
A POSTERIORI ANALYSIS AND EFFICIENT REFINEMENT1

STRATEGIES FOR THE POISSON-BOLTZMANN EQUATION2

JEHANZEB H. CHAUDHRY∗3

Abstract. The Poisson-Boltzmann equation (PBE) models the electrostatic interactions of4
charged bodies such as molecules and proteins in an electrolyte solvent. The PBE is a challenging5
equation to solve numerically due to the presence of singularities, discontinuous coefficients and6
boundary conditions. Hence, there is often large error in the numerical solution of the PBE that7
needs to be quantified. In this work, we use adjoint based a posteriori analysis to accurately quantify8
the error in an important quantity of interest, the solvation free energy, for the finite element solution9
of the PBE. We identify various sources of error and propose novel refinement strategies based on a10
posteriori error estimates.11
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1. Introduction. Electrostatic interactions play a critical role in determining15

macroscopic properties of dielectric biomolecular systems, such as solvation free en-16

ergy and binding affinities [26, 46, 61]. The Poisson-Boltzmann equation (PBE) has17

been widely used for modeling the electrostatic interactions of charged bodies such18

as molecules and proteins in electrolyte solvents. The PBE was introduced decades19

ago [39, 15], and we refer to the classical texts [54, 60] for its derivation.20

The focus of this article is robust error estimation and refinement strategies for21

computing a quantity of interest (QoI), such as the solvation free energy, from the22

solution of the PBE. The PBE is a challenging equation to solve numerically and23

numerous computational methods and software packages have been derived for its24

solution [38, 58, 64, 62, 67, 11, 25, 43, 51, 9, 20, 56, 24, 42, 5, 59, 21, 50, 12, 41]. In25

this article we follow the approach in [36, 41] to solve the PBE using a three term26

splitting method which accounts for the well-posedness of the continuum problem27

as well as avoiding amplification of numerical rounding errors. However, even this28

method, like all numerical methods, often has significant errors in the computation of29

the QoI and this error needs to be accurately estimated from computed information30

for reliable use of the PBE in biophysics, biochemistry, medical and other science and31

engineering fields [34, 31].32

In this article we employ adjoint based a posteriori analysis to accurately quan-33

tify the error in a QoI computed from the numerical solution of the PBE. Adjoint34

based error estimation is widely used for a host of numerical methods including fi-35

nite elements, finite difference, time integration, multi-scale simulations and inverse36

problems [30, 29, 34, 1, 7, 8, 10, 37, 13, 18, 22, 57]. The error estimate weights com-37

putable residuals of the numerical solution with the solution of an adjoint problem38

to quantify the accumulation and propagation of error. The resulting estimates have39

the useful feature that the total error is decomposed as a sum of contributions from40

various aspects of the discretization and therefore provide insight in to the effect of41

different choices for the parameters controlling the discretization. Thus, we not only42

quantify the error using adjoint based a posteriori analysis, we also partition the error43
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2 JEHANZEB H. CHAUDHRY

to identify contributions from various sources of error. For example, we can identify if44

the boundary discretization or the interior discretization is the major source of error.45

Since the error in the numerical solution of the PBE is often significant, there are46

a number of adaptive refinement strategies proposed for obtaining accurate solutions47

of the PBE [12, 42, 41, 63, 2]. Most of the adaptive algorithms are based on control-48

ling the error in global norms and some of the algorithms are shown to be provably49

convergent [20]. However, if the goal of the numerical computation is accurate approx-50

imation of the QoI, then a refinement strategy based on solution residuals weighted by51

the adjoint information is an appealing option. In this paper we propose refinement52

strategies based on the relative contribution to the error of a discretization choice.53

The adjoint based analysis and its partitioning of the error suggests novel refinement54

strategies for obtaining accurate estimates of the QoI from the numerical solution of55

the PBE.56

Adaptive refinement using adjoint based analysis and optimal multilevel precon-57

ditioning for the PBE are developed previously in [2]. However, the analysis and58

results of this article differ significantly from that paper. The focus of that paper59

was adaptive refinement for the linearized PBE using the two term splitting [20],60

whereas we focus on the three term splitting for both the linearized and the nonlinear61

PBE [36, 41]. Moreover, our aim is to derive accurate error estimates in the QoI.62

While [2] derived an error estimate for the QoI for the three term splitting, no numer-63

ical experiments were performed for the three term splitting. Even for the two term64

splitting no numerical results indicating the accuracy of the derived estimates were65

shown and instead the focus was on adaptive refinement. In addition, the adjoint66

problem for the three term splitting derived in [2] leads to an ill-posed problem as67

we discuss in §3. In this work, we not only derive an estimate for the three term68

splitting based on the correct formulation of the adjoint operator, we also decompose69

the error so that the various sources of error and their relative contributions are also70

available. Moreover, the error estimate derived in [2] assumes that the continuum71

and discrete solutions satisfy the boundary conditions exactly. While this assump-72

tion may be justifiable for the results in the two term splitting in [2], we point out73

the importance of the role of boundary condition for the harmonic component of the74

three term splitting. This boundary condition is defined on the interface between the75

solvent and molecular regions, and hence impacts the computation of the QoI signif-76

icantly. Finally, we propose a fundamentally different refinement strategy since the77

standard goal oriented refinement strategy employed in [2] appears to be sub-optimal.78

Adaptive refinement for obtaining accurate values of a QoI is a challenging task as79

the error contributions of an individual element may be positive or negative leading80

to significant cancellation of error. In [2], the refinement strategy takes the absolute81

value of error contributions and applies the principle of equidistribution for marking82

elements for refinement. This strategy ignores the cancellation of error, and hence83

the resulting adaptive algorithm may have less than desirable convergence properties.84

This drawback is overcome in [2] by defining a somewhat ad-hoc error indicator. On85

the other hand, this article decomposes the error into different contributions and use86

this information to devise adaptive schemes to target the discretization choices which87

have the most significant effect on error.88

The rest of the paper is organized as follows. Section 2 introduces the PBE, its89

linearized and nonlinear versions, weak forms and a finite element method to solve it.90

Section 3 performs adjoint based a posteriori analyses for both the linearized and non-91

linear PBE. In particular, a well-posed adjoint problem for the three-term PBE and92

error representations are derived. Section 4 discusses refinement strategies based on a93
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posteriori error estimates. Numerical experiments are presented in Section 5, which94

illustrate the accuracy of the estimates as well as the efficacy of employing refinement95

strategies which target specific sources of error. Section 6 presents conclusions.96

2. The Poisson-Boltzmann Equation.97

2.1. The nonlinear Equation and its dimensionless form. The Poisson-98

Boltzmann equation models the electrostatic activity between molecules in an ionic99

solvent. In this model, it is assumed that the ions in the solvent are distributed100

according to the Boltzmann distribution and that the potential of the mean force on101

a particle is simply the charge of the ion times the electrostatic potential. For a 1:1102

electrolyte solvent (e.g. NaCl), the nonlinear Poisson-Boltzmann equation is [35, 4],103

(1)


−∇ · (ε(x)∇ũ(x)) + κ̄2(x)

(
kBT

ec

)
sinh

(
ecũ(x)

kBT

)
= 4π

m∑
i=1

Qiδ(x− xi),

lim
‖x‖→∞

ũ(x) = 0.

104

Here, ũ is the unknown electrostatic potential, ε is the dielectric coefficient, κ̄(x) is105

the modified Debye-Hückel parameter which describes the accessibility of the solvent106

to the solute, kB is the Boltzmann constant, ec is the charge on a proton and T107

is the temperature. Moreover, the solute contains a total of m fixed point charges,108

with the ith charge Qi centered at position xi. The resulting distribution is a linear109

combination of Dirac delta functions δ(x− xi).110

The domain for the problem R3, is subdivided into a molecular region, Ωm, a111

solvent region Ω∞s , and an interface between the two denoted by Γ. The solute112

is surrounded by solvent, which is represented as a continuum over the subdomain113

Ω∞s = R3\Ωm. The subdomains for a typical biomolecular solute are shown in Figure 1114

which has been adopted from [12]. The dielectric coefficient ε(x) and modified Debye-
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Fig. 1: Subdomains for the Poisson-Boltzmann equation

115
Hückel parameter κ̄(x) are defined on Ωm ∪ Ω∞s by the piecewise constant functions116

(2) ε(x) =

{
εm x ∈ Ωm

εs x ∈ Ω∞s
and κ̄2(x) =

{
0 x ∈ Ωm

κ̄2
s = εs

8πNAe
2
c

1000kBT
Is x ∈ Ω∞s

.117
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Here, εm and εs are positive constants and NA is Avogadro’s number. The ionic118

strength IS is a physical parameter which varies depending on the solvent.119

Numerical simulations are not feasible on the unbounded solvent domain, Ω∞s ,120

and hence it is truncated at a finite radius from the “center” of the molecule, to121

form a bounded domain Ωs. Dirichlet boundary conditions are imposed to capture122

the asymptotic behavior of the solution on an unbounded domain. Combining this123

with the change of variables, u(x) = ecũ(x)/kBT , results in a dimensionless Poisson-124

Boltzmann equation on the spherical domain Ω = Ωm ∪ Ωs ∪ Γ:125

(3)

−∇ · (ε(x)∇u(x)) + κ̄2(x) sinh(u(x)) =
4πec
kBT

m∑
i=1

Qiδ(x− xi), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.

126

The boundary conditions are prescribed using a linear combination of Helmholtz127

Green’s functions [12],128

(4) g =
ec
kBT

m∑
i=1

Qi
εs|x− xi|

exp

(
−κ̄s|x− xi|√

εs

)
.129

2.2. Weak form based on three term splitting. We denote by L2(Ω) as130

the space of square integrable functions, H1(Ω) as the space of functions having an131

integrable (weak) derivative, H1
0 (Ω) as the subspace of H1(Ω) of functions satisfying132

homogeneous Dirichlet boundary conditions (in the sense of the trace operator) and133

H−1 as the dual space of H1
0 (Ω). The right hand side of (3) contains δ functions,134

which are unbounded linear functionals over the space H1
0 and hence a well-posed135

weak form cannot be derived directly from (3). To overcome this problem, two and136

three term splittings of the PBE have been proposed [68, 20, 41]. The two and three137

term splitting are equivalent mathematically, however, the three term splitting is138

numerically more desirable [41]. The three term splitting decomposes the function u139

as140

(5) u =

{
us + uh + ur in Ωm,

ur in Ωs,
141

where us, uh and ur are the singular, harmonic and regular components respectively.142

The singular function us is the solution of the following Poisson equation143

(6)

−∇ · εm∇u
s =

4πec
kBT

m∑
i=1

Qiδ(x− xi),

us(∞) = 0.

144

Recognizing that the singular component is the Green’s function of the Laplace op-145

erator leads to an analytical expression for us as146

(7) us(x) =
ec

εmkBT

m∑
i=1

Qi
|x− xi|

.147

The harmonic component uh is the solution to148

(8)

{
∇2uh = 0 in Ωm,

uh = −us on Γ.
149
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The regular component ur satisfies150

(9)



−∇ · (ε(x)∇ur(x)) + κ̄2(x) sinh(ur(x)) = 0 in Ωm ∪ Ωs,

JurKΓ = 0,
s
ε(x)

∂ur(x)

∂n

{

Γ

= −εm
∂us + uh

∂n

u = g on ∂Ω,

151

where the jump at the interface is defined as152

Jv(x)KΓ = lim
α→0+

v(x+ αn)− v(x− αn),153

with n as the unit normal to the interface Γ, pointing outward from Ωm. The condition154

involving the jump in the normal derivative of ur arises by substituting (5) in (3),155

using the definitions of us and uh, and the fact that for the solution u of (3) we156

have
r
ε(x)∂u(x)

∂n

z
= 0. Sometimes the nonlinear PBE is linearized by the assumption157

sinh(u) ≈ u leading to the dimensionless linearized PBE. We can write both the linear158

and nonlinear versions as159

(10)



−∇ · (ε(x)∇ur(x)) + κ̄2(x)N(ur(x)) = 0 in Ωm ∪ Ωs,

JurKΓ = 0,
s
ε(x)

∂ur(x)

∂n

{

Γ

= −εm
∂us + uh

∂n
,

u = g on ∂Ω.

160

where161

(11) N(ur(x)) =

{
sinh(ur(x)) for nonlinear PBE,

ur(x) for linearized PBE.
162

2.3. Weak forms. We define the affine spaces163

(12) H1
us(Ωm) := {v ∈ H1(Ωm) : v(x) = −us on Γ}164

and165

(13) H1
g (Ω) := {v ∈ H1(Ω) : v = g on Γ, α ≤ v ≤ β in Ω}.166

Here α and β are positive constants used to control the nonlinear sinh term, see [41]167

for details. The weak form for the three term split PBE, (8) and (10), is to find168

(uh, ur) ∈ H1
us(Ωm)×H1

g (Ω) such that169

(14)


(ε∇uh,∇w)m = 0

(ε∇ur,∇v) + (κ̄2N(ur), v) + 〈εm
∂uh

∂n
, v〉Γ = −〈εm

∂us

∂n
, v〉Γ

170

for all (w, v) ∈ H1
0 (Ωm) × H1

0 (Ω). Here we used the notation (a, b) =
∫

Ω
abdx,171

(a, b)m =
∫

Ωm
abdx and 〈a, b〉Γ =

∫
Γ
abdx to represent the standard L2 inner products172

over Ω, Ωm and Γ respectively. The existence and uniqueness of the weak solution is173

This manuscript is for review purposes only.



6 JEHANZEB H. CHAUDHRY

shown in [41]. The weak form (14) is a one-way coupled system; we first solve for uh174

and then use it to compute ur. Now using the Green’s identity175

(15) 〈εm
∂uh

∂n
, v〉 = (ε∇2uh, v)m + (ε∇uh,∇v)m176

and (8) in (14) leads to an different weak form: find (uh, ur) ∈ H1
us(Ωm) × H1

g (Ω)177

such that178

(16)

 (ε∇uh,∇w)m = 0

(ε∇ur,∇v) + (κ̄2N(ur), v) + (ε∇uh,∇v)m = −〈εm
∂us

∂n
, v〉Γ,

179

for all (w, v) ∈ H1
0 (Ωm)×H1

0 (Ω). The weak forms (14) and (16) are mathematically180

equivalent, however, the form (16) is amenable to defining the adjoint operator as181

discussed in §3.182

2.4. Quantity of interest: solvation free energy. The QoI may be any183

bounded linear functional of the weak solution (uh, ur). An important physical quan-184

tity computed from the solution of the PBE is electrostatic free energy of solvation185

[36],186

(17) ∆Gsol =
α

2

∫ m∑
i=1

Qiδ(x− xi)(uh(x) + ur(x)) dx,187

where α = kBT/ec. Unfortunately, ∆Gsol is not a bounded linear functional in H1
0 (Ω)188

due to the presence of δ functions. A common approach is to “mollify” the unbounded189

functional [2, 7, 1] to obtain a bounded linear functional. We thus define our quantity190

of interest to be a mollified version of solvation free energy, scaled by 2/α for simplicity,191

as192

(18) Q(uh, ur) =

∫
Ωm

m∑
i=1

Qiη
−3ρ((x− xi)/η)(uh(x) + ur(x)) dx = (ψ, uh + ur)m,193

where194

(19) ψ(x) =
m∑
i=1

Qiη
−3ρ((x− xi)/η),195

ρ is the standard mollifier196

(20) ρ(x) =

{
ce(−1/(1−|x|2)) if |x| < 1,

0 otherwise,
197

|x| denotes the Euclidean norm of x ∈ R3 and c is a scaling constant to ensure that198 ∫
R3 ρ(x) = 1. Now, as η → 0, η−3ρ(x/η) → δ(x). Hence the value of the QoI199

approaches the value of the (scaled) solvation free energy for small values of η.200

2.5. Finite element method. We discretize Ω and Ωm into three dimensional201

triangulations T and Tm. We assume that the interface Γ is polygonal and exactly202

represented by the triangulation. Although the triangulations T and Tm may differ203

in Ωm, they respect the interface Γ in the sense that (∪Tm∈TmTm) ∩ Γ = (∪T∈T T ) ∩204

This manuscript is for review purposes only.



A POSTERIORI ANALYSIS FOR THE PBE 7

Γ. Each of these triangulations is arranged in such a way that the union of the205

elements of T (resp. Tm ) is Ω (resp. Ωm) and the intersection of any two elements206

is either a common edge, node, or is empty. The finite element space consists of207

continuous piecewise polynomials. We let Vh ⊂ H1
0 (Ω) (resp. V mh ⊂ H1

0 (Ωm)) denote208

the space of continuous piecewise polynomial functions v(x) ∈ R defined on T (resp.209

Tm). Similarly, we let Vh,g (resp. V mh,us
) be the affine space of continuous piecewise210

polynomial functions v(x) ∈ R such that v(x) = g(x) for x on ∂Ω (resp. v(x) = −us(x)211

for x on Γ = ∂Ωm).212

The discrete weak problem is to find (Uh, Ur) ∈ V mh,us
× Vh,g such that213

(21)

 (ε∇Uh,∇w)m = 0

(ε∇Ur,∇v) + (κ̄2N(Ur), v) + (ε∇Uh,∇v)m = −〈εm
∂us

∂n
, v〉Γ,

214

for all (w, v) ∈ V mh × Vh. Note that throughout this article we use lower case letters215

for continuum solutions and uppercase letters for discrete solutions.216

3. Adjoint based a posteriori analysis. In this section we derive the adjoint217

equation corresponding to the PBE and then form error representations for both the218

linearized and nonlinear PBE.219

3.1. Abstract definition of adjoint operator and error representation.220

The adjoint operator L∗ : Y ∗ → X∗ of a linear operator L : X → Y between Banach221

spaces X,Y with dual spaces X∗, Y ∗ is defined by the bilinear identity [53, 44, 65],222

(22) 〈〈Lx, y∗〉〉Y = 〈〈x,L∗y∗〉〉X , x ∈ X, y∗ ∈ Y ∗,223

where 〈〈·, ·〉〉S denotes duality-pairing in the space S ∈ {X,Y }. Now, if Lu = f and224

L∗φ = ψ, and U is a discrete approximation to u, we obtain a representation for the225

error (u− U) as226

(23) 〈〈ψ, u− U〉〉X = 〈〈L∗φ, u− U〉〉X = 〈〈φ,Lu− LU〉〉Y = 〈〈φ, f − LU〉〉Y .227

The above abstract error representation is a standard form for all adjoint based error228

analysis: residual(s) of the discrete solution weighted by the adjoint solution(s). The229

weighting of the residual by the adjoint solution accounts for the accumulation and230

cancellation of error in the discrete solution. We remark that the derivation in (23)231

is similar to the derivation of standard Green’s functions in PDE analysis, and hence232

adjoint solutions may be thought of as generalized Green’s functions [32].233

3.2. A posteriori analysis of the linearized PBE. This section forms an234

adjoint operator and an error representation for the linearized PBE.235

3.2.1. Adjoint operator for the linearized PBE. In the context of the lin-236

earized PBE, the duality pairing 〈〈Lx, y∗〉〉Y is described by the left hand side of (16)237

with N(u) = u. Applying the definition (22) leads to the following adjoint problem:238

find (φh, φr) ∈ H1
0 (Ωm)×H1

0 (Ω) such that239

(24)

{
(ε∇φr,∇v) + (κ̄2φr, v) = (ψ, v)m,

(ε∇φh,∇w)m + (ε∇φr,∇w)m = (ψ,w)m,
240

for all w, v ∈ H1
0 (Ωm) × H1

0 (Ω). Here ψ arises from the definition of the QoI, see241

(19). Observe that (24) is also a one way coupled system, similar to (16), however,242

the direction of coupling is now reversed: we first solve for the component in Ω and243

use that in the equation posed on Ωm.244
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Remark 1. In Section 4.2 of [2], an adjoint to the three term split PBE is defined245

as: find (wh, wr) ∈ H1
0 (Ωm)×H1

0 (Ω) such that246

(25)

 (ε∇wr,∇v) + (κ̄2wr, v) = (ψ, v)m,

(ε∇wh,∇w)m + 〈wh, εm
∂w

∂n
〉Γ = (ψ,w)m,

247

for all (w, v) ∈ H1
0 (Ωm) × H1

0 (Ω). However, this is not a well-posed problem as248

〈εm∂w
∂n , w

h〉Γ is not continuous in w for all w ∈ H1
0 (Ωm). Continuity of 〈εm∂w

∂n , w
h〉Γ249

requires addition regularity on w e.g. w ∈ H 3
2 (Ω).250

3.2.2. Error representation for the linearized PBE. The effect on approx-251

imating the boundary conditions on the interface Γ for Uh may have significant effect252

on the accuracy of the method. Hence, we quantify the effect of boundary condi-253

tions, both at Γ = ∂Ωm corresponding to the harmonic component Uh and at ∂Ω254

corresponding to the regular component Ur. We employ the decompositions255

(26) ur = ur0 + urd and uh = uh0 + uhd256

where ur0 ∈ H1
0 (Ω) (resp. uh0 ∈ H1

0 (Ωm)) and urd ∈ H1(Ω) (resp. uhd ∈ H1(Ωm) )257

such that urd = g on ∂Ω (resp. uhd = −us on ∂Ωm = Γ) . Similarly we have the258

decompositions,259

(27) Ur = Ur0 + Urd and Uh = Uh0 + Uhd260

where Ur0 ∈ Vh (resp. Uh0 ∈ V mh ) and Urd ∈ Vh,g (resp. Urd ∈ V mh,us
). Note that due261

to the finite dimension of Vh,g and V mh,us
and the nature of the boundary conditions g262

and −us, urd 6= Urd and uhd 6= Uhd . Moreover, there are infinitely many choices for the263

functions uhd , u
r
d, U

h
d , U

h
d and we assume a choice is made such that these functions are264

known. This leads to the following error representation.265

Theorem 1. Let (uh, ur) be the true solutions to the linearized PBE (16) with266

N(ur) = ur, (Uh, Ur) be the finite element solutions to the discrete weak form (21)267

and (φh, φr) be the solutions to the adjoint weak form (24). Then the error in the268

QoI (18) is given by269

(28) Q(uh − Uh, ur − Ur) = Er + Em + EΓ + E∂Ω + Eneg,270

where271

(29)

Er = −〈εm
∂us

∂n
, φr〉Γ − (ε∇Ur,∇φr)− (κ̄2Ur, φr)− (ε∇Uh,∇φr)m

Em = −(ε∇Uh,∇φr)m
Eneg = Q(uhd − Uhd , urd − Urd ) = (ψ, (uhd − Uhd ) + (urd − Urd ))m

E∂Ω = (ε∇φr,∇(Urd − urd)) + (κ̄2φr, (Urd − urd))
EΓ = (ε∇φh,∇(Uhd − uhd))m + (ε∇φr,∇(Uhd − uhd))m.

272

Proof. The tuple (uh − Uh, ur − Ur) is not in H1
0 (Ωm)×H1

0 (Ω). However, if we273

use the decompositions (26) and (27) along with the linearity of the QoI Q,274

(30)
Q(uh − Uh, ur − Ur) = Q((uh0 + Uhd )− Uh, (ur0 + Urd )− Ur) +Q(uhd − Uhd , urd − Urd )

= Q((uh0 + Uhd )− Uh, (ur0 + Urd )− Ur) + Eneg.
275
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The tuple ((uh0 + Uhd ) − Uh, (ur0 + Urd ) − Ur) is in H1
0 (Ωm) ×H1

0 (Ω). Hence, setting276

w = ((uh0 + Uhd ) − Uh) and v = ((ur0 + Urd ) − Ur) in the adjoint equation (24) and277

adding the two equations leads to,278

(31)
Q((uh0 + Uhd )− Uh, (ur0 + Urd )− Ur)) = (ψ, (uh0 + Uhd )− Uh, (ur0 + Urd )− Ur)m
= (ε∇φr,∇((ur0 + Urd )− Ur)) + (κ̄2φr, (ur0 + Urd )− Ur)

+ (ε∇φh,∇((uh0 + Uhd )− Uh))m + (ε∇φr,∇((uh0 + Uhd )− Uh))m.

279

Substituting ur0 = (ur0+urd)−urd = ur−urd and similarly uh0 = uh−uhd and rearranging,280

(32)

Q((uh0 + Uhd )− Uh, (ur0 + Urd )− Ur)
= (ε∇φr,∇ur) + (κ̄2φr, ur) + (ε∇φh,∇uh)m + (ε∇φr,∇uh)m

−
(
(ε∇φr,∇Ur) + (κ̄2φr, Ur) + (ε∇φh,∇Uh)m + (ε∇φr,∇Uh)m)

)
= (ε∇φr,∇(Urd − urd)) + (κ̄2φr, (Urd − urd)) + (ε∇φh,∇(Uhd − uhd))m

+ (ε∇φr,∇(Uhd − uhd))m.

281

Now, since (uh, ur) is the true solution, it satisfies the weak form (16). Substituting282

this in (32) and rearranging terms,283

(33)

Q((uh0 + Uhd )− Uh, (ur0 + Urd )− Ur)

= −〈εm
∂us

∂n
, φr〉Γ − (ε∇φr,∇Ur)− (κ̄2φr, Ur)− (ε∇φr,∇Uh)m

− (ε∇φh,∇Uh)m + (ε∇φr,∇(Urd − urd)) + (κ̄2φr, (Urd − urd))
+ (ε∇φh,∇(Uhd − uhd))m + (ε∇φr,∇(Uhd − uhd))m

284

Combining (30) and (33) completes the proof.285

In the above theorem Er, Em, EΓ, E∂Ω and Eneg denote different sources of286

error. The first four terms Er, Em, EΓ and E∂Ω have the form of adjoint weighted287

residuals and reflect error contributions due to FEM solution of ur, FEM solution of288

uh, representation of boundary data for uh and representation of boundary data for289

ur. The term Eneg, which is computable since all the functions involved are known,290

is referred to as the “negligible” component of error as it is typically negligible due to291

the standard choice of the boundary functions. See §5 for more details on the choice292

of the boundary functions involved as well as the numerical value of this term.293

3.3. A posteriori Analysis of the nonlinear PBE. We now extend the ideas294

for the linearized PBE to derive an adjoint and error representation for the nonlinear295

PBE.296

3.3.1. Adjoint operator for the nonlinear PBE. The extension of the above297

approach to the nonlinear PBE is complicated by the fact that there is no unique298

definition of an adjoint operator corresponding to a nonlinear differential operator.299

Rather, an adjoint problem useful for the purpose at hand has to be selected. A300

common choice useful for various kinds of analysis is based on linearization [53, 52].301

Defining z = su+ (1− s)U and α(x) =
∫ 1

0
cosh(z(x)) ds, we observe that302

(34)

sinh(ur)− sinh(Ur) =

∫ 1

0

d

ds
sinh(z) ds =

∫ 1

0

cosh(z) ds (ur − Ur) = α(ur − Ur).303
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Then the adjoint corresponding to the nonlinear PBE (16) is: find (φh, φr) ∈304

H1
0 (Ωm)×H1

0 (Ω) such that305

(35)

{
(ε∇φr,∇v) + (κ̄2αφr, v) = (ψ, v)m,

(ε∇φh,∇w)m + (ε∇φr,∇w)m = (ψ,w)m,
306

for all w, v ∈ H1
0 (Ωm) ×H1

0 (Ω). In practice, we cannot compute the linearization α307

since we do not know the true solution ur. Instead, the differential operator is typically308

linearized around the numerical solution, in this case Ur. The resulting estimate can309

be shown to converge to the true estimate in the limit of refined discretization [34].310

In practice, this approach yields robustly accurate error estimates.311

3.3.2. Error representation for the nonlinear PBE. The above adjoint312

equation leads to the following error representation for the nonlinear PBE.313

Theorem 2. Let (uh, ur) be the true solutions to the nonlinear PBE (16) with314

N(ur) = sinh(ur), (Uh, Ur) be the finite element solutions to the discrete weak form315

(21) and (φh, φr) be the solutions to the adjoint weak form (24). Then the error in316

the QoI (18) is given by,317

(36) Q(uh − Uh, ur − Ur) = Er + Em + EΓ + E∂Ω + Eneg,318

where319

(37)

Er = −〈εm
∂us

∂n
, φr〉Γ − (ε∇Ur,∇φr)− (κ̄2 sinh(Ur), φr)− (ε∇Uh,∇φr)m

Em = −(ε∇Uh,∇φr)m
Eneg = Q((uhd − Uhd , urd − Urd )) = (ψ, (uhd − Uhd ) + (urd − Urd ))m

E∂Ω = (ε∇φr,∇(Urd − urd)) + (κ̄2αφr, (Urd − urd))
EΓ = (ε∇φh,∇(Uhd − uhd))m + (ε∇φr,∇(Uhd − uhd))m

320

Proof. The proof is similar to the proof of Theorem 1. The difference is in the321

term (κ̄2φr, (ur0 + Urd )− Ur)) in (31) which now becomes,322

(38)
(κ̄2αφr, (ur0 + Urd )− Ur))
= (κ̄2αφr, (ur − Ur)) + (κ̄2αφr, Urd − urd))

323

where we again made the substitution ur0 = ur − urd. Combining the above equation324

with (34) leads to325

(39)
(κ̄2αφr, (ur0 + Urd )− Ur))
= (φr, κ̄2 sinh(ur))− (φr, κ̄2 sinh(Ur)) + (κ̄2αφr, Urd − urd).

326

3.3.3. Error representation for the alternate formulation of the PBE.327

In this article, the focus is on quantifying the error due to the solution of the FEM328

problem in (21) which corresponds to the solution of (16). However, some existing329

codes may be based on the discrete solution of the weak form (14). In such a case,330

the error representation is easily modified as shown in the next theorem.331
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Theorem 3. Let (uh, ur) be the true solutions to the (linearized or nonlinear)332

PBE (16), (Uh, Ur) be the finite element solutions to the discrete weak form corre-333

sponding to (14) and (φh, φr) be the solutions to the adjoint weak form (24). Then334

the error in the QoI (18) is given by,335

(40) Q(uh − Uh, ur − Ur) = Ẽr + Em + EΓ + E∂Ω + Ẽhar + Eneg,336

where337

(41)
Er = −〈εm

∂us

∂n
, φr〉Γ − (ε∇Ur,∇φr)− (κ̄2N(Ur), φr)− 〈εm

∂Uh

∂n
, φr〉Γ

Ehar = 〈εm
∂Uh

∂n
, φr〉Γ − (ε∇Uh,∇φr)m

338

and the remaining terms are the same as in Theorem 2.339

Proof. Adding and subtracting 〈εm∂Uh

∂n , φr〉Γ to term Er in Theorem 2 completes340

the proof.341

4. Refinement strategies based on a posteriori error estimates. This342

section discusses the accuracy of a posteriori error estimates and the potential for343

obtaining accurate QoI values using the error information to refine the discretization.344

4.1. A posteriori error estimates: implementation and accuracy. The345

error representations (28) and (36) involve analytic adjoint solutions (φh, φr) and rep-346

resentation of boundary conditions by functions (uhd , u
r
d). In practice, these quantities347

need to be estimated computationally. As is common in literature for adjoint based a348

posteriori analysis, the adjoint solutions are approximated in a space Wh (resp. W r)349

such that V h ⊂Wh (resp. V r ⊂W r) [34, 30, 28, 19, 18, 34, 30, 28, 19, 18, 23, 19, 14,350

8]. Wh may be obtained by refining the mesh or by increasing the polynomial order.351

Similarly, the functions (uhd , u
r
d) are approximated in Wh, such that they satisfy the352

boundary condition exactly on a boundary vertex and are zero on the interior vertices.353

These approximations lead to error estimates from the error representations (28) and354

(36). Since the formulas are similar, except that the (φh, φr) and (uhd , u
r
d) are replaced355

by their approximations, we avoid re-writing the error estimates explicitly and instead356

now refer to (28) and (36) as error estimates.357

The accuracy of the error estimate is measured by the effectivity ratio defined as358

γeff =
Estimated error

True error
.359

An accurate error estimator has an effectivity ratio close to one. Since the true solution360

is not known, we compute a more accurate reference numerical solution using a higher361

dimensional space for measuring the true error.362

4.2. Guiding refinement decisions using error estimates.363

4.2.1. Error Contributions and cancellation of error. Once the error esti-364

mate is in place, its various components Er, Em, EΓ and E∂Ω reflect different sources365

of error. Refinement strategies based on these components can then be derived. For366

example, if EΓ is the dominant component, then simplices in Tm which intersect with367

the interface Γ may be refined to reduce the error. This strategy of refining the mesh368

is quite different from classical adaptive refinement schemes. One main difference is369

that, in refining the simplices on the interface to reduce EΓ we may use either uni-370

form refinement or an adaptive refinement strategy. The other difference is in the371

treatment of cancellation of errors which we now discuss.372
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Classical adaptive refinement schemes form elemental error indicators and refine373

elements which have the largest value of such indicators [1, 55, 33]. While adaptive374

refinement often outperforms uniform refinement, its efficiency is somewhat limited375

for decreasing error in a QoI as the error contributions may be both positive or376

negative, and hence there is often significant cancellation of error [19]. This is in377

contrast to reducing error in standard norms which are always positive [40, 5, 12]. In378

classical adjoint based adaptivity, the absolute value of the elemental error indicators379

is taken and the principle of equidistribution applied. By taking the absolute value380

of the elemental error contributions, the cancellation of error due to opposing signs is381

lost. This phenomenon, along with a novel refinement strategy based on “mesoscale”382

regions is illustrated for ODEs in [19]. On the other hand, uniform refinement reduces383

the error predictably in the asymptotic regime and hence it is expected to reduce both384

the positive and negative elemental contributions equally. Thus, uniform refinement385

is expected to preserve the cancellation of error and this was observed experimentally386

in [19]. Uniform refinement is also more predictable in the expected decrease of error.387

In this article, we outline refinement strategies targeting sources of error as well as388

those based on elemental error indicators.389

The main idea behind targeting sources of error to obtain accurate solutions is390

to reduce the dominant (in magnitude) source of error Er, Em, EΓ and E∂Ω. This391

is accomplished by refining (either uniformly or adaptively) the corresponding dis-392

cretization as shown in Table 1.393

Dominant source Discretization to refine

Er Refine T
Em Refine Tm
EΓ Refine simplices containing Γ ∩ Ωm
E∂Ω Refine simplices containing ∂Ω ∩ Ω

Table 1: The discretizations to be refined based on the dominant source of error. The
refinement may be uniform or adaptive.

4.2.2. Uniform Contribution Refinement. In the Uniform Contribution Re-394

finement, we choose the dominant component for refinement if it is at least 3 times395

larger than the next dominant component, or if both the top two dominant com-396

ponents have the same sign, so that the cancellation of error is preserved. If this397

requirement is not satisfied, the scheme defaults to standard uniform refinement.398

4.2.3. Adaptive Contribution Refinement. The Adaptive Contribution Re-399

finement is similar to the standard algorithms for adjoint weighted adaptive algo-400

rithms [32, 8, 2]. E.g., if the aim is to reduce the component Er, then we define an401

elemental error indicator based on (37) as402

(42) ηT = |−〈εm
∂us

∂n
, φr〉T,Γ−(ε∇Ur,∇φr)T −(κ̄2 sinhUr, φr)T −(ε∇Uh,∇φr)T,m|403

where T ∈ T , and the subscripts T,Γ, T and T,m refer to evaluations of the integrals404

restricted to the element T such that T ∩Γ 6= φ, T ∈ Ω and T ∩Ωm 6= φ respectively.405

Once a per elemental error estimator is defined, the Dörfler scheme is used for mark-406

ing the elements for refinement [27]. To preserve the cancellation of errors between407
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different sources of error, all sources which have a total error contribution of at least408

half the dominant error contribution are selected to be adaptively refined.409

4.2.4. Classical Refinement. In the classical adaptive refinement strategy we410

add up the terms in Er, Em, EΓ, E∂Ω and Eneg in Theorem 2 so that the error in the411

QoI for the nonlinear PBE is, Q(uh − Uh, ur − Ur) ≡ E is,412

(43)

E = −〈εm
∂us

∂n
, φr〉Γ − (ε∇Ur,∇φr)− (κ̄2 sinh(Ur), φr)− (ε∇Uh,∇φr)m

− (ε∇Uh,∇φm)m + (ε∇φr,∇(Urd − urd)) + (κ̄2αφr, (Urd − urd))
+ (ε∇φh,∇(Uhd − uhd))m + (ε∇φr,∇(Uhd − uhd))m + (ψ, (uhd − Uhd ) + (urd − Urd ))m

413

We define projection operators, πm : H1
0 (Ωm) → V mh and πr : H1

0 (Ω) → Vh. From414

(21) we have,415

(44) (ε∇Uh,∇πmφm)m = 0

(ε∇Ur,∇πrφr) + (κ̄2 sinh(Ur), πrφ
r) + (ε∇Uh,∇πrφr)m = −〈εm

∂us

∂n
, πrφ

r〉Γ.
416

Combining (43) with (44) leads to the following elemental error indicator for element417

T418

(45)

ηT = | − 〈εm
∂us

∂n
, (φr − πrφr)〉T,Γ − (ε∇Ur,∇(φr − πrφr))T

− (κ̄2 sinh(Ur), φr − πrφr)T − (ε∇Uh,∇(φr − πrφr))T,m
− (ε∇Uh,∇(φm − πmφm))T,m + (ε∇φr,∇(Urd − urd))T + (κ̄2αφr, (Urd − urd))T
+ (ε∇φh,∇(Uhd − uhd))T,m + (ε∇φr,∇(Uhd − uhd))T,m

+ (ψ, (uhd − Uhd )T + (urd − Urd ))T,m|

419

The elemental error indicator for the linearized PBE is similar except that sinh(Ur)420

is replaced by Ur and α by 1.421

5. Numerical experiments. We show the accuracy of the a posteriori error422

estimates and utilization of the different sources of error to obtain an accurate com-423

putation of the QoI for the Born ion and methanol. The values of the constants in424

the PBE are chosen as εm = 1, εs = 78 and κ̄2 = 0.918168 unless otherwise stated.425

The value κ̄2 = 0.918168 corresponds to an ionic concentration of 0.1 M. These values426

reflect typical scenarios for PBE simulations [12, 17]. The initial meshes, defining427

the domains Ωm, Ωs and the interface Γ are generated using GAMer[66]. We use428

the standard space of continuous piecewise linear polynomials for the solution spaces429

corresponding to um and ur, that is for spaces V mh and Vh. The spaces for the adjoint430

solutions Wh and W r are chosen to be continuous piecewise quadratic polynomials.431

For ease of implementation, we always ensure that Tm = T ∩ Ωm. The QoI (18)432

requires accurate integration near the points xi. This is achieved by refining the433

cells near xi a few times. The functions uhd , u
r
d, U

h
d , U

r
d , are such that they satisfy434

the boundary condition exactly on a boundary vertex and are zero on the interior435

vertices. This choice results in the component Eneg being exactly zero which was also436

verified numerically. Experiments are performed for the Born ion and the methanol437

molecule. The reference solutions needed for the effectivity ratios are computed using438

a mesh with 411635 vertices for the Born ion and a mesh with 90264 vertices for the439
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methanol molecule and using continuous piecewise quadratic polynomials for the finite440

element space. The reference values of the QoI for the linearized PBE for the Born ion441

and methanol are -276.749875 and -48.477443 respectively. The corresponding values442

for the nonlinear PBE are -276.825527 and -48.479878. Since the reference solutions443

themselves have some error, effectivity ratios are only shown for experiments for which444

the reference solution is relatively accurate. All computations are carried out in the445

finite element software package DOLFIN from the FEniCS library [48, 49, 3, 47]. The446

value of η for the QoI in (18) was chosen as 0.005. The Dörfler marking parameter447

is chosen as 0.2. The projection operators πm and πr were chosen as L2 projectors.448

5.1. Born Ion. The Born ion consists of a single point charge Q1 in the center449

of a spherical solute domain Ωm of radius R [45]. The solute is surrounded by a large450

spherical solvent domain, Ωs, as depicted in Fig. 2a which has been adopted from451

[17]. Table 2 shows the error estimate, the effectivity ratio and different sources of

+

Q1

R

Ωm

Ωs

(a) Born ion (b) Methanol

Fig. 2: Born ion and Methanol

452
error for the linearized PBE for two different meshes: an initial mesh of 6718 vertices453

and a uniformly refined mesh of 52014 vertices. In both cases, the effectivity ratio454

is close to one, indicating the accuracy of the error estimate. Moreover, we see that455

uniform refinement decreases all sources of error while preserving their signs, and456

hence accounts for cancellation of error. Similar results for the nonlinear PBE are457

shown in Table 3.458

N Est. Err. γeff Er Em EΓ E∂Ω

6718 -1.14 1.05 2.05e-01 5.26e-09 -1.34e+00 4.86e-04
52014 -0.248 1.04 1.19e-01 2.04e-06 -3.67e-01 1.36e-04

Table 2: Born ion: Error estimate, effectivity ratio and error contributions for the
linearized PBE (16) with N(u) = u. N is the number of vertices in T . The terms Er,
Em, EΓ and E∂Ω are defined in Theorem 1.

5.2. Methanol. We examine the accuracy of the error estimates in the more459

challenging setting of a methanol molecule, obtained from the APBS software pack-460

age [6]. The methanol molecule consists of three charged particles representing charge461

groups: CH3 and H with positive charges of 0.27 and 0.43 respectively, and an O atom462

with a negative charge of 0.7. The model is depicted in Fig. 2b adopted from [16].463

The numerical experiments are performed on two meshes: an initial mesh of 11769464
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N Est. Err. γeff Er Em EΓ E∂Ω

6718 -1.16 1.05 1.88e-01 5.13e-09 -1.34e+00 4.24e-04
52014 -0.254 1.04 1.13e-01 2.69e-06 -3.67e-01 1.18e-04

Table 3: Born ion: Error estimate, effectivity ratio and error contributions for the
nonlinear PBE (16) with N(u) = sinh(u). The terms Er, Em, EΓ and E∂Ω are
defined in Theorem 2.

vertices and a uniformly refined mesh of 90264 vertices. The results for the linearized465

and nonlinear PBE are shown in Tables 4 and 5. The effectivity ratios are again close466

to 1.0 and highlight the accuracy and robustness of the error estimate for both cases.467

N Est. Err. γeff Er Em EΓ E∂Ω

11769 -0.924 1.03 4.27e-01 4.67e-06 -1.35e+00 2.43e-06
90264 -0.231 1.01 1.49e-01 9.34e-06 -3.81e-01 6.87e-07

Table 4: Methanol: Error estimate, effectivity ratio and error contributions for the
linearized PBE (16) with N(u) = u.

N Est. Err. γeff Er Em EΓ E∂Ω

11769 -0.924 1.02 4.27e-01 3.31e-06 -1.35e+00 2.41e-06
90264 -0.232 1.01 1.49e-01 8.77e-06 -3.81e-01 6.81e-07

Table 5: Methanol: Error estimate, effectivity ratio and error contributions for the
nonlinear PBE (16) with N(u) = sinh(u).

5.3. Refinement strategies. We use the different sources of error identified by468

Er, Em, EΓ and E∂Ω to guide refinement decisions. We first give an example of the469

effect of refining different discretization components, highlighting the significance of470

cancellation of error. Finally we present examples based on the Uniform Contribution471

Refinement, Adaptive Contribution Refinement and Classical Refinement schemes472

explained in §4.473

5.3.1. Effect of refinement decisions on the QoI error. Consider the error474

information in Table 2 for the coarse mesh with 6718 vertices and error of −1.14. The475

uniformly refined mesh had 52014 vertices and an error of −0.248. On examining476

the different sources of error, we observe that the dominant error contribution is477

represented by EΓ. Thus, instead of uniformly refining the mesh, we only refine478

simplices on the interface Γ. This refinement strategy is carried out by marking479

simplices in Ωm which have one face on the interface, that is, marking simplices480

T ∈ T (and in Tm) such that T ∈ Ωm and T ∩ Γ is not the empty set.481

The refinement results are shown in Table 6. The “It.” indicates the refinement482

level or iteration, with 0 indicating the starting coarse mesh. After the interface483

is refined, we arrive at level 1, corresponding to row having N = 15541 vertices.484
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Comparing this to the solution obtained by uniform refinement in Table 2, the error485

is now slightly less while the number of vertices is only 30% of the number of vertices486

of the uniformly refined mesh. This reflects a significant cost savings in obtaining487

accurate solutions.488

At refinement level 1, once again, EΓ is the dominant component and we again489

refine the interface to reduce the error to 0.0124. Now, both Er and EΓ have the490

same order of magnitude, but opposite signs. If we still carry on refining the inter-491

face to arrive at level 3-Γ. However, now the error has increased to 0.0621! This492

behavior is quite common in numerical simulations, where refining a discretization493

parameter leads to an increase in the error rather than a reduction. Without the aid494

of adjoint based estimates, the cause of this increase may be hard to diagnose. The495

error information at levels 2 and 3 indicate why this increase occurred. The error at496

level 2 involved cancellation between the terms Er and EΓ. Refining the interface497

significantly reduced EΓ, while having only a marginal effect on Er. Thus, there is498

less cancellation of error and the error increased to 0.0621. A better option here is499

uniform refinement, which preserves the cancellation of error between different con-500

tributions [19]. The results of applying uniform refinement to Level 2 are shown as501

level 3-Uniform. The cancellation of error is preserved and the error decreased. Note502

that both the contribution of EΓ is the same for both levels 3(Γ) and 3−Uniform,503

while the contribution of Er only sees a significant decrease at level 3−Uniform.504

It. N Error Er Em EΓ E∂Ω

0 6718 -1.14 2.05e-01 5.26e-09 -1.34e+00 4.86e-04
1 15541 -0.214 1.53e-01 9.75e-07 -3.68e-01 4.78e-04
2 41760 0.0124 1.03e-01 2.30e-07 -9.07e-02 4.78e-04

3 (Γ) 141855 0.0621 8.41e-02 1.38e-07 -2.25e-02 4.78e-04
3-Uniform 323084 0.00853 3.09e-02 1.29e-07 -2.25e-02 1.35e-04

Table 6: Born ion: Error contributions and refinement for the linearized PBE.

5.3.2. Results for Uniform Contribution Refinement. The results of the505

Uniform Contribution Refinement strategy defined in §4 for the solution of the linear506

and nonlinear PBE for the Born ion are shown in Tables 7 and 8, while the results507

for methanol are shown in Tables 9 and 10. Comparing these results to Tables 2, 3,508

4 and 5, we observe that the Uniform Contribution Refinement achieves significantly509

more accurate solutions with a lower computational cost (as measured by the number510

of vertices in the mesh) for both Born ion and methanol. An interesting observation is511

at level 2 of Table 8 where Er and EΓ have almost the same magnitude but opposite512

signs. These two sources of error cancel, leading to an unexpectedly low error.513

5.3.3. Results for Adaptive Contribution Refinement. The results of the514

Adaptive Contribution Refinement strategy defined in §4 for the solution of the linear515

and nonlinear PBE for the Born ion are shown in Tables 11 and 12, while the results516

for methanol are shown in Tables 13 and 14. Comparing these results to Tables 2, 3,517

4 and 5, we observe that the Adaptive Contribution Refinement is almost an order518

of magnitude more accurate for a uniformly refined mesh having the same number519

of vertices. Adaptive Contribution Refinement also outperforms the Uniform Contri-520

bution Refinement strategy for relatively small values of N . A couple of interesting521
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It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -1.14 1.05 2.05e-01 5.26e-09 -1.34e+00 4.86e-04
1 15541 -0.214 1.06 1.53e-01 9.75e-07 -3.68e-01 4.78e-04
2 41760 0.0124 – 1.03e-01 2.30e-07 -9.07e-02 4.78e-04

Table 7: Uniform Contribution Refinement strategy defined in §4 applied to the lin-
earized PBE for the Born ion. It. refers to the refinement iteration or level.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -1.16 1.05 1.88e-01 5.13e-09 -1.34e+00 4.29e-04
1 15541 -0.224 1.05 1.44e-01 5.23e-07 -3.68e-01 4.17e-04
2 41760 3.49e-3 - 9.38e-02 4.86e-07 -9.07e-02 4.16e-04

Table 8: Uniform Contribution Refinement strategy defined in §4 applied to the non-
linear PBE for the Born ion.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 11769 -0.924 1.03 4.27e-01 4.67e-06 -1.35e+00 2.43e-06
1 20283 -0.275 1.02 1.06e-01 3.07e-07 -3.82e-01 2.40e-06
2 46212 -0.094 0.998 1.20e-03 7.72e-07 -9.52e-02 2.40e-06

Table 9: Uniform Contribution Refinement strategy defined in §4 applied to the lin-
earized PBE for the Methanol.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 11769 -0.924 1.03 4.27e-01 3.31e-06 -1.35e+00 2.41e-06
1 20283 -0.276 1.02 1.06e-01 8.55e-07 -3.82e-01 2.38e-06
2 46212 -0.0944 0.996 8.65e-04 4.38e-07 -9.52e-02 2.38e-06

Table 10: Uniform Contribution Refinement strategy defined in §4 applied to the
nonlinear PBE for Methanol.

observations are in order. In Table 12 the error decreases up to level 6 after which522

loss of error cancellation leads to an increase on level 7. In Table 14 we have an523

unexpectedly low error due to the cancellation between the terms Er and EΓ.524

5.3.4. Results for Classical Refinement. The results of the Classical Refine-525

ment strategy defined in §4 for the solution of the linearized and nonlinear PBE for526

the Born ion are shown in Tables 15 and 16, while the results for methanol are shown527

in Tables 17 and 18. Comparing these results to Tables 2, 3, 4 and 5, we observe that528

Classical refinement also performs well compared to uniform refinement. However, its529

performance is slightly worse than Adaptive Contribution Refinement as illustrated530

by Tables 11 and 15. In fact, the error at level 7 in table 15 shows almost a doubling531
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It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -1.14 1.05 2.05e-01 5.26e-09 -1.34e+00 4.86e-04
1 9476 -1.07 1.03 1.50e-01 1.07e-07 -1.22e+00 4.79e-04
2 14273 -0.521 1.02 1.24e-01 3.08e-07 -6.45e-01 4.78e-04
3 21293 -0.235 1.02 1.07e-01 3.88e-07 -3.42e-01 4.78e-04
4 33320 -0.0895 1.02 9.68e-02 2.72e-07 -1.87e-01 4.78e-04
5 60908 -0.00803 0.98 8.22e-02 2.61e-07 -9.07e-02 4.77e-04
6 112597 0.0112 1.13 5.90e-02 1.75e-07 -4.83e-02 4.77e-04
7 206897 0.0183 1.11 4.31e-02 2.87e-07 -2.53e-02 4.75e-04

Table 11: Adaptive Contribution Refinement strategy defined in §4 applied to the
linearized PBE for the Born ion.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -1.16 1.05 1.88e-01 5.13e-09 -1.34e+00 4.29e-04
1 9476 -1.08 1.02 1.38e-01 8.05e-08 -1.22e+00 4.19e-04
2 14273 -0.531 1.02 1.14e-01 4.24e-07 -6.45e-01 4.17e-04
3 21293 -0.244 1.02 9.77e-02 7.15e-08 -3.42e-01 4.16e-04
4 33320 -0.0983 1.01 8.80e-02 3.05e-07 -1.87e-01 4.16e-04
5 54112 -0.021 0.98 7.94e-02 -7.17e-08 -1.01e-01 4.16e-04
6 106120 -0.00159 - 4.96e-02 3.95e-08 -5.16e-02 4.13e-04
7 200323 0.0109 1.22 3.66e-02 1.31e-07 -2.61e-02 4.10e-04

Table 12: Adaptive Contribution Refinement strategy defined in §4 applied to the
nonlinear PBE for the Born ion.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 11769 -0.924 1.03 4.27e-01 4.67e-06 -1.35e+00 2.43e-06
1 12380 -0.564 1.04 1.98e-01 1.55e-06 -7.62e-01 2.42e-06
2 13852 -0.391 1.03 8.72e-02 1.56e-06 -4.78e-01 2.41e-06
3 17353 -0.275 1.02 1.21e-02 -1.17e-06 -2.87e-01 2.40e-06
4 22732 -0.206 1.01 -2.94e-02 -1.81e-06 -1.77e-01 2.40e-06
5 33019 -0.156 0.99 -5.16e-02 -5.96e-07 -1.04e-01 2.40e-06
6 50784 -0.127 0.98 -6.92e-02 -1.08e-06 -5.80e-02 2.40e-06
7 86224 0.000197 - 3.48e-02 2.20e-07 -3.46e-02 2.40e-06

Table 13: Adaptive Contribution Refinement strategy defined in §4 applied to the
linearized PBE for Methanol.

of error at level 6. This is explained by observing the behavior of the terms Er and532

EΓ, which are the two dominant sources of error, at these levels. Although both533

terms decrease in magnitude, there is less cancellation of error, leading to an overall534

increase. A similar increase in the error is observed at level 7 of Table 16.535
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It. N Est. Err. γeff Er Em EΓ E∂Ω

0 11769 -0.924 1.03 4.27e-01 3.31e-06 -1.35e+00 2.41e-06
1 12380 -0.564 1.04 1.97e-01 8.87e-07 -7.62e-01 2.40e-06
2 13852 -0.392 1.03 8.68e-02 4.96e-06 -4.78e-01 2.39e-06
3 17353 -0.275 1.02 1.17e-02 -1.42e-06 -2.87e-01 2.38e-06
4 22732 -0.206 1.00 -2.97e-02 -1.47e-06 -1.77e-01 2.38e-06
5 33036 -0.156 0.99 -5.19e-02 -8.73e-07 -1.04e-01 2.38e-06
6 50796 -0.127 0.98 -6.95e-02 -1.01e-06 -5.80e-02 2.38e-06
7 86276 1.67e-05 - 3.46e-02 -8.72e-07 -3.45e-02 2.38e-06

Table 14: Adaptive Contribution Refinement strategy defined in §4 applied to the
nonlinear PBE for methanol.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -1.14 1.05 2.05e-01 5.26e-09 -1.34e+00 4.86e-04
1 9481 -1.07 1.03 1.50e-01 5.62e-08 -1.22e+00 4.79e-04
2 14299 -0.512 1.02 1.24e-01 -4.16e-08 -6.36e-01 4.78e-04
3 21638 -0.23 1.02 1.06e-01 2.82e-07 -3.37e-01 4.78e-04
4 33959 -0.0868 1.02 9.58e-02 1.83e-07 -1.83e-01 4.78e-04
5 55762 -0.0116 1.00 8.68e-02 9.50e-08 -9.89e-02 4.78e-04
6 95162 0.0275 1.03 8.10e-02 1.28e-08 -5.40e-02 4.78e-04
7 165202 0.0487 1.02 7.75e-02 9.00e-08 -2.94e-02 4.78e-04

Table 15: Classical Refinement strategy defined in §4 applied to the linearized PBE
for the Born ion.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -1.16 1.05 1.88e-01 5.13e-09 -1.34e+00 4.29e-04
1 9481 -1.08 1.02 1.38e-01 1.06e-07 -1.22e+00 4.19e-04
2 14299 -0.521 1.02 1.14e-01 -3.29e-08 -6.36e-01 4.17e-04
3 21638 -0.239 1.02 9.70e-02 1.84e-07 -3.37e-01 4.16e-04
4 33959 -0.0955 1.01 8.71e-02 1.99e-07 -1.83e-01 4.16e-04
5 55762 -0.02 0.98 7.85e-02 1.07e-07 -9.89e-02 4.16e-04
6 95162 0.0192 1.06 7.28e-02 2.90e-07 -5.40e-02 4.16e-04
7 165192 0.0404 1.04 6.93e-02 4.39e-08 -2.94e-02 4.16e-04

Table 16: Classical Refinement strategy defined in §4 applied to the nonlinear PBE
for the Born ion.

5.3.5. Experiment illustrating difference between linear and nonlinear536

PBE results. In this section we perform an experiment to illustrate the difference537

in the results of the linear and nonlinear PBE solutions. To this end, we again choose538

the Born ion but now the charge on the ion, Q1, is taken to be ten times its value in539

earlier experiments and also set κ̄2 = 9.18168 which is also ten times larger than in540
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It. N Est. Err. γeff Er Em EΓ E∂Ω

0 11769 -0.924 1.03 4.27e-01 4.67e-06 -1.35e+00 2.43e-06
1 12637 -0.613 1.03 1.25e-01 7.97e-07 -7.38e-01 2.41e-06
2 14798 -0.352 1.02 5.26e-02 4.42e-07 -4.04e-01 2.40e-06
3 20782 -0.267 1.01 -5.43e-02 -1.61e-06 -2.13e-01 2.40e-06
4 34556 -0.131 0.99 -3.32e-02 6.86e-08 -9.74e-02 2.40e-06
5 63134 -0.0388 0.94 1.25e-02 -2.33e-07 -5.12e-02 2.40e-06
6 118378 -0.0098 - 1.77e-02 -1.35e-07 -2.75e-02 2.40e-06

Table 17: Classical Refinement strategy defined in §4 applied to the linearized PBE
for Methanol.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 11769 -0.924 1.03 4.27e-01 3.31e-06 -1.35e+00 2.41e-06
1 12637 -0.613 1.03 1.24e-01 2.05e-06 -7.38e-01 2.40e-06
2 14798 -0.352 1.02 5.22e-02 -1.86e-07 -4.04e-01 2.38e-06
3 20782 -0.267 1.01 -5.47e-02 -3.94e-07 -2.13e-01 2.38e-06
4 34538 -0.131 0.98 -3.35e-02 -3.19e-07 -9.75e-02 2.38e-06
5 63070 -0.0391 0.94 1.22e-02 1.45e-07 -5.13e-02 2.38e-06
6 118208 -0.01 - 1.75e-02 5.36e-08 -2.75e-02 2.38e-06

Table 18: Classical Refinement strategy defined in §4 applied to the nonlinear PBE
for methanol.

earlier experiments. We call this setup the highly charged Born ion. The difference in541

the computed QoI between the linear and nonlinear PBE for a mesh of 6718 vertices542

was approximately 59 units. The results for the different adaptive strategies also543

indicate different behavior between the linearized and nonlinear PBE.544

The results for the linear and nonlinear PBE using Uniform Contribution re-545

finement, Adaptive Contribution refinement and Classical Refinement are shown in546

Tables 19, 20, 21, 22, 23, 24. The results indicate that the Adaptive Contribution Re-547

finement performs better than Classical Refinement for the linearized PBE, while they548

both perform equally well for the nonlinear PBE. Uniform Contribution Refinement549

outperforms both Classical Refinement and Adaptive Contribution Refinement.550

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -128 1.04 6.81e+00 1.92e-07 -1.35e+02 3.76e-14
1 15541 -28.2 1.04 8.51e+00 7.96e-05 -3.68e+01 4.10e-15
2 41760 -5.12 1.01 3.95e+00 1.94e-05 -9.07e+00 3.14e-15
3 141855 -0.0159 - 2.24e+00 1.66e-05 -2.25e+00 3.12e-15

Table 19: Uniform Contribution Refinement strategy applied to linearized PBE for
the setup described in §5.3.5.
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It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -131 1.04 3.72e+00 3.27e-07 -1.35e+02 2.25e-15
1 15541 -29.4 1.04 7.36e+00 7.20e-05 -3.68e+01 2.46e-16
2 41760 -6.24 1.01 2.83e+00 2.36e-05 -9.07e+00 1.88e-16
3 141855 -1.18 - 1.07e+00 -5.90e-07 -2.25e+00 1.83e-16

Table 20: Uniform Contribution Refinement strategy applied to nonlinear PBE for
the setup described in §5.3.5.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -128 1.04 6.81e+00 1.92e-07 -1.35e+02 3.76e-14
1 9458 -116 1.02 6.51e+00 9.61e-06 -1.22e+02 8.52e-15
2 14164 -59.5 1.02 5.72e+00 7.12e-05 -6.53e+01 4.42e-15
3 21205 -29.9 1.01 4.49e+00 -2.03e-05 -3.44e+01 3.30e-15
4 33141 -15.3 1.01 3.55e+00 2.44e-05 -1.89e+01 3.29e-15
5 53605 -7.32 0.99 2.85e+00 -4.94e-06 -1.02e+01 3.28e-15
6 91792 -3.3 0.95 2.30e+00 2.61e-05 -5.59e+00 3.15e-15
7 160005 -1.12 - 1.92e+00 1.41e-05 -3.04e+00 3.15e-15

Table 21: Adaptive Contribution Refinement strategy applied to linearized PBE for
the setup described in §5.3.5.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -131 1.04 3.72e+00 3.27e-07 -1.35e+02 2.25e-15
1 9458 -118 1.02 4.23e+00 6.37e-06 -1.22e+02 5.13e-16
2 14164 -60.8 1.02 4.51e+00 1.48e-05 -6.53e+01 2.68e-16
3 21206 -30.9 1.01 3.59e+00 2.14e-06 -3.45e+01 1.98e-16
4 33216 -16.2 1.00 2.63e+00 2.77e-05 -1.88e+01 1.97e-16
5 53748 -8.24 0.98 1.90e+00 -3.05e-06 -1.01e+01 1.98e-16
6 92219 -4.27 0.95 1.30e+00 2.44e-06 -5.56e+00 1.88e-16
7 160740 -2.13 0.90 8.86e-01 -2.27e-06 -3.02e+00 1.87e-16

Table 22: Adaptive Contribution Refinement strategy applied to nonlinear PBE for
the setup described in §5.3.5.

6. Conclusions. Computing a QoI from the numerical solution of the PBE551

often has significant error that needs to be quantified. In this article, we develop552

adjoint based error estimates for this purpose. The adjoint operators are defined553

by accounting for the coupled nature of the three term split PBE as well as the554

issues arising due to the regularity of the normal derivative. The resulting error555

estimates are shown to be accurate, with effectivity ratios close to one. The error is556

partitioned in such a way that specific sources of error are identified and addressed.557

Moreover, novel refinement schemes, called Uniform Contribution Refinement and558

Adaptive Contribution Refinement in this article, utilize the information about the559
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It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -128 1.04 6.81e+00 1.92e-07 -1.35e+02 3.76e-14
1 9481 -116 1.02 6.51e+00 9.62e-06 -1.22e+02 8.52e-15
2 14299 -57.9 1.02 5.69e+00 7.71e-05 -6.36e+01 4.10e-15
3 21638 -29.2 1.01 4.46e+00 1.38e-05 -3.37e+01 3.60e-15
4 33952 -14.8 1.01 3.49e+00 1.23e-05 -1.83e+01 3.58e-15
5 55747 -7.09 0.98 2.80e+00 2.70e-05 -9.89e+00 3.03e-15
6 95115 -3.16 0.95 2.25e+00 1.60e-05 -5.40e+00 2.91e-15

Table 23: Classical Refinement strategy applied to linearized PBE for the setup de-
scribed in §5.3.5.

It. N Est. Err. γeff Er Em EΓ E∂Ω

0 6718 -131 1.04 3.72e+00 3.27e-07 -1.35e+02 2.25e-15
1 9477 -118 1.02 4.23e+00 8.49e-06 -1.22e+02 5.12e-16
2 14286 -59.8 1.02 4.49e+00 1.86e-05 -6.43e+01 2.47e-16
3 21365 -30.4 1.01 3.61e+00 2.82e-05 -3.40e+01 2.21e-16
4 33470 -16 1.00 2.60e+00 1.84e-05 -1.86e+01 2.18e-16
5 54450 -8.16 0.98 1.88e+00 6.44e-07 -1.00e+01 1.85e-16
6 93369 -4.22 0.95 1.28e+00 -5.89e-07 -5.50e+00 1.77e-16

Table 24: Classical Refinement strategy applied to nonlinear PBE for the setup de-
scribed in §5.3.5.

sources of error to arrive at accurate computed values of the QoI.560

The effects of interface geometry on the error is an interesting area of future561

research. The current article is based on the the standard assumption in the PBE562

literature that the tessellated geometric representation of the interface is the true563

interface, e.g. as in references [2, 5, 20]. The effect of the geometry, which could be564

considered a “model form error”, is an interesting topic to explore and the author565

intends to pursue it in future.566
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