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Abstract

This study considers adjoint based a posteriori estimation of the error in a quan-
tity of interest computed from numerical solutions based on multistage implicit-
explicit (IMEX) time integration schemes and an entropy-viscosity formulation
for damped hyperbolic partial differential equations (PDEs). Hyperbolic sys-
tems are challenging to solve numerically due to the need to stabilize systems
with discontinuous or nearly discontinuous solutions in an attempt to limit non-
physical oscillations and provide accurate solutions. The goal of this effort is
to provide error estimates based on adjoint operators, variational analysis and
computable residuals. The error estimates quantify the total error as well as
different contributions to the error arising from the time integration schemes
and choices of numerical parameters in the numerical method.

Keywords: A posteriori error estimation, adjoint operator, hyperbolic partial
differential equations, finite element method, entropy-viscosity

1. Introduction

This paper is concerned with accurate a posteriori error estimation of numer-
ical solutions of a scalar hyperbolic PDE with dissipation obtained using IMEX
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time integration and an entropy-viscosity method. In particular, we consider a
first order hyperbolic scalar conservation law with a small damping/dissipation
term

{ut(xﬂf) + V- fu(z,t) = eV2u(a,t), te(0,T],ze€Q O

u(z,0) =ug, €9

. . . o . d
along with periodic boundary conditions on the rectangular domain Q = [[._; (a;,

R? . The analysis presented here applies to more general open domains 2 C R?
with Dirichlet boundary conditions imposed on v and is also applicable with
slight modifications for general boundary conditions. Here u; = Ju/ot,

f:RY — R? is smooth and ¢ << 1 adds a small amount of dissipation. For
the analysis in this study this scalar system is useful as model of convection
dominated transport and a straightforward example of a nonlinear conserva-
tion law system that develops discontinuities and expansions in the context of
a Burger’s equation model. These mechanisms provide a representative simpli-
fied model of the mechanisms that are active in for example an Euler system
for ideal fluid flow. With the inclusion of a dissipative operator the effects of
diffusion are further introduced as representative of viscous effects that corre-
spond to a Navier-Stokes type system. Hyperbolic PDEs are challenging to solve
numerically and often require special treatment for stability. This includes up-
winding/Godunov and flux-limiter type methods in the finite-difference/ finite-
volume setting, discontinuous Galerkin (DG) finite element methods (FEMs)
[1, 2, 3], algebraic flux correction for continuous Galerkin FEM [4, 5, 6], and
consistent residual-based stabilized finite element methods with discontinuity
capturing type operators for the finite element method [7, 8, 9, 10, 11, 12]. In
this study we consider the entropy-viscosity method for the stabilization of nu-
merical approximation of hyperbolic PDEs that is a general method applied to
finite difference, spectral methods, and FEM type discretizations and has seen
significant recent interest [13, 14, 15]. This method employs an appropriate
entropy production residual that corresponds to Equation 1 with ¢ = 0 that
can be used to localize the application of numerical dissipation to stabilize the
system at discontinuities and sharp internal and boundary-layers with steep
under-resolved gradients [13, 14].

In the context of the flexible and accurate time evolution of hyperbolic PDEs
with stiff sources or relaxation terms IMEX type schemes have received a sig-
nificant amount of recent attention [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
While there are many forms of IMEX discretizations, all IMEX schemes share
the basic idea of decomposing the differential operator into two components in
which one component is treated implicitly in the discretization and the other
component explicitly. This flexibility of mixing explicit and implicit discretiza-
tion allows the application of specialized numerical solution methods for systems
composed of operators with differing time-scales. As an example, consider the
case of highly convected flows or shock-physics applications, that also include
stiff diffusion and/or nonlinear reaction type mechanisms. In this context a
reasonable choice is to employ explicit nonlinear high-resolution methods to the
material advection / shock-wave propagation and implicit evaluation for fast
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mechanisms (diffusion, reaction) for which optimized implicit solution methods
can be designed.

Hyperbolic PDEs are challenging to solve numerically and often have signif-
icant discretization errors. The use of complex numerical techniques like IMEX
integration and entropy-viscosity further impacts the stability and accuracy of
the numerical scheme, and hence it is vital for the reliable use of such schemes
in science and engineering that the error be quantified. In this study we employ
adjoint based a posteriori analysis to quantify the error in a quantity-of-interest
(Qol) using variational analysis and computable residuals of the numerical so-
lution. Adjoint based error estimation is widely used for a host of numerical
methods including finite elements, time integration, multi-scale simulations and
inverse problems [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. An appealing
feature of the error estimates, that is exploited in this effort, is that the different
contributions to the error from various numerical sources can be identified. This
characteristic enables the identification of the main source of error /instability in
the solution as well as indicating which discretization sources need to be refined
to obtain an accurate solution.

The remainder of this paper is organized as follows. Background on IMEX
schemes and entropy-viscosity method is described in § 2. This section also
outlines the IMEX entropy-viscosity FEM method to solve hyperbolic PDEs.
Adjoint based a posteriori analysis is described in § 3. Numerical examples are
presented in §4. Finally, conclusions are presented in §5.

2. Numerical Method for Hyperbolic Problems

This section formulates the weak problem corresponding to (1), defines the
Qol and presents the IMEX-Entropy-Viscosity method that is employed in this
study. We denote the standard space of square integrable functions as L?(Q)
with inner product (-,-) and the standard Sobolev space of order 1 as H'(2).

2.1. Weak form

Let V = {v € HY(Q)|v satisfies periodic boundary conditions}. The con-
tinuous weak form corresponding to (1), obtained by multiplying by a test

function and integrating second order spatial derivatives by parts, is to find
we HY([0,T]; H'(Q)) such that

/0 (ug,v) + (V- f(u),v) + (eVu, Vu)dt =0 (2)

for all v & L2([0,7]; H'(Q))). For notational simplicity we define
a(e; u,v) = (eVu, Vo), b(u,v) = (V- f(u),v). (3)

Then (2) is written succinctly as

T
/0 (ug,v) 4+ b(u,v) + ale; u,v) dt = 0. (4)



2.2. Quantity-of-Interest (Qol)

Often the aim of a numerical simulation is to compute the value of a partic-
ular feature of a solution, the so called the quantity-of-interest. Specifically, the
quantity-of-interest (Qol) is represented as a a linear functional of the solution
to the hyperbolic PDE, and is defined as,

Q(u) = (u(z,T), ¢(x)), ()

where ¢ € L?(Q). The Qol (5) considered in this article is based only on the
solution at the final time. However, the analysis presented in this article is easily
extended to other Qols like time averaging of the solution. We refer the reader
to [40] for the modifications involved.

2.8. Qverview of the Entropy-Viscosity method

The problem (1) with e = 0 has a unique entropy solution which satisfies [13,
15]
HE(u)+ V- -H(u) <0 (6)

for any pairs E(u) and H (u) such that E is convex and H(u) = [ E'(u) f'(u)du.
The function FE is called entropy and H is the associated entropy flux. We
describe the entropy viscosity method for a spatial finite element discretization
following the treatment in §2.3 of [13].

We discretize Q C R? into a quasi-uniform triangulation 7y,, where h denotes
the maximum diameter of the elements. This triangulation is chosen so that
the union of the elements of 7 is €2 and the intersection of any two elements is
either a d — 1 entity (e.g. a common node in one dimension) or is empty. The
finite-element approximation is a continuous piecewise polynomial with respect
to T. We define the standard finite element space consisting of polynomials of
degree ¢ as

V9 = [y e CQ) NV VK € T vl € PI(K)} . @)

Let U(-,t) e V), = V,/w) be an approximation of the true solution u at time ¢
for a fixed ¢ and entropy pair (/, H). Then the entropy residual Dy, is defined
as

Dy(z,t) =0E(U)+V-HU) (8)

Further define the viscosity,

B 9 HDh(.’L‘,t)Hoo,K
ve(z,t) = cphik I1EU) — E(U)||co.0 ©)

where hg is the diameter of element K containing =, F(U) is the average value
of the entropy over 2, and cg is a scaling that can be set, or held constant over
a large class of simulations. An upper bound applied to the numerical viscosity
corresponds to upwinding with the maximum propagation speed, defined as

Vmaa:|K = CmaxhKH|f/(u)|”oo,K- (10)



where f/(u) = 0f/0u. This leads to the following definition of the entropy-
viscosity:

v, = min(Vimaz, VE)- (11)
Note that (9) implies that v, is not a constant function. The spatially discretized
solution is obtained by the solution of the following semi-discrete equation:

(Ug,v) +b(U,v) + a(e; U, v) + a(vp; U,v) =0 (12)
for all v € V},.

2.4. An Owverview of IMEX Methods

IMEX methods are a time integration technique for a system of ODEs (usu-
ally obtained after a method of lines discretization) that treat part of the system
explicitly and part implicitly. We describe IMEX methods for a system of ODEs
of the form

Yt = F(y) + G(y)v te (OvT] (13)

where F(y) and G(y) refer to the components chosen for explicit and implicit
time integration respectively. The extension to PDEs is given later in § 2.5.
The time discretization is defined by the nodes

O=to<ti<...<tp <...<tn=T,

with time step k, = t,41 — t,. For brevity we introduce notation for the
subintervals I, := [t,,t,+1] and for sub-discretization nodes t,,4, = t,, + k, T
with 7 < 1.

Multi-stage IMEX schemes are defined by two Butcher tables, one for the
explicit method and another for the implicit method,

‘ S (14)

where A € R¥*¥ and ¢, w € R” define the explicit method and B € R**¥ and
d,w € R define the implicit method. The components of A,c,w, B,d and w
are denoted as a;j, ¢;, w;, b;j, d; and W; respectively for 1 < 4,5 < v. Since the
A matrix defines an explicit scheme, it must be strictly lower triangular. The
implicit schemes we consider are DIRK schemes, therefore the matrix B is lower
triangular.

The multi-stage IMEX scheme for (13) is,

where the stage variables Y; are given by,

i—1 i
Y=Y +ka | Y agF(Y;) + D by G(Y)) (16)
j=1 Jj=1



2.5. The IMEX-Entropy- Viscosity Finite Element Method

The IMEX-Entropy-Viscosity finite element method is obtained by using
a multistage IMEX scheme for time integration of (12) on the time interval
[tn, tnt1]. The entropy viscosity v, is computed from the solutions at previous
time steps as in [13]. Then the IMEX Entropy Viscosity Finite Element Method
is to find U,,4+1 € V}, such that,

(Uns1,0) = (Uns0) + ko S [wF(U v) + @G0, U)} . (17)

i=1

Here F(U;, v) and G(U;, v) refer to the components chosen for implicit or explicit
time integration. Two choices are considered in this paper corresponding to
explicit and implicit integration of the entropy-viscosity:

Fy(U,v) = =b(U,v) — a(vp; U, v),

F(U,v) = {FQ(W) = —b(U,v),

and
Gi(Uv) = =b(Uv) — a(eU,0) — a(vy; Uyo) — B, i=1,2.  (19)

The stage variables U; are given by,

i—1 v
(U5, 0) = (Un,v) + ki | Y aigF(U;,0) + Y bi;G(U;,v) | . (20)
j=1 j=1

3. Adjoint based a posteriori analysis

We employ adjoint based a posteriori analysis to quantify the error in the
Qol (5). The error in the Qol given the analytical solution u and a numerical
solution obtained from the entropy-viscosity IMEX method U is,

Qu) —QWU) =Qu—-U) = (u(T) —un, ) (21)

where we used the linearity of the Qol. The a posteriori error estimates are
based on variational analysis, adjoint operators and computable residuals.

3.1. Variational Formulation

Adjoint based error estimation relies on variational analysis. An equivalent
variational form for the IMEX multi-stage method for a system of ODEs is
derived in [40]. This is achieved by defining a nodally equivalent finite element
method in time in the sense that the values at time nodes t,, are the same for
the FEM and the IMEX scheme. The FEM is in variational form and hence
amenable for adjoint based analysis. The extension of the analysis in [40] to the
case of PDEs follows directly. We summarize the results below and refer the
reader to [40] for details.



3.1.1. The continuous Galerkin FEM in time

On each space-time slab S,, = ©Q x I,,, we choose finite-element approxima-
tions that are polynomials of degree ¢, P?, in time and continuous piecewise
linear polynomials in space with respect to 7;, and define

q
Wi = qw(a,t):w(z,t) =Y th(z), v; € Vi, (2,t) €S,
j=0

The finite element solution is sought in the space W4 where if v € WY, then
vlg, € W The continuous Galerkin method of order g + 1, ¢G(q), for (4) is to
find U € W1 such that U(zx,0) = up(x) and for n =0,...,N — 1,

(U, v) +b(U,v) +a(e;U,v));, =0 Yo Wit (22)

where we used the notation

() = /t "t (23)

n

for functions « defined on I,,.

3.1.2. FEquivalent FEM
We define an approximation Z : H'([0,T]; H'(2)) — L?([0,T]; H'(£2)). De-
noting the restriction by Z"U = ZU]y, , the operator is defined by,

v

I”U(x,t):zu:ﬁi(x) I1 ((t_t"”) (24)
=1

where U, are the stage variables for the multi-stage IMEX scheme. We let Uy
be the approximation of ug in the discrete space V},. Using this, the equivalent
space-time finite element method is to find U € W4 such that U(x,0) = Up(x)
and forn=20,...,N —1,

(U, va))1, = (F(ZU),00)) 1, @r + {(G(ZU),v0))1,.00 Y vw € WY, (25)

where the particular quadratures for the time integration are defined by

(P18 = Fn Y wip(tnsa,), (26)
i=1

(@) 1,,Qs = kn Z Wip(tntd;)- (27)
i=1

Note that the operator Z"U is related to U through (25).

Theorem 1. The approximation U(x,t) obtained from the space-time finite
element method (25) is nodally equivalent to the approximation {U,} obtained
from the IMEX scheme in (17) defined by the Butcher tables (14).

Proof. The proof is a straightforward extension of Theorem 1 in [40]. O



8.2. Adjoint equations and Error Representations

In this section we develop an adjoint based a posteriori error representa-
tion that identifies the total error and decomposes it into contributions from
the spatial discretization, implicit and explicit temporal discretizations, and en-
tropy viscosity. Note that there is no unique definition for adjoint operators
corresponding to nonlinear operators [41, 42]. We employ a definition based on
linearization which is useful for error analysis [29, 27, 43, 44, 36]. The nonlin-
earity may be present in the function f(u). We define a linearization of this
function as

_ Lar
f(U,U): 0 %

where z = su + (1 — s)U. Then application of the chain rule and fundamental
theorem of calculus implies,

(z) ds, (28)

fw) = f(U) = f(u,U)(u— D). (29)

We define the strong form of the adjoint problem corresponding to (1) as,
—¢i(z,t) — f(u,U) - Vo(z,t) = eV>V(x,t), te[T,0),2€Q (30)
oz, T) =1, xz€l.

Note that the adjoint equation is solved backwards in time from the initial
conditions now at 1" to final time 0. Moreover periodic boundary conditions are
imposed ¢. Note that the imposition of periodic boundary conditions for (1)
and (30) are for simplicity. The analysis presented below applies to problems
with Dirichlet boundary conditions and requires slight modifications for more
general boundary conditions, e.g. see [45].

Lemma 1. Let e = u — U. We have the following error representation for the
numerical method in (22),

N-1

(e(T),9) = (uo(x) = Uo(x), d(x,0))+ Y _ (~(Ur,¢) (U, ¢) —a(e; U, $))1, (31)

n=1

Proof. Multiplying equation (30) by (u — U) and integrating by parts in space
over {2 and in time over I,, leads to

(¢, €)nt1+(8, €)n+((¢, ur=Us) +(, V- (f (u, U)(u=U)))+(V¢, GV(U—U))M(n =) 0

32
where (¢, e), = (6(z,tn), e(x, t,)). Utilizing (29) along with the fact that w is
the true solution leads to

(@, €)nt1 = (&, €)n — (&, Ur) = (¢, V- f(U)) = (V§,eVU))1, (33)



Recursing on (¢, e),, and using the initial conditions «(0) = ug, U(0) = Uy and
@(T) = 1 leads to

N-—

(u(T)=Un, ) = (uo—Uo, &( 2: (6,Us)— (¢, V-f(U)=(V,eVU))r,

i (34)
Using the definition of the forms b(+, ) and a(+; -, -) in (3) completes the proof. O

Let P : V — V}, be a spatial projection operator and 7 : H(I,,) — P4 1(1,,)
be a temporal projection operator. Then the composition Pr is a projection
operator, Pr o HY((1,);V) — W2 " and (25) implies the following Galerkin
orthogonality relation,

(U, Prv))1, = (F(TU), Prv))1, qr + {(G(ZU), Pro))r, .00 =0 (35)
for all v in H}(Q) x H(1,).

Theorem 2 (Error Representation). The error in the quantity-of-interest de-
fined by ¢ is given by

(w(T) — Un,v) = Elz + Elt + E2 + E3 + E4 (36)
where
N—-1 N—-1 N—-1 N—-1 N-1
Elz = Eg+ Y Elx,, Elt=Y_ FElt, E2=Y E2, E3=)Y E3, FEi=)» F4,,
n=0 n=0 n=0 n=0 n=0
(37)

Elxn = <_(Ut7¢ - P¢)>1n + <F(IU?¢ - P¢>>1n,Qf + <G(IU5¢ - P¢)>ImQ97

Elt, = (=(Uy, P¢ — Prg))1, + (F(ZU, P — Pro));, or + (G(ZU, P — Prd))r, Qs
= (F(U,9))1, = (F(ZU,9))1, .05
= (G(U, )1, = (G(ZU, 9))1,.q95
E4n = _<a(Vh; U, ¢)>1n
(38)
and
Eo = (uo — Uy, ¢(0)). (39)
Proof. By Lemma 1 and definitions (18), (19) and (39) we have,
(e(T) %+§j (Ut )1, + (F(U,¢) + G(U, ¢) — a(va; U, d))1, (40)
Adding and subtracting (F(ZU, ¢));, o and (G(ZU, ¢))1, .qo leads to,
(e(T EO+Z (U, @)1, H(F (U, )1, .0r HGU, o)1, 0o+ E2,+E3,+F4,,
(41)



Finally, the Galerkin orthogonality relation (35) and adding and subtracting
(=(Us, PO))1,,, (F(ZU,P¢))1, or and (G(ZU, P$))s, @s completes the proof.
O

Remark 1. The terms Elx, Elt, E2, E3 and E4 represent the spatial dis-
cretization, temporal discretization, explicit, implicit and entropy-viscosity con-
tributions to the error respectively. The term Eqg represents the error due to
the approximation of initial conditions in a finite dimensional space. These are
signed contributions to the total error and hence there may be significant can-
cellation between these terms. This is illustrated is the numerical experiments
in §4.

4. Numerical Experiments

Numerical experiments to verify the accuracy of the error estimates and
the information about the different contributions of error are conducted for
the linear advection-diffusion and damped Burger’s equation. Uniform spatial
and temporal meshes are used in the experiments. We vary the number of
spatial mesh points, N, the number of temporal nodes, N, turning the entropy-
viscosity on or off and different IMEX schemes. The symbol At = k; = --- =
kn, refers to the uniform time step size.

The spatial discretization for the forward approximation U is carried out by
choosing the space of continuous piecewise linear polynomials, that is, setting
Vi, = Vh(l). The adjoint solutions are approximated in a higher dimensional FE
space. Specifically, the adjoint solutions are solved in the space of continuous
piecewise quadratic polynomials, Vh(Z) in space and by using the ¢G(1) method
in time but employing time steps 4 times smaller than the steps used in the
forward problem. The higher order approximation of the adjoint solution is
required for accurate error estimates and is standard in literature [46, 44, 47].
The approximation of the adjoint solution leads to an “error estimate” from the
error representation. In theory, the adjoint is obtained by linearizing around
a combination of the discrete solution and the true solution. In practice it is
common to linearize around the discrete solution only [29] and we follow this
approach, that is, we approximate u by U to approximate f(u, U) in (30). This is
well established in the literature [27, 29, 48] and produces robust accuracy. Due
to the numerical approximation of the adjoint solution and linearization around
the discrete solution, the equality in error representation (36) in Theorem 2 no
longer holds. Instead, the right-hand side of (36), with the analytical adjoint
solution replaced by its numerical approximation gives rise to an error estimate.
That is,

Estimated Error = Flz + FElt + E2 + E3 + E4, (42)

where the terms Flz, Ell, E‘Q, E3, E4 are same as Flz, E1t, E2, E3, E4 as de-
fined in (37) and (38) but with the adjoint solution ¢ replaced by its numerical
approximation after linearization around the discrete solution. The effectivity

10



ratio measures the accuracy of the estimate and is defined as,

Estimated error
Peff = — 7

True error
An accurate error estimate has an effectivity ratio close to one.

The IMEX schemes we experiment with are the ARS(2,3,2) and the SSP3(4,3,3)
schemes. The names of these schemes are standard and use a triplet notation
(s,0,p) where s is the number of stages in the implicit method, o is the number
of stages in the explicit method, and p is the order of the method as a whole.
The Butcher tables for these schemes are shown in Tables 1 and 2.

0jlo 0 0 0jlo o0 o0
Y 0 0 7|0 v 0
116 1-6 0 110 1-v ~

[0 1—v ~ [0 1y

Table 1: Butcher Tableau for the explicit(left) and implicit(right) portion of ARS(2,3,2).

v=1-2/2,6 = —2v2/3.

0olo o 0 0 a | «a 0 0 0
0 l0 0 0 0 0 | —-a « 0 0
1 ]0 1 0 0 1 ] 0 1-a oY 0
/210 1/4 1/4 0 /2| B n  1)2-B8-n—-a «

[0 1/6 1/6 2/3 | 0 1/6 1/6 2/3

Table 2: Butcher Tableau for the explicit(left) and implicit(right) portion of SSP3(4,3,3).
a = 0.24169426078821, 8 = 0.06042356519705, n = 0.12915286960590

4.1. Linear Advection

The linear advection-diffusion equation is
ug + V- (au) = eVu, t€(0,T],2€Q (43)

where Q@ = [0, 1], T = 0.1, e = 5E-5 and a = 1. The initial conditions are
chosen so that u(z,0) = 1 to be one on [0.20, 0.30] and then falling linearly to
0 in an interval of length 0.01. The Qol is represented by choosing ¥ to be one
on [0.35, 0.45] and then falling linearly to 0 in an interval of length 0.01. In the
entropy viscosity method for this scalar equation £ = %u2 and H = %ug as in
[13].

In the results we provide the CFL number and the Péclet number defined

respectively as
cFL = %t pe = ladh

h 2¢ (44)

11



Label ‘ Scheme ‘ N, ‘ N,

P1 ARS(2,3,2) | 100 | 20 | OfF | 0.5 | 500 | 0.5 | F

P2 ARS(2,3,2) | 200 | 20 | OFf | 1.0 | 250 | 0.5 | Fy

P3 ARS(2,3,2) | 200 | 40 | OF | 05 | 250 | 05 | Fy

P4 ARS(2,3,2) | 400 | 30 | OFf | 1.33 | 125 | 05 | F)
(2,3,2)

ev‘CFL‘Pe‘cmaX‘F

P5 ARS(2,3,2) | 400 | 34 | Off | 1.176 | 125 | 05 | Fy
P6 | SSP3(4,3,3) | 400 | 34 | Off | 1.176 | 125 | 0.5 | F
P7 | SSP3(4,3,3) | 400 | 34 | On | 1.176 | 125 | 0.5 | Fy
P8 ARS(2,3,2) | 100 | 20 | On | 05 | 500 | 05 | Fy
P9 ARS(2,3,2) | 100 | 20 | On | 05 | 500 | 1.0 |
P10 | ARS(2,3,2) | 100 | 20 | On | 05 | 500 | 1.0 | F
P11 | ARS(2,3,2) | 200 | 40 | On | 05 | 250 | 05 | F

Table 3: List of numerical parameters for numerical experiments on (43). IHere ev = On
corresponds to using the entropy-viscosity method while ev = Off corresponds to setting
vy, = 0. The results are given in Table 4.

Here h 1/N, refers to the uniform length of a spatial element. The different

sets of parameters and their respective labels chosen for the experiments are
shown in Table 3.

The results for parameter P3 and P11 are shown in Figure 1. The difference
between the two parameters is that in P3 the entropy-viscosity is turned on while
in P11 it is turned off. We observe that the solution without entropy-viscosity
has significant over and undershoots while the entropy-viscosity solution is quite
stable.

1.00.

0.20

0.00 eemmssssmerrsssremserressremiaorie Y | b

0.20 0.40 0.60 0.80 1.0
X

Figure 1: Effect of Entropy-Viscosity for the linear advection equation. Solutions are shown
at the final time for P3 (ev = Off) and P11 (ev = On).

The entropy-viscosity is bounded above by the local Lax-Friedrichs (LLF)
upwind viscosity. We see this for the linear advection equation for ARS232,
N, =100, Ny =20,7=0,n=0, CFL = 0.5, Pe = 500 in Figure 2. The plots

12



of the entropy-viscosity is at the initial and final times.

Entropy Viscosity

Entropy Viscosity
g

Figure 2: Plots of Entropy-Viscosity for the linear advection equation for the initial time (left)

(a)

X

X

(b)

and final time (right) are shown at the final time for P8. The LLF viscosity is 5E-3.

The results for the errors in the parameters are shown in Table 4.

Label | Err | peg | Elx Elt E2 E3 E4
Pl | 5.66E-06 | 1.00 | 6.46E-05 | -2.5E-05 | -3.32E-05 | -6.9E-07 0
P2 | -4.82E-06 | 1.00 | -1.51E-05 | 3.02E-05 | -2.12E-05 | 1.3E-06 0
P3 | -1.07E-05 | 1.00 | -1E-05 | -6.46E-07 | 6.83E-08 | -1.05E-07 0
P4 | 1.04E-02 | 1.00 | -0.005 | 0.0214 | -0.00826 | 0.00219 0
P5 | -3.52E-06 | 1.00 | 4.33E-06 | 1.53E-06 | -0.41E-06 | 3.51E-08 0
P6 | -1.63E-06 | 1.00 | 1.15E-06 | -4.17E-06 | 1.14E-06 | 2.43E-07 0
P7 | -148E-07 | 1.00 | 6.92E-07 | -2.69E-07 | -4.69E-07 | 3.98E-10 | -1.02E-07
P8 | -1.51E-05 | 1.00 | 1.06E-05 | 4.97E-06 | 5.97E-06 | -1.68E-07 | -3.65E-05
P9 | 5.36E+12 | 1.00 | 6.33E+12 | 249E+12 | -3.69E+12 | 2.23E+11 | -5.17E405
P10 | -4.24E-05 | 1.00 | -5.26E-07 | -1.39E-06 | 1.56E-05 | 4.3E-06 | -6.03E-05

Table 4: Results corresponding to the numerical parameters in Table 3. The notation for the
parameter settings is provided in Table 3 and the error contributions are defined in (37) and

(42).

Initially, in the set of parameters P1-P6 entropy-viscosity is turned off, so
the component E4 is 0.The error for P1 is dominated by the spatial component
FE1lz. The spatial mesh is uniformly refined in P2 and the spatial component
F1z shows a marked decrease while the other components of the error remain
relatively constant. In P3 we refine the temporal mesh, and as expected the com-
ponent F1t decreases. However, the total error has actually increased. This is
because the component E2 for P2 was positive and canceling with the other
components which were negative. This component, while having a smaller mag-
nitude, became positive for P3 and hence the cancellation of error was lost and
this results in a higher total error, even though the discretization was refined.
This scenario is quite common in simulation of complex systems and adjoint
based error analysis provides detailed information to determine the cause of

13



the resulting increase in error even though the temporal component of the dis-
cretization has been refined.

In P3 the largest error component is again Elz, so in P4 the spatial mesh
is refined while the temporal mesh is coarsened. However, the this results in
an unstable simulation with a large error. The instability is indicated by the
component E2 being significant relative to the total error. A stable simulation
is obtained by refining in time slightly to get the parameter set P5 since the
largest component in P4 is the explicit integration component, E2. This can
be reduced in two ways: either refining the mesh in time, or by using a higher
order method. We investigate the latter next.

In parameter settings P6, the IMEX scheme is switched to SSP3(4,3,3) while
the rest of the parameters are the same as in P5. The total error decreases and in
particular the component corresponding to explicit integration E2 decreases as
we expect from a higher order scheme. In P7 the entropy-viscosity is turned on
to get an even lower total error, indicating the usefulness of the entropy-viscosity
to recover a more accurate representation scheme.

Parameters P8—P10 illustrate features of the IMEX entropy-viscosity method
and the error attribution using adjoint based estimates. P8 is similar to P1,
but with entropy-viscosity turned on. In P9, the parameter cy.x is set to a
larger value of 1.0, causing the simulation to be unstable. The component
F?2, indicating the contribution of explicit integration, is larger than E3, the
component for implicit integration, and this indicates that the instability is
caused due to explicit integration of the 2x larger diffusion operator. This is
verified in P10, where the entropy-viscosity is now treated in the implicit part
and hence leading to a stable simulation.

4.2. Damped Burger’s Equation
The damped Burger’s equation is

u + V- (f(u) =eV3u, te(0,T],zcQ (45)

here Q = [~1, 1], T = 0.4, e = 5E — 5 and f(u) = 0.5u?. The initial conditions
are represented by the smooth function u(z,0) = 100e1/(0-25=2%) when lz| <
0.5 and zero otherwise. The initial conditions are shown in Figure 3. The Qol
is represented by choosing ¢ to be one on [0.5, 0.6] and then falling to 0 in an
interval of length 0.005. This function captures the shock at the final time. In
the entropy viscosity method for this scalar equation E = Ju? and H = u® as
in [13].

In all simulations for Burger’s equation, entropy-viscosity had to be employed
to ensure stability. The different parameters are shown in Table 5.

The solution at the final time for P2 and the corresponding entropy-viscosity
is shown in Figures 4a and 4b respectively. We observe that the entropy viscosity
is an order of magnitude larger than the diffusion parameter e. The solution
without the entropy-viscosity is shown in Figure 5 for comparison.

The effectivity ratios are approximated by a highly refined solution with
N, = 3600 and N; = 3000. The error and different components for the above
parameters ares shown in Table 6.
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Figure 3: Initial Conditions for Burger’s

Label‘ Scheme ‘ N, ‘ Ny ‘ Cmax ‘ F

P1 ARS(2,3,2) | 400 | 333 | 05 | Fy
P2 ARS(2,3,2) | 600 | 500 | 0.5 | Fy
P3 ARS(2,3,2) | 800 | 666 | 0.5 | Fy
P4 SSP3(4,3,3) | 400 | 333 | 05 | Fy
P5 SSP3(4,3,3) | 600 | 500 | 0.5 | Fy
P6 SSP3(4,3,3) | 800 | 666 | 0.5 | Fy

Table 5: List of numerical parameters for numerical experiments on (45). The results are
given in Table 6.

3

U
Entropy Viscosity

0.0,
1 5 - g 0
x X

(a) (b)

Figure 4: (a) Burgers Solution at final time for P2 (b) Corresponding entropy viscosity.

The effectivity ratios are not as good as those for the linear advection prob-
lem. This is expected due to the nonlinear nature of Burgers equation. The
ratios approach one as the discretization is refined from P1-P3 and from P4-P6.
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Figure 5: Burgers Solution at final time for results P2 but without using the entropy-viscosity.
Compare to Figure 4a.

Label Err ‘ Doft Flx FE1lt E2 E3 F4

P1 2.44E-05 | 0.85 | -1.32E-05 | 1.82E-05 | -1.13E-07 | -1.35E-08 | 1.94E-05
P2 6.29E-06 | 0.88 | -5.32E-06 | 5.77E-06 | -3.97E-08 | -2.47E-09 | 5.89E-06
P3 3.15E-06 | 0.97 | -5.37E-07 | 1.86E-06 | -3.22E-08 | -7.31E-10 | 1.86E-06
P4 2.43E-05 | 0.85 | -1.32E-05 | 1.83E-05 | -6.9E-08 | -2.78E-09 | 1.93E-05
P5 6.32E-06 | 0.88 | -5.26E-06 | 5.75E-06 | 1.17E-08 | -7.28E-10 | 5.83E-06
P6 3.18E-06 | 0.98 | -4.95E-07 | 1.83E-06 | 3.03E-09 | -1.08E-10 | 1.83E-06

Table 6: Results corresponding to the numerical parameters in Table 5. The notation for the
error contributions is defined in (37).

4.3. The case of vanishing diffusion

We conduct a series of experiments showing the stability of the error es-
timates as € decreases to 0. The results for the parameter P2 in Table 3 for
linear advection are shown in Table 7. The results for Burgers corresponding to
parameter P2 in Table 5 are shown in Table 8.

€ Err ‘ Peff ‘ Flz E1t E2 E3 F4

5E-05 | -4.82E-06 | 1.00 | -1.51E-05 | 3.03E-05 | -2.13E-05 | 1.29E-06 0
1E-06 | 3.82E —06 | 0.98 | 5.2E-06 | -2.79E-07 | -1.79E-06 | 1.31E-10 | 6.93E-07
1E-07 | 3.83E - 06 | 0.98 | 5.1E-06 | -2.71E-07 | -2.02E-06 | -1.39E-12 | 1.02E-06

Table 7: Results corresponding to P2 in Table 3 as € goes to 0 for linear advection equation,
see (43).

The entropy-viscosity at the final time for ¢ = 1E-7 is shown in Figure 6.
The entropy-viscosity is now three orders of magnitude (3E-4 vs. 1E-7) larger
compared to €. As € goes to zero, the solution develops a sharp layer which
is not accurately resolved by the spatial mesh and hence linearization of the
adjoint solution around the discrete solution causes the accuracy of the adjoint
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€ Err ‘ Peff ‘ Elz E1t E2 E3 F4

5E-05 | 6.29E-06 | 0.88 | -5.32E-06 | 5.77E-06 | -3.97E-08 | -2.47E-09 | 5.89E-06
1E-06 | 1.47FE —05 | 1.46 | -2.31E-05 | 1.91E-05 | 1.21E-06 | 9.84E-10 | 1.75E-05
1E-07 | 1.77E — 05 | 1.76 | -2.87E-05 | 2.16E-05 | 5.33E-06 6.6E-10 | 1.95E-05

Table 8: Results corresponding to P2 in Table 5 as € goes to 0 for Burgers equation, see (45).

solution to degrade [47]. Thus we see that the effectivity ratio for e = 1E-07
is not as accurate as that for smaller values of €, a phenomenon also observed
in [47].

3.00e-4
2.50e-4
2.00e-4
1.50e-4
1.00e-4

5.00e-5

Entropy-Viscosity

Figure 6: Entropy-viscosity for ¢ = 1E-7.

4.4. 2D Linear Advection

Consider (43) in two dimensions with a = [1, 0|7, Q = [0, 1], T = 0.1, € =
5E-5 with non-smooth initial conditions set as u(x,0) = 1 on [0.2, 0.3] x[0.2, 0.3]
and falling linearly to 0 on the adjacent grid point. The Qol is defined by
choosing ¢ (x) = sin(27x) sin(27y). Moreover, we set € = 1E-6.

The parameters for the experiment are shown in Table 9. The errors in
these parameters is shown in Table 10. In the first three parameters, P1-P3, 20
timesteps are used. Notice that the error increases when we turn on the entropy-
viscosity in going from P1 to P2. However, an examination of the components
of error indicate the reason: the largest component of the error is E2, that is,
the contribution due to explicit integration. Integrating the entropy-viscosity
explicitly causes an instability in the simulation. This is also seen in Figure 7
showing the solution at the final time for parameters P2 and P3. Making the
entropy-viscosity implicit in P3 results in a significant reduction in error as
witnessed in P3. The error in P3 is also significantly less than P1, that is,
entropy-viscosity again results in a desirable decrease in total error provided it
is integrated appropriately. Parameters P4-P6 are performed with 40 timesteps.
Turning on the entropy-viscosity in P5 and P6 results in a significant decrease
in the error when contrasted with P4 where the entropy-viscosity was turned
off. Moreover, both implicit and explicit integration of the entropy-viscosity are
stable in this case.
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Table 9: List of numerical parameters for numerical experiments on (43).

Label ‘ Scheme ‘ N, ‘ N, ‘ ev ‘ Cmax ‘ F
P1 ARS(2,3,2) | 100 | 20 | Off | 0.5 | Fy
P2 | ARS(2,3,2) | 100 [ 20 [ On | 05 | Fy
P3 ARS(2,3,2) | 100 | 20 | On | 0.5 | Fy
P4 ARS(2,3,2) | 100 | 40 | Off | 0.5 | Fy
P5 ARS(2,3,2) | 100 | 40 | On | 0.5 | Fy
P6 ARS(2,3,2) | 100 | 40 | On | 0.5 | Fy

given in TablelO.

The results are

Label Err ‘ Doft ‘ Flz Elt E2 ‘ E3 F4
P1 -1.18E-05 | 1.00 | -1.84E-05 | 2.1E-06 | 4.45E-06 | -6.56E-11 0
P2 -3.57E-04 | 1.00 | -0.000675 | -0.00054 | 0.000701 | -1.35E-07 | 0.000156
P3 1.33E-07 | 1.23 | -7.14E-07 | 3.04E-07 | 5.43E-07 | -2.7E-06 2.7E-06
P4 -1.45E-05 | 1.00 | -1.55E-05 | 3.53E-07 | 6.69E-07 | -1.13E-10 0
P5 -5.71E-07 | 0.95 | -6.41E-06 | 9.16E-07 | 9.62E-08 -2E-11 4.82E-06
P6 -5.69E-07 | 0.95 | -1.61E-06 | 9.88E-07 | 5.13E-08 | -4.69E-06 | 4.69E-06
Table 10: Results corresponding to the numerical parameters in Table 9. The notation for

the error contributions is defined in (37).

(b)

Figure 7: Plots of the solution at the final time for parameters P2 (left) and P3 (right)
in table 9. Explicit integration of the entropy-viscosity leads to unstable oscillations in the

solution while implicit integration is stable.

5. Conclusions

This study considered adjoint based a posteriori error estimates for numerical
solutions of an implicit-explicit (IMEX) time integration of an entropy-viscosity

formulation for scalar hyperbolic conservation law equations.
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examples were comprised of linear advection and Burgers equation with the
introduction of a small amount of dissipation. The adjoint analysis was demon-
strated to provide error estimates for both the spatial and temporal approxi-
mations, with component estimates for the IMEX partition of the system into
explicit and implicit operators. The numerical results confirmed the adjoint
analysis and provided a demonstration that the analysis provides reasonable es-
timates and identification of the contribution of the various sources of the errors
to the total error. In this context examples were presented that identified the
largest components and either refined the spatial or temporal approximation,
or switched the assignment of operators from explicit to implicit IMEX treat-
ment to reduce the total error. Further work will consider possibly alternate
definitions of entropy viscosity for these systems and also extend the analysis
to the Euler equations for which the Burgers system is just a partial model of
expansions and shocks.
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