, we select λn by215

cross-validation and consider two choices of an. One choice adopts a data-driven approach that
minimizes the estimated mean squared error E∗(||qβ

∗∗
− qβ

∗
||2), where E∗ is the average over

bootstrap samples; see Section 5.2 of Chatterjee & Lahiri (2011) and Remark 2 of Camponovo
(2015). The other choice is the empirical choice an = n−1/3, which is motivated by the rate
required by the asymptotic theory. The bootstrap random weights ri are generated from the two-220

point distribution described in Feng et al. (2011); see Remark 1. We also tried alternative weight
distributions and found the results similar.

We compare the new methods with the confidence intervals from the oracle model, from the
full model, and from the two-step procedure described in Section 1 with adaptive lasso or lasso
applied in the first step. The oracle procedure is not implementable in real data analysis. For225
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Table 1. Empirical coverage probabilities (×100) and average interval lengths (in
parentheses) for nominal 95% confidence intervals

β1 = Φ−1(τ) β3 =0·25 β5 =0·5 β7 = 1 β9 = 2 Zeros TP FP

τ =0·5 n = 100

New AL1 92·0 (0·33) 94·6 (0·15) 93·2 (0·17) 95·3 (0·13) 92·7 (0·14) 97·4 (0·06) 4 0·3
New AL2 90·6 (0·42) 95·0 (0·15) 93·6 (0·17) 95·1 (0·13) 92·5 (0·14) 98·3 (0·06) 4 0·3
New L1 90·7 (0·28) 92·9 (0·15) 92·4 (0·18) 94·9 (0·15) 91·2 (0·16) 93·5 (0·11) 4 3·3
New L2 92·2 (0·29) 93·7 (0·16) 93·6 (0·19) 96·1 (0·16) 94·5 (0·17) 95·5 (0·12) 4 3·3
Full RS 94·8 (0·59) 95·9 (0·21) 96·7 (0·24) 96·2 (0·21) 96·1 (0·22) 95·9 (0·21) 4 6
Full WB 91·0 (0·54) 97·4 (0·18) 95·9 (0·22) 97·6 (0·18) 94·6 (0·20) 96·1 (0·19) 4 6
TS AL RS 94·8 (0·51) 96·6 (0·21) 96·3 (0·27) 97·1 (0·23) 95·6 (0·23) 98·2 (0·26) 4 0·3
TS AL WB 91·5 (0·47) 95·5 (0·16) 94·2 (0·21) 96·0 (0·17) 92·4 (0·19) 97·7 (0·21) 4 0·3
TS L RS 94·1 (0·52) 96·2 (0·22) 95·6 (0·27) 96·0 (0·23) 95·4 (0·24) 96·3 (0·26) 4 3·3
TS L WB 92·1 (0·49) 94·7 (0·18) 94·3 (0·22) 95·9 (0·19) 93·3 (0·20) 95·8 (0·21) 4 3·3
Oracle RS - 97·1 (0·21) 97·9 (0·26) 97·0 (0·20) 97·2 (0·18) - 4 0
Oracle WB - 97·7 (0·15) 95·9 (0·19) 98·2 (0·15) 97·2 (0·16) - 4 0

τ =0·7 n = 250

New AL1 89·6 (0·35) 94·8 (0·10) 92·2 (0·09) 94·9 (0·08) 93·6 (0·09) 98·7 (0·04) 5 0·1
New AL2 89·8 (0·34) 94·1 (0·09) 91·7 (0·09) 95·0 (0·08) 93·1 (0·09) 99·0 (0·04) 5 0·1
New L1 90·1 (0·34) 94·4 (0·10) 94·2 (0·10) 95·4 (0·08) 95·1 (0·09) 95·4 (0·06) 5 2·6
New L2 90·7 (0·35) 94·9 (0·10) 94·2 (0·10) 95·4 (0·08) 95·1 (0·09) 95·9 (0·06) 5 2·6
Full RS 94·9 (0·39) 96·8 (0·12) 95·3 (0·12) 95·8 (0·10) 96·4 (0·11) 95·9 (0·11) 5 5
Full WB 90·6 (0·37) 96·3 (0·11) 95·5 (0·11) 97·3 (0·09) 96·1 (0·11) 96·2 (0·10) 5 5
TS AL RS 93·8 (0·37) 95·4 (0·12) 96·1 (0·10) 95·9 (0·11) 96·4 (0·12) 98·8 (0·11) 5 0·1
TS AL WB 91·7 (0·35) 95·2 (0·11) 95·7 (0·09) 95·8 (0·10) 96·5 (0·11) 98·9 (0·11) 5 0·1
TS L RS 93·8 (0·37) 95·0 (0·12) 95·3 (0·11) 96·2 (0·11) 95·5 (0·12) 96·1 (0·11) 5 2·6
TS L WB 91·2 (0·35) 94·8 (0·12) 95·2 (0·10) 95·7 (0·11) 96·8 (0·12) 96·0 (0·10) 5 2·6
Oracle RS 94·0 (0·38) 96·8 (0·11) 95·3 (0·11) 95·9 (0·09) 96·4 (0·10) - 5 0
Oracle WB 90·8 (0·36) 95·7 (0·10) 94·9 (0·10) 96·6 (0·08) 96·4 (0·10) - 5 0

New AL1: proposed method with adaptiveL1 penalty (γ = 1); New AL2: proposed method with adaptiveL1 penalty (γ = 2);
New L1: proposed method with L1 penalty (data-driven choice of an); New L2: proposed method with L1 penalty (an =

n−1/3); Full RS: full model with rank-score method; Full WB: full model with wild residual bootstrap; TS AL RS: two-
step procedure, adaptive L1 (γ = 1) followed by rank-score method; TS AL WB: two-step procedure, adaptive L1 (γ = 1)
followed by wild residual bootstrap; TS L RS: two-step procedure, lasso followed by rank-score method; TS L WB: two-
step procedure, lasso followed by wild residual bootstrap; Oracle RS: oracle model with rank-score method; Oracle WB:
oracle model with wild residual bootstrap; Zeros: the reported average coverage probability (length) is the average for all zero
coefficients; TP: average number of true positives; FP: average number of false positives.

these competing methods, we consider confidence intervals obtained by the rank score method
and by the wild bootstrap method in the R package quantreg (Koenker, 2016).

Let Y =0·25X3+0·5X5 +X7 + 2X2 +X1ξ, where ξ ∼ N(0, 1) denotes the random error.
Let X̃ = (X̃1, . . . , X̃10)

T ∼ N10(0, Ip). We set X1 = Φ(X̃1), where Φ is the standard normal
cumulative distribution function, and Xi = X̃i for i = 2, . . . , 10. We consider estimating the 230

conditional median and the 0·7 conditional quantile of Y . Note that the variable X1 is inactive
for estimating the conditional median and is active for estimating the 0·7 conditional quantile.
Let β = (β1, . . . , β10)

T be the vector of quantile regression coefficients. We have β3 =0·25,
β5 =0·5, β7 = 1, β9 = 2, β2 = β4 = β6 = β8 = β10 = 0 for both quantiles, β1 = 0 for the con-
ditional median and β1 = Φ−1(0·7) for the 0·7 conditional quantile. 235

We perform 1000 simulations with 400 bootstrapped samples for each. We report sample size
n = 100 for estimating the conditional median and size 250 for estimating the 0·7 conditional
quantile, as it is known to be more challenging to estimate a higher quantile than to estimate the
median. Table 1 summarizes the simulation results. The standard errors of the coverage proba-
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Table 2. Analysis of ozone data: wild residual-based 95% bootstrapped confidence in-
tervals for the 0.5 and 0.7 conditional quantiles

τ =0·5 τ =0·7
New AL1 New AL2 New L New AL1 New AL2 New L

Intercept (2·26, 2·31) (2·26, 2·30) (2·26, 2·31) (2·37, 2·41) (2·37, 2·41) (2·37, 2·42)
x1 (−0·13, −0·08) (−0·12, −0·09) (−0·10, −0·10) (−0·12, −0·08) (−0·12, −0·08) (−0·10, −0·10)
x2 (0·15, 0·22) (0·14, 0·20) (0·18, 0·24) (0·16, 0·22) (0·16, 0·22) (0·21, 0·26)
x3 (0·04, 0·12) (0·05, 0·12) (0·07, 0·08) (0·06, 0·15) (0·06, 0·15) (0·08, 0·09)
x4 (0, 0) (−0·01, 0·01) (0, 0) (−0·01, 0) (−0·01, 0) (0, 0)
x5 (0, 0) (0·01, 0·03) (0·02, 0·02) (−0·01, 0) (−0·01, 0) (0, 0)
x6 (0, 0) (0, 0) (0, 0) (0·01, 0·05) (0·01, 0·05) (0·03, 0·03)
x7 (0, 0) (−0·01, 0·01) (0, 0) (0, 0·01) (−0·01, 0·01) (0, 0)
x8 (0, 0) (−0·01, 0·01) (0, 0) (−0·03, −0·01) (−0·03, 0) (−0·02, −0·02)
x9 (0, 0) (−0·01, 0·01) (0, 0) (0, 0·02) (0, 0·02) (0, 0)
x10 (0, 0) (0, 0·04) (0·01, 0·02) (0, 0·01) (0, 0·01) (−0·01, 0)

New AL1: proposed method with adaptiveL1 penalty (γ = 1); New AL2: proposed method with adaptiveL1 penalty (γ = 2);
and New L: proposed method with L1 penalty (data-driven choice of an).

bilities are below 0.01 and the standard errors of the confidence interval lengths are below 0.005240

for all cases. We also report the average number of nonzero coefficients correctly identified to
be nonzero and the average number of zero coefficients incorrectly identified to be nonzero. For
the two-step procedure, we only report results for γ = 1 if adaptive lasso is applied in Step 1 as
the results for γ = 2 are similar. Additional simulation results are given in the Supplementary
Material.245

The wild residual bootstrap procedures achieve the specified coverage probability. For the L1

penalty, the two choices of an yield similar results. The adaptive L1 penalty produces sparser
models than the L1 penalty does. The resulting confidence intervals are generally shorter than
those based on the full model or the two-step procedure. For the adaptive lasso, the coverage
probability of the confidence interval for zero coefficients is close to one, see Remark 4. Similar250

numerical findings for adaptive lasso penalized least square regression were reported in Minnier
et al. (2011) and Camponovo (2015).

4·2. A real data example
We analyze data on the effects of ozone on school children’s lung growth (Ihorst et al., 2004).

The study was carried out from February 1996 to October 1999 in South Western Germany on255

school children initially in first and second primary school classes. The data we analyze contain
a subset of 496 children with complete data at three examinations (Buchholz et al., 2008).

The response variable is the forced vital capacity of the lung. We consider the ten explanatory
variables with the largest inclusion probabilities using the bootstrap procedure from De Bin
et al. (2015): gender, x1; height at pulmonary function testing, x2; weight at pulmonary function260

testing, x3; maximal nitrogen oxide value of last 24 hours before pulmonary function testing, x4;
wheezing or whistling in the chest, x5; shortness of breath, x6; whether patient lives in a village
with high ozone values, x7; sensitization to pollens, x8; sensitization to dust mite allergens, x9;
and age at March 1, 1996, x10.

Table 2 reports 95% confidence intervals for each covariate from bootstrapping penalized265

quantile regression with the adaptive L1 and L1 penalties for estimating the conditional median
and the conditional 0.7 quantile. For both methods, the variables x1, x2 and x3 are identified as
significant at both quantiles.
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APPENDIX: PROOFS OF THEOREMS 1 AND 2
We use E∗ and var∗ to denote expectation and variance conditional on the sample z. Let Er,z and 270

varr,z be the expectation and variance with respect to the joint distribution of r and z. Let pr denote
the probability under the joint distribution; and let prr|z denote the probability of r conditional on z. A
random variable Rn is said to be o∗pr (1) if for any ε, δ > 0, prz{prr|z(|Rn| > ε) > δ} → 0, as n→∞,
and opr

r,z
(1) is the regular notion with respect to the joint distribution of r and z. Lemma 3 from Cheng

& Huang (2010) will be used repeatedly to allow for the transition of various stochastic orders in different 275

probability spaces.
Let V ∗n (δ) =

∑n
i=1

{
ρτ (ε∗i − n−1/2xTi δ)− ρτ (ε∗i )

}
. Let ψτ (u) = τ − I(u < 0). It follows from

Knight (1998) and Koenker (2005) that

V ∗n (δ) = −n−1/2
n∑
i=1

xTi δψτ (ε∗i ) +

n∑
i=1

∫ n−1/2xT
i δ

0

{
I(ε∗i ≤ s)− I(ε∗i ≤ 0)

}
ds

= V ∗1n(δ) + V ∗2n(δ).

LEMMA A1. Under the conditions of Theorem 1,

sup
t

∣∣prr|z{V ∗1n(δ) ≤ t} − prz{−δ
TH ≤ t}

∣∣ = oprz (1). (A1)

The proof of Lemma A1 is given in the Supplementary Material. 280

LEMMA A2. Under the conditions of Theorem 1,

V ∗2n(δ) = δTB1δ/2 + o∗pr (1). (A2)

Proof. Recall ε∗i = ri|ε̂i| and ε̂i = εi − xTi (β̃ − β0). We will show that

sup
b∈B
|V ∗2n(δ, b)− δTB1δ/2| = o∗pr (1),

where V ∗2n(δ, b) =
∑n
i=1

∫ n−1/2xT
i δ

0

{
I(ri|εi − n−1/2+ηxTi b| ≤ s)− I(ri ≤ 0)

}
ds, with B a compact

set and η > 0. Since prz{n1/2−η(β̃ − β0) ∈ B} → 1, the result of the lemma follows. By Lemma 3 of
Cheng & Huang (2010), it suffices to show that 285

sup
b∈B
|V ∗2n(δ, b)− δTB1δ/2| = opr,z (1).

We will use Theorem 2.11.9 in van der Vaart & Wellner (1996). For a fixed ε > 0, divide the set B in
O(ε−2p) cubes of the form Ck =

∏p
j=1[bj,kj−1, bj,kj ) with k = (k1, . . . , kp)

T , kj = 1, . . . , O(ε−2) for
j = 1, . . . , p, and bj,kj − bj,kj−1 ≤ ε2. Then, writing V ∗2n(δ, b) =

∑n
i=1 vib, we will show that

n∑
i=1

Er,z

(
sup

b,b′∈Ck

|vib − vib′ |2
)
≤ ε2. (A3)

Indeed, for fixed i and for b, b′ ∈ Ck, |vib − vib′ |2 is bounded above by∣∣∣ ∫ n−1/2xT
i δ

0

{
I(ri|εi − n−1/2+ηxTi b| ≤ s)− I(ri|εi − n−1/2+ηxTi b′| ≤ s)

}
ds
∣∣∣2

≤ I(xTi δ > 0)n−1/2xTi δ

∫ n−1/2xT
i δ

0

∣∣I(ri|εi − n−1/2+ηxTi b| ≤ s)− I(ri|εi − n−1/2+ηxTi b′| ≤ s)
∣∣ds

+I(xTi δ ≤ 0)n−1/2|xTi δ|
∫ n−1/2|xT

i δ|

0

∣∣I(ri|εi − n−1/2+ηxTi b| ≤ −s)− I(ri|εi − n−1/2+ηxTi b′| ≤ −s)
∣∣ds.
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Let us focus on the first term above, as the second term is similar. The first term equals290

I(xTi δ > 0, ri > 0)n−1/2xTi δ

∫ n−1/2xT
i δ

0

∣∣I(−s/ri + n−1/2+ηxTi b ≤ εi ≤ s/ri + n−1/2+ηxTi b)

−I(−s/ri + n−1/2+ηxTi b
′ ≤ εi ≤ s/ri + n−1/2+ηxTi b

′)
∣∣ds

≤ I(xTi δ > 0, ri > 0)n−1/2xTi δ

∫ n−1/2xT
i δ

0

{∣∣I(εi ≤ s/ri + n−1/2+ηxTi b)− I(εi ≤ s/ri + n−1/2+ηxTi b
′)
∣∣

+
∣∣I(εi ≤ −s/ri + n−1/2+ηxTi b)− I(εi ≤ −s/ri + n−1/2+ηxTi b

′)
∣∣}ds

≤ I(xTi δ > 0, ri > 0)n−1/2xTi δ

∫ n−1/2xT
i δ

0

[{
I(εi ≤ s/ri + n−1/2+ηxTi bk)− I(εi ≤ s/ri + n−1/2+ηxTi bk−1)

}
+
{
I(εi ≤ −s/ri + n−1/2+ηxTi bk)− I(εi ≤ −s/ri + n−1/2+ηxTi bk−1)

}]
ds,

where for notational simplicity we assume that all components of xi are positive. Hence,
n∑
i=1

Er,z

(
sup

b,b′∈Ck

|vib − vib′ |2
)

≤ n−1/2
n∑
i=1

|xTi δ|
∫ ∫ n−1/2|xT

i δ|

0

[{
Fi(s/r + n−1/2+ηxTi bk)− Fi(s/r + n−1/2+ηxTi bk−1)

}
+
{
Fi(−s/r + n−1/2+ηxTi bk)− Fi(−s/r + n−1/2+ηxTi bk−1)

}]
ds dG(r)

≤ 2n−1
n∑
i=1

|xTi δ|2n−1/2+ηxTi |bk − bk−1| sup
t∈Ni

fi(t) ≤ cε2,

for some 0 < c <∞, for η ≤ 1/2, where Ni is a neighborhood of 0 such that supt∈Ni
fi(t) <∞; see

Condition 1. This verifies (A3).
Let N[ ](ε,B, L

n
2 ) be the bracketing number of B, i.e., the minimal number of sets Nε in a partition

B = ∪Nε
j=1Bεj such that

∑n
i=1Er,z

{
supb,b′∈Bεj

(vib − vib′)2
}
≤ ε2 for j = 1, . . . , Nε. For any δn ↓ 0,∫ δn

0

{logN[ ](ε,B, L
n
2 )}1/2 dε ≤ c

∫ δn

0

{log(ε−2p)}1/2dε→ 0.

Since the partition of B does not depend on n and since supb∈B |vib| → 0 for all i, it follows from
Theorem 2.11.9 in van der Vaart & Wellner (1996) that V ∗2n(δ, b)− Er,z{V ∗2n(δ, b)} converges weakly in295

`∞(B) provided it converges marginally, where `∞(B) is the space of bounded functions from B to R
equipped with the supremum norm.

To check convergence of V ∗2n(δ, b) for fixed b ∈ B, it suffices to show that Er,z{V ∗2n(δ, b)} → δTB1δ/2
and varr,z{V ∗2n(δ, b)} → 0. Note that

Er,z{V ∗2n(δ, b)}

= Er

(
Ez|r

[ n∑
i=1

∫ n−1/2xT
i δ

0

{
I(ri|εi − n−1/2+ηxTi b| ≤ s)− I(ri ≤ 0)

}
ds
])

=

∫ ∞
0

n∑
i=1

∫ n−1/2xT
i δ

0

{
Fi(s/r + n−1/2+ηxTi b)− Fi(−s/r + n−1/2+ηxTi b)

}
I(xTi δ > 0)dsdG(r)

+

∫ 0

−∞

n∑
i=1

∫ n−1/2xT
i δ

0

{
1− Fi(s/r + n−1/2+ηxTi b) + Fi(−s/r + n−1/2+ηxTi b)− 1

}
I(xTi δ < 0)dsdG(r)

= W1 +W2,
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say, where Fi denotes the distribution of εi. 300

W1 =

∫ ∞
0

n∑
i=1

∫ n−1/2xT
i δ

0

{
fi(0)2s/r

}
I(xTi δ > 0)dsdG(r)

+

∫ ∞
0

n∑
i=1

∫ n−1/2xT
i δ

0

{
fi(t
∗/r)− fi(0)

}
2s/rI(xTi δ > 0)dsdG(r) = W11 +W12,

say, where t∗ is between −n−1/2xTi δ + n−1/2+ηxTi b and n−1/2xTi δ + n−1/2+ηxTi b. Note that

W11 =

∫ ∞
0

r−1dG(r)

n∑
i=1

fi(0)
(
n−1/2xTi δ

)2
I(xTi δ > 0) =

1

2
δT
{
n−1

n∑
i=1

fi(0)xix
T
i I(xTi δ > 0)

}
δ.

By Condition 1, there exists a positive constant c such that

|W12| ≤ c

∫ ∞
0

n∑
i=1

∫ n−1/2xT
i δ

0

(
n−1/2xTi δ/r + n−1/2+η|xTi b|

)
2s/rI(xTi δ > 0)dsdG(r)

≤ c
{∫ ∞

0

r−2dG(r)
}(
n−1/2||δ|| max

1≤i≤n
||xi||

)[
δT
{
n−1

n∑
i=1

xix
T
i I(xTi δ > 0)

}
δ
]

+c
{∫ ∞

0

r−1dG(r)
}(
n−1/2+η||b|| max

1≤i≤n
||xi||

)[
δT
{
n−1

n∑
i=1

xix
T
i I(xTi δ > 0)

}
δ
]
→ 0,

as Conditions 3 and 4 imply that
∫∞
0
r−2dG(r) is bounded, and by Condition 2 we

have n−1/2+η max1≤i≤n ||xi|| → 0 for η small enough. Similarly, we can show W2 =
1
2δ
T
{
n−1

∑n
i=1 fi(0)xix

T
i I(xTi δ < 0)

}
δ + o(1). Hence, Er,z{V ∗2n(δ, b)} → δTB1δ/2 as n→∞. 305

To show varr,z{V ∗2n(δ, b)} → 0, we have

varr,z{V ∗2n(δ, b)} =

n∑
i=1

varr,z
[ ∫ n−1/2xT

i δ

0

{
I(ri|εi − n−1/2+ηxTi b| ≤ s)− I(ri ≤ 0)

}
ds
]

≤
n∑
i=1

Er,z

[ ∫ n−1/2xT
i δ

0

{
I(ri|εi − n−1/2+ηxTi b| ≤ s)− I(ri ≤ 0)

}
ds
]2

=
(
n−1/2||δ|| max

1≤i≤n
||xi||

)
Er,z{V ∗2n(δ, b)},

where the last equality follows because
∫ n−1/2xT

i δ
0

{
I(ri|εi − n−1/2+ηxTi b| ≤ s)− I(ri ≤ 0)

}
ds

is always nonnegative. Since n−1/2 max1≤n ||xi|| → 0 and Er,z{V ∗2n(δ, b)} → δTB1δ/2, we have
varr,z{V ∗2n(δ, b)} → 0 as n→∞. This finishes the proof. �

310

Proof of Theorem 1. Recall that Q∗n(δ) =
∑n
i=1

{
ρτ (ε∗i − n−1/2xTi δ)− ρτ (ε∗i )

}
+ λn

∑p
j=1 w

∗
j

(
|β̃j +

n1/2δj | − |β̃j |
)
, where w∗j = |β∗j |−γ , β

∗
= (β

∗
0, β
∗
1, . . . , β

∗
p)
T is the ordinary quantile regression esti-

mator computed from the bootstrap sample, γ > 0. We have n1/2(β̃
∗
− β̃) = arg minδ Q

∗
n(δ). Let An

denote the event that the adaptive lasso estimator β̃ correctly estimated all the zero components of β, i.e.,
An is the set of all ω ∈ Ω such that {j : 1 ≤ j ≤ p, β̃j(ω) = 0} = {q + 1, . . . , p}. Then it follows from 315

Lemma 1 that pr(An)→ 1 as n→∞. There exists a subsequence {nk} such that pr(Acnk
i.o.) = 0. Let

Ωc0 be the union of lim supk A
c
nk

and the event on which (A1) or (A2) fails to hold, then pr(Ω0) = 1.
For any fixed w ∈ Ω0, there exists nw ≥ 1 such that for all n ≥ nw, {j : 1 ≤ j ≤ p, β̃nj(ω) = 0} =
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{q + 1, . . . , p}. Hence on Ω0, as n→∞,

Q∗n(δ)→ Q∗(δ) =

{
−δTH + δTB1δ/2, δq+1 = · · · = δp = 0,
+∞, otherwise,

in probability. Following the same argument as in Lemma 1 and applying epi-convergence theory see the320

unpublished technical reports of Geyer (On the asymptotics of convex stochastic optimization, technical
report, 1996) and Knight (Epi-convergence in distribution and stochastic equi-semicontinuity, technical
report, 1999), the result is established by the equivalent representation of bootstrap consistency in (23.2)
of van der Vaart (1998). �

325

Proof of Theorem 2. Let An = {||qβ
∗
− β0|| ≤ cn−1/2 log(n)} for some given positive constant

c. Since β is n1/2-consistent, we have pr(An)→ 1. Let Q∗∗n (δ) =
∑n
i=1

{
ρτ (ε∗∗i − n−1/2xTi δ)−

ρτ (ε∗∗i )
}

+ λn
∑p
j=1

(
|qβ∗j + n−1/2δj | − |qβ∗j |

)
, then n1/2(qβ

∗∗
− qβ

∗
) minimizes Q∗∗n (δ). Let V ∗∗n (δ) =∑n

i=1

{
ρτ (ε∗∗i − xTi δ/n1/2)− ρτ (ε∗∗i )

}
. We can write

V ∗∗n (δ) = −n−1/2
n∑
i=1

xTi δψτ (ε∗∗i ) +

n∑
i=1

∫ n−1/2xT
i δ

0

{
I(ε∗∗i ≤ s)− I(ε∗∗i ≤ 0)

}
ds

= V ∗∗1n (δ) + V ∗∗2n (δ).

Similarly as in the proof of Lemma A1,330

sup
t

∣∣prr|z{V ∗∗1n (δ) ≤ t} − prz{−δ
TH ≤ t}

∣∣ = oprz (1).

Similarly as in the proof of Lemma A2, V ∗∗2n (δ) = δTB1δ/2 + o∗pr (1). For n sufficiently large, on the
event An, sign(qβ∗j ) = sign(β0j) and qβ∗j = β0j for j = 1, . . . , q; and qβ∗j = 0 for j = q + 1, . . . , p. Condi-
tional on the data, λn

∑p
j=1

{
|qβ∗j + δj/n

1/2| − |qβ∗j |
}
→ λ0

∑p
j=1

{
|δj |I(qβ∗j = 0) + δjsign(β0j)I(qβ∗j 6=

0)}. For any 1 ≤ j ≤ p,

pr
{
|δj |I(qβ∗j = 0) + δjsign(β0j)I(qβ∗j 6= 0) = |δj |I(β0j = 0) + δjsign(β0j)I(β0j 6= 0)

}
≥ pr

{
|δj |I(qβ∗j = 0) + δjsign(β0j)I(qβ∗j 6= 0) = |δj |I(β0j = 0) + δjsign(β0j)I(β0j 6= 0), An

}
→ 1,

as n→∞. Therefore, conditional on the data, as n→∞,335

Q∗∗n (δ)→ −δTH + δTB1δ/2 + λ0

p∑
j=1

{
|δj |I(β0j = 0) + δjsign(β0j)I(β0j 6= 0)

}
,

in distribution. Following the same argument as in Lemma 2 and applying epi-convergence theory, see the
unpublished technical reports of Geyer (On the asymptotics of convex stochastic optimization, technical
report, 1996) and Knight (Epi-convergence in distribution and stochastic equi-semicontinuity, technical
report, 1999), the result is established by the equivalent representation of bootstrap consistency in (23.2)
of van der Vaart (1998). �340
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs, additional examples of random
weight distributions and simulation results.
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