
Strong Equivalence and Program’s Structure in

Arguing Essential Equivalence between

First-Order Logic Programs

Yuliya Lierler

Abstract. Answer set programming is a prominent declarative programming

paradigm used in formulating combinatorial search problems and implementing

distinct knowledge representation formalisms. It is common that several related

and yet substantially different answer set programs exist for a given problem.

Sometimes these encodings may display significantly different performance. Un-

covering precise formal links between these programs is often important and yet

far from trivial. This paper claims the correctness of a number of interesting pro-

gram rewritings. Notably, they assume programs with variables and such impor-

tant language features as choice, disjunction, and aggregates.

Introduction

Answer set programming (ASP) is a prominent knowledge representation paradigm

with roots in logic programming [2]. It is frequently used for addressing combinatorial

search problems. It has also been used to provide implementations and/or translational

semantics to other knowledge representation formalisms such as action languages in-

cluding language A L [13, Section 8]. In ASP, when a software engineer tackles a

problem domain it is a common practice to first develop a/some solution/encoding to a

problem and then rewrite this solution/encoding iteratively using, for example, a projec-

tion technique to gain a better performing encoding [3]. These common processes bring

a question to light: What are the formal means to argue the correctness of renewed for-

mulations of the original encoding to a problem or, in other words, to argue that these

distinct formulations are essentially the same — in a sense that they capture solutions

to the same problem.

It has been long recognized that studying various notions of equivalence between

programs under the answer set semantics is of crucial importance. Researchers pro-

posed and studied strong equivalence [18,19], uniform equivalence [4], relativized strong

and uniform equivalences [23]. Also, equivalences relative to specified signatures [6,15]

were considered. In most of the cases the programs considered for studying the distinct

1

2

forms of equivalence are propositional. Works [5,7,19,22,15] are exceptions. These au-

thors consider programs with variables (or, first-order programs). Yet, it is first-order

programs that ASP knowledge engineers develop. Thus, theories on equivalence be-

tween programs with variables are especially important as they can lead to more direct

arguments about properties of programs used in practice. On the one hand, this work

can be seen as a continuation of work by Eiter et al. [5], were we consider common

program rewritings using more complex dialect of logic programs. On the other hand,

it grounds the concept of program’s synonymity studied by Pearce and Valverde [22]

in a number of practical examples. Namely, we illustrate how formal results on strong

equivalence developed earlier and in this work help us to construct precise claims about

programs in practice.

In this paper, we systematically study some common rewritings on first-order pro-

grams utilized by ASP practitioners. As a running and motivating example that grounds

general theoretical presentation of this work into specific context, we consider two for-

malizations of a planning module given in [13, Section 9]. Namely,

1. a Plan-choice formalization that utilizes choice rules and aggregate expressions,
2. a Plan-disj formalization that utilizes disjunctive rules.

Such a planning module is meant to be augmented with an ASP representation of a dy-

namic system description expressed in action language A L . In [13], Gelfond and Kahl

formally state in Proposition 9.1.1 that the answer sets of program Plan-disj augmented

with a given system description encode all the “histories/plans” of a specified length

in the transition system captured by the system description. Although both Plan-choice

and Plan-disj programs intuitively encode the same knowledge the exact connection

between them is not immediate. In fact, these programs (i) do not share the same sig-

nature; (ii) use distinct syntactic constructs such as choice, disjunction, aggregates in

the specification of a problem. Here, we establish a one-to-one correspondence between

the answer sets of these programs on their properties. Thus, the aforementioned formal

claim about Plan-disj translates into the same claim for Plan-choice. It is due to remark

that although in [13], Gelfond and Kahl use the word “module” when formalizing a

planning domain they utilize this term only informally to refer to a collection of rules

responsible for formalizing “planning”.

In this paper we use a dialect of ASP language called RASPL-1 [17]. Notably, this

language combines choice, aggregate, and disjunction constructs. Its semantics is given

in terms of the SM operator, which exemplifies the approach to the semantics of first-

order programs that bypasses grounding. Relying on SM-based semantics allows us to

refer to earlier work that study the formal properties of first-order programs [9,10] us-

ing this operator. We state a sequence of formal results on programs rewritings and/or

programs’ properties. Some discussed rewritings are well known and frequently used

in practice. Often, their correctness is an immediate consequence of well known prop-

erties about logic programs (e.g., relation between intuitionistically provable first-order

formulas and strongly equivalent programs viewed as such formulas). Other discussed

rewritings are far less straightforward and require elaborations on previous theoretical

findings about the operator SM. It is well known that propositional head-cycle-free dis-

junctive programs [1] can be rewritten to nondisjunctive programs by means of simple

syntactic transformation. Here we not only generalize this result to the case of first-

order programs, but also illustrate that at times we can remove disjunction from parts

3

of a program even though the program is not head-cycle-free. This result is relevant to

local shifting and component-wise shifting discussed in [5] and [16] respectively. We

also generalize so called Completion Lemma and Lemma on Explicit Definitions stated

in [8,11] for the case of propositional theories and propositional logic programs. These

generalizations are applicable to first-order programs.

Summary. We view this paper as an important step towards bringing theories about

program’s equivalence to providing practical solutions in the realm of ASP as it is used

by knowledge engineers. A portfolio of formal results on program rewritings stated in

this paper can serve as a solid theoretical basis for

– a software system that may automatically produce new variants of logic programs

(some of these encodings will often exhibit better performance) by utilizing studied

rewritings;

– a proof technique for arguing the correctness of a logic program. This proof technique

assumes the existence of a “gold standard” logic program formalizing a problem at

hand, in a sense that this gold standard is trusted to produce correct results. A proper

portfolio of known program rewritings and their properties equips ASP practitioners

with powerful tools to argue that another encoding is essentially the same to the gold

standard.

Paper Outline. We start this paper by presenting the Plan-choice and Plan-disj pro-

grams. We then introduce a logic program language called RASPL-1 [17]. The seman-

tics of this language is given in terms of the SM operator. We then proceed to the

statement of a sequence of formal results on program’s rewritings.

Running Example and Observations

This section presents two ASP formalizations of a domain independent planning mod-

ule given in [13, Section 9]. Such planning module is meant to be augmented with a

logic program encoding a system description expressed in action language A L that

represents a domain of interest (in Section 8 of their book [13], Gelfond and Kahl

present a sample Blocks World domain representation). Two formalizations of a plan-

ning module are stated here almost verbatim. Predicate names o and sthHpd intuitively

stand for occurs and something happend, respectively. We eliminate classical negation

symbol by (i) utilizing auxiliary predicates non o in place of ¬o; and (ii) introducing

rule ← o(A, I),non o(A, I). This is a standard practice and ASP systems perform the

same procedure when processing classical negation symbol ¬ occurring in programs

(in other words, symbol ¬ is treated as a syntactic sugar).

The first formalization called Plan-choice follows:

success ← goal(I), step(I).

← not success.

← o(A, I),non o(A, I) (1)

non o(A, I)← action(A), step(I), not o(A, I) (2)

{o(A, I)}← action(A), SG(I) (3)

← 2 ≤ #count{A : o(A, I)}, SG(I). (4)

← not 1 ≤ #count{A : o(A, I)}, SG(I) (5)

4

where

SG(I) abbreviates step(I), not goal(I), I �= n,

where n is some integer specifying a limit on a length of an allowed plan. One more

remark is in order. In [13], Gelfond and Kahl list only a single rule

1{o(A, I) : action(A)}1 ← SG(I)

in place of rules (3-5). Note that this single rule is an abbreviation for rules (3-5) [12].

The second formalization that we call a Plan-disj encoding is obtained from Plan-

choice by replacing rules (3-5) with the following:

o(A, I) | non o(A, I)← action(A), SG(I) (6)

← o(A, I), o(A′
, I), action(A), action(A′), A �= A′ (7)

sthHpd(I)← o(A, I) (8)

← not sthHpd(I), SG(I). (9)

It is important to note several facts about the considered planning module encod-

ings. These planning modules are meant to be used with logic programs that capture (i) a

domain of interest originally stated as a system description in the action language A L ;

(ii) a specification of an initial configuration; (iii) a specification of a goal configura-

tion. The process of encoding (i-iii) as a logic program, which we call a Plan-instance

encoding, follows a strict procedure. As a consequence, some important properties hold

about any Plan-instance. To state these it is convenient to recall a notion of a simple

rule and define a “terminal” predicate.

A signature is a set of function and predicate symbols/constants. A function sym-

bol of arity 0 is an object constant. A term is an object constant, an object variable,

or an expression of the form f (t1, . . . , tm), where f is a function symbol of arity m

and each ti is a term. An atom is an expression of the form p(t1, . . . , tn) or t1 = t2,

where p is an n-ary predicate symbol and each ti is a term. A simple body has the form

a1, . . . ,am, not am+1, . . . , not an where ai is an atom and n is possible 0. Expression

a1, . . . ,am forms positive part of a body. A simple rule has a form h1 | · · · | hk ← Body

or {h1}← Body where hi is an atom and Body is a simple body. We now state a recur-

sive definition of a terminal predicate with respect to a program. Let i be a nonnegative

integer. A predicate that occurs only in rules whose body is empty is called 0-terminal.

We call a predicate i+1-terminal when it occurs only in the heads of simple rules (left

hand side of an arrow), furthermore (i) in these rules all predicates occurring in their

positive parts of the bodies must be at most i-terminal and (ii) at least one of these rules

is such that some predicate occurring in its positive part of the body is i-terminal . We

call any x-terminal predicate terminal. For example, in program

block(b0). block(b1).
loc(X)← block(X). loc(table).

block is a 0-terminal predicate, loc is a 1-terminal predicate; and both predicates are

terminal.

We are now ready to state important Facts about any possible Plan-instance and,

consequently, about the considered planning modules

5

1. Predicate o never occurs in the heads of rules in Plan-instance.

2. Predicates action and step are terminal in Plan-instance as well as in Plan-instance

augmented by either Plan-choice or Plan-disj.

3. By Facts 1 and 2, predicate o is terminal in Plan-instance augmented by either

Plan-choice or Plan-disj.

4. Predicate sthHpd never occurs in the heads of the rules in Plan-instance.

In the remainder of the paper we will ground considered theoretical results by illustrat-

ing how they formally support the following Observations:

1. In the presence of rule (2) it is safe to add a rule

non o(A, I)← not o(A, I), action(A), SG(I) (10)

into an arbitrary program. By “safe to add/replace” we understand that the resulting

program has the same answer sets as the original one.

2. It is safe to replace rule (4) with rule

← o(A, I), o(A′
, I), SG(I), A �= A′ (11)

within an arbitrary program.

3. In the presence of rules (1) and (2), it is safe to replace rule (3) with rule

o(A, I)← not non o(A, I), action(A), SG(I) (12)

within an arbitrary program.

4. Given the syntactic features of the Plan-choice encoding and any Plan-instance en-

coding, it is safe to replace rule (3) with rule (6). The argument utilizes Observations 1

and 3. Fact 4 forms an essential syntactic feature.

5. Given the syntactic features of the Plan-choice encoding and any Plan-instance

encoding, it is safe to replace rule (4) with rule (7). The argument utilizes Observa-

tion 2, i.e., it is safe to replace rule (4) with rule (11). An essential syntactic feature

relies on Fact 1, and the facts that (i) rule (3) is the only one in Plan-choice, where

predicate o occurs in the head; and (ii) rule (7) differs from (11) only in atoms that

are part of the body of (3).

6. By Fact 4 and the fact that sthHpd does not occur in any other rule but (9) in Plan-

disj, the answer sets of the program obtained by replacing rule (5) with rules (8)

and (9) are in one-to-one correspondence with the answer sets of the program Plan-

disj extended with Plan-instance.

Essential Equivalence Between Two Planning Modules: These Observations are suf-

ficient to claim that the answer sets of the Plan-choice and Plan-disj programs (extended

with any Plan-instance) are in one-to-one correspondence. We can capture the sim-

ple relation between the answer sets of these programs by observing that dropping the

atoms whose predicate symbol is sthHpd from an answer set of the Plan-disj program

results in an answer set of the Plan-choice program.

Preliminaries: RASPL-1 Logic Programs, Operator SM, Strong

Equivalence

We now review a logic programming language RASPL-1 [17]. This language is suffi-

cient to capture choice, aggregate, and disjunction constructs (as used in Plan-choice

6

and Plan-disj). There are distinct and not entirely compatible semantics for aggregate

expressions in the literature. We refer the interested reader to the discussion by Lee et

al. in [17] on the roots of semantics of aggregates considered in RASPL-1.

An aggregate expression is an expression of the form

b ≤ #count{x : L1, . . . ,Lk} (13)

(k ≥ 1), where b is a positive integer (bound), x is a list of variables (possibly empty),

and each Li is an atom possibly preceded by not. This expression states that there are at

least b values of x such that conditions L1, . . . ,Lk hold.

A body is an expression of the form

e1, . . . ,em,not em+1, . . . ,not en (14)

(n≥m≥ 0) where each ei is an aggregate expression or an atom. A rule is an expression

of either of the forms

a1 | · · · | al ← Body (15)

{a1}← Body (16)

(l ≥ 0) where each ai is an atom, and Body is the body in the form (14). When l = 0,

we identify the head of (15) with symbol ⊥ and call such a rule a denial. When l = 1,

we call rule (15) a defining rule. We call rule (16) a choice rule. A (logic) program is a

set of rules. An atom of the form not t1 = t2 is abbreviated by t1 �= t2.

It is easy to see that rules in the Plan-choice and Plan-disj encodings are in the

RASPL-1 language.

Operator SM

Typically, the semantics of logic programs with variables is given by stating that these

rules are an abbreviation for a possibly infinite set of propositional rules. Then the se-

mantics of propositional programs is considered. The SM operator introduced by Fer-

raris et al. in [9] gives a definition for the semantics of first-order programs bypassing

grounding. It is an operator that takes a first-order sentence F and a tuple p of predicate

symbols and produces the second order sentence that we denote by SMp[F].
We now review the operator SM. The symbols ⊥,∧,∨,→, ∀, and ∃ are viewed

as primitives. The formulas ¬F and ⊤ are abbreviations for F → ⊥ and ⊥ → ⊥, re-

spectively. If p and q are predicate symbols of arity n then p ≤ q is an abbreviation

for the formula ∀x(p(x)→ q(x)), where x is a tuple of variables of length n. If p and

q are tuples p1, . . . , pn and q1, . . . ,qn of predicate symbols then p ≤ q is an abbrevia-

tion for the conjunction (p1 ≤ q1)∧ · · ·∧ (pn ≤ qn), and p < q is an abbreviation for

(p ≤ q)∧¬(q ≤ p). We apply the same notation to tuples of predicate variables in

second-order logic formulas. If p is a tuple of predicate symbols p1, . . . , pn (not in-

cluding equality), and F is a first-order sentence then SMp[F] denotes the second-order

sentence

F ∧¬∃u(u < p)∧F∗(u),

where u is a tuple of distinct predicate variables u1, . . . ,un, and F∗(u) is defined recur-

sively:

7

– pi(t)
∗ is ui(t) for any tuple t of terms;

– F∗ is F for any atomic formula F that does not contain members of p;1

– (F ∧G)∗ is F∗∧G∗;

– (F ∨G)∗ is F∗∨G∗;

– (F → G)∗ is (F∗ → G∗)∧ (F → G);
– (∀xF)∗ is ∀xF∗;

– (∃xF)∗ is ∃xF∗.

Note that if p is the empty tuple then SMp[F] is equivalent to F . For intuitions regarding

the definition of the SM operator we direct the reader to [9, Sections 2.3, 2.4].

By σ(F) we denote the set of all function and predicate constants occurring in

first-order formula F (not including equality). We will call this the signature of F . An

interpretation I over σ(F) is a p-stable model of F if it satisfies SMp[F], where p is a

tuple of predicates from σ(F). We note that a p-stable model of F is also a model of F .

By π(F) we denote the set of all predicate constants (excluding equality) occurring

in a formula F . Let F be a first-order sentence that contains at least one object con-

stant. We call an Herbrand interpretation of σ(F) that is a π(F)-stable model of F an

answer set.2 Theorem 1 from [9] illustrates in which sense this definition can be seen

as a generalization of a classical definition of an answer set (via grounding and reduct)

for typical logic programs whose syntax is more restricted than syntax of programs

considered here.

Semantics of Logic Programs

From this point on, we view logic program rules as alternative notation for particular

types of first-order sentences. We now define a procedure that turns every aggregate,

every rule, and every program into a formula of first-order logic, called its FOL repre-

sentation. First, we identify the logical connectives ∧, ∨, and ¬ with their counterparts

used in logic programs, namely, the comma, the disjunction symbol |, and connective

not. This allows us to treat L1, . . . ,Lk in (13) as a conjunction of literals. The FOL

representation of an aggregate expressions of the form b ≤ #count{x : F(x)} follows

∃x1 · · ·xb
[∧

1≤i≤b

F(xi)∧
∧

1≤i< j≤b

¬(xi = x j)
]
, (17)

where x1 · · ·xb are lists of new variables of the same length as x. The FOL representa-

tions of logic rules of the form (15) and (16) are formulas

∀̃(Body → a1 ∨ · · ·∨al) and ∀̃(¬¬a1 ∧Body → a1),

where each aggregate expression in Body is replaced by its FOL representation. Sym-

bol ∀̃ denotes universal closure.

1 This includes equality statements and the formula ⊥.
2 An Herbrand interpretation of a signature σ (containing at least one object constant) is such

that its universe is the set of all ground terms of σ , and every ground term represents itself. An

Herbrand interpretation can be identified with the set of ground atoms (not containing equality)

to which it assigns the value true.

8

For example, expression SG(I) stands for formula step(I)∧¬goal(I)∧¬I = n and

rules (3) and (5) in the Plan-choice encoding have the FOL representation:

∀̃
(
¬¬o(A, I)∧SG(I)∧action(A)→ o(A, I)

)
(18)

∀I
(
¬∃A[o(A, I)]∧SG(I)→⊥

)
(19)

The FOL representation of rule (4) is the universal closure of the following implication

(∃AA′
(
o(A, I)∧o(A′

, I)∧¬A = A′
)
∧SG(I))→⊥.

We define a concept of an answer set for logic programs that contain at least one

object constant. This is inessential restriction as typical logic programs without object

constants are in a sense trivial. In such programs, whose semantics is given via ground-

ing, rules with variables are eliminated during grounding. Let Π be a logic program

with at least one object constant. (In the sequel we often omit expression “with at least

one object constant”.) By Π̂ we denote its FOL representation. (Similarly, for a body

Body or a rule R, by B̂ody or R̂ we denote their FOL representations.) An answer set of

Π is an answer set of its FOL representation Π̂ . In other words, an answer set of Π is

an Herbrand interpretation of Π̂ that is a π(Π̂)-stable model of Π̂ , i.e., a model of

SM
π(Π̂)

[Π̂]. (20)

Sometimes, it is convenient to identify a logic program Π with its semantic counter-

part (20) so that formal results stated in terms of SM operator immediately translate

into the results for logic programs.

Review: Strong Equivalence

We restate the definition of strong equivalence given in [9] and recall some of its prop-

erties. First-order formulas F and G are strongly equivalent if for any formula H, any

occurrence of F in H, and any tuple p of distinct predicate constants, SMp[H] is equiv-

alent to SMp[H
′], where H ′ is obtained from H by replacing F by G. Trivially, any

strongly equivalent formulas are such that their stable models coincide (relative to any

tuple of predicate constants). In [19], Ferraris et al. show that first-order formulas F

and G are strongly equivalent if they are equivalent in SQHT= logic — an intermediate

logic between classical and intuitionistic logics. We recall that every formula provable

in the natural deduction system without the law of the excluded middle (F ∨¬F) is a

theorem in intuitionistic logic. Also, every formula provable using natural deduction,

where the axiom of the law of the excluded middle (F ∨¬F) is replaced by the weak

law of the excluded middle (¬F ∨¬¬F), is a theorem of SQHT=.

The definition of strong equivalence between first-order formulas paves the way to

a definition of strong equivalence for logic programs. A logic program Π1 is strongly

equivalent to logic program Π2 when for any program Π ,

SM
π(̂Π ∪Π1)

[̂Π ∪Π1] is equivalent to SM
π(̂Π ∪Π2)

[̂Π ∪Π2].

It immediately follows that logic programs Π1 and Π2 are strongly equivalent if first-

order formulas Π̂1 and Π̂2 are equivalent in logic of SQHT=.

We now review an important result about properties of denials.

9

Theorem 1 (Theorem 3 [9]). For any first-order formulas F and G and arbitrary tu-

ple p of predicate constants, SMp[F ∧¬G] is equivalent to SMp[F]∧¬G.

As a consequence, p-stable models of F ∧¬G can be characterized as the p-stable

models of F that satisfy first-order logic formula ¬G. Consider any denial ← Body. Its

FOL representation has the form ∀̃(Body → ⊥) that is intuitionistically equivalent to

formula ¬∃̃Body. Thus, Theorem 1 tells us that given any denial of a program it is safe

to compute answer sets of a program without this denial and a posteriori verify that the

FOL representation of a denial is satisfied.

Corollary 1. Two denials are strongly equivalent if their FOL representations are clas-

sically equivalent.

This corollary is also an immediate consequence of the Replacement Theorem for intu-

itionistic logic [21, Section 13.1] stated below.

Replacement Theorem. If F is a first-order formula containing a subformula G

and F ′ is the result of replacing that subformula by G′ then ∀̃(G ↔ G′) intuitionisti-

cally implies F ↔ F ′.

Rewritings

Rewritings via Pure Strong Equivalence

Strong equivalence can be used to argue the correctness of some program rewritings

practiced by ASP software engineers. Here we state several theorems about strong

equivalence between programs. Observations 1, 2, and 3 are consequences of these

results.

We say that body Body subsumes body Body′ when Body′ has the form Body,Body′′

(note that an order of expressions in a body is immaterial) . We say that a rule R sub-

sumes rule R′ when heads of R and R′ coincide while body of R subsumes body of R′.

For example, rule (2) subsumes rule (10).

Subsumption Rewriting: Let R′ denote a set of rules subsumed by rule R. It is

easy to see that formulas R̂ and R̂∧ R̂′ are intuitionistically equivalent. Thus, program

composed of rule R and program {R}∪R′ are strongly equivalent. It immediately fol-

lows that Observation 1 holds. Indeed, rule (2) is strongly equivalent to the set of rules

composed of itself and (10). Indeed, rule (2) subsumes rule (10).

Removing Aggregates: The following theorem is an immediate consequence of the

Replacement Theorem for intuitionistic logic.

Proposition 1. Program

H ← b ≤ #count{x : F(x)}, G (21)

is strongly equivalent to program

H ← ,
1≤i≤b

F(xi) ,
1≤i< j≤b

xi �= x j
, G (22)

where G and H have no occurrences of variables in xi (1 ≤ i ≤ b).

10

Proposition 1 shows us that Observation 2 is a special case of a more general fact.

Indeed, take rules (4) and (11) to be the instances of rules (21) and (22) respectively.

We note that the Replacement Theorem for intuitionistic logic also allows us to

immediately conclude the following.

Corollary 2. Program H ← G is strongly equivalent to program H ← G′ when

∀̃(Ĝ ↔ Ĝ′).

Proposition 1 is a special case of this corollary. We could use Corollary 2 to illustrate

the correctness of Observation 2. Yet, the utility of Proposition 1 is that it can guide

syntactic analysis of a program with a goal of equivalent rewriting (for instance, for

the sake of performance or clarity). In contrast, Corollary 2 equips us with a general

semantic condition that can be utilized in proving the syntactic properties of programs

in spirit of Proposition 1.

Replacing Choice Rule by Defining Rule: Theorem 2 shows us that Observation 3

is an instance of a more general fact.

Theorem 2. Program

← p(x), q(x) (23)

q(x)← not p(x),F1 (24)

{p(x)}← F1, F2 (25)

is strongly equivalent to program composed of rules (23), (24) and rule

p(x)← not q(x), F1, F2 (26)

Indeed, we can derive the former program (its FOL representation) from the latter in-

tuitionistically; and we can derive the later from the former in logic SQHT=. For the

second direction, De Morgan’s law ¬(F ∧G)→ ¬F ∨¬G (provable in logic SQHT=,

but not valid intuitionistically) is essential.

To illustrate the correctness of Observation 3 by Theorem 2: (i) take rules (1), (2),

(3) be the instances of rules (23), (24), (25) respectively, and (ii) rule (12) be the instance

of rule (26).

Useful Rewritings using Structure

In this section, we study rewritings on a program that rely on its structure. We review

the concept of a dependency graph used in posing structural conditions on rewritings.

Review: Predicate Dependency Graph We present the concept of the predicate de-

pendency graph of a formula following the lines of [10]. An occurrence of a predicate

constant, or any other subexpression, in a formula is called positive if the number of

implications containing that occurrence in the antecedent is even, and strictly positive

if that number is 0. We say that an occurrence of a predicate constant is negated if it

belongs to a subformula of the form ¬F (an abbreviation for F →⊥), and nonnegated

otherwise.

11

For instance, in formula (18), predicate constant o has a strictly positive occurrence

in the consequence of the implication; whereas the same symbol o has a negated positive

occurrence in the antecedent

¬¬o(A, I)∧ step(I)∧¬goal(I)∧¬I = n∧action(A) (27)

of (18). Predicate symbol action has a strictly positive non-negated occurrence in (27).

The occurrence of predicate symbol goal is negated and not positive in (27). The oc-

currence of predicate symbol goal is negated and positive in (18).

An FOL rule of a first-order formula F is a strictly positive occurrence of an impli-

cation in F . For instance, in a conjunction of two formulas (18) and (19) the FOL rules

are as follows

¬¬o(A, I)∧SG(I)∧action(A)→ o(A, I) (28)

¬∃A[o(A, I)]∧SG(I)→⊥. (29)

For any first-order formula F , the (predicate) dependency graph of F relative to

the tuple p of predicate symbols (excluding =) is the directed graph that (i) has all

predicates in p as its vertices, and (ii) has an edge from p to q if for some FOL rule

G → H of F

– p has a strictly positive occurrence in H, and

– q has a positive nonnegated occurrence in G.

We denote such a graph by DGp[F]. For instance, the dependence graph of a conjunction

of formulas (18) and (19) relative to all its predicate symbols contains four vertices,

namely, o, action, step, and goal, and two edges: one from vertex o to vertex action

and the other one from o to step. Indeed, consider the only two FOL rules (28) and (29)

stemming from this conjunction. Predicate constant o has a strictly positive occurrence

in the consequent o(A, I) of the implication (28), whereas action and step are the only

predicate constants in the antecedent ¬¬o(A, I)∧ SG(I)∧ action(A) of (28) that have

positive and nonnegated occurrence in this antecedent. It is easy to see that a FOL rule

of the form G →⊥, e.g., FOL rule (29), does not contribute edges to any dependency

graph.

For any logic program Π , the dependency graph of Π , denoted DG[Π], is a directed

graph of Π̂ relative to the predicates occurring in Π . For example, let Π be composed

of two rules (3) and (5). The conjunction of formulas (18) and (19) forms its FOL

representation.

Shifting We call a logic program disjunctive if all its rules have the form (15), where

Body only contains atoms possibly preceded by not. We say that a disjunctive program

is normal when it does not contain disjunction connective |. In [14], Gelfond et al. de-

fined a mapping from a propositional disjunctive program Π to a propositional normal

program by replacing each rule (15) with l > 1 in Π by l new rules

ai ← Body, not a1, . . .not ai−1,not ai+1, . . .not al .

They showed that every answer set of the constructed program is also an answer set

of Π . Although the converse does not hold in general, in [1] Ben-Eliyahu and Dechter

12

showed that the converse holds if Π is “head-cycle-free”. In [20], Linke et al. illus-

trated how this property holds about programs with nested expressions that capture

choice rules, for instance. Here we generalize these findings further. First, we show that

shifting is applicable to first-order programs (that also allow choice rules and aggregates

in addition to disjunction). Second, we illustrate that under certain syntactic/structural

conditions on a program we may apply shifting “locally” to some rules with disjunction

and not others.

For an atom a, by a0 we denote its predicate constant. For example o(A, I)0 = o.

Let R be a rule of the form (15) with l > 1. By shiftp(R) (where p is a tuple of distinct

predicates excluding =) we denote the rule

|
1 ≤ i ≤ l, a0

i ∈ p

ai ← Body ,
1 ≤ j ≤ l, a0

j �∈ p

not a j. (30)

Let C be the set of strongly connected components in the dependency graph of Π .

By shift(R) we denote the new rules shifts(R) for every s ∈ C where s has a predicate

symbol that occurs in the head of R. Consider a sample program Πsamp composed of

two rules with disjunction

a | b | c ← d | c ←

and three defining rules

a ← b b ← a e(1). (31)

The strongly connected components of program Πsamp are {{a,b},{c},{d},{e(1)}}.

Expression shift(a | b | c ←) denotes rules a | b ← not c and c ← not a,not b.

Theorem 3. Let Π be a logic program, R be a set of rules in Π of the form (15) with

l > 1. A program constructed from Π by replacing each rule R ∈ R with shift(R) has

the same answer sets as Π .

This theorem tells us, for example, that the answer sets of the sample program Πsamp

coincide with the answer sets of three distinct programs composed of rules in (31) and

rules in any of the following columns:

a | b ← not c a | b ← not c a | b | c ←

c ← not a,not b c ← not a,not b

d ← not c d | c ← d ← not c

c ← not d c ← not d

To obtain the rules in the first column take R to consist of the first two rules of Πsamp.

To obtain the second column take R to consist of the first rule of Πsamp. To obtain the

last column take R to consist of the second rule of Πsamp.

We now use Theorem 3 to argue the correctness of Observation 4. Let Plan-choice′

denote a program constructed from the Plan-choice encoding by replacing (3) with (6).

Let Plan-choice′′ denote a program constructed from the Plan-choice, by (i) replacing

(3) with (12) and (ii) adding rule (10). Theorem 3 tells us that programs Plan-choice′

and Plan-choice′′ have the same answer sets. Indeed,

13

1. take R to consist of rule (6) and

2. recall Facts 1, 2, and 3. Given any Plan-instance intended to use with Plan-choice

a program obtained from the union of Plan-instance and Plan-choice′ is such that

o is terminal. It is easy to see that any terminal predicate in a program occurs only

in the singleton strongly connected components of a program’s dependency graph.

Due to Observations 1 and 3, the Plan-choice encoding has the same answer sets as

Plan-choice′′ and consequently the same answer sets as Plan-choice′. This argument

accounts for the proof of Observation 4.

Completion We now proceed at stating formal results about first-order formulas and

their stable models. The fact that we identify logic programs with their FOL represen-

tations translates these results to the case of the RASPL-1 programs.

About a first-order formula F we say that it is in Clark normal form [9] relative to

the tuple/set p of predicate symbols if it is a conjunction of formulas of the form

∀x(G → p(x)) (32)

one for each predicate p ∈ p, where x is a tuple of distinct object variables. We refer

the reader to Section 6.1 in [9] for the description of the intuitionistically equivalent

transformations that can convert a first-order formula, which is a FOL representation

for a RASPL-1 program (without disjunction and denials), into Clark normal form.

The completion of a formula F in Clark normal form relative to predicate symbols p,

denoted by Compp[F], is obtained from F by replacing each conjunctive term of the

form (32) with ∀x(G ↔ p(x)).
The following Corollary is an immediate consequence of Theorem 10 in [9], Theo-

rem 1, and the fact that formula of the form ∀̃(Body→⊥) is intuitionistically equivalent

to formula ¬∃̃Body.

Corollary 3. For any formula G∧H such that (i) formula G is in Clark normal form

relative to p and H is a conjunction of formulas of the form ∀̃(K →⊥), the implication

SMp[G∧H]→Compp[G]∧H

is logically valid.

To illustrate the utility of this result we now construct an argument for the correct-

ness of Observation 5. This argument finds one more formal result of use:

Proposition 2. For a program Π , a first-order formula F such that every answer set

of Π satisfies F, and any two denials R and R′ such that F → (R̂ ↔ R̂′), the answer sets

of programs Π ∪{R} and Π ∪{R′} coincide.

Consider the Plan-choice encoding without denial (4) extended with any Plan-

instance. We can partition it into two parts: one that contains the denials, denoted

by ΠH , and the remainder, denoted by ΠG. Recall Fact 1. Following the steps described

by Ferraris et al. in [9, Section 6.1], formula Π̂G turned into Clark normal form rel-

ative to the predicate symbols occurring in ΠH ∪ΠG contains implication (18). The

completion of this formula contains equivalence

∀̃
(
¬¬o(A, I)∧SG(I)∧action(A)↔ o(A, I)

)
. (33)

14

By Corollary 3 it follows that any answer set of ΠH ∪ΠG satisfies formula (33). It is

easy to see that an interpretation satisfies (33) and the FOL representation of (11) if and

only if it satisfies (33) and the FOL representation of denial (7). Thus, by Proposition 2

program ΠH ∪ΠG extended with (11) and program ΠH ∪ΠG extended with (7) have

the same answer sets. Recall Observation 2 claiming that it is safe to replace denial (4)

with denial (11) within an arbitrary program. It follows that program ΠH ∪ΠG extended

with (7) have the same answer sets ΠH ∪ΠG extended with (4). This concludes the

argument for the claim of Observation 5.

We now state the last formal results of this paper. The Completion Lemma stated

next is essential in proving the Lemma on Explicit Definitions. Observation 6 follows

immediately from the latter lemma.

Theorem 4 (Completion Lemma). Let F be a first-order formula and q be a set of

predicate constants that do not have positive, nonnegated occurrences in any FOL rule

of F. Let p be a set of predicates in F disjoint from q. Let D be a formula in Clark

normal form relative to q so that in every conjunctive term (32) of D no occurrence

of an element in q occurs in G as positive and nonnegated. Formula SMpq[F ∧D] is

equivalent to formulas

SMpq[F ∧D]∧Comp[D], (34)

SMp[F]∧Comp[D], and (35)

SMpq[F ∧
∧

q∈{q}

∀x
(
¬¬q(x)→ q(x)

)
]∧Comp[D]. (36)

For an interpretation I over signature Σ , by I|σ we denote the interpretation over

σ ⊆ Σ constructed from I so that every function or predicate symbol in σ is assigned

the same value in both I and I|σ . We call formula G in (32) a definition of p(x).

Theorem 5 (Lemma on Explicit Definitions). Let F be a first-order formula, q be a

set of predicate constants that do not occur in F, and p be an arbitrary set of predicate

constants in F. Let D be a formula in Clark normal form relative to q so that in every

conjunctive term (32) of D there is no occurrence of an element in q in G. Then

i M �→ M|σ(F) is a 1-1 correspondence between the models of SMpq[F ∧D] and the

models SMp[F], and

ii SMpq[F∧D] and SMpq[F
q∧D] are equivalent, where we understand Fq as a formula

obtained from F by replacing occurrences of the definitions of q(x) in D with q(x).

We note that Splitting Theorem from [10], Theorem 2 and Theorem 11 from [9]

provide sufficient grounds to carry out the argument for Theorem 4. The proof of item

(i) in Theorem 5 relies on Theorem 4 and the fact that the completion of considered

formula D in Theorem 5 corresponds to so called explicit definitions in classical logic.

The proof of item (ii) utilizes the Replacement Theorem for intuitionistic logic.

It is easy to see that program composed of a single rule

p(y)← 1 ≤ #count{x : F(x,y)}

and program p(y)← F(x,y) are strongly equivalent. Thus, we can identify rule (8) in

the Plan-disj encoding with the rule

sthHpd(I)← 1 ≤ #count{A : o(A, I)}. (37)

15

Using this fact and Theorem 5 allows us to support Observation 6. Take F to be the

FOL representation of Plan-choice encoding extended with any Plan-instance and D

be the FOL representation of (37), q be composed of a single predicate sthHpd and p

be composed of all the predicates in Plan-choice and Plan-instance.

Conclusions This paper lifts several important theoretical results for propositional pro-

grams to the case of first-order logic programs. These new formal findings allow us to

argue a number of first-order program rewritings to be safe. We illustrate the useful-

ness of these findings by utilizing them in constructing an argument which shows that

the sample programs Plan-choice and Plan-disj are essentially the same. We believe

that these results provide a strong building block for a portfolio of safe rewritings that

can be used in creating an automatic tool for carrying these rewritings during program

performance optimization phase discussed in Introduction.

Acknowledgements We are grateful to Vladimir Lifschitz and Miroslaw Truszczynski

for valuable discussions on the subject of this paper. Yuliya Lierler was partially sup-

ported by the NSF 1707371 grant.

References

1. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals

of Mathematics and Artificial Intelligence 12, 53–87 (1994)

2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communica-

tions of the ACM 54(12), 92–103 (2011)

3. Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming. In: Proceed-

ings of the Thirteenth International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR) (2015)

4. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model seman-

tics. In: Palamidessi, C. (ed.) Logic Programming. pp. 224–238. Springer Berlin Heidelberg,

Berlin, Heidelberg (2003)

5. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-

set programming. In: Proceedings of International Conference on Principles of Knowledge

Representation and Reasoning (KR) (2006)

6. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming.

In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI). pp. 97–

102 (2005)

7. Eiter, T., Traxler, P., Woltran, S.: An implementation for recognizing rule replacements in

non-ground answer-set programs. In: Proceedings of European Conference On Logics In

Artificial Intelligence (JELIA) (2006)

8. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International Confer-

ence on Logic Programming and Nonmonotonic Reasoning (LPNMR). pp. 119–131 (2005)

9. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence

175, 236–263 (2011)

10. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable

models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI).

pp. 797–803. IJCAI press (2009)

11. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of

Logic Programming 5, 45–74 (2005)

16

12. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract

gringo. Theory and Practice of Logic Programming 15, 449–463 (7 2015).

https://doi.org/10.1017/S1471068415000150, http://journals.cambridge.

org/article_S1471068415000150

13. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent

Agents: The Answer-Set Programming Approach. Cambridge University Press (2014)

14. Gelfond, M., Lifschitz, V., Przymusińska, H., Truszczyński, M.: Disjunctive defaults. In:

Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of International Conference on Princi-

ples of Knowledge Representation and Reasoning (KR). pp. 230–237 (1991)

15. Harrison, A., Lierler, Y.: First-order modular logic programs and their conservative exten-

sions. Theory and Practice of Logic programming, 32nd Int’l. Conference on Logic Pro-

gramming (ICLP) Special Issue (2016)

16. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive sta-

ble models. In: Procedings of International Conference on Logic Programming and Non-

monotonic Reasoning (LPNMR). pp. 175–187 (2007)

17. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set

programming. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

pp. 472–479 (2008)

18. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-

tions on Computational Logic 2, 526–541 (2001)

19. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic

programs with variables. In: Procedings of International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR). pp. 188–200 (2007)

20. Linke, T., Tompits, H., Woltran, S.: On acyclic and head-cycle free nested logic programs. In:

Proceedings of 19th International Conference on Logic Programming (ICLP). pp. 225–239

(2004)

21. Mints, G.: A Short Introduction to Intuitionistic Logic. Kluwer (2000)

22. Pearce, D., Valverde, A.: Synonymous theories and knowledge representations in

answer set programming. Journal of Computer and System Sciences 78(1), 86 –

104 (2012). https://doi.org/https://doi.org/10.1016/j.jcss.2011.02.013, http://www.

sciencedirect.com/science/article/pii/S0022000011000420, jCSS

Knowledge Representation and Reasoning

23. Woltran, S.: Characterizations for relativized notions of equivalence in answer set program-

ming. In: Alferes, J.J., Leite, J. (eds.) Logics in Artificial Intelligence. pp. 161–173. Springer

Berlin Heidelberg, Berlin, Heidelberg (2004)

