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Abstract—Estimating the parameter of a Bernoulli process
arises in many applications, including photon-efficient active
imaging where each illumination period is regarded as a single
Bernoulli trial. Motivated by acquisition efficiency when multiple
Bernoulli processes (e.g., multiple pixels) are of interest, we
formulate the allocation of trials under a constraint on the
mean as an optimal resource allocation problem. An oracle-
aided trial allocation demonstrates that there can be a significant
advantage from varying the allocation for different processes
and inspires the introduction of a simple trial allocation gain
quantity. Motivated by achieving this gain without an oracle, we
present a trellis-based framework for representing and optimizing
stopping rules. Considering the convenient case of Beta priors,
three implementable stopping rules with similar performances
are explored, and the simplest of these is shown to asymptotically
achieve the oracle-aided trial allocation. These approaches are
further extended to estimating functions of a Bernoulli parameter.
In simulations inspired by realistic active imaging scenarios, we
demonstrate significant mean-squared error improvements up
to 4.36 dB for the estimation of p and up to 1.86 dB for the
estimation of log p.

Index Terms—adaptive sensing, Bernoulli processes, beta dis-
tribution, coding gain, computational imaging, conjugate prior,
dynamic programming, greedy algorithm, lidar intensity, low-
light imaging, photon counting, total-variation regularization

I. INTRODUCTION

Estimating the parameter of a Bernoulli process is a fun-
damental problem in statistics and signal processing. From
the binary-valued outcomes of independent and identically
distributed (i.i.d.) trials (generically failure (0) or success (1)),
we wish to estimate the probability p of success. Among myr-
iad applications, our primary interest is raster-scanned active
imaging in which a scene patch is periodically illuminated with
a pulse, and each illumination period (Bernoulli trial) either
has a photon-detection event (success) or not (failure) [1]. The
probability p of a photon-detection event has a monotonic
relationship with the reflectivity of the scene patch, and a
monotonic function of an estimate of p becomes the corre-
sponding image pixel value. For efficiency in acquisition time
or illumination energy, we are motivated to form the image
from a small number of illumination pulses, under conditions
where p is small.! Other types of raster-scanned imaging
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!For applications using time-correlated single photon counting driven by
a detector with dead time, such as a single-photon avalanche diode (SPAD),
it is recommended to keep p below 0.05 to avoid time skew and missed
detections [2].

can be modeled similarly assuming that the dwell time is an
integer multiple of some base time interval, during which the
observations are binary.

Conventional methods are not adaptive. With a fixed number
of trials n, the number of successes K is a binomial random
variable, and the maximum likelihood (ML) estimate of p is
K /n. Though less common in active imaging, a well-known
alternative in the statistics literature is to fix a number of
successes ¢. Repeating trials until success ¢ occurs results
in a random number of trials M that is a negative binomial
random variable,” and the ML estimate of p is ¢ /M. While
there may seem to be nothing to design here, a constraint
on the mean number of trials opens up possibilities for
data acquisition that results in neither binomial nor negative
binomial distributions. The mean may be over a multiplicity of
(non-random) Bernoulli process parameters to estimate (such
as in active imaging with one parameter per pixel) or over
a prior for a single Bernoulli parameter. The two cases are
formally linked through the relative frequency interpretation of
probability, with the empirical distribution of the multiplicity
of deterministic parameters in the former case playing the
role of the prior distribution in the latter case [3]. For mul-
tiple deterministic parameters, we have a resource allocation
problem reminiscent of bit allocation in transform coding [4],
[5]. As we will demonstrate, in an oracle-aided setting, trials
can be allocated to maximize a trial allocation gain that is
analogous to the coding gain of transform coding. For a single
random parameter, a simple and implementable approach — not
requiring an oracle — asymptotically achieves the optimal trial
allocation gain and may perform better than the oracle-aided
method for moderate numbers of trials.

The focus of this paper is on allocating trials in the
estimation of a single random parameter through the design
of a stopping rule. A stopping rule may — implicitly and
stochastically — allocate trials differently for different values
of p, even though p is not known a priori. We show that
any optimal stopping rule can be described by a trellis rather
than a more complicated graph, and greedy construction of
the trellis is very nearly optimal. For a rectangular array
of Bernoulli processes representing a scene in an imaging
problem, applying a good stopping rule allocates more trials
to the pixels where they provide the most benefit. The final
image formation may include a method such as total variation
(TV) regularization for exploiting spatial correlations among

2Note that the negative binomial distribution is defined inconsistently in
the literature, with sometimes the number of failures being fixed rather than
the number of successes (reversing the roles of p and 1 — p).
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neighbors. Regularized image formation makes it more dif-
ficult to optimize the acquisition, but it does not invalidate
the advantage from adaptive acquisition. In simulations with
parameters realistic for active optical imaging, we demonstrate
a reduction in mean-squared error (MSE) by a factor of up
to 2.73 (4.36 dB) in comparison to the same regularized
reconstruction approach applied without adaptation in numbers
of trials. Such gains vary based on image content, and gains
without regularization are predictable from the trial allocation
gain formulation.

A. Related Work

1) Statistics Literature: In statistics, forming a parameter
estimate from a number of i.i.d. observations that is de-
pendent on the observations themselves is called sequential
estimation [6]. Early interest in sequential estimation of a
Bernoulli process parameter was inspired by the high relative
error of deterministically stopping after n trials when p is
small. Specifically, the standard error of the ML estimate is
v/p(1 — p)/n, which for small p is unfavorable compared to
anything proportional to p. This shortcoming manifests, for
example, in requiring large n to distinguish between two small
possible values for p.

Haldane [7] observed that if one stops after ¢ successes, the
(random) number of trials M is informative about p. Specifi-
cally, (¢ —1)/(M —1) is an unbiased estimate of p (provided
¢ > 2), and its standard error is proportional to p (provided
¢ > 3). (The ML estimate ¢/M is not unbiased, though M /¢
is an unbiased estimate of 1/p.) Tweedie [8] suggested to
call this inverse binomial sampling, but the resulting random
variable is now commonly known as negative binomial or
Pascal distributed. More recent works have focused on non-
MSE performance metrics [9], [10], estimation of functions
of p [11], estimation from imperfect observations [12], and
composite hypothesis testing [13].

2) Photon-Efficient Imaging and Variable Dwell Time:
First-photon imaging [14] introduced sequential estimation to
active imaging. This method uses the number of illumination
pulses until the first photon is detected to reveal information
about reflectivity, setting ¢ = 1 in the concept of Haldane [7]
and thus using geometric sampling as a special case of
negative binomial sampling. A censoring method is used to
approximately separate signal and background detections, and
spatial correlations are used to regularize the estimation of the
full scene reflectivity image, resulting in good performance
from only 1 detected photon per pixel, even when half of
the detected photons are attributable to uninformative ambient
light. Subsequent work with binomial sampling (and otherwise
identical experimental conditions) resulted in similar perfor-
mance [1], and greatly increasing robustness to ambient light is
largely attributable to improving the censoring step [15]. These
works leave questions on the importance of negative binomial
sampling to first-photon imaging unanswered; comparing first-
photon imaging to photon-efficient methods with deterministic
dwell time [1], [15]-[25] was an initial inspiration for the
present work.

While recent works have exploited the first-photon idea
in imaging techniques such as ghost imaging [26], [27] and

x-ray tomography [28], previous uses of variable dwell time
are not closely connected to sequential estimation or the
result of optimized resource allocation. For example, in lidar,
varying dwell time to maintain approximately constant signal
strength despite varying effective reflectivity (including greater
radial fall-off for more distant scene patches) dates back to
at least the 1970s [29]. He et al. [30] closely follow the
technique of [1], including its background censoring, and vary
the dwell time to keep the number of photon detections after
censoring (i.e., photon detections attributed to signal rather
than background) at each pixel approximately constant. In
scanning electron microscopy, Dahmen et al. [31] increase
dwell time where a measure of image detail is large. To
the best of our knowledge, no previous paper has formally
optimized dwell time under a Bernoulli process measurement
model.

B. Main Contributions and Preview of Results

1) Framework: This work discusses a novel framework
for depicting and understanding stopping rules for sequential
estimation of Bernoulli parameters under number of trials
constraints (Section III). In this framework, first presented
in [32], each Bernoulli trial corresponds to a transition in a
trellis in which each node is identified by the number of trials
and number of successes; it is easily shown that distinct paths
to reach a given node need not be distinguished. A stopping
rule is the assignment of probabilities of stopping to each
node in the trellis (see Figs. 4-6). By construction, a stopping
rule defined in this way is implementable because it does not
depend on knowledge of p or non-causally on the Bernoulli
process. This framework applies equally well under any prior
for p.

2) Stopping Rule Design: Simple stopping rules lead to
binomial (Fig. 5(a)) and negative binomial (Fig. 5(b)) sam-
pling. Specializing to the Beta family of priors, which is both
convenient and conventional because it is the conjugate prior
for the relevant observation distributions, methods to optimize
the stopping rule are presented in decreasing order of com-
putational complexity: dynamic programming (Section IV-A),
offline greedy design (Section IV-B), and online threshold-
based termination (Section IV-C) first introduced in [32].
Empirically, all three methods, including the online method
requiring no storage of a precomputed stopping rule, provide
very similar performance. Thus, the easily implementable
online method provides very nearly optimal performance.

3) Analysis in Oracle-Aided Setting: This paper introduces
the concept of oracle-aided trial allocation whereby processes
with different parameters are allocated different fractions of
an overall trial budget (Section II-A). This yields a readily-
computed trial allocation gain that can be arbitrarily large,
though it is generally modest (Section II-B). Furthermore, we
show that under any Beta prior the threshold-based stopping
asymptotically allocates trials identically to the oracle-based
optimal (Section IV-E).

4) Evaluation: In simulations inspired by realistic ac-
tive imaging scenarios, an MSE improvement factor of up
to 4.36dB is demonstrated where spatial correlations are
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exploited through total variation (TV) regularization (Sec-
tion VI-A). Without TV regularization, achieved gains are
close to the values predicted by the theoretical trial allocation
gain. For example, the theoretical trial allocation gain is
2.29 dB, and a gain of 2.27 dB is realized for the Shepp-
Logan phantom.

5) Estimating functions of p: Inspired by applications
where estimating functions of p is of interest [11], online
threshold-based termination is also extended to estimating
log p from Bernoulli observations (Section V). Experimental
results without TV regularization demonstrate improvements
of up to 1.86 dB using the threshold-based stopping rule versus
the conventional binomial sampling (Section VI-B).

II. TRIAL ALLOCATION ACROSS MULTIPLE PROCESSES

Consider the estimation of the parameters {p; }/_, of a finite
number r of Bernoulli processes with binomial sampling of
each process. When m; trials of process ¢ are observed, the
MSE of the ML estimate of p; is p;(1 —p;)/m;. Suppose that
we are interested in making the average of the MSEs,

Z pz pz

small under a constraint on the average of the numbers of
trials (1/7)>"1_, m; <.

Since p;(1—p;) varies over [0, 1/4] for p; € [0, 1], there can
be an advantage to varying the m; values. However, that allo-
cation of trials depends on parameters that are to be estimated.
In this section, we suspend the need for implementability and
instead study the optimal trial allocation as if the parameters
were known. This provides a benchmark for the implementable
methods developed in the remainder of the paper, with {p; }7_,
playing the role of a discrete prior on p. We also consider
7 — 00 to reach a distributional limit.

A. Oracle-Aided Optimal Allocation

In optimizations such as

. Z pz 1 _pz
m;, 1=1,2,...,7 4

min Zml <rnp, (1)
ignoring that each m; should be a positive integer, each MSE
vs. number of trials trade-off should be at the same slope, else
it would be advantageous to shift trial resources to the process
for which the benefit (MSE reduction) per trial is largest. This
is formalized using the method of Lagrange multipliers. The
resulting optimal allocation is

pi(1—pi)
2= vVPi(1 = 1))
Since each process has a fixed number of trials m;, indepen-
dent of the experimental outcome of each trial, we call using
these numbers of trials oracle-aided binomial sampling.
Example 1 (Oracle-aided allocations):
(a) Let p; = € and p, = 1/2. Then the fractional oracle-
aided allocations are
mi e(l—e) ms 1/2

2n  Je(l—e)+1/2° 20 Je(1—e)+1/2

m; = i=1,2...,r. (2

3

g1 0.08
: Twifn]| 0% eseoseoea,
Fo5l  Ttreeneooot = S04 o o
g 4,:; o o
.g = 0.02t o o
g % 02 04 06 08 1 % 5 10 15 20
€ 3

(a) Example 1(a) (b) Example 1(c) with » = 20

Fig. 1. Oracle-aided optimal allocations in Examples 1(a) and 1(c).

These are plotted as functions of ¢ in Fig. 1(a).
(b) Let p1 =pp =--- =pr—1 =€ and p, = 1/2. Then the
fractional oracle-aided allocations are

m} e(1—e¢)

mi _ =12, ..., 1,
rn (r—1)ve(l—¢e)+1/2
m 1/2

o (r—1)y/e(l—e)+1/2

(¢) Letp; = (2t —1)/(2r), i =1, 2, ..., r. The fractional
oracle-aided allocations m; /(rn) are plotted for r = 20
in Fig. 1(b).

B. Trial Allocation Gain

Using the oracle-aided allocations (2) reduces the average
MSE relative to a constant allocation my = mo = -+ =m, =
1. The constant allocation results in the average MSE

lzr:pi(l —pi) 3)
r 1=1 N ,

whereas using (2) yields

sz pz _ Z\/l—_pzrnzij p]
%(Z\/mu—m)) : 4)

We define the ratio of (3) and (4) as the trial allocation gain:

r> i pi(l—p;
e = 2z pi(l—pi) 5)

(22:1 pi(1— Pj)>2

Trial allocation gain is reminiscent of the coding gain in
transform coding [4], [5].

Example 2 (Trial allocation gains):

(a) For the parameters in Example 1(a), the trial allocation
gain is plotted as a function of ¢ in Fig. 2. Notice that
in the limit of ¢ — 0, all the trials are allocated to
the nontrivial Bernoulli process, doubling its number of
trials, which halves the average MSE. Thus Yajjoc — 2.

(b) For the parameters in Example 1(b), lim._,g Yaioc = 7-

(c) For the parameters in Example 1(c), the trial allocation
gain is plotted as a function of r in Fig. 2(b).

(d) Fig. 3(a) shows the “"Modified Shepp—Logan phantom”
provided by the Matlab phantom command, at size
100 x 100 and scaled to [0.001, 0.101]. Fig. 3(b) shows
a histogram of the 10* intensity values of the phantom.
Evaluating (5) gives 1.6944, or 2.29 dB.
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Fig. 2. Trial allocation gains in Examples 2(a) and 2(a).
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Fig. 3. Phantom of size 100 X
(Example 2(d)).

100 with trial allocation gain of 1.686

€ [1, r]. The upper bound is
example.

One can show that Yajec
illustrated in part (b) of the

C. Distributional Limit

Suppose now that the Bernoulli process parameter is mod-
eled with random variable P and the number of trials M is to
be assigned by an oracle (i.e., it is allowed to depend on the
realization of P) to minimize the MSE of the ML estimate
of P under the constraint E[M] < n. By analogy to the
computations giving (2) — or formally taking a limit of r — oo
with the empirical distribution of {p;}7_; converging to the
distribution of P — the number of trials should be assigned
based on how large y/P(1 — P) is relative to E[\/P(1 — P)]:

P1-P)

M=n—"—=. 6
"E[/PA_P)| ©
The resulting trial allocation gain is
EP(1-P
Yalloc = [ ( )} 5 (7
(E[VP(-P)))
This can also be written as
var(V)
Yalloc = 1+ E— ()
(E[V])®

where V' = /P(1— P). It follows that Y0 > 1, with
equality if and only if the random variable \/P(1 — P) has
Zero variance.

Example 3 (Trial allocation gains — random parameter):

(a) Let P have the continuous uniform distribution on [0, 1].
Then evaluating (7) gives YValoe = 32/(372) ~ 1.0808.
This value is the asymptote in Fig. 2(b).

(b) Let P take two values: % with probability 6 and 0
with probability 1 — 6. Then E[P(1 — P)] = §/4 and
E[\/P(1 — P)] = 6/2. Substituting in (7) gives Yalloc =
1/6. We can interpret this with relative frequencies:

4

Since p = 0 requires no trials, fraction § of the time,
p = 1/2 will occur and should be allocated 1/4 times
the mean number of trials.

When p < 1 holds, p(1 — p) =~ p. Therefore, (8)
becomes approximately invariant to rescaling. For exam-
ple, rescaling the phantom in Example 2(d) by a factor
of 2 to [0.002, 0.202] gives Yalloc =~ 1.6633, and by a
factor of % to [0.0005, 0.0505] gives Yanoc ~ 1.7096;
these are small changes from the value in Example 2(d).

()

The first two parts of the example show that though an
allocation gain may typically be modest, it may also be
arbitrarily large. The third part shows that allocation gain is
approximately dependent on the coefficient of variation of the
Bernoulli parameter, provided that the parameter is known to
be small.

Having established that varying the numbers of trials can
be beneficial, we now turn our attention to methods that do
not depend on an oracle. We will compare to the oracle-aided
allocations in certain asymptotic settings.

III. OBSERVATION OF A SINGLE BERNOULLI PROCESS

Let {X,, : n =1, 2, ...} be a Bernoulli process with an
unknown random parameter p, and let € Rt be a trial
budget. A stopping rule consists of a sequence of continuation
probability functions

™ {0, 1} = [0, 1],

n=0,1..., )

that give the probability of continuing observations after trial
n — based on a biased coin flip independent of the Bernoulli
process — as a function of (X, Xo, ..., X,,). The result is
a random number of observed trials N.3 The stopping rule is
said to satisfy the trial budget when E[N] < 7. It is said to
be deterministic when every m,, takes values only in {0, 1}
and it is said to be randomized otherwise. A randomized
stopping rule can be seen as stochastic multiplexing among
some number of deterministic stopping rules.

Our goal is to minimize the MSE in estimation of p through
the design of a stopping rule that satisfies the trial budget and
of an estimator p (X7, Xo, ..., Xy). We will first show that
the continuation probability functions can be simplified greatly
with no loss of optimality. Then, we will provide results on
optimizing the stopping rule under a Beta prior on p.

A. Framework for Data-Dependent Stopping

Based on (9), a natural representation of a stopping rule
is a node-labeled binary tree representing all sample paths
of the Bernoulli process, with a probability of continuation
label at each node. This representation has 2¢+1 — 1 labels for
observation sequences up to length d. However, the tree can be
simplified to a trellis without loss of optimality. Conditioned
on observing k successes in m trials, all (’,’;) sequences of

3The time N does not satisfy the standard definition of a stopping time
when the stopping rule is randomized because randomness independent of the
sequence of outcomes { Xy, } is allowed to influence the decision of whether
or not to continue observations.
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Fig. 4. A node-labeled trellis showing continuation probabilities for obser-
vation sequences up to length 5; gg, ., denotes the probability of continuing
after observing k successes in m trials.

length m with k successes are equally likely. Thus, no im-
provement can come from having unequal continuation prob-
abilities for the (Tk”) tree nodes that each represent having &
successes in m trials. Instead, these nodes should be combined,
therefore reducing the tree to a trellis. This representation has
1(d+1)(d+2) labels for observation sequences up to length
d. The continuation probability functions are reduced to a set
of probabilities {qxm : m=0,1 ...; k=0,1, ..., m} for
continuing after £ successes in m trials, as depicted in Fig. 4.

Trellises alone — without labels — give a simple represen-
tation for both data-dependent and data-independent deter-
ministic stopping rules: Hence, we begin with some related
terminology that will be used throughout this paper.

Definition 1 (Complete trellis): A complete trellis of depth
d € N contains all nodes v = (k,m) belonging to the set

To={(k,;m):k=0,1,....m; m=0,1,....,d}. (10)

Definition 2 (Strategy): Any T € 274 is a strategy when all
nodes in T" are connected and 7" contains the root node (0, 0).

Henceforth, we restrict our attention to strategies and
stochastic multiplexing among strategies. The stopping rule
prescribed by the strategy 1" is

1, v=(k,m)eT;
0, otherwise.

Gk (T) = (1)

B. Standard Sampling Methods and their Representations

The conventional use of a fixed number of trials n corre-
sponds to continuation probabilities

1, m<n;

Qke,m = 12)

0, otherwise.

Regardless of the sample path, one observes exactly n trials,
and the number of successes K is a Binomial(n, p) random
variable. We refer to this as binomial sampling or the bino-
mial stopping rule. An example of the corresponding trellis
representation for a fixed number of trials n = 5 is shown in
Fig. 5(a).

(a) binomial (b) negative binomial

Fig. 5. Green nodes form the trellis representations 7' of (a) the binomial
stopping rule with n = 5 and (b) the negative binomial stopping rule with
¢ = 2; these are nodes with continuation probability 1. Red nodes are not in
T; these are nodes with continuation probability 0.

The technique analyzed by Haldane [7] and employed in
first-photon imaging [14] with ¢ = 1 can be expressed with
continuation probabilities

1, k<
= ) ) 13
T, 0, otherwise. (13)

Observations cease with ¢ successes in M trials, where M
is a NegativeBinomial(¢, p) random variable. We call such
a strategy the negative binomial stopping rule, or geometric
stopping rule for the special case where ¢ = 1. The trellis
representation of the negative binomial stopping rule for ¢ = 2
is shown in Fig. 5(b).

In general, observations cease with K successes in M trials,
where K and M are both random variables. Importantly, the
i.i.d. nature of a Bernoulli process makes the pair (K, M)
contain all the information that is relevant from the sequence
of observations. As noted in the reduction from tree to trellis,
conditioned on (K, M) = (k,m), all sequences of length m
with k£ successes are equally likely, so the specific sequence
among these is uninformative about p.

C. Analysis Under Beta Prior

Our method for optimizing the design of continuation
probabilities is through analyzing mean Bayes risk reduction
from continuation. We define risk function L as squared error
or squared loss

L(p,p) = (p — P)*,

where p is the unknown Bernoulli parameter and p is the
estimate of this parameter. The Bayes risk R is defined as

R(p) = E[L(p,p)] = E[(p - D)*] ,

which in this case is the MSE. Using the minimum MSE
(MMSE) estimator, for which p = E[P], the Bayes risk is
the variance of the posterior distribution. Thus, key to the
optimization is to track posterior variances through the trellis.
For any prior on p, the posterior variance could be computed
online or precomputed for some fixed trellis. Here we provide
detailed computations only for the convenient case of choosing
a conjugate prior.
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1) Beta Prior: The Beta distribution is the conjugate prior
for Bernoulli, binomial, and negative binomial distributions:
When P has the Beta(a, b) distribution with probability den-
sity function

F(a’ + b) a—1

fr(p;a,b) = WID (1—p)°t,

where I'(-) = (- — 1)! is the gamma function, the posterior
distribution after observing k successes in m trials has the
Beta(a+k,b+m — k) distribution. The beta distribution P ~
Beta(a, b) has mean

a
ob = E[P] = 14
Ha,b [P] arb (14)
and variance
b
02, = var(P) = a (15)

(a+b)32(a+b+1)

2) Expected Number of Trials: For the stopping rule rep-
resented by the trellis 7', the expected number of trials is
the weighted sum of the depths of all stopping (or leaf)
nodes with weights corresponding to probability of reaching
that node, under the initial prior. For a trellis T' € 274
and initial prior Beta(«, §), the probability of reaching any
node v = (k,m) € Ty can be expressed recursively using
the probabilities of reaching its parents, (k — 1,m — 1) and
(k,m — 1). Conditioned on reaching (k — 1,m — 1), the
probability of reaching (k, m) is the product of continuation
probability gx_1,m—1(T) and success probability

a+k—1

a+pf+m—1 (16a)

Ho+k—1,84m—k =
similarly, conditioned on reaching (k,m — 1), the probability
of reaching (k,m) is the product of continuation probability
qk.m—1(T) and failure probability

B4+m—k—1
1— g ekl = ——————. 16b
otk prm—k=1 = g T — 1 (16b)
Hence, we have the recursion
a+k—-1
m(T) =ti—1m-1(T)qt—1.m1(T) ————
km (T) =uk—1,m—1(T)qr—1,m—1( )a+ﬂ+m—1
+m—-k—-1
Fugem—1(T)qre,m—1(T) P (17)

a+pB+m-—1

for the probability uy ,,,(T") of reaching node (k,m). The
recursion is initialized with woo(T) = 1 and uk n(T) = 0
when k ¢ {0,1,...,m}. Since T € 274, it suffices to compute
uptom=d-+1.

Using uy, (1) from (17), the expected number of trials
incurred by a strategy 7' € 27¢ starting with a Beta(a, ()
prior is

hag(T) = Z mug,m(T).

vET g1 \T

(18)

The nonzero terms in the sum correspond to the reachable leaf
nodes, which are all contained in 7" = Tg41 \ T.

6

3) Expected Bayes Risk: Under initial prior Beta(c, /), the
Bayes risk of the estimate of p from observations leading to
node (k,m) is given by (15), with a = o+ k and b = 8 +
m — k. A strategy T has expected Bayes risk g, g(7") given
by the sum of the Bayes risks of nodes with zero continuation
probability weighted by the probabilities of reaching that node:

90.6(T) = Y e (T)0% 4k i
vel’

- (a+k)(B+m—k)
_ Zuk,m(T)<a+5+m)2(a+B+m+1)'

19)

4) Optimization Problem Statement: With the proposed
trellis-based framework, finding an optimal deterministic stop-
ping rule (in the MSE sense) under an average budget con-
straint becomes a set minimization problem:

T* = argmin g, g(T)
Te27d
subject to hqa g (T) <.

(20)

Implementable solutions to (20), with varying complexities
and deviations from optimality, are presented in the subsequent
section. We seek only solutions on the lower convex hull of the
trade-off between 1 and min g, (7). Stochastic multiplexing
among these solutions gives optimal randomized stopping
rules.

IV. STOPPING RULE DESIGN
A. A Dynamic Programming Solution

For a fixed and sufficiently large d, total enumeration of the
entire solution space is a possible approach for solving (20)
to find an optimal deterministic stopping rule. However, the
combinatorial structure of the problem means that evaluating
the Bayes risks (19) and expected numbers of trials (18) for
all possible strategies can be computationally prohibitive, even
for moderate trial budgets; this precludes full enumeration.

Conversely, one could start at the leaf nodes of a complete
trellis (with depth d), traverse the trellis towards its root, whilst
deciding whether each visited node merits inclusion in the
optimized solution. This is the basis of a dynamic program-
ming (DP) solution: it solves our optimization problem that
involves making a sequence of decisions by determining, for
each decision, subproblems that can be solved in a similar
fashion [33]. As such, a solution of the original problem can
be found from solutions of subproblems.

Precisely, we first relax (20) by writing its Lagrangian
formulation:

min gaﬁ(T) -+ )\haﬁ(T),
Te27a

2L

where A € R, can be viewed as the desired MSE reduction
per additional trial. We introduce three compact notations
associated with node v = (k, m):
(a+k)(B+m—k)
a+B+m)(a+pB+m+1)
(22

a,f 2 _
Rk,m - U(,H—k,B-Q—m—k; - (
a)
is the mean Bayes risk conditioned on stopping at v,
a+k

atB+m (22b)

a,f _
Sk’m = Ha+k,p+m—k =
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is the probability of the next trial being a success, and

B+m—k

atB+m (22¢)

Fkanf =1— patk p+m—k =
is the probability of the next trial being a failure. The dynamic
program summarized in Algorithm 1 iteratively constructs
a solution to (21) by comparing Rka) 73 to the lowest cost
achievable from the state that results after a single trial. More
precisely, at each node (k,m), R, fL is compared to the cost
of one additional trial plus the expe7cted lowest cost achievable
from the subsequent state. We keep track of the lowest of these
values in V}, ,,,, which is the lowest achievable cost from any
node (k,m). If R, 73 is lower, then an additional trial is not
warranted and the node is eliminated, i.e. T < T \{v} and
gr,m = 0. Because of the decomposability of the problem, the
solutions are optimal.

Algorithm 1 Dynamic programming algorithm to find optimal
deterministic stopping rule for Beta(w, 3) prior, Lagrange
multiplier A, and maximum depth d
Input: (o, 5), A€ R, deN
Output: 7* € 27¢
Initialize: T = T, and [Vi m]i.m
for k=1,...,d do
Set Vg < R]:’dﬁ using (22a)
end for
form=d—-1,...,1do
for k=1,2,....,m do
if RV >N+ S0 Vit mer + B Vimg then
Vk’,m — A+ S]:j;ka+1,m+1 + Fk(?:ka,m-ﬁ-l
else
Viom < Ry
T « T \{v}
end if
end for
end for
return 77 < T

=0 for all k,m

B. A Greedy Algorithm

The DP method (Algorithm 1) prunes from the complete
trellis 74. Monotonicity of the objective g, s(7") and cost
ha,s(T) can be exploited to develop a lower-complexity
greedy algorithm that instead builds a trellis starting from just
the root node.

The scheme outlined in Algorithm 2 monotonically im-
proves the objective function value for the minimization
problem (20) with each iteration. Specifically, at iteration ¢,
the greedy decision is to add to the current trellis 7; a node
v ¢ T; that yields the largest reduction in the Bayes risk per
additional trial,

9a,58(Ti Uv) — ga5(Ti)
ha_ﬂ(Ti U ’U) - ha,[ﬁ(Tiy

without violating the mean number of trials constraint. The
scheme terminates when no such node exists.

7

Algorithm 2 Greedy algorithm to find deterministic stopping
rule for Beta(a, 8) prior and trial budget n

Input: (o, ),

Output: 7

Initialize: i < 0, Ty < {}

repeat

T, Uv) — T;
D — argmin gamB( v U) ga7/3( ’L)

vgT; ha,ﬁ(Ti Uw) — haﬂ(Ti)
Top1 T, UD
11+ 1

until haﬁ(Ti) >n
return 7% < T;_,

C. Online Threshold-Based Termination

Our final method applies a simple rule for termination of
trials, depending on the prior parameters («, §) and the (k, m)
position in the trellis. It implies a trellis design, but it does
not require storage of a designed trellis.

Suppose a sequence of trials reaches a node corresponding
to the posterior distribution Beta(a, b). Denote the mean Bayes
risk without performing an additional trial by

Rstop(a7 b) = O}iba (23)

using the variance given in (15). When one additional trial
is performed, the posterior distribution is either Beta(a +
1,b) if the outcome of the additional trial is a success, or
Beta(a, b+1) if the outcome of the additional trial is a failure.
Therefore, the mean Bayes risk resulting from continuing with
one additional trial is

Reont(a,b) = E[(1 = P)o2 1+ Poiyyy)

ab

T (a+b)(at+bt1)? @4
The Bayes risk reduction from one additional trial is
AR(a,b) = Rstop(a,b) — Reont(a, b)
_ ab (25)

(a+b)2(a+b+1)%
Recall that, starting from a Beta(«, ) prior, upon reaching

node (k,m), the posterior is Beta(a + k, 8 + m — k). The

Bayes risk reduction from an additional trial,
(a+k)(B+m—k)

(@4 B+m)*(a+B+m+1)

can be the basis of an online stopping rule. Let Ay, > 0

denote a specified threshold value for the reduction in Bayes

risk that justifies an additional trial. Then stopping based on

this threshold induces the probabilities of continuing at each
node of the trellis given by

_ ]-7 AR(kvmvaaﬁ) > Amin;
=00, ARk, m;a,B) < A,

AR(k,m;a, ) =

(26)

27)

Fig. 6(a) shows values of AR(k,m;1,1) form =0,1,...,5.
The choice of threshold A,;, = 0.005 results in the trellis
shown in Fig. 6(b).
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Fig. 6. (a) Bayes risk reductions per additional trial. (b) Resulting trellis
of continuation probabilities for Api, = 0.005 (right). Beta(1,1) (i.e.,
uniform) prior for P has been assumed.

Notice that for a fixed trellis depth m, the denominator
of (26) is fixed, and the numerator of (26) is a product of
factors with fixed sum that is equal to o + 8 + m. Thus, from
the arithmetic—geometric mean inequality, AR(k, m; «, 8) is
largest where the posterior distribution is most symmetric.
This is apparent in the example in Fig. 6(b); since we have
started with a uniform prior, the center of each row represents
a symmetric posterior, and additional observations are most
merited near the center of each row. Starting with a highly
asymmetric prior (¢ < [ or a > [3), the same principle
explains an asymmetry in the greedily optimized trellis of
continuation probabilities.

Example 4 (Suboptimality of binomial sampling): Suppose
we have a Beta(1, 1) (i.e., uniform) prior. Then (26) simplifies
to
(k+1)(m—-k+1)
(m+2)%2(m+3)%? "

For the threshold-based termination to induce binomial sam-
pling with m* trials, the incremental benefit AR at (k,m) =

AR(k,m;1,1) =

(0,m*) must be greater than AR at (k,m) = (|3(m* +
1], m* +1):
m*+1

(L + D]+ Dm" = [5(m* +1)] +2)

- (m* 4+ 3)2(m* + 4)? '
Since (28) fails to hold for any m* > 2, threshold-based
termination induces binomial sampling only for 1 and 2 trials.
This is consistent with Fig. 6. For such a small trial budget,
full enumeration of stopping rules is also feasible, and one can
conclude that binomial sampling is indeed suboptimal for any
trial budget greater than 2. Similar arguments can be made for
non-uniform beta priors.

(28)

D. Comparisons of Designs

Sweeping A, in threshold-based termination is very sim-
ilar to sweeping A in Algorithm 1; it will achieve certain
mean numbers of trials, similar to sweeping 7 in Algorithm 2.
Intermediate values of the mean number of trials can be
achieved by finding (k*,m*) such that AR(k,m;q, ) is
largest among those below A, and varying gy« m,- over

20 - ,

2}

= 0.5

§ 40+ > 3 1

S 60t . . 1

g = < 0

s 80t 1

=]

Z 100 - % y 11-05
120 Tt - e 0T 1

Fig. 7. Dynamic programming solution minus online threshold-based termi-
nation result, both with mean number of trials &~ 95.36. Online threshold-
based termination achieves mean Bayes risk of 0.0016037 whereas DP gives
0.0016036. At 24 nodes (red, ‘-1’), threshold-based rule performs additional
trials and DP does not; at 54 nodes (blue, ‘+1°), DP performs trials and
threshold-based rule does not. The greedily designed trellis coincides with
the DP trellis, hence their difference plot is omitted.

1073

—4— Threshold-based rule
—x— Greedy algorithm

—6— Dynamic programming| |
x10

216515
2.16475
2.16435 )

703305

MSE

703380  70.3455  70.3530
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Mean number of trials

Fig. 8. Comparison between proposed strategies. DP and greedy algorithm
solutions coincide for all trial budgets, while threshold-based termination is
only very slightly worse by a factor of at most 1.000195.

(0,1). This idea is used to enforce an equal expected number
of trials for trellises optimized with each method, thus allowing
a fair comparison of their Bayes risks. For a mean number of
trials ~ 95.36, Algorithms 1 and 2 were found to give exactly
the same trellis, while online threshold-based termination gave
a slightly different trellis with slightly higher mean Bayes risk.
Fig. 7 illustrates the difference in g ,, values. It is zero for
the vast majority of nodes, with 24 nodes at which the DP-
designed trellis terminates but the threshold-based rule does
not (red, —1), and 54 nodes at which the threshold-based rule
terminates but the DP-designed trellis does not (blue, +1).*

Mlustrated in Fig. 8 is a comparison of our three proposed
implementable strategies, applied for a uniform prior, over a
range of trial budgets. MSEs of DP (Algorithm 1) and the
greedily optimized trellis (Algorithm 2) coincide for all trial
budgets because the trellises are identical — though we have
not proven that this is guaranteed. The online threshold-based
stopping rule is only very slightly worse by a factor of at most
1.000195 (less than 0.001 dB).

The phenomenon of more trials being merited when p is

near 1 counteracts the MSE of p(1 — p)/n being largest
for p near % This is illustrated in Fig. 9(a), which shows

mean numbers of trials allocated as a function of p. We
have optimized for MSE averaged over p and, in so doing,

4The mean number of trials is equal. To be convinced that the blue and
red nodes can balance, note that while there are more blue nodes, they are
for larger values of m and thus have lower probabilities of being reached.
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Fig. 9. Dependences on p under a uniform prior. (a) Conditional expectation
of the number of trials, conditioned on p, for binomial sampling, online
threshold-based termination, and the oracle-aided binomial stopping rule.
Expected number of trials is 200 for all of the three methods. (b) Dependence
of conditional MSEs on the true Bernoulli parameter p under a trial budget
of n = 200.

obtained a modest improvement factor of ~ 1.05 in this
average, comparing the online threshold-based termination to
conventional binomial sampling. A more significant reduction
in the worst-case MSE is a by-product of the optimization (see
Fig. 9(b)).

E. Asymptotic Comparison with Oracle-Aided Allocation

Considering the non-degenerate cases p € (0,1), the
threshold-based termination is asymptotically equivalent to
oracle-aided optimal allocation. For a large trial budget 7,
we will find an approximation for m°, the number of trials
at which the online threshold-based rule terminates. This will
match the form of (2) or (6).

Using (26), for an initial Beta(«, ) prior, the online rule
continues at node (k,m) if and only if

(a+k)(B+m—k) <A

@rBtmP(atfrmy e~ 9

Since the trial budget is large and p € (0, 1), k, m, and m — k
are all large when nearing termination. Hence, we approximate

the expression in (29) as

(a+k)(B+m—Ek)
(a+B+m)*(a+B+m+1)?
_ m2(a/m+k/m)(B/m +1—k/m)
mi(a/m+ B/m+1)2(a/m+ B/m+1+1/m)?
_ (k/m) (1= k/m)
m2
_ phw(l — PML)

(30)

where pyr, = k/m is the ML estimate of p.
Substituting (30) into (29), we obtain

pmr(1 — pur)

A . (31)
By the law of large numbers, Py, — p, so (31) shows a match
to (2), with Apy;, determining the trial budget. Furthermore,
by comparison with (6), we see an equivalence by choosing
Amin =E [\/m / .

Fig. 9(a) illustrates an example of the approximate match
between threshold-based termination and oracle-aided sam-
pling that is predicted by the match among (2), (6), and (31).
Note that convergence is not uniform in p; a larger trial budget
is needed to observe approximate equivalence in allocations
for p near 0 and near 1.

Fig. 10 shows the variation of the MSEs with mean number
of trials budget constraint for conventional binomial sampling,
threshold-based termination, and oracle-aided allocation. The
results are based on Monte Carlo simulations, with MATLAB,
using the phantom image in Fig. 3(a). As expected the opti-
mized rules consistently achieve MSE improvements over the
conventional binomial sampling, for all simulated trial bud-
gets. In addition, when compared to the unrealizable oracle-
aided method, the threshold-based approach only marginally
under-performs at moderate mean number of trials budget
constraints. This observation is further underscored in Fig. 9,
which show significant overlap between threshold-based ter-
mination and oracle-aided allocation, in terms of both trial
allocations and the resulting MSEs. Using a negative binomial
sampling strategy yields significantly worse performance than
binomial sampling and our proposed rules for estimating p;
thus, we have omitted it from Figs. 9 and 10, as well as other
numerical simulations related to the estimation of p.

In line with the earlier asymptotic analysis, the threshold-
based termination and oracle-aided performances coincide for
moderate to high mean numbers of trials, independent of the
prior. Under a highly skewed prior consistent with the true
distribution of the phantom pixels, Fig. 10(b) demonstrates
that it is possible for online threshold-based termination to
even outperform the oracle-aided binomial method, at low trial
budgets. This phenomenon is attributable to the online method
allocating more trials when the Bernoulli process realization
has a relatively high fraction of successes. Put simply, it is
allocating more trials for “unlucky” realizations where the
MSE would be higher, while the oracle-aided binomial method
maintains a fixed number of trials.
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Fig. 10. Results for the Shepp-Logan Phantom scaled to [0.001, 0.101],
assuming: (a) Beta(1,1) and (b) Beta(1, 50), for the online threshold-based
termination. The MSE has been computed from the average of 20 independent
experiments for each mean number of trials. Improvements are consistent with
the trial allocation gain computed in Example 2(d).

V. ESTIMATING FUNCTIONS OF A BERNOULLI
PARAMETER

When estimating an arbitrary function f(p) of a Bernoulli
parameter is of interest [11], one can derive similar stopping
strategies as before. In this section, we concern ourselves only
with the estimation of f(p) = logp due to its prevalence
in real-life scenarios. For instance, the subjective brightness
perceived by the human vision system is a logarithmic function
of the incident light intensity [34], [35]. Also, the common /og
odds ratio log(p/(1—p)), is approximately equal to log p when
pK 1

As before, we begin with a squared error loss

L(p,-) = (fip) - F(-))%,

where f(-) is the estimate of f(p). The expectation of this
loss function over p gives the Bayes risk

R() =E[L(p,-)] =E[(f(») — f(-))"]-

For f(p) = logp, suppose a sequence of trials leads to a
node in the trellis corresponding to the posterior distribution
Beta(a,b). Under P ~ Beta(a,b), the MMSE estimator of
log p is [36]

f(a,b) :=E[log P] = vV (a) — »'” (a +b),

(32)

(33)

(34)

where /(") is the polygamma function of order m. The Bayes
risk (33) when no additional trial is performed, Rs;op, becomes
the variance of logp [37]:

Raiop = R(a,b) = var(log P) = ™Y (a) — ™ (a+b). (35)

10
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Fig. 11. Bayes risk reductions for estimation of (a) f(p) = p and (b)
f(p) = logp, assuming Beta(1l,1) assumed initially. Low p values are
assigned significantly more trials when log p is estimated.

If one additional trial is performed, the Bayes risk reduces to

Reont(a,b) = E[(1 — P)R(a,b+ 1)+ P R(a+ 1,b)]

b a
= — 1 — 1 .
- R(a,b+ )+a+bR(a+ ,b). (36)

+b
Hence, the Bayes risk reduction from one additional trial is
b
Rstop(a7 b) - Rcont(a'a b) = m~ 37

Starting with prior Beta(c, ), the counterpart to (26) for
estimation of logp is

B+m—k
(a+k)(a+B+m)?

As before, this can be used in (27) as an online threshold-based
termination method.

The Bayes risk reductions for both f(p) = p in (26)
and f(p) = logp in (38), starting with a uniform prior,
are shown as heat maps in Fig. 11. When f(p) = logp,
the reduction from additional trials after observing sequences
with low number of successes is significantly larger. Thus, the
online threshold-based termination of Section IV-C is likely
to assign more trials for the smaller underlying Bernoulli
parameters. Such a stopping rule is intuitive because a fixed
amount of estimation error for p would contribute more to the
loss function defined in (32), with f(p) = logp, when p is
small. In fact, one can choose a loss function which enforces
different penalties for different p values. An example is the
family of weighted mean squared errors, E[w(p)(p — p)?]
where a weighting function w(p) is designed according to the
problem. A special case is relative MSE E[(p—p)?/p?], which
is approximately the squared loss in (33) with f(p) = logp
for estimates sufficiently close to the true value [11].

When smaller p values are of more importance, it makes
sense to use a strategy that allocates more trials to these in-
stances. Negative binomial sampling explained in Section I1I-B

AR(k,m; o, B) = (38)

bl
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Fig. 12. Estimation of logp. Conditional MSE of log p, conditioned on
p, is shown as a function of p for binomial sampling (n = 72), negative
binomial sampling (¢ = 10, inducing n = 71.66), and online threshold-
based termination (np = 71.77). The threshold-based termination uses a
uniform prior, and averaging over a uniform prior gives MSE of 0.0668 for
binomial sampling, 0.0489 for negative binomial sampling, and 0.0328 for
threshold-based termination. These values are computed directly from their
corresponding trellises (hence exact), not through numerical integration.

achieves this type of trial allocation. For the estimation of
f(p) = logp, we compare the performances of binomial
sampling, negative binomial sampling, and online threshold-
based termination in Fig. 12. Threshold-based termination
outperforms both binomial and negative binomial sampling,
with improvement factors of 2.037 and 1.491, respectively.

VI. APPLICATIONS TO ACTIVE IMAGING

Active imaging systems typically raster scan the scene by
probing patch (¢,7), ¢ =1,...,N; and j = 1,..., N;, using
pulsed illumination. The measured data — used to form an
image of the scene — are arrays [k; ;; ; and [m; ;]; ;; i.e., the
number of detections (successes) and number of illumination
pulses (trials) for each scene patch. Note that the conventional
approach of a fixed number of trials makes m; ; = n for all
(i,7) and {k; ;} random, whereas both {k; ;} and {m, ;} are
random when the proposed approach is applied.

The parameters of the Bernoulli processes generated by
probing a scene patch and its neighbors are typically cor-
related. This can be exploited in the image formation stage
through mechanisms inspired by any of various image com-
pression or denoising methods. For this initial demonstra-
tion of adaptive acquisition, we apply total variation (TV)
regularization [38]. We present simulation results using the
Shepp—Logan phantom in Fig. 3(a), two lidar datasets provided
by the Alaska Department of Natural Resources [39], and
scanning electron microscopy (SEM) images Foraminifera®
and HairStyle® taken from ThermoFisher Scientific. All im-
ages have been rescaled to take on values in the range
[0.001,0.101].

A. Estimation of f(p) =p

We focus here on comparing conventional binomial sam-
pling against online threshold-based termination (27) applied

5Quanta SEM image of Protozoan group secreting a calcareous
shell by  Philippe  Crassous, https://www.fei.com/image-gallery/
Foraminifera- Protozoan/

6Quanta SEM image of the upper part of the style and stigma from an
Arabidopsis flower by Guichuan Hou, https://www.fei.com/uploadedImages/
FEISite/Content/Image_Gallery/Images/2013_Image_Contest/FEI/IM_
20130718_Hou_18_HairStyle_lg.jpg
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TABLE I
AVERAGE RECONSTRUCTION PSNRS, AVERAGED OVER 100
EXPERIMENTS, FOR CONVENTIONAL BINOMIAL SAMPLING AND ONLINE
THRESHOLD-BASED TERMINATION, FOR TRIAL BUDGETS 7).

Pixelwise MMSE estimation TV+ML estimation

Image T " Binomial  Threshold-based  Bimomial  Threshold-based

SheppLogan 100 17.5 B 20.0 dB 21.9 dB 26.3 dB
200 19.9 dB 22.1 dB 24.9 dB 28.5 dB

e g1 200 18.1dB 18.8 dB 24.0 dB 259 dB
800 21.4dB 22.3 dB 25.2 dB 27.7 dB

lidar #2 400 16.9 dB 18.3 dB 26.2 dB 26.8 dB
800 20.7 dB 22.3 dB 27.6 dB 28.8 dB

Foraminera 00 19.2.B 21.2 dB 25.5 dB 26.7 dB
500 20.4 dB 22.4 dB 23.5 dB 27.5 dB

tairspre 200 212dB 22.7 dB 26.8 dB 278 dB
500 22.3 dB 23.8 dB 27.8 dB 28.5 dB

for each pixel. For f(p) = p, the relevant Bayes risk reduction
per trial is given by (26).

1) MMSE Estimation Under II1.D. Prior: When not ex-
ploiting any spatial correlations, each pixel estimation is per-
formed separately using the methods of Section IV-C. Under
a Beta(a, 8) prior, the MMSE estimate is pyvmsgli,j] =
(kij + )/ (mi;+a+B).

Fig. 13(a) shows that with the choice of the Beta(2,152)
prior, MSE improvement of 2.42 dB is attained for trial budget
n = 200 for the Shepp—Logan phantom. In Figs. 13(b)-
(e), MSE improvements were also demonstrated for the lidar
and SEM images under various trial budgets and initial prior
parameters. Improvements ranging from 0.92 dB for lidar
#1 to 2.02 dB for Foraminifera were obtained. For the
same corresponding choices of prior, we also perform 100
independent experiments for each test image at each of two
different trial budgets; the results indicated in Table I show
similar improvement factors. In particular, the performance
gains are close to the prediction from the trial allocation gain
(Example 2(d) for the Shepp-Logan phantom image). The
same is observed for other images. Furthermore, we show in
Fig. 14 that significant MSE improvements can be attained for
a large range of Beta priors, using the Shepp-Logan phantom
and HairStyle datasets. We also observe that the performance
of binomial sampling is degraded more by a mismatched prior
than the performance of threshold-based termination.

2) TV-Regularized ML Estimation: Reconstruction quality
can be improved through the use of TV-regularized ML
estimation [1], [38]. In one typical experimental trial shown
in Fig. 15(a), the TV-regularized reconstruction from data
obtained with online threshold-based termination outperforms
the conventional binomial sampling by 4.36 dB in MSE for
the Shepp-Logan phantom; the trial budget of n = 200
and prior of Beta(2,152) are the same as used previously.
As anticipated, Figs. 15(b)—(e) also demonstrate significant
improvements in MSE, ranging from 1.15dB to 4.17dB, for
the remaining test images. Furthermore, keeping the corre-
sponding priors and trial budgets used for each test image
in Figs. 15, Table I also provides results averaged over
100 experiments for statistical significance. In many cases,
imposing TV regularization increases the performance gained
from the data-adaptive stopping rule. Most importantly, it does
not completely diminish the gain of adapting the acquisition.

2333-9403 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Transactions on Computational Imaging

Ground Truth

Binomial MMSE Threshold-based MMSE

.*..“&

PSNR 20.9 dB
(a) Shepp-Logan phantom, Beta(2,152) and n = 200.

PSNR 22.4 dB

PSNR 21.4 dB PSNR 22.3 dB
(b) lidar #1, Beta(2,162) and n = 800.

PSNR 20.6 dB
(c) lidar #2, Beta(2,172) and n = 800.

PSNR 22.3 dB

PSNR 20.4 dB PSNR 22.4 dB
(d) Foraminifera, Beta(2,162) and n = 500.

PSNR 22.7 dB

PSNR 21.2 dB
(e) HairStyle, Beta(2,162) and n = 400.

Fig. 13. Images reconstructed through pixelwise MMSE estimation showing
MSE improvements of up to 2.42dB for online threshold-based termination
in place of conventional binomial sampling. Assumed priors and trial budgets
are indicated below each test image. All images are scaled to [0.001,0.101].

B. Estimation of f(p) =logp

Now we present simulation results for the estimation of the
logarithm of the previous test images. For f(p) = logp, the
Bayes risk reduction per trial to use in online threshold-based
termination (27) is given by (38). Fig. 16 shows simulation
results wherein improvement factors of 1.48dB to 1.86dB
are observed using threshold-based termination compared
with binomial sampling, and 2.56 dB to 3.78 dB when using
threshold-based termination over negative binomial. Note that
since the contributions to the error from the lower pixel values
are higher, the comparison is provided at much higher trial
budgets (i.e., n = 3000, 1600, 1700, 2800, and 1800 for
Figs. 16(a)—(e), respectively) than in Section VI-A to obtain
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Fig. 14. Dependence of MSE on 3 when Beta(2, 8) prior is assumed and
pixelwise MMSE estimation is performed; each plotted point is obtained by
averaging over 100 independent experiments.

TABLE II
ESTIMATION OF f(p) = log(p). AVERAGE RECONSTRUCTION MSES,
AVERAGED OVER 100 EXPERIMENTS, FOR CONVENTIONAL BINOMIAL
SAMPLING, NEGATIVE BINOMIAL SAMPLING AND THRESHOLD-BASED
TERMINATION, FOR TRIAL BUDGETS 7).

Image n - - Meth?d

Binomial ~ Neg. Binomial  Threshold-based

Shepp—Logan 1800 0.271 0.481 0.227

3000 0.208 0.253 0.139

lidar #1 1600 0.156 0.246 0.113

2200 0.133 0.165 0.080

lidar #2 1700 0.154 0.237 0.099

2300 0.135 0.161 0.073

Foraminifera 1700 0.253 0.462 0.208

2700 0.206 0.245 0.131

, 1800 0.166 0.247 0.118

HairSiyle 9500 0.143 0.166 0.087

meaningful results. Dark regions having values of 0.001, for
instance, require 1000 trials on average to observe a success.
The effect of increasing number of trials is apparent in Table II.
An increase in the improvement factor obtained by using the
threshold-based rule, compared to both binomial and negative
binomial stopping is observed, as the trial budget is increased.
For example, for the Shepp—Logan phantom, an increase in
the improvement factor from 0.77dB to 1.75dB is observed
when increasing 7 from 1800 to 3000, if the threshold-based
rule is used over conventional binomial stopping. An even
larger increase is obtained when the threshold-based rule is
compared against negative binomial stopping. The trend of
increasing MSE improvements with increased trial budgets is
persistent for other test images too.
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Ground Truth

Binomial ML+TV  Threshold-based ML+TV

PSNR 24.7 dB PSNR 29.1 dB
(a) Beta(2, 152) and n = 200.

PSNR 25.2 dB PSNR 27.7 dB
(b) Beta(2, 162) and n = 800.
r F m 0.1

PSNR 27.5 dB PSNR 28.9 dB
(c) Beta(2,172) and n = 800.

PSNR 23.4 dB
(d) Beta(2, 162) and 1 = 500.

PSNR 27.6 dB

PSNR 26.7 dB
(e) Beta(2,162) and n = 400.

PSNR 27.9 dB

Fig. 15. Images reconstructed through TV-regularized ML estimation showing
MSE improvements of up to 4.36 dB for online threshold-based termination
in place of conventional binomial sampling. Assumed priors and trial budgets
are indicated below each test image. All images are scaled to [0.001,0.101].

VII. CONCLUSION

We established a novel framework for estimating Bernoulli
parameters where we represent each Bernoulli process with
a simple trellis graph. By exploiting the mathematical conve-
nience that comes from assuming Beta priors, we propose and
study three stopping strategies with varying complexities but
yielding very nearly equal performances. All strategies give
significant performance improvements over the conventional
binomial and negative binomial stopping rules in simulated
active imaging applications.

The simple online threshold-based termination was shown
to asymptotically allocate trials in the same manner as an
oracle-aided solution that assumes the Bernoulli parameters
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Ground Truth

Binomial MMSE Neg. Binomial MMSE Threshold-based MMSE

MSE 0.2152
(a) 7 = 3000

MSE 0.2526

MSE 0.1401

MSE 0.1567  MSE 0.2508
(b) n = 1600

MSE 0.1523 MSE 0.2370

(¢) 7 = 1700

|
|
4
|

MSE 0.1960 MSE 0.2439
(d) n = 2800

MSE 0.1667 MSE 0.2501 MSE 0.1185

(e) n = 1800

Fig. 16. Estimation of log p. Images reconstructed through pixelwise MMSE
estimation. All images are scaled to [0.001,0.101] and uniform prior is
assumed. MSE improvements for online threshold-based termination in place
of conventional binomial and negative binomial sampling respectively, are: (a)
1.86dB and 2.56 dB. (b) 1.48dB and 3.52dB. (c) 1.86dB and 3.78 dB.
(d) 1.78dB and 2.73dB. (e) 1.48dB and 3.24 dB. The negative binomial
results have been obtained with £ = 5.

are a priori known. Whilst we only study herein oracle-aided
binomial sampling, similar analyses are possible for functions
of Bernoulli parameters or oracle-aided negative binomial
sampling; these are omitted here because they do not yield
clean expressions like the binomial case.

Finally, the proposed online threshold-based termination is
extended to the estimation of logp. Other functions of p,
such as f(p) = 1/p, can prove useful for scenarios wherein
distinguishing between small parameters is paramount.

In the formulation of optimizing a trellis to minimize MSE,
a beta prior is convenient but not at all fundamental. The
reduction of the design problem from a general tree to a trellis
holds for any prior, and one may in principle compute Bayes
risk reduction per trial for any trellis node and any prior.
Developing an analogous theory for minimax estimation is
also of interest but is less clear because of a lack of additivity
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of the cost function. This is especially intriguing because the
optimization for MSE incidentally reduces the maximum over
p of the risk (see Fig. 9(b)).

ACKNOWLEDGMENT

The authors thank Charles Saunders for assistance with
implementation of regularized estimators and Joshua Rapp for
discussions on influence in spatial neighborhoods.

[1]

[3]
[4]
[5]
[6]
[7]
[8]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

2333-9403 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

REFERENCES

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient
computational 3d and reflectivity imaging with single-photon detectors,”
IEEE Trans. Comput. Imaging, vol. 1, pp. 112-125, June 2015.

M. Wahl, “Time-correlated single photon counting (TCSPC),” tech. rep.,
PicoQuant, Berlin, Germany, 2014.

T. L. Fine, Probability and Probabilistic Reasoning for Electrical
Engineering. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.

A. Segall, “Bit allocation and encoding for vector sources,” IEEE Trans.
Inform. Theory, vol. 1T-22, pp. 162-169, Mar. 1976.

V. K. Goyal, “Theoretical foundations of transform coding,” IEEE Signal
Process. Mag., vol. 18, pp. 9-21, Sept. 2001.

F. J. Anscombe, “Sequential estimation,” J. Roy. Statist. Soc. Ser. B,
vol. 15, no. 1, pp. 1-29, 1953.

J. B. S. Haldane, “On a method of estimating frequencies,” Biometrika,
vol. 33, pp. 222-225, Nov. 1945.

M. C. K. Tweedie, “Inverse statistical variates,” Nature, vol. 155, p. 453,
Apr. 14, 1945.

P. Cabilio and H. Robbins, “Sequential estimation of p with squared
relative error loss,” Proc. Nat. Acad. Sci. USA, vol. 72, pp. 191-193,
Jan. 1975.

P. Cabilio, “Sequential estimation in Bernoulli trials,” Ann. Statist.,
vol. 5, pp. 342-356, Mar. 1977.

S. L. Hubert and R. Pyke, “Sequential estimation of functions of p for
Bernoulli trials,” in Game Theory, Optimal Stopping, Probability and
Statistics, vol. 35 of Lecture Notes-Monograph Series, pp. 263-294,
Institute of Mathematical Statistics, 2000.

P. M. Djuri¢ and Y. Huang, “Estimation of a Bernoulli parameter p from
imperfect trials,” IEEE Signal Process. Lett., vol. 7, pp. 160-163, June
2000.

D. Ciuonzo, A. De Maio, and P. Salvo Rossi, “A systematic framework
for composite hypothesis testing of independent Bernoulli trials,” IEEE
Signal Process. Lett., vol. 22, pp. 1249-1253, Sept. 2015.

A. Kirmani, D. Venkatraman, D. Shin, A. Colago, F. N. C. Wong, J. H.
Shapiro, and V. K. Goyal, “First-photon imaging,” Science, vol. 343,
no. 6166, pp. 58-61, 2014.

J. Rapp and V. K. Goyal, “A few photons among many: Unmixing signal
and noise for photon-efficient active imaging,” IEEE Trans. Comput.
Imaging, vol. 3, pp. 445-459, Sept. 2017.

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambigu-
ity in a photon counting depth imager operating at kilometer distances,”
Opt. Express, vol. 18, no. 9, pp. 9192-9206, 2010.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett,
“Imaging with a small number of photons,” Nat. Commun., vol. 6, Jan.
5, 2015. doi: 10.1038/ncomms6913.

D. Shin, J. H. Shapiro, and V. K. Goyal, “Single-photon depth imaging
using a union-of-subspaces model,” IEEE Signal Process. Lett., vol. 22,
pp. 2254-2258, Dec. 2015.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Li-
dar waveform-based analysis of depth images constructed using sparse
single-photon data,” IEEE Trans. Image Process., vol. 25, pp. 1935-
1946, May 2016.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K.
Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging
with a single-photon camera,” Nat. Commun., vol. 7, June 24, 2016.
doi: 10.1038/ncomms12046.

D. Shin, J. H. Shapiro, and V. K. Goyal, “Performance analysis of
low-flux least-squares single-pixel imaging,” IEEE Signal Process. Lett.,
vol. 23, pp. 1756-1760, Dec. 2016.

D. Shin, F. Xu, E. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Com-
putational multi-depth single-photon imaging,” Opt. Express, vol. 24,
pp. 1873-1888, Feb. 2016.

(23]

[24]

[25]

[26]

[27]

[28]
[29]

(30]

(31]

(32]

[33]

[34]

(35]

(36]

[37]

(38]

(39]

14

L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett,
“Image reconstruction from photon sparse data,” Sci. Rep., vol. 7, Feb.
7, 2017. doi: 10.1038/srep42164.

Y. Altmann, R. Aspden, M. Padgett, and S. McLaughlin, “A Bayesian
approach to denoising of single-photon binary images,” IEEE Trans.
Comput. Imaging, vol. 3, pp. 460-471, Sept. 2017.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S.
Buller, “Object depth profile and reflectivity restoration from sparse
single-photon data acquired in underwater environments,” IEEE Trans.
Comput. Imaging, vol. 3, pp. 472-484, Sept. 2017.

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,”
Sci. Rep., vol. 8, Mar. 22, 2018. doi: 10.1038/s41598-018-23363-w.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero,
and D. Faccio, “Quantum-inspired computational imaging,” Science,
vol. 361, p. 660, Aug. 2018.

Z.Zhu and S. Pang, “Few-photon computed x-ray imaging,” Appl. Phys.
Lett., vol. 113, p. 231109, Dec. 2018.

D. L. Lipke, “Active imaging system using variable gate width time
programmed dwell.” U.S. Patent 4,151,415, Apr. 1979.

W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, G. Gu, B. Zhou, and P. Zhang,
“Adaptive depth imaging with single-photon detectors,” IEEE Photon.
J., vol. 9, Apr. 2017.

T. Dahmen, M. Engstler, C. Pauly, P. Trampert, N. de Jonge, F. Miicklich,
and P. Slusallek, “Feature adaptive sampling for scanning electron
microscopy,” Sci. Rep., vol. 6, May 6, 2016. doi: 10.1038/srep25350.
S. C. Medin, J. Murray-Bruce, and V. K. Goyal, “Optimal stopping times
for estimating Bernoulli parameters with applications to active imaging,”
in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process., (Calgary,
AB, Canada), pp. 44294433, May 2018.

D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1.
Belmont, MA, USA: Athena Scientific, 1996.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd
Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

E. S. Milner and M. T. H. Do, “A population representation of absolute
light intensity in the mammalian retina,” Cell, vol. 171, pp. 865-876.e16,
2018/08/19 2017.

D. Karlis, “EM algorithm for mixed Poisson and other discrete distri-
butions,” ASTIN Bulletin, vol. 35, no. 1, p. 324, 2005.

H. Dette and D. Tomecki, “Hankel determinants of random moment
sequences,” J. Theoretical Probability, vol. 30, pp. 1539-1564, Dec
2017.

C. Louchet and L. Moisan, “Total variation denoising using posterior
expectation,” in Proc. 16th European Signal Process. Conf., pp. 1-5,
Aug. 2008.

T. D. Hubbard, M. L. Braun, R. E. Westbrook, and P. E. Gallagher,
“High-resolution lidar data for infrastructure corridors, Healy Quadran-
gle, Alaska.” Alaska Division of Geological & Geophysical Surveys,
DOI: 10.14509/23163, Dec. 2011.



