A POSTERIORI ANALYSIS AND EFFICIENT REFINEMENT
STRATEGIES FOR THE POISSON-BOLTZMANN EQUATION
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Abstract. The Poisson-Boltzmann equation (PBE) models the electrostatic interactions of
charged bodies such as molecules and proteins in an electrolyte solvent. The PBE is a challenging
equation to solve numerically due to the presence of singularities, discontinuous coefficients and
boundary conditions. Hence, there is often large error in the numerical solution of the PBE that
needs to be quantified. In this work, we use adjoint based a posterior: analysis to accurately quantify
the error in an important quantity of interest, the solvation free energy, for the finite element solution
of the PBE. We identify various sources of error and propose novel refinement strategies based on a
posteriori error estimates.
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1. Introduction. Electrostatic interactions play a critical role in determining
macroscopic properties of dielectric biomolecular systems, such as solvation free en-
ergy and binding affinities [26, 46, 61]. The Poisson-Boltzmann equation (PBE) has
been widely used for modeling the electrostatic interactions of charged bodies such
as molecules and proteins in electrolyte solvents. The PBE was introduced decades
ago [39, 15], and we refer to the classical texts [54, 60] for its derivation.

The focus of this article is robust error estimation and refinement strategies for
computing a quantity of interest (Qol), such as the solvation free energy, from the
solution of the PBE. The PBE is a challenging equation to solve numerically and
numerous computational methods and software packages have been derived for its
solution [38, 58, 64, 62, 67, 11, 25, 43, 51, 9, 20, 56, 24, 42, 5, 59, 21, 50, 12, 41]. In
this article we follow the approach in [36, 41] to solve the PBE using a three term
splitting method which accounts for the well-posedness of the continuum problem
as well as avoiding amplification of numerical rounding errors. However, even this
method, like all numerical methods, often has significant errors in the computation of
the Qol and this error needs to be accurately estimated from computed information
for reliable use of the PBE in biophysics, biochemistry, medical and other science and
engineering fields [34, 31].

In this article we employ adjoint based a posteriori analysis to accurately quan-
tify the error in a Qol computed from the numerical solution of the PBE. Adjoint
based error estimation is widely used for a host of numerical methods including fi-
nite elements, finite difference, time integration, multi-scale simulations and inverse
problems [30, 29, 34, 1, 7, 8, 10, 37, 13, 18, 22, 57]. The error estimate weights com-
putable residuals of the numerical solution with the solution of an adjoint problem
to quantify the accumulation and propagation of error. The resulting estimates have
the useful feature that the total error is decomposed as a sum of contributions from
various aspects of the discretization and therefore provide insight in to the effect of
different choices for the parameters controlling the discretization. Thus, we not only
quantify the error using adjoint based a posteriori analysis, we also partition the error
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2 JEHANZEB H. CHAUDHRY

to identify contributions from various sources of error. For example, we can identify if
the boundary discretization or the interior discretization is the major source of error.

Since the error in the numerical solution of the PBE is often significant, there are
a number of adaptive refinement strategies proposed for obtaining accurate solutions
of the PBE [12, 42, 41, 63, 2]. Most of the adaptive algorithms are based on control-
ling the error in global norms and some of the algorithms are shown to be provably
convergent [20]. However, if the goal of the numerical computation is accurate approx-
imation of the Qol, then a refinement strategy based on solution residuals weighted by
the adjoint information is an appealing option. In this paper we propose refinement
strategies based on the relative contribution to the error of a discretization choice.
The adjoint based analysis and its partitioning of the error suggests novel refinement
strategies for obtaining accurate estimates of the Qol from the numerical solution of
the PBE.

Adaptive refinement using adjoint based analysis and optimal multilevel precon-
ditioning for the PBE are developed previously in [2]. However, the analysis and
results of this article differ significantly from that paper. The focus of that paper
was adaptive refinement for the linearized PBE using the two term splitting [20],
whereas we focus on the three term splitting for both the linearized and the nonlinear
PBE [36, 41]. Moreover, our aim is to derive accurate error estimates in the Qol.
While [2] derived an error estimate for the Qol for the three term splitting, no numer-
ical experiments were performed for the three term splitting. Even for the two term
splitting no numerical results indicating the accuracy of the derived estimates were
shown and instead the focus was on adaptive refinement. In addition, the adjoint
problem for the three term splitting derived in [2] leads to an ill-posed problem as
we discuss in §3. In this work, we not only derive an estimate for the three term
splitting based on the correct formulation of the adjoint operator, we also decompose
the error so that the various sources of error and their relative contributions are also
available. Moreover, the error estimate derived in [2] assumes that the continuum
and discrete solutions satisfy the boundary conditions exactly. While this assump-
tion may be justifiable for the results in the two term splitting in [2], we point out
the importance of the role of boundary condition for the harmonic component of the
three term splitting. This boundary condition is defined on the interface between the
solvent and molecular regions, and hence impacts the computation of the Qol signif-
icantly. Finally, we propose a fundamentally different refinement strategy since the
standard goal oriented refinement strategy employed in [2] appears to be sub-optimal.
Adaptive refinement for obtaining accurate values of a Qol is a challenging task as
the error contributions of an individual element may be positive or negative leading
to significant cancellation of error. In [2], the refinement strategy takes the absolute
value of error contributions and applies the principle of equidistribution for marking
elements for refinement. This strategy ignores the cancellation of error, and hence
the resulting adaptive algorithm may have less than desirable convergence properties.
This drawback is overcome in [2] by defining a somewhat ad-hoc error indicator. On
the other hand, this article decomposes the error into different contributions and use
this information to devise adaptive schemes to target the discretization choices which
have the most significant effect on error.

The rest of the paper is organized as follows. Section 2 introduces the PBE, its
linearized and nonlinear versions, weak forms and a finite element method to solve it.
Section 3 performs adjoint based a posteriori analyses for both the linearized and non-
linear PBE. In particular, a well-posed adjoint problem for the three-term PBE and
error representations are derived. Section 4 discusses refinement strategies based on a
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A POSTERIORI ANALYSIS FOR THE PBE 3

posteriori error estimates. Numerical experiments are presented in Section 5, which
illustrate the accuracy of the estimates as well as the efficacy of employing refinement
strategies which target specific sources of error. Section 6 presents conclusions.

2. The Poisson-Boltzmann Equation.

2.1. The nonlinear Equation and its dimensionless form. The Poisson-
Boltzmann equation models the electrostatic activity between molecules in an ionic
solvent. In this model, it is assumed that the ions in the solvent are distributed
according to the Boltzmann distribution and that the potential of the mean force on
a particle is simply the charge of the ion times the electrostatic potential. For a 1:1
electrolyte solvent (e.g. NaCl), the nonlinear Poisson-Boltzmann equation is [35, 4],

M RACELDREE (ka) sinh (ekl;(;j)) =4 )" Qe 1),
H_lﬁm a(x) = 0.

Here, @ is the unknown electrostatic potential, € is the dielectric coefficient, &(x) is
the modified Debye-Hiickel parameter which describes the accessibility of the solvent
to the solute, kp is the Boltzmann constant, e. is the charge on a proton and T
is the temperature. Moreover, the solute contains a total of m fixed point charges,
with the ith charge @; centered at position x;. The resulting distribution is a linear
combination of Dirac delta functions é(z — x;).

The domain for the problem R32, is subdivided into a molecular region, €2,,, a
solvent region {22°, and an interface between the two denoted by I'. The solute
is surrounded by solvent, which is represented as a continuum over the subdomain
Q% = R3\(,,. The subdomains for a typical biomolecular solute are shown in Figure 1
which has been adopted from [12]. The dielectric coefficient () and modified Debye-

Solvent - +
: - +
+ _
"
- + +
+
Ions —» + /
\
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nterface (Explicit Charges)
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m

Fig. 1: Subdomains for the Poisson-Boltzmann equation

Hiickel parameter %(x) are defined on €, U QS° by the piecewise constant functions

Q 0 € Q,
2) e<x>={€m TEm and f#(x):{g feac? o

oo — oo
€s x € Q3 Ry = €sTooon,7ls @ €
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4 JEHANZEB H. CHAUDHRY

Here, €, and €, are positive constants and N4 is Avogadro’s number. The ionic
strength Ig is a physical parameter which varies depending on the solvent.

Numerical simulations are not feasible on the unbounded solvent domain, Q22°,
and hence it is truncated at a finite radius from the “center” of the molecule, to
form a bounded domain €2,. Dirichlet boundary conditions are imposed to capture
the asymptotic behavior of the solution on an unbounded domain. Combining this
with the change of variables, u(x) = e.tu(x)/kpT, results in a dimensionless Poisson-
Boltzmann equation on the spherical domain Q = Q,,, UQ; UT":

_ _ Ame,
3) —V - (e(x)Vu(z)) + &2 (x) sinh (u( = T - Z Qib(x —z;), =x€Q,

u(z) = g(x), = € N.

The boundary conditions are prescribed using a linear combination of Helmholtz
Green’s functions [12],

Ce & Q; —Rs|lx — x]
(4) g= ¢ L exp (H)
kBT;es|x—mi| VEs

2.2. Weak form based on three term splitting. We denote by Ly(Q2) as
the space of square integrable functions, H!(2) as the space of functions having an
integrable (weak) derivative, H}(€2) as the subspace of H1(f2) of functions satisfying
homogeneous Dirichlet boundary conditions (in the sense of the trace operator) and
H~1 as the dual space of Hj(Q). The right hand side of (3) contains § functions,
which are unbounded linear functionals over the space H} and hence a well-posed
weak form cannot be derived directly from (3). To overcome this problem, two and
three term splittings of the PBE have been proposed [68, 20, 41]. The two and three
term splitting are equivalent mathematically, however, the three term splitting is
numerically more desirable [41]. The three term splitting decomposes the function u
as

(5) " — {us—i—uh—i—uT in  Q,,,
u

T in €,

where u°, v and u" are the singular, harmonic and regular components respectively.
The singular function u® is the solution of the following Poisson equation

dre,
-V e, Vu® = = i0(x — x;),
©) T ;Q ( )

u®(00) = 0.

Recognizing that the singular component is the Green’s function of the Laplace op-
erator leads to an analytical expression for u* as

(7) uw(w) = ekaT Z |z — xl|'

The harmonic component " is the solution to

® VZuh =0 inQ,,,
u? = —u® on T
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The regular component u" satisfies

—V - (e(x)Vu"(2)) + R*(x) sinh(u"(z)) =0 in Q,, UQ,,

[v"]r =0,

(9) ou(x)] ou® + uh
|[€(x) on ]]r T om

u=g¢g on 0%,

where the jump at the interface is defined as

[v(x)]p = ali)rng v(z + an) — v(z — an),

with n as the unit normal to the interface I', pointing outward from €2,,,. The condition
involving the jump in the normal derivative of u" arises by substituting (5) in (3),
using the definitions of u® and ", and the fact that for the solution u of (3) we

have [[e(:v)ag—(;)]] = 0. Sometimes the nonlinear PBE is linearized by the assumption

sinh(u) ~ u leading to the dimensionless linearized PBE. We can write both the linear
and nonlinear versions as

~V - (e(z)Vu"(x)) + R2(z)N(u"(x)) =0 in Q,, UQ,

[v"]r =0,
(10) (2) ou" (x) ou® + u”
€ = —€m——s—,
on | on
u=g¢g on Of.
where
; sinh(u"(z)) for nonlinear PBE,
(11) N(u'(z)) =4 , o
u" () for linearized PBE.
2.3. Weak forms. We define the affine spaces
(12) HL.(Qp) :={ve H(Qy) s v(xr) = —u® on T}
and
(13) Hgl(Q) ={ve H' Q) :v=gonT,a<v<pginQ}.

Here o and 8 are positive constants used to control the nonlinear sinh term, see [41]
for details. The weak form for the three term split PBE, (8) and (10), is to find
(uh u") € HL (Qm) x H}(€) such that

(eVul, Vw),, =0

(14) Aul ou®

(eVu",Vv) + (RQN(UT),”U) + (ema—n,wp = *<€m87n,?)>11

for all (w,v) € Hg(Qm) x Hj(Q). Here we used the notation (a,b) = [, abdx,

(a,0)m = [, abdz and (a,b)r = [ abdz to represent the standard Ly inner products
over (), £2,,, and T" respectively. The existence and uniqueness of the weak solution is
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6 JEHANZEB H. CHAUDHRY

shown in [41]. The weak form (14) is a one-way coupled system; we first solve for u"
and then use it to compute u”. Now using the Green’s identity

A" 2. h h
(15) <€m87nvv> = (GV u 7U)m + (GV’LL ,VU)m

and (8) in (14) leads to an different weak form: find (u",u") € Hy.(Qy) x H} ()
such that

(eVu", Vw),, =0

(16) ou®

(eVu", V) + (RZN(u"),v) + (eVu", Vv),, = 7<ema—n, v)r,

for all (w,v) € H}(,,) x HE(Q). The weak forms (14) and (16) are mathematically
equivalent, however, the form (16) is amenable to defining the adjoint operator as
discussed in §3.

2.4. Quantity of interest: solvation free energy. The Qol may be any
bounded linear functional of the weak solution (u”,u"). An important physical quan-

tity computed from the solution of the PBE is electrostatic free energy of solvation
[36],

(17) AGiyoy = % / Z Qid(z — ) (" (2) + u"(z)) dz,

where a = kpT'/e.. Unfortunately, AG is not a bounded linear functional in Hg ()
due to the presence of ¢ functions. A common approach is to “mollify” the unbounded
functional [2, 7, 1] to obtain a bounded linear functional. We thus define our quantity
of interest to be a mollified version of solvation free energy, scaled by 2/« for simplicity,
as

(18) Qu",u") = /Q D Qi p((w — i) /) (u (@) + u' () dw = (b, 0" + 0" ),
m =1

where
(19) P(z) = _Z Q" p((x — x)/n),

p is the standard mollifier

(=1/Q=l=”)  5f lz| < 1
ce i x| <
20 x) = ’
(20) 4 {O otherwise,

|z| denotes the Euclidean norm of z € R? and c is a scaling constant to ensure that
Jas p(z) = 1. Now, as n — 0, n=?p(z/n) — &(z). Hence the value of the Qol
approaches the value of the (scaled) solvation free energy for small values of 7.

2.5. Finite element method. We discretize 2 and €),,, into three dimensional
triangulations 7 and 7,,. We assume that the interface I' is polygonal and exactly
represented by the triangulation. Although the triangulations 7 and 7, may differ
in ,,, they respect the interface I' in the sense that (Ur, e, Tm) NT = (UrerT) N
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A POSTERIORI ANALYSIS FOR THE PBE 7

I". Each of these triangulations is arranged in such a way that the union of the
elements of 7 (resp. T, ) is Q (resp. ;) and the intersection of any two elements
is either a common edge, node, or is empty. The finite element space consists of
continuous piecewise polynomials. We let Vi, C H{(Q) (resp. V™ C H}(£,)) denote
the space of continuous piecewise polynomial functions v(z) € R defined on T (resp.
Tm). Similarly, we let Vi, , (resp. V;%, ) be the affine space of continuous piecewise
polynomial functions v(z) € R such that v(z) = g(z) for  on 9Q (resp. v(x) = —us(z)
for x on I' = 9Q,,).
The discrete weak problem is to find (U", U") € Viru. X Vh,g such that

(eVU", V), =0
21 s
@) (eVU", Vo) + (R2N(U"),v) + (eVU", Vv),, = —(em%ln,wr,

for all (w,v) € V;™ x V4. Note that throughout this article we use lower case letters
for continuum solutions and uppercase letters for discrete solutions.

3. Adjoint based a posteriori analysis. In this section we derive the adjoint
equation corresponding to the PBE and then form error representations for both the
linearized and nonlinear PBE.

3.1. Abstract definition of adjoint operator and error representation.
The adjoint operator £* : Y* — X* of a linear operator £ : X — Y between Banach
spaces X, Y with dual spaces X*, Y* is defined by the bilinear identity [53, 44, 65],

(22) (Lz,y")y = (=, LY ) x, weXy €Y,

where (-,-) ¢ denotes duality-pairing in the space S € {X,Y}. Now, if Lu = f and
L*¢ =1, and U is a discrete approximation to u, we obtain a representation for the
error (u—U) as

23)  (u-U)x =(L"0u—-U)x = (¢ Lu—LU)y = (&, f = LU))y

The above abstract error representation is a standard form for all adjoint based error
analysis: residual(s) of the discrete solution weighted by the adjoint solution(s). The
weighting of the residual by the adjoint solution accounts for the accumulation and
cancellation of error in the discrete solution. We remark that the derivation in (23)
is similar to the derivation of standard Green’s functions in PDE analysis, and hence
adjoint solutions may be thought of as generalized Green’s functions [32].

3.2. A posteriori analysis of the linearized PBE. This section forms an
adjoint operator and an error representation for the linearized PBE.

3.2.1. Adjoint operator for the linearized PBE. In the context of the lin-
earized PBE, the duality pairing (Lx,y*)), is described by the left hand side of (16)
with N(u) = u. Applying the definition (22) leads to the following adjoint problem:
find (¢", ") € H3 () x HE(Q) such that

{ (eVe", Vo) + (B2, v) = (,0)m,

(24) N
(eVe", Vw)m + (eVY", Vo) = (¢, w)m,

for all w,v € H(Qm) x HE(Q). Here ¢ arises from the definition of the Qol, see
(19). Observe that (24) is also a one way coupled system, similar to (16), however,
the direction of coupling is now reversed: we first solve for the component in €2 and
use that in the equation posed on €2,,.
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REMARK 1. In Section 4.2 of [2], an adjoint to the three term split PBE is defined
as: find (wh,w") € HE(Qm) x HL(Q) such that

(eVw", Vv) + (R2wr,v) = (Y, 0)m,

25
(25) (™, T + {0, e g} = (36,0},

for all (w,v) € H}(Qy,) x HE(Q). However, this is not a well-posed problem as

(em T2, wh)r is not continuous in w for all w € HY (). Continuity of (€, 32, w)r

n’

requires addition regularity on w e.g. w € H3 Q).

3.2.2. Error representation for the linearized PBE. The effect on approx-
imating the boundary conditions on the interface I for U" may have significant effect
on the accuracy of the method. Hence, we quantify the effect of boundary condi-
tions, both at I' = 99Q,, corresponding to the harmonic component U”" and at 9
corresponding to the regular component U”. We employ the decompositions

(26) u” =uj+uy and ul = ul 4 ul

where uly € HE(Q) (vesp. ulf € H}()) and ) € HY(Q) (resp. ul € HY(Qy) )

such that u/; = g on 9Q (resp. u = —u® on 99, = I') . Similarly we have the
decompositions,
(27) Ur=U5+U; and UM=U}+U}

where U € Vj, (resp. U} € V/™) and U} € Vj, , (resp. U} € Vi) Note that due
to the finite dimension of Vj 4 and V", ~and the nature of the boundary conditions g
and —u®, ul; # U% and ult # U}, Moreover, there are infinitely many choices for the
functions u, u7, U, U and we assume a choice is made such that these functions are
known. This leads to the following error representation.

THEOREM 1. Let (u,u") be the true solutions to the linearized PBE (16) with
N(u™) = u", (U",U") be the finite element solutions to the discrete weak form (21)
and (¢", ¢") be the solutions to the adjoint weak form (24). Then the error in the
Qol (18) is given by

(28) Q(uh _ Uh’ur _ UT‘) _ El'r‘ +Em + EF +E89 +Eneg’
where
ou’
E" = —lemp o d")r — (VU V") — (RU7,¢7) = (eVU", V6" )m

E™ —(eVU", V¢ )

(29) pree = Q(uly — UL ul— UG) = (@, (uh — U) + (uf — UJ))um
B9 = (eVe",V(UF —ul)) + (F*¢", (U} — up))
EY = (eVgh, V(UL —ul))m + (V9" V(UF — 1))

Proof. The tuple (u" — U" u™ — U") is not in H () x HE(). However, if we
use the decompositions (26) and (27) along with the linearity of the QoI @,
(30)
Qut — UM u" —U") = Q((ug + Uy) = U, (ug + U) = U") + Qug — Ug,ug — Uj)

= Q((ug + Ug) = U, (ug + Ug) = U") + E™E.
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The tuple ((uf +UR) — U, (uf + U5) — U") is in HE(Qy) x H(Q). Hence, setting
w = ((uly +UL) —U") and v = ((uy + U}) — U") in the adjoint equation (24) and
adding the two equations leads to,

(31)
Q(ufy +U}) —U" (ug + Uy) = U")) = (¢, (uf + Ug) = U", (ug + UY) = U )
= (eVe", V((ug+Uy) —U") + (B*¢", (ug + Uy) = U")
+ (V" V((ug + UY) = U"))m + (€Yo, V((ug + U}) = U"))m

h

Substituting uf, = (uf+u}) —ul; = u" —u}; and similarly uff = u"—u/ and rearranging,

Q(ug +Uy) = U, (ug + Uz) = U")
= (eV@", Vu") + (29", u") + (eVo", Vu) + (eVH", Vul),,
(32) — ((eVe",VU") + (R%¢",U") + (eV", VU ) + (eV", VU"),))
= (eVo", V(U —up)) + (2", (UG — uy)) + (eV", V (U} = ul)))m
+ (Vo' V(U] — uf))m
Now, since (u”,u") is the true solution, it satisfies the weak form (16). Substituting
this in (32) and rearranging terms,
Q(ug +UY) = U (ug+Uy) —U")
—<emaaln, ") — (V" VU") — (R2¢",U") — (eV¢", VUM,
— (V9" VU)o + (eVe", V(U — up)) + (R*6", (U — up))
+ (V" V(UG — ug))m + (eVe", V(U] — ug))m

(33)

Combining (30) and (33) completes the proof.

In the above theorem E”, E™, EV, E% and E™& denote different sources of
error. The first four terms E”, E™, E' and E?? have the form of adjoint weighted
residuals and reflect error contributions due to FEM solution of u”, FEM solution of
u”, representation of boundary data for u” and representation of boundary data for
u”. The term E™°8 which is computable since all the functions involved are known,
is referred to as the “negligible” component of error as it is typically negligible due to
the standard choice of the boundary functions. See §5 for more details on the choice

of the boundary functions involved as well as the numerical value of this term.

3.3. A posteriori Analysis of the nonlinear PBE. We now extend the ideas
for the linearized PBE to derive an adjoint and error representation for the nonlinear
PBE.

3.3.1. Adjoint operator for the nonlinear PBE. The extension of the above
approach to the nonlinear PBE is complicated by the fact that there is no unique
definition of an adjoint operator corresponding to a nonlinear differential operator.
Rather, an adjoint problem useful for the purpose at hand has to be selected. A
common choice useful for various kinds of analysis is based on linearization [53, 52].

Defining z = su + (1 — s)U and &( fo cosh(z(z)) ds, we observe that
(34)
1
sinh(u") — sinh(U™) —smh( )ds */ cosh(z)ds (u" = U") =a(u" —U").
0

This manuscript is for review purposes only.
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10 JEHANZEB H. CHAUDHRY

Then the adjoint corresponding to the nonlinear PBE (16) is: find (¢",¢") €
HY Q) x HE(Q) such that
(35) (eV@", Vo) + (R*ad",v) = (1, 0)m,

(€v¢ha Vw)m + (V" Vw)m = (¥, w)m,
for all w,v € H}(Q,,) x H} (). In practice, we cannot compute the linearization @
since we do not know the true solution u”. Instead, the differential operator is typically
linearized around the numerical solution, in this case U". The resulting estimate can

be shown to converge to the true estimate in the limit of refined discretization [34].
In practice, this approach yields robustly accurate error estimates.

3.3.2. Error representation for the nonlinear PBE. The above adjoint
equation leads to the following error representation for the nonlinear PBE.

THEOREM 2. Let (u®,u") be the true solutions to the nonlinear PBE (16) with
N(u") = sinh(u"), (U™, U") be the finite element solutions to the discrete weak form
(21) and (¢", ") be the solutions to the adjoint weak form (24). Then the error in
the QoI (18) is given by,

(36) Q! — UM u" —U") = E" + E™ + E' + E%? 4 Eree,
where

E" = 7<em%in, ") — (eVU", V") — (R sinh(U"), ¢") — (eVU", V),
E™ = —(eVU", V)
BT e = Q((ulf — Ul uy = UR) = (0, (uly = U) + (= U )m
B = (Vo' V(Uj —up)) + (Ra¢", (Ug — ug))
EY = (V" V(UL —uf))m + (V" , V(UG — uf))m
Proof. The proof is similar to the proof of Theorem 1. The difference is in the
term (k29" (uf + U%) — U™)) in (31) which now becomes,
- (R¥a", (uh +Uy) ~ U")
= (R*a¢", (u" = U")) + (R*a¢", Uj — uy))
where we again made the substitution uy = u” — u};. Combining the above equation
with (34) leads to

(39) (F*@e”, (ug + Uy) = U")) i
= (¢",&R*sinh(u")) — (¢", RZsinh(U")) + (R*a¢", Uy — uf).

3.3.3. Error representation for the alternate formulation of the PBE.
In this article, the focus is on quantifying the error due to the solution of the FEM
problem in (21) which corresponds to the solution of (16). However, some existing
codes may be based on the discrete solution of the weak form (14). In such a case,
the error representation is easily modified as shown in the next theorem.
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THEOREM 3. Let (u",u") be the true solutions to the (linearized or nonlinear)
PBE (16), (U",U") be the finite element solutions to the discrete weak form corre-
sponding to (14) and (¢", ") be the solutions to the adjoint weak form (24). Then
the error in the Qol (18) is given by,

(40) Q(uh o Uh’ur . Ur) _ E’r + E™ +EF +EOQ +E~1har +Eneg’
where
ou® 8Uh
E" =—(emm— ¢ )0 — (eVU",V¢") = (R N(U"),¢") = (em——, 9" )r
(41) on on
h
EPr = (e, ou L) — (VU™ Vo),

on
and the remaining terms are the same as in Theorem 2.

Proof. Adding and subtracting <emaa%h, ¢")r to term E” in Theorem 2 completes
the proof. ]

4. Refinement strategies based on a posteriori error estimates. This
section discusses the accuracy of a posteriori error estimates and the potential for
obtaining accurate Qol values using the error information to refine the discretization.

4.1. A posteriori error estimates: implementation and accuracy. The
error representations (28) and (36) involve analytic adjoint solutions (¢", ¢") and rep-
resentation of boundary conditions by functions (ult, u7). In practice, these quantities
need to be estimated computationally. As is common in literature for adjoint based a
posteriori analysis, the adjoint solutions are approximated in a space W" (resp. W)
such that V* ¢ W (resp. V" C W) [34, 30, 28, 19, 18, 34, 30, 28, 19, 18, 23, 19, 14,
8]. W may be obtained by refining the mesh or by increasing the polynomial order.
Similarly, the functions (u?,u’;) are approximated in W", such that they satisfy the
boundary condition exactly on a boundary vertex and are zero on the interior vertices.
These approximations lead to error estimates from the error representations (28) and
(36). Since the formulas are similar, except that the (¢", ¢") and (ult, u) are replaced
by their approximations, we avoid re-writing the error estimates explicitly and instead
now refer to (28) and (36) as error estimates.

The accuracy of the error estimate is measured by the effectivity ratio defined as

Estimated error

Yeff =
True error

An accurate error estimator has an effectivity ratio close to one. Since the true solution
is not known, we compute a more accurate reference numerical solution using a higher
dimensional space for measuring the true error.

4.2. Guiding refinement decisions using error estimates.

4.2.1. Error Contributions and cancellation of error. Once the error esti-
mate is in place, its various components E”, E™, ET and E% reflect different sources
of error. Refinement strategies based on these components can then be derived. For
example, if ET is the dominant component, then simplices in 7,, which intersect with
the interface I' may be refined to reduce the error. This strategy of refining the mesh
is quite different from classical adaptive refinement schemes. One main difference is
that, in refining the simplices on the interface to reduce E' we may use either uni-
form refinement or an adaptive refinement strategy. The other difference is in the
treatment of cancellation of errors which we now discuss.
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Classical adaptive refinement schemes form elemental error indicators and refine

elements which have the largest value of such indicators [1, 55, 33]. While adaptive
refinement often outperforms uniform refinement, its efficiency is somewhat limited
for decreasing error in a Qol as the error contributions may be both positive or
negative, and hence there is often significant cancellation of error [19]. This is in
contrast to reducing error in standard norms which are always positive [40, 5, 12]. In
379 classical adjoint based adaptivity, the absolute value of the elemental error indicators
380 is taken and the principle of equidistribution applied. By taking the absolute value
381 of the elemental error contributions, the cancellation of error due to opposing signs is
382 lost. This phenomenon, along with a novel refinement strategy based on “mesoscale”
383 regions is illustrated for ODEs in [19]. On the other hand, uniform refinement reduces
384 the error predictably in the asymptotic regime and hence it is expected to reduce both
385 the positive and negative elemental contributions equally. Thus, uniform refinement
386 is expected to preserve the cancellation of error and this was observed experimentally
387 in [19]. Uniform refinement is also more predictable in the expected decrease of error.
388 In this article, we outline refinement strategies targeting sources of error as well as
389 those based on elemental error indicators.
390 The main idea behind targeting sources of error to obtain accurate solutions is
391 to reduce the dominant (in magnitude) source of error E”, E™, E' and E??. This
392 is accomplished by refining (either uniformly or adaptively) the corresponding dis-
393 cretization as shown in Table 1.

Y Ol W

-

W W W W W w w
i e I RN BN BN B |
oo D C

Dominant source ‘ Discretization to refine
ET Refine T
Em Refine T,
ET Refine simplices containing I' N £2,,
E9% Refine simplices containing 92 N )

Table 1: The discretizations to be refined based on the dominant source of error. The
refinement may be uniform or adaptive.

394 4.2.2. Uniform Contribution Refinement. In the Uniform Contribution Re-
395 finement, we choose the dominant component for refinement if it is at least 3 times
396 larger than the next dominant component, or if both the top two dominant com-
397 ponents have the same sign, so that the cancellation of error is preserved. If this
398 requirement is not satisfied, the scheme defaults to standard uniform refinement.

399 4.2.3. Adaptive Contribution Refinement. The Adaptive Contribution Re-
400 finement is similar to the standard algorithms for adjoint weighted adaptive algo-
401 rithms [32, 8, 2]. E.g., if the aim is to reduce the component E”, then we define an
402 elemental error indicator based on (37) as

ou®

S O ) = (eVU", V") - (R*sinh U™, ¢")p — (eVU", V") 1|

103 (42) np = |—(ém
4 where T € T, and the subscripts T, ', T and T, m refer to evaluations of the integrals
5 restricted to the element T such that TNT # ¢, T € Q and T N, # ¢ respectively.
6 Once a per elemental error estimator is defined, the Dérfler scheme is used for mark-
7 ing the elements for refinement [27]. To preserve the cancellation of errors between
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different sources of error, all sources which have a total error contribution of at least
half the dominant error contribution are selected to be adaptively refined.

4.2.4. Classical Refinement. In the classical adaptive refinement strategy we
add up the terms in E7, E™, ET, E%9? and E"°¢ in Theorem 2 so that the error in the
Qol for the nonlinear PBE is, Q(u" — UM u" — U") = E is,

(43)
6 S
E= _<emain, $")p — (eVUT, V") — (R2sinh(U"), ¢") — (eVU", V¢ )pm

— (eVU", V™) + (eVP", V(UG —uly)) + (R¥a¢”, (U — uf))

+(eVO", V(UG = ug))m + (€V6", V(U = ug))m + (v, (ug — Ug) + (ug = U7))m
We define projection operators, m,, : H} () — V™ and 7, : H3(Q) — V3. From
(21) we have,

(44)
(eVU", V7 ¢™)m = 0

(eVU",V7,¢") + (R*sinh(U"), 7,¢") + (eVU", V7" ) = —<€m%%,ﬂ'r(br>r.

Combining (43) with (44) leads to the following elemental error indicator for element
T

(45) g
1=~ fem g (67 = m ¢ e — (VU V(6" ~ 1)
— (R*sinh(U"), ¢" — m ") — (eVU", V(¢" — 10" ))7.m
— (VU V(9™ = Tmd™)) 1. + (eV¢", V(U — up))r + (B¢, (U — up))r
+ (V" V(UL = ul)rm + (V" V(UL = ul)7m
+ (¥, (uly = UDr + (uly — UD)1ym]

The elemental error indicator for the linearized PBE is similar except that sinh(U")
is replaced by U" and @ by 1

5. Numerical experiments. We show the accuracy of the a posteriori error
estimates and utilization of the different sources of error to obtain an accurate com-
putation of the Qol for the Born ion and methanol. The values of the constants in
the PBE are chosen as €, = 1, ¢, = 78 and &2 = 0.918168 unless otherwise stated.
The value £ = 0.918168 corresponds to an ionic concentration of 0.1 M. These values
reflect typical scenarios for PBE simulations [12, 17]. The initial meshes, defining
the domains Q,,, Qs and the interface I' are generated using GAMer[66]. We use
the standard space of continuous piecewise linear polynomials for the solution spaces
corresponding to u" and u", that is for spaces V" and V}. The spaces for the adjoint
solutions W" and W7 are chosen to be continuous piecewise quadratic polynomials.
For ease of implementation, we always ensure that 7, = T N Q,,. The Qol (18)
requires accurate integration near the points x;. This is achieved by refining the
cells near z; a few times. The functions ug,ug, Ug, U}, are such that they satisfy
the boundary condition exactly on a boundary vertex and are zero on the interior
vertices. This choice results in the component E™°® being exactly zero which was also
verified numerically. Experiments are performed for the Born ion and the methanol
molecule. The reference solutions needed for the effectivity ratios are computed using
a mesh with 411635 vertices for the Born ion and a mesh with 90264 vertices for the
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14 JEHANZEB H. CHAUDHRY

methanol molecule and using continuous piecewise quadratic polynomials for the finite
element space. The reference values of the Qol for the linearized PBE for the Born ion
and methanol are -276.749875 and -48.477443 respectively. The corresponding values
for the nonlinear PBE are -276.825527 and -48.479878. Since the reference solutions
themselves have some error, effectivity ratios are only shown for experiments for which
the reference solution is relatively accurate. All computations are carried out in the
finite element software package DOLFIN from the FEniCS library [48, 49, 3, 47]. The
value of 7 for the Qol in (18) was chosen as 0.005. The Dérfler marking parameter
is chosen as 0.2. The projection operators 7, and 7, were chosen as Lo projectors.

5.1. Born Ion. The Born ion consists of a single point charge @); in the center
of a spherical solute domain 2,,, of radius R [45]. The solute is surrounded by a large
spherical solvent domain, 2, as depicted in Fig. 2a which has been adopted from
[17]. Table 2 shows the error estimate, the effectivity ratio and different sources of

(a) Born ion (b) Methanol

Fig. 2: Born ion and Methanol

error for the linearized PBE for two different meshes: an initial mesh of 6718 vertices
and a uniformly refined mesh of 52014 vertices. In both cases, the effectivity ratio
is close to one, indicating the accuracy of the error estimate. Moreover, we see that
uniform refinement decreases all sources of error while preserving their signs, and
hence accounts for cancellation of error. Similar results for the nonlinear PBE are
shown in Table 3.

N ‘ Est. Err. ‘ Vet ‘ E" ‘ E™ ‘ Er ‘ 09

6718 -1.14 1.05 | 2.05e-01 | 5.26e-09 | -1.34e+00 | 4.86e-04
52014 -0.248 1.04 | 1.19e-01 | 2.04e-06 | -3.67e-01 | 1.36e-04

Table 2: Born ion: Error estimate, effectivity ratio and error contributions for the
linearized PBE (16) with N(u) = w. N is the number of vertices in 7. The terms E",
E™, E' and E%? are defined in Theorem 1.

5.2. Methanol. We examine the accuracy of the error estimates in the more
challenging setting of a methanol molecule, obtained from the APBS software pack-
age [6]. The methanol molecule consists of three charged particles representing charge
groups: CH3z and H with positive charges of 0.27 and 0.43 respectively, and an O atom
with a negative charge of 0.7. The model is depicted in Fig. 2b adopted from [16].
The numerical experiments are performed on two meshes: an initial mesh of 11769
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N | Est. Err. | v | E7 | E™ |  ET | E%

6718 -1.16 1.05 | 1.88e-01 | 5.13e-09 | -1.34e+4-00 | 4.24e-04
52014 -0.254 1.04 | 1.13e-01 | 2.69e-06 | -3.67e-01 | 1.18e-04

Table 3: Born ion: Error estimate, effectivity ratio and error contributions for the
nonlinear PBE (16) with N(u) = sinh(u). The terms E", E™, E' and E% are
defined in Theorem 2.

vertices and a uniformly refined mesh of 90264 vertices. The results for the linearized
and nonlinear PBE are shown in Tables 4 and 5. The effectivity ratios are again close
to 1.0 and highlight the accuracy and robustness of the error estimate for both cases.

N | Est. Err. | v | E° | E™ | EY | E%
11769 | -0.924 | 1.03 | 4.27e-01 | 4.67e-06 | -1.35e+00 | 2.43e-06
90264 | -0.231 | L.OL | 1.49e-01 | 9.34e-06 | -3.81e-01 | 6.87e-07

Table 4: Methanol: Error estimate, effectivity ratio and error contributions for the
linearized PBE (16) with N(u) = u.

N | Est. Err. | v%ee | E° | E™ | EY | E%
11769 | -0.924 | 1.02 | 4.27e-01 | 3.31e-06 | -1.35e+00 | 2.41e-06

90264 -0.232 1.01 | 1.49e-01 | 8.77e-06 | -3.81e-01 | 6.81e-07

Table 5: Methanol: Error estimate, effectivity ratio and error contributions for the
nonlinear PBE (16) with N(u) = sinh(u).

5.3. Refinement strategies. We use the different sources of error identified by
E",E™ E" and E% to guide refinement decisions. We first give an example of the
effect of refining different discretization components, highlighting the significance of
cancellation of error. Finally we present examples based on the Uniform Contribution
Refinement, Adaptive Contribution Refinement and Classical Refinement schemes
explained in §4.

5.3.1. Effect of refinement decisions on the Qol error. Consider the error
information in Table 2 for the coarse mesh with 6718 vertices and error of —1.14. The
uniformly refined mesh had 52014 vertices and an error of —0.248. On examining
the different sources of error, we observe that the dominant error contribution is
represented by ET. Thus, instead of uniformly refining the mesh, we only refine
simplices on the interface I". This refinement strategy is carried out by marking
simplices in €2, which have one face on the interface, that is, marking simplices
T €T (and in 7,) such that T' € Q,, and T'N T is not the empty set.

The refinement results are shown in Table 6. The “It.” indicates the refinement
level or iteration, with O indicating the starting coarse mesh. After the interface
is refined, we arrive at level 1, corresponding to row having N = 15541 vertices.
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Comparing this to the solution obtained by uniform refinement in Table 2, the error
is now slightly less while the number of vertices is only 30% of the number of vertices
of the uniformly refined mesh. This reflects a significant cost savings in obtaining
accurate solutions.

At refinement level 1, once again, E is the dominant component and we again
refine the interface to reduce the error to 0.0124. Now, both E" and ET have the
same order of magnitude, but opposite signs. If we still carry on refining the inter-
face to arrive at level 3-I'. However, now the error has increased to 0.0621! This
behavior is quite common in numerical simulations, where refining a discretization
parameter leads to an increase in the error rather than a reduction. Without the aid
of adjoint based estimates, the cause of this increase may be hard to diagnose. The
error information at levels 2 and 3 indicate why this increase occurred. The error at
level 2 involved cancellation between the terms E™ and E'. Refining the interface
significantly reduced ET, while having only a marginal effect on E”. Thus, there is
less cancellation of error and the error increased to 0.0621. A better option here is
uniform refinement, which preserves the cancellation of error between different con-
tributions [19]. The results of applying uniform refinement to Level 2 are shown as
level 3-Uniform. The cancellation of error is preserved and the error decreased. Note
that both the contribution of ET is the same for both levels 3(I") and 3—Uniform,
while the contribution of E" only sees a significant decrease at level 3—Uniform.

It. | N | Eror | E” | E™ | EY | E%®

0 6718 | -1.14 | 2.05e-01 | 5.26e-09 | -1.34e+00 | 4.86e-04
1 15541 | -0.214 | 1.53e-01 | 9.75e-07 | -3.68¢-01 | 4.78e-04
2 41760 | 0.0124 | 1.03e-01 | 2.30e-07 | -9.07e-02 | 4.78¢-04

3 (D) 141855 | 0.0621 | 8.41e-02 | 1.38e-07 | -2.25e-02 | 4.78e-04
3-Uniform | 323084 | 0.00853 | 3.09e-02 | 1.29e-07 | -2.25e-02 | 1.35e-04

Table 6: Born ion: Error contributions and refinement for the linearized PBE.

5.3.2. Results for Uniform Contribution Refinement. The results of the
Uniform Contribution Refinement strategy defined in §4 for the solution of the linear
and nonlinear PBE for the Born ion are shown in Tables 7 and 8, while the results
for methanol are shown in Tables 9 and 10. Comparing these results to Tables 2, 3,
4 and 5, we observe that the Uniform Contribution Refinement achieves significantly
more accurate solutions with a lower computational cost (as measured by the number
of vertices in the mesh) for both Born ion and methanol. An interesting observation is
at level 2 of Table 8 where E” and E' have almost the same magnitude but opposite
signs. These two sources of error cancel, leading to an unexpectedly low error.

5.3.3. Results for Adaptive Contribution Refinement. The results of the
Adaptive Contribution Refinement strategy defined in §4 for the solution of the linear
and nonlinear PBE for the Born ion are shown in Tables 11 and 12, while the results
for methanol are shown in Tables 13 and 14. Comparing these results to Tables 2, 3,
4 and 5, we observe that the Adaptive Contribution Refinement is almost an order
of magnitude more accurate for a uniformly refined mesh having the same number
of vertices. Adaptive Contribution Refinement also outperforms the Uniform Contri-
bution Refinement strategy for relatively small values of N. A couple of interesting
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It. | N | BEst. Emr. | veg | E7 E™ ET B9

0| 6718 | -1.14 | 1.05 | 2.05e-01 | 5.26e-09 | -1.34e+00 | 4.86e-04
1 | 15541 | -0.214 | 1.06 | 1.53e-01 | 9.75e-07 | -3.68e-01 | 4.78¢-04
2 | 41760 | 0.0124 | - | 1.03e-01 | 2.30e-07 | -9.07e-02 | 4.78¢-04

Table 7: Uniform Contribution Refinement strategy defined in §4 applied to the lin-
earized PBE for the Born ion. It. refers to the refinement iteration or level.

It. | N |Est.Err. | yw | E” | E™ | E" B9

0| 6718 | -1.16 | 1.05 | 1.88e-01 | 5.13e-09 | -1.34e+00 | 4.29e-04
1| 15541 | -0.224 | 1.05 | 1.44e-01 | 5.23¢-07 | -3.68¢-01 | 4.17e-04
2 | 41760 | 3.49e-3 | - | 9.38e-02 | 4.86e-07 | -9.07e-02 | 4.16e-04

Table 8: Uniform Contribution Refinement strategy defined in §4 applied to the non-
linear PBE for the Born ion.

It. | N | Est. Err. | veg | E7 E™ ET E99

0 | 11769 | -0.924 | 1.03 | 4.27e-01 | 4.67e-06 | -1.35e+00 | 2.43¢-06
1 | 20283 | -0275 | 1.02 | 1.06e-01 | 3.07e-07 | -3.82e-01 | 2.40e-06
2 | 46212 | -0.094 | 0.998 | 1.20e-03 | 7.72e-07 | -9.52e-02 | 2.40e-06

Table 9: Uniform Contribution Refinement strategy defined in §4 applied to the lin-
earized PBE for the Methanol.

It. | N | Est. Err. | veg | E" E™ E" E%%

0 | 11769 -0.924 1.03 | 4.27e-01 | 3.31e-06 | -1.35e+00 | 2.41e-06
1 | 20283 -0.276 1.02 | 1.06e-01 | 8.55e-07 | -3.82e-01 | 2.38e-06
2 | 46212 | -0.0944 | 0.996 | 8.65e-04 | 4.38e-07 | -9.52e-02 | 2.38e-06

Table 10: Uniform Contribution Refinement strategy defined in §4 applied to the
nonlinear PBE for Methanol.

observations are in order. In Table 12 the error decreases up to level 6 after which
loss of error cancellation leads to an increase on level 7. In Table 14 we have an
unexpectedly low error due to the cancellation between the terms E” and ET.

5.3.4. Results for Classical Refinement. The results of the Classical Refine-
ment strategy defined in §4 for the solution of the linearized and nonlinear PBE for
the Born ion are shown in Tables 15 and 16, while the results for methanol are shown
in Tables 17 and 18. Comparing these results to Tables 2, 3, 4 and 5, we observe that
Classical refinement also performs well compared to uniform refinement. However, its
performance is slightly worse than Adaptive Contribution Refinement as illustrated
by Tables 11 and 15. In fact, the error at level 7 in table 15 shows almost a doubling
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It. N Est. Err. ‘ Voft ‘ E" E™ EY E%¢

0 6718 -1.14 1.05 | 2.05e-01 | 5.26e-09 | -1.34e+00 | 4.86e-04
1 9476 -1.07 1.03 | 1.50e-01 | 1.07e-07 | -1.22e+00 | 4.79e-04
2 14273 -0.521 1.02 | 1.24e-01 | 3.08e-07 | -6.45e-01 | 4.78e-04
3 21293 -0.235 1.02 | 1.07e-01 | 3.88e-07 | -3.42e-01 | 4.78e-04
4 33320 -0.0895 | 1.02 | 9.68e-02 | 2.72e-07 | -1.87e-01 | 4.78e-04
5 60908 | -0.00803 | 0.98 | 8.22e-02 | 2.61e-07 | -9.07e-02 | 4.77e-04
6 | 112597 0.0112 1.13 | 5.90e-02 | 1.75e-07 | -4.83e-02 | 4.77e-04
7 | 206897 0.0183 1.11 | 4.31e-02 | 2.87e-07 | -2.53e-02 | 4.75e-04

Table 11: Adaptive Contribution Refinement strategy defined in §4 applied to
linearized PBE for the Born ion.

It. | N | Est. Err. | g | E" E™ E" E%%
0 6718 -1.16 1.05 | 1.88e-01 | 5.13e-09 | -1.34e+00 | 4.29e-04
1 9476 -1.08 1.02 | 1.38e-01 | 8.05e-08 | -1.22e+00 | 4.19e-04
2 14273 -0.531 1.02 | 1.14e-01 | 4.24e-07 | -6.45e-01 | 4.17e-04
3 | 21293 -0.244 1.02 | 9.77e-02 | 7.15e-08 | -3.42e-01 | 4.16e-04
4 | 33320 -0.0983 | 1.01 | 8.80e-02 | 3.05e-07 | -1.87e-01 | 4.16e-04
5 | 54112 -0.021 0.98 | 7.94e-02 | -7.17e-08 | -1.01e-01 | 4.16e-04
6 | 106120 | -0.00159 - 4.96e-02 | 3.95e-08 | -5.16e-02 | 4.13e-04
7 | 200323 | 0.0109 1.22 | 3.66e-02 | 1.31e-07 | -2.61e-02 | 4.10e-04
Table 12: Adaptive Contribution Refinement strategy defined in §4 applied to
nonlinear PBE for the Born ion.
It. | N | Est. Em. | g | E" E™ E" B2
0 | 11769 -0.924 1.03 | 4.27e-01 | 4.67e-06 | -1.35e400 | 2.43e-06
1 | 12380 -0.564 1.04 | 1.98e-01 | 1.55e-06 | -7.62e-01 | 2.42e-06
2 | 13852 -0.391 1.03 | 8.72e-02 | 1.56e-06 | -4.78e-01 | 2.41e-06
3 | 17353 -0.275 1.02 | 1.21e-02 | -1.17e-06 | -2.87e-01 | 2.40e-06
4 | 22732 -0.206 1.01 | -2.94e-02 | -1.81e-06 | -1.77e-01 | 2.40e-06
5 | 33019 -0.156 0.99 | -5.16e-02 | -5.96e-07 | -1.04e-01 | 2.40e-06
6 | 50784 | -0.127 0.98 | -6.92¢-02 | -1.08e-06 | -5.80e-02 | 2.40e-06
7 | 86224 | 0.000197 - 3.48e-02 | 2.20e-07 | -3.46e-02 | 2.40e-06

Table 13: Adaptive Contribution Refinement strategy defined in §4 applied to the
linearized PBE for Methanol.

of error at level 6. This is explained by observing the behavior of the terms E" and
ET, which are the two dominant sources of error, at these levels. Although both
terms decrease in magnitude, there is less cancellation of error, leading to an overall
increase. A similar increase in the error is observed at level 7 of Table 16.
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It. | N | BEst. Em. | veg | E" E™ ET B2

0 | 11769 | -0.924 | 1.03 | 4.27e-01 | 3.31e-06 | -1.35e+00 | 2.41e-06
1| 12380 | -0.564 | 1.04 | 1.97e-01 | 8.87e-07 | -7.62e-01 | 2.40e-06
2 | 13852 | -0.392 | 1.03 | 8.68¢-02 | 4.96e-06 | -4.78¢-01 | 2.39e-06
3 (17353 | -0.275 | 1.02 | 1.17e-02 | -1.42¢-06 | -2.87e-01 | 2.38¢-06
4 | 22732 | -0.206 | 1.00 | -2.97e-02 | -1.47e-06 | -1.77e-01 | 2.38¢-06
5 | 33036 | -0.156 | 0.99 | -5.19¢-02 | -8.73¢-07 | -1.04e-01 | 2.38¢-06
6 | 50796 | -0.127 | 0.98 | -6.95¢-02 | -1.01e-06 | -5.80e-02 | 2.38¢-06
7 | 86276 | 1.67e-05 | - | 3.46e-02 | -8.72e-07 | -3.45e-02 | 2.38e-06

Table 14: Adaptive Contribution Refinement strategy defined in §4 applied to the
nonlinear PBE for methanol.

It. | N | Est. Err. | yew | E7 E™ E" E%%

0| 6718 -1.14 | 1.05 | 2.05e-01 | 5.26e-09 | -1.34e+00 | 4.86¢-04
1| 9481 -1.07 | 1.03 | 1.50e-01 | 5.62e-08 | -1.22e+00 | 4.79e-04
2 | 14299 | -0.512 | 1.02 | 1.24e-01 | -4.16e-08 | -6.36e-01 | 4.78¢-04
3| 21638 | -0.23 | 1.02 | 1.06e-01 | 2.82¢-07 | -3.37e-01 | 4.78¢-04
4 | 33959 | -0.0868 | 1.02 | 9.58e-02 | 1.83e-07 | -1.83e-01 | 4.78¢-04
5 | 55762 | -0.0116 | 1.00 | 8.68¢-02 | 9.50e-08 | -9.89e-02 | 4.78¢-04
6 | 95162 | 0.0275 | 1.03 | 8.10e-02 | 1.28¢-08 | -5.40e-02 | 4.78¢-04
7 | 165202 | 0.0487 | 1.02 | 7.75e-02 | 9.00e-08 | -2.94¢-02 | 4.78¢-04

Table 15: Classical Refinement strategy defined in §4 applied to the linearized PBE
for the Born ion.

It. | N | Est. Err. | yer | E7 E™ E" E%%

0| 6718 -1.16 | 1.05 | 1.88e-01 | 5.13e-09 | -1.34e400 | 4.29e-04
1| 9481 -1.08 | 1.02 | 1.38¢-01 | 1.06e-07 | -1.22e+00 | 4.19¢-04
2 | 14299 | -0.521 | 1.02 | 1.14e-01 | -3.29e-08 | -6.36e-01 | 4.17e-04
3] 21638 | -0.239 | 1.02 | 9.70e-02 | 1.84¢-07 | -3.37¢-01 | 4.16e-04
4 | 33959 | -0.0955 | 1.01 | 8.71e-02 | 1.99e-07 | -1.83e-01 | 4.16e-04
5 | 55762 | -0.02 | 0.98 | 7.85¢-02 | 1.07e-07 | -9.89e-02 | 4.16e-04
6 | 95162 | 0.0192 | 1.06 | 7.28¢-02 | 2.90e-07 | -5.40e-02 | 4.16e-04
7 | 165192 | 0.0404 | 1.04 | 6.93¢-02 | 4.39¢-08 | -2.94¢-02 | 4.16e-04

Table 16: Classical Refinement strategy defined in §4 applied to the nonlinear PBE
for the Born ion.

5.3.5. Experiment illustrating difference between linear and nonlinear
PBE results. In this section we perform an experiment to illustrate the difference
in the results of the linear and nonlinear PBE solutions. To this end, we again choose
the Born ion but now the charge on the ion, @1, is taken to be ten times its value in
earlier experiments and also set &2 = 9.18168 which is also ten times larger than in
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It. N Est. Err. ‘ Yoft ‘ E" E™ ET E9%¢

11769 -0.924 1.03 | 4.27e-01 | 4.67e-06 | -1.35e+00 | 2.43e-06
12637 -0.613 1.03 | 1.25e-01 | 7.97e-07 | -7.38e-01 | 2.41e-06
14798 -0.352 1.02 | 5.26e-02 | 4.42e-07 | -4.04e-01 | 2.40e-06
20782 -0.267 1.01 | -5.43e-02 | -1.61e-06 | -2.13e-01 | 2.40e-06
34556 -0.131 0.99 | -3.32e-02 | 6.86e-08 | -9.74e-02 | 2.40e-06
63134 -0.0388 | 0.94 | 1.25e-02 | -2.33e-07 | -5.12e-02 | 2.40e-06
118378 | -0.0098 - 1.77e-02 | -1.35e-07 | -2.75e-02 | 2.40e-06

STk W N~ O

Table 17: Classical Refinement strategy defined in §4 applied to the linearized PBE
for Methanol.

It. | N | Est. Err. | e | E" E™ E" E%%

0 | 11769 | -0.924 | 1.03 | 4.27e-01 | 3.31e-06 | -1.35e+00 | 2.41e-06
1 | 12637 | -0.613 | 1.03 | 1.24e-01 | 2.05¢-06 | -7.38¢-01 | 2.40¢-06
2 | 14798 | -0.352 | 1.02 | 5.22¢-02 | -1.86e-07 | -4.04e-01 | 2.38¢-06
3| 20782 | -0.267 | 1.01 | -5.47¢-02 | -3.94¢-07 | -2.13e-01 | 2.38¢-06
4 | 34538 | -0.131 | 0.98 | -3.35e-02 | -3.19e-07 | -9.75e-02 | 2.38¢-06
5 | 63070 | -0.0391 | 0.94 | 1.22e-02 | 1.45¢-07 | -5.13e-02 | 2.38¢-06
6 | 118208 | -0.01 - | 1.75¢-02 | 5.36e-08 | -2.75¢-02 | 2.38¢-06

Table 18: Classical Refinement strategy defined in §4 applied to the nonlinear PBE
for methanol.

earlier experiments. We call this setup the highly charged Born ion. The difference in
the computed Qol between the linear and nonlinear PBE for a mesh of 6718 vertices
was approximately 59 units. The results for the different adaptive strategies also
indicate different behavior between the linearized and nonlinear PBE.

The results for the linear and nonlinear PBE using Uniform Contribution re-
finement, Adaptive Contribution refinement and Classical Refinement are shown in
Tables 19, 20, 21, 22, 23, 24. The results indicate that the Adaptive Contribution Re-
finement performs better than Classical Refinement for the linearized PBE, while they
both perform equally well for the nonlinear PBE. Uniform Contribution Refinement
outperforms both Classical Refinement and Adaptive Contribution Refinement.

It.| N | Bst.Err. | v | E° | E™ | EY | E%

0| 6718 -128 | 1.04 | 6.81e+00 | 1.92¢-07 | -1.35¢+02 | 3.76¢-14
1| 15541 | -282 | 1.04 | 851e+00 | 7.96e-05 | -3.68¢+01 | 4.10e-15
2 | 41760 | -5.12 | 1.01 | 3.95e+00 | 1.94e-05 | -9.07e+00 | 3.14e-15
3 | 141855 | -0.0159 | - | 2.24e+00 | 1.66e-05 | -2.25¢+00 | 3.12e-15

Table 19: Uniform Contribution Refinement strategy applied to linearized PBE for
the setup described in §5.3.5.
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It. | N | Est. Em. | veg | E" E™ ET B0

0| 6718 -131 | 1.04 | 3.72e+00 | 3.27e-07 | -1.35e+02 | 2.25e-15
1| 15541 | -294 | 1.04 | 7.36e+00 | 7.20e-05 | -3.68e+01 | 2.46e-16
2 | 41760 | -6.24 | 1.01 | 2.83e+00 | 2.36e-05 | -9.07e-+00 | 1.88¢-16
3 | 141855 | -1.18 - | 1.07e+00 | -5.90e-07 | -2.25e-+00 | 1.83e-16

Table 20: Uniform Contribution Refinement strategy applied to nonlinear PBE for
the setup described in §5.3.5.

It. | N | Est. Em. | veg | E" E™ ET B0

0| 6718 -128 | 1.04 | 6.81e+00 | 1.92e-07 | -1.35e+02 | 3.76e-14
1| 9458 -116 | 1.02 | 6.51e+00 | 9.61e-06 | -1.22e+02 | 8.52e-15
2 | 14164 | -59.5 | 1.02 | 5.72e+00 | 7.12e-05 | -6.53e-+01 | 4.42e-15
3| 21205 | -29.9 | 1.01 | 4.49e+00 | -2.03e-05 | -3.44e-+01 | 3.30e-15
4 | 33141 | -153 | 1.01 | 3.55e+00 | 2.44e-05 | -1.89e+01 | 3.29e-15
5 | 53605 | -7.32 | 0.99 | 2.85e+00 | -4.94e-06 | -1.02e+01 | 3.28e-15
6 | 91792 | -3.3 | 0.95 | 2.30e+00 | 2.61e-05 | -5.59e+00 | 3.15e-15
7 | 160005 | -1.12 - | 1.92e+00 | 1.41e-05 | -3.04e+00 | 3.15e-15

Table 21: Adaptive Contribution Refinement strategy applied to linearized PBE for
the setup described in §5.3.5.

It. | N | Est. Em. | veg | B E™ ET B0

0| 6718 -131 | 1.04 | 3.72e+00 | 3.27e-07 | -1.35e+02 | 2.25e-15
1| 9458 118 | 1.02 | 4.23e+00 | 6.37e-06 | -1.22e+02 | 5.13¢-16
2 | 14164 | -60.8 | 1.02 | 4.51e+00 | 1.48e-05 | -6.53e-+01 | 2.68¢-16
3 | 21206 | -30.9 | 1.01 | 3.59e+00 | 2.14e-06 | -3.45e+01 | 1.98¢-16
4 | 33216 | -162 | 1.00 | 2.63e+00 | 2.77e-05 | -1.88e+01 | 1.97e-16
5 | 53748 | -8.24 | 0.98 | 1.90e+00 | -3.05e-06 | -1.01e+01 | 1.98e-16
6 | 92219 | -4.27 | 0.95 | 1.30e+00 | 2.44e-06 | -5.56e+00 | 1.88e-16
7 | 160740 | -2.13 | 0.90 | 8.86e-01 | -2.27e-06 | -3.02e+00 | 1.87e-16
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Table 22: Adaptive Contribution Refinement strategy applied to nonlinear PBE for
the setup described in §5.3.5.

6. Conclusions. Computing a Qol from the numerical solution of the PBE
often has significant error that needs to be quantified. In this article, we develop
adjoint based error estimates for this purpose. The adjoint operators are defined
by accounting for the coupled nature of the three term split PBE as well as the
issues arising due to the regularity of the normal derivative. The resulting error
estimates are shown to be accurate, with effectivity ratios close to one. The error is
partitioned in such a way that specific sources of error are identified and addressed.
Moreover, novel refinement schemes, called Uniform Contribution Refinement and
Adaptive Contribution Refinement in this article, utilize the information about the
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It. | N | Est. Err. | e E" E™ ET B9

0| 6718 | -128 | 1.04 | 6.81e+00 | 1.92e-07 | -1.35e+02 | 3.76e-14
1| 9481 | -116 | 102 | 6.51e+00 | 9.62e-06 | -1.22e+02 | 8.52¢-15
2 | 14299 | -57.9 | 1.02 | 5.69e+00 | 7.71e-05 | -6.36e-+01 | 4.10e-15
3 | 21638 | -29.2 | 101 | 4.46e+00 | 1.38¢-05 | -3.37e+01 | 3.60e-15
4 | 33952 | -14.8 | 1.01 | 3.49e+00 | 1.23e-05 | -1.83e+01 | 3.58¢-15
5 | 55747 | -7.09 | 0.98 | 2.80e+00 | 2.70e-05 | -9.89e-+00 | 3.03e-15
6 | 95115 | -3.16 | 0.95 | 2.25e+00 | 1.60e-05 | -5.40e+00 | 2.91e-15

Table 23: Classical Refinement strategy applied to linearized PBE for the setup de-
scribed in §5.3.5

It. | N | Est. Brr. | ver | BT E™ E" B9

0 | 6718 | -131 | 1.04 | 3.72¢400 | 3.27¢-07 | -1.35e+02 | 2.25¢-15
1| 9477 | -118 | 1.02 | 4.23e+00 | 8.49¢-06 | -1.22¢+02 | 5.12¢-16
2 | 14286 | -59.8 | 1.02 | 4.49e+00 | 1.86e-05 | -6.43e+01 | 2.47¢-16
3 | 21365 | -30.4 | 1.01 | 3.61e+00 | 2.82¢-05 | -3.40e+01 | 2.21e-16
433470 | -16 | 1.00 | 2.60e+00 | 1.84e-05 | -1.86e+01 | 2.18¢-16
5 | 54450 | -8.16 | 0.98 | 1.88¢+00 | 6.44e-07 | -1.00e+01 | 1.85¢-16
6 | 93369 | -4.22 | 0.95 | 1.28¢+00 | -5.89¢-07 | -5.50e+00 | 1.77¢-16

Table 24: Classical Refinement strategy applied to nonlinear PBE for the setup de-
scribed in §5.3.5

sources of error to arrive at accurate computed values of the Qol.

561
562
563
564
565

566

The effects of interface geometry on the error is an interesting area of future
research. The current article is based on the the standard assumption in the PBE
literature that the tessellated geometric representation of the interface is the true
interface, e.g. as in references [2, 5, 20]. The effect of the geometry, which could be
considered a “model form error”, is an interesting topic to explore and the author
intends to pursue it in future.
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