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0. Abstract

Neuroimaging research is growing rapidly, providing expansive resources for synthesizing
data. However, navigating these dense resources is complicated by the volume of research
articles and variety of experimental designs implemented across studies. The advent of
machine learning algorithms and text-mining techniques has advanced automated labeling
of published articles in biomedical research to alleviate such obstacles. As of yet, a
comprehensive examination of document features and classifier techniques for annotating
neuroimaging articles has yet to be undertaken. Here, we evaluated which combination of
corpus (abstract-only or full-article text), features (bag-of-words or Cognitive Atlas terms),
and classifier (Bernoulli Naive Bayes, k-nearest neighbors, logistic regression, or support
vector classifier) resulted in the highest predictive performance in annotating a selection of
2,633 manually annotated neuroimaging articles. We found that, when utilizing full article
text, data-driven features derived from the text performed the best, whereas if article
abstracts were used for annotation, features derived from the Cognitive Atlas performed
better. Additionally, we observed that when features were derived from article text,
anatomical terms appeared to be the most frequently utilized for classification purposes
and that cognitive concepts can be identified based on similar representations of these
anatomical terms. Optimizing parameters for the automated classification of neuroimaging
articles may result in a larger proportion of the neuroimaging literature being annotated

with labels supporting the meta-analysis of psychological constructs.
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1. Introduction
Neuroimaging research offers the potential to improve understanding of the neural

mechanisms supporting a wide range of mental operations linked with mental health
disorders and impacted by treatment interventions. These research endeavors are increasing
in volume and scope, requiring “big data” methods to harness and translate this
accumulated knowledge into improved cognitive models and ultimately intervention
strategies. For example, a search of the National Center for Biotechnology Information
PubMed engine (pubmed.gov) identified over 121,000 publications from 2007-2012
matching the terms “fMRI” or “functional magnetic resonance imaging”. That number has
risen to nearly 150,000 in the last five years, indicating that continued growth is to be
expected. This body of literature represents a vast knowledge archive capturing a system-
level perspective of functional brain organization. This includes a variety of motor (e.g.,
hand/body movements, speech), perceptual (e.g., visual, auditory), cognitive (e.g.,
memory, language, attention), affective (e.g., personality, emotion, mood), and
interoceptive (e.g., hunger, thirst, micturition) systems. Capturing and discriminating the
neurocognitive concepts across this plethora of information in an automated fashion for
harvesting and data synthesis has yet to be sufficiently accomplished.

Biomedical text mining approaches have shown to be increasingly beneficial for
extracting knowledge locked within text (Wang et al., 2007; Van Auken et al., 2012; Funk
etal.,2014; Torii et al., 2014; Collier et al., 2015; Kim et al., 2015). Journal articles, patient
electronic records, and social media posts may be mined to identify and predict relations
among entities; for example, “drug X causes adverse event Y. In various genomics or
proteomics knowledge repositories, one focus has been to identify specific relationships
between concepts such as “protein X phosphorylates receptor Y’ (Torrecilla et al., 2007).
However, these annotations often depend on identifying specific words such as the name
of the gene, drug or protein, or specific phrases such as “opioid dependence” present in the
text, or their variant forms or known synonyms from a dictionary, i.e., fairly simple design
patterns (Castellini et al., 2012). In cognitive neuroscience, researchers seek to identify
underlying neurobiological mechanisms, specifically relations between brain regions and
mental functions. These include forward inferences, “mental function X activates brain

network Y, or reverse inferences, “brain network Y is engaged during mental function X
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(Poldrack et al., 2011). The challenge for cognitive neuroscience is that the particular name
of the mental function, experimental paradigm, or brain network often does not appear per
se in the text, nor does any simple synonym because there is an inherent variance in how
authors describe experimental design. Automated labeling of the concepts requires
inferring the concepts from large and non-contiguous sections of the text. To that end,
Neurosynth (neurosynth.org; Yarkoni etal., 2011) was developed as an automated platform
for archiving the results of neuroimaging articles, along with associated weightings of
terms based on frequency of appearance in the articles’ abstracts. While this approach is
capable of fast automated annotation of a substantial proportion of the literature, the
annotations for a given article may lack sensitivity and specificity to relevant psychological
constructs discussed in the article. An optimal platform would be one which utilizes the
automated approach implemented in Neurosynth in conjunction with the structured
vocabulary established by a more formalized ontology.

While initial progress has been made in developing an efficient and accurate
machine learning classification approach for automated labeling on the abstracts of
neuroimaging papers (Turner et al., 2013; Chakrabarti et al., 2014), a comprehensive
assessment of predictive performance using different features and classifiers across
abstracts or full article text has yet to be conducted. We therefore sought to expand our
prior work by (1) developing a framework for automated annotation of neuroimaging
publications, (2) evaluating classifier performance across a range of variable parameters
(i.e., corpus, feature space, classification algorithm), and (3) characterizing relationships
between labels by assessing the similarities between persistent vocabularies extracted from

article text.
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2. Material and Methods
2.1 Corpora

In an effort to build an automated text-mining algorithm capable of classifying
published neuroimaging articles, we utilized 2,633 articles from the BrainMap database
(brainmap.org; Fox and Lancaster, 2002; Laird et al., 2005; 2009) that were published
between 1992 and 2016 and their associated metadata labels derived by manual (i.e.,
human) annotation (http://brainmap.org). We extracted the text contained in the published
abstracts using the PubMed API in Biopython (biopython.org). In addition, each
neuroimaging publication was manually downloaded in PDF format, and the PDFMiner
tool (github.com/euske/pdfminer) was applied to extract full document text. Image-based
PDFs were excluded from further analysis. This yielded the full text available in the
manuscript, including title, authors, keywords, main body of the publication, and
references, the totality of which includes text describing the study purpose, neuroimaging
methodology, results, and interpretations of findings in using specific, author-determined
terminologies. Thus, two text corpora were generated for this study (i.e., “abstracts-only”
and “full-text”), which were separately analyzed to determine if similar knowledge can be

extracted from succinct study descriptions as compared to the document as a whole.

2.2 Metadata labels

For automated article annotation, a classifier must be established using a training
dataset with labeled articles. The Cognitive Paradigm Ontology (CogPO; Turner and Laird,
2012; cogpo.org) is a taxonomy of labels utilized to represent experimental conditions
based on the stimuli presented, the instructions given, and the responses requested. Each
neuroimaging article was annotated with the established system of labels defined by
CogPO. In total, there are 358 CogPO terms that are separated into distinct dimensions,
including: Behavioral Domain, Paradigm Class, Diagnosis, Context, Instruction, Stimulus
Modality, Stimulus Type, Response Modality, and Response Type. Typically, CogPO terms
are assigned to experimental contrasts, which are defined by a reported set of activation (or
deactivation) coordinates. Behavioral Domain describes the construct or mental process
ostensibly isolated by the experimental contrast, according to the participant behaviors

elicited during the performed task, the latter of which is described by a Paradigm Class
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term. Diagnosis refers to the participant population scanned during the neuroimaging study
(including healthy individuals or participants with a disease or disorder), whereas Context
describes what type of population effect was investigated (e.g., Disease Effects, Gender
Effects, etc.). Instruction describes what the participant was instructed to do during the
experiment, while Stimulus Type and Modality are descriptors for what stimuli were
presented to the participants. Finally, Response Modality and Response Type describe the
format for how the participant was instructed to overtly respond (if any), during the task.

A complete list of all included CogPO terms is available in Supplemental Table 1.

2.3 Manual annotations

Each experimental contrast from the 2,633 neuroimaging publications archived in
the BrainMap database was extracted, along with the set of metadata annotations derived
from the CogPO labeling schema. Each experimental contrast was manually annotated by
trained experts with a set of CogPO labels, and each publication may contain multiple
experimental contrasts. Thus, in order to predict metadata label annotation for each
publication, we collapsed all labels from each experimental contrast into one set of labels

per neuroimaging article.

Importantly, the Behavioral Domain and Paradigm Class dimensions are organized
hierarchically. For example, the Behavioral Domain Cognition.Memory includes two sub-
types, Cognition.Memory. Working and Cognition.Memory.Explicit. Therefore, to enhance
the ability of machine-learning classifiers to distinguish, at the highest level, between
parent Behavioral Domains (i.e., Action, Cognition, Emotion, Interoception, Perception),
we performed a hierarchical expansion procedure whereby all parent labels in a hierarchy,
were assigned to the article in addition to the original label. For example, if a publication
were assigned the Behavioral Domain Cognition.Memory. Working, it would have also
been assigned the labels Cognition. Memory and Cognition. While Paradigm Classes do not
necessarily have the same hierarchical structure across all labels, certain tasks do exhibit
multiple variants, such as Covert and Overt Word Generation, and in such cases parent
labels were assigned accordingly. To increase the power of certainty associated with label
assignments using our machine-learning classifier, we only examined those labels with at

least 80 instances (Figueroa et al., 2012) across neuroimaging publications. That is, if a
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specific metadata term, regardless of dimension, did not appear in at least 80 articles, it
was not considered for assessment, reducing the total number of CogPO labels assessed

from 358 to 86 (Supplemental Table 2).

We computed several descriptive measures pertaining to multi-label classification
to provide reference for quantifying the variable range of label assignments to the
neuroimaging articles. Label cardinality (LCay) is the average number of labels per article.
In addition to label cardinality, the minimum (LCpi») and maximum (LCpax) number of
label assignments were calculated across all CogPO dimensions and for each dimension.
Furthermore, label set proportions (Read et al., 2011) provide a reference for variability in
label assignment across the articles and within dimensions. We subsequently calculated the
proportion of unique label sets (P.xiq) across all dimensions and for each dimension, as well
as the proportion of the data that is assigned to the minimum (Pmin) and maximum (Pmax)

number of labels.

2.4 Analysis pipeline

To evaluate classification accuracy and consistency across a combination of
variable factors including corpora, features, and classifiers, we developed an analysis
pipeline (Figure 1) combining tools available in the Natural Language Toolkit (NLTK;
Loper and Bird, 2002; Bird et al., 2009; nltk.org) and machine learning algorithms from
scikit-learn (scikit-learn.org). For this purpose, we implemented a stratified, repeated
cross-validation approach (Dietterich, 1998; Rodriguez et al., 2010) to ensure equal
representation across folds, whereby for each combination of label, corpus, feature space,
classification algorithm, and CogPO label, the binary classifier model was trained using
an optimized set of parameters on the training dataset, and the subsequent predicted label
was recorded for the test dataset. We evaluated classification accuracy by aggregating
across macro F1-scores for each label across iterations. Then, we utilized a hierarchical
clustering analysis to observe which Behavioral Domains and Paradigms Classes
demonstrated similar representations of features selected for -classification across
iterations. For reference, all code utilized to perform these analyses are available on GitHub

(https://github.com/NBClLab/athena).
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2.5 Feature Space Definition

For each corpus investigated, we considered two feature spaces, for reducing the
article text to terms (or features) used for classification purposes. In our analyses, the two
types of features we used were defined by either “bag-of-words” or Cognitive Atlas terms,

as described below.

2.5.1 Bag-of-words

In the bag-of-words method, every whitespace character in the text
indicated a separation of words, so every word with at least 3 letters can be
considered a single feature through a process called fokenization. Given the
complex description of psychological constructs and experimental design used in
the neuroimaging literature, we also allowed for terms composed of one, two or
three words (unigrams, bigrams, or trigrams). Any such combinations of terms were
considered as potential features for the classification procedure. We also
implemented an abbreviation expander (github.com/NBCLab/abbr), which was
used to identify the corresponding terms associated with an abbreviation defined in
the text. This procedure identified abbreviations appearing in parentheses and
associated them with the terms appearing before the parentheses and whose letters
began with the abbreviation letters. All instances of the abbreviation in the text were
identified and replaced with the full term. This process served to provide
consistency across article texts that are potentially representing similar information
in different formats. Additionally, all non-alphanumeric characters (such as
punctuation), except for hyphens, were removed from the text, and all terms using
British-English spelling were converted to American-English spelling using a
dictionary of spelling differences (tysto.com/uk-us-spelling-list.html). An
additional step for pre-processing the text included “stop word” removal.
Commonly used terms that serve transitional or descriptive purposes, such as “the”,
“and”, “are”, “at”, etc., are known as “stop words”, and are not beneficial for
classification. We therefore filtered out the list of “stop words” provided by NLTK,
available in the supplemental information (Supplemental Table 3). The final step
for bag-of-words text pre-processing consisted of removing suffixes from terms

such that each word was decomposed into its root form in a process called
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“stemming.” We again relied on the NLTK package and the English language
Snowball stemmer (Bird, 2006) for this purpose. Here, the purpose of stemming
was to establish consistency across terms that have the same meaning and root form
but vary in the text based on usage. For example, the terms “viewing”, “viewed”,
and “views” are all variants of the root “view”, but would be considered separate
terms (and subsequently, features) if not for stemming procedure. During this
transformation, the features for the classification procedure are now composed of
lexical roots, which may or may not be a complete word.
2.5.2 Cognitive Atlas

The Cognitive Atlas (Poldrack et al., 2011; cognitiveatlas.org) is a
collaboratively developed ontology for the field of cognitive science. The majority
of items in the Cognitive Atlas are categorized as Concepts, Tasks, or Disorders,
and have been developed by experts in the fields of psychology, cognitive science,
and neuroscience. Furthermore, relationships between terms, called assertions,
permit for a structured hierarchy that informs associations between psychological
constructs and experimental manipulation. Although specialized relationships may
exist within and between item categories, we limited feature weighting to Concept-
Concept assertions; specifically, hypernym/hyponym (is-a). In a similar way that
hierarchical expansion was performed for the metadata labels, we also implemented
an ontological weighting schema between Cognitive Atlas terms defined by the “is-
a” relationship (Poldrack, 2017; see link in Acknowledgements section). For
example, if a Cognitive Atlas term appeared a given number of times in a document
and is a “kind of” another Cognitive Atlas term, then the second term would be
assigned the same count as the first term plus the count for the term itself. This
weighting system was applied iteratively until the entirety of all term relationships
was completed such that a term with multiple “is-a” relationships was influenced
by the appropriate proportion of those term frequencies. In total, there are 1,744
terms in the Cognitive Atlas that describe Concepts, Tasks, or Disorders, along with
10 categories, for a total of 1,754 Cognitive Atlas features.

Text preprocessing for the “Cognitive Atlas” feature space was carried out

in the same manner as the bag-of-words approach. The Cognitive Atlas provides
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not only a dictionary of relevant cognitive neuroscience terms, but also synonyms
and alternate forms (e.g., “executive function” and “executive control”).
Supplementing the Cognitive Atlas recommended alternate forms, we generated
additional alternate forms of terms by removing hyphens and possessive
apostrophes, moving parenthetical statements to the beginning of the term, and
derived similar terms separated by a forward slash “/”. We additionally performed
the “stemming” procedure as described above to reduce all Cognitive Atlas terms

and their alternate forms to their roots.

2.6 Feature Vectorization and Reduction

We transformed raw counts of feature (bag-of-words or Cognitive Atlas terms)
appearance by calculating the term frequency-inverse document frequency (#f-idf; see
Supplemental Material for a formal definition) for each feature in each article of the
training-dataset. Specifically, the number of appearances of a given feature was extracted
and sub-linearly scaled using /+/og(tf) to reduce the effect of high-frequency features, then
multiplied by the inverse document-frequency to account for feature presence across
articles. The inverse document-frequency values were smoothed by adding 1 to document
frequencies to prevent zero divisions. Additionally, a threshold was imposed requiring a
minimum frequency of 80 instances for each feature to reflect the minimum number of
instances necessary for a metadata label to receive consideration for classification. That is,
because we required a label to have a minimum of 80 instances, we also required a feature
to appear at least 80 times. Then, only for the case of the “bag-of-words” feature space, if
the total number of potential features for the classification procedure was greater than the
number of Cognitive Atlas terms, a chi-square test was utilized to subsequently identify
and eliminate the features that were irrelevant for classification. To this end, the chi-square
tests measured dependence between all potential features, and the top 1,754 “bag-of-
words” features that were least likely to be independent of class were retained. We chose
to limit the number of bag-of-words terms to match the number of Cognitive Atlas terms

to make the two feature spaces more directly comparable.

2.7 Classifier, parameter tuning
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We examined four different algorithms for classification, described below, to
determine which approach produced the most reliable and accurate results. The
performance of each classifier is dependent on the combination of different variables, or
hyperparameters, that impact how the algorithm calculates the model for generating
predictions. Each classifier is influenced by a unique set of hyperparameters. Thus, for
each classifier, we performed a grid-search over different combinations of
hyperparameters (from the classifier-specific set of hyperparameters) to determine which
arrangement resulted in the most optimal classifier performance based on the training-
dataset (Bergstra and Bengio, 2012). Then, once the optimal combination of
hyperparameters was identified, the classifier and hyperparameters were used to generate
predictions of metadata labels. This procedure was performed for each fold and each
iteration, and the distributions of hyperparameters chosen for each classifier can be found
in the Supplemental Material (Supplemental Table 4). Here, we briefly describe each

classifier and the associated parameters chosen for tuning.

2.7.1 Bernoulli naive Bayes

The naive Bayes algorithm is based on Bayes’ theorem with the assumption
that each feature is independent. This classifier operates under the assumption that
the probability of assigning a label to an article based on the specific #f-idf vector is
proportional to the probability of that label occurring in the training-dataset
multiplied by the union of probabilities of each feature’s association with that label
(McCallum and Nigam, 1998; Metsis, Androutsopoulos and Paliouras, 2006;
Manning, Raghavan and Scheutze, 2008). Essentially, the probability that an article
in the test-dataset is about a given label is calculated using the product of the
probabilities of the features (that appeared in the test-dataset) in the training-dataset
that were annotated with that label. Thus, this model is dependent on binary feature
occurrence rather than frequency of occurrence. In the Bernoulli naive Bayes
approach, the non-occurrence of a feature is penalized, rather than ignored, in the
calculation of the probability that a feature is associated with the label. If the
resulting probability exceeds a threshold of 0.5, then it is assumed that the article

in question is considered to be about the label being evaluated.

10
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The only parameter that required tuning for the Bernoulli naive Bayes
classifier was the additive (Laplace/Lidstone) smoothing parameter, which
primarily accounts for features which are not present in the training-dataset,
preventing the occurrence of a zero probability for those features in further
computations. The values for the smoothing parameter tested in the tuning grid-

search were 0.01, 0.1, 1, and 10.

2.7.2 Support vector classifier

Support vector machines construct a hyperplane in high-dimensional space
that separates data-points according to binary classification (is or is not annotated
with the label), where the optimal separation is achieved when the hyper-plane is
maximally distant from the nearest training data-points of different classes (the
maximum-margin hyperplane). In classification, the hyper-plane is constructed to
separate articles in the #f-idf matrix that were or were not about a given label, after
transformation by a radial basis function kernel which allows the feature space to
be non-linear (Smola and Scholkopf, 2004). Put another way, the radial basis kernel
function (defined in the Supplemental Text) incorporates a Gaussian function to
calculate the distance between feature vectors.

The parameters that required tuning for the support vector classifier were
the penalty of the error term and kernel coefficient for the kernel function. For the
radial basis function kernel, the error term trades misclassification of training
examples against the simplicity of the decision surface, and the kernel coefficient
defines the extent to which a single article in the training-dataset influences the
classifier. The error terms used for tuning in the grid-search were 1, 10, and 100,

and the potential kernel coefficients were 0.01, 0.1, and 1.

2.7.3 Logistic regression

The logistic regression algorithm is a classification algorithm based on
generalized linear models, where the probabilities that a given article is about a
label is modeled using a logistic function (Yu, Huang, Lin et al., 2011). In the
current approach, a binary classifier is independently developed for every label
where the model coefficients corresponding to each feature in the training-dataset

are calculated to minimize the error using a cost function. The LIBLINEAR library

11
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utilizes a coordinate descent algorithm to optimize the regression model (Fan et al.,
2008). tf-idf weights from the testing-dataset article are entered into the resulting
regression model, and the log-odds is then modeled as a probability using the
logistic function.

The parameters tuned in the grid-search accounted for the regularization
strength and the function for penalty normalization. Regularization in machine
learning is a term that prevents the model from overfitting to the training-dataset,
and the lower the regularization, the more likely overfitting is to occur. Penalty
normalization essentially adds either square loss or absolute deviation loss of the
magnitude of the coefficients to the penalty term of the cost function. The
regularization strengths submitted for tuning were 0.01, 0.1, 1, 10, and 100; and the

penalty normalization functions were the L/-norm or the L2-norm.

2.7.4 K-nearest neighbors

The kNN algorithm identifies the & articles in the training-dataset closest in
distance between their respective #f-idf vectors and that of the test-article to be
classified. That is, the distance between all #/~idf vectors in the training-dataset and
the article to be classified was calculated using the appropriate distance metric, and
the & articles with the smallest distance were identified. Then, a majority vote is
calculated from those k-nearest articles to determine if the test-article should be
annotated with a given label. In this instance, if more of the k-nearest articles are
not classified with the label under consideration, then the model will not predict
that label for the given article.

The kNN algorithm is dependent on the chosen £, the distance metric, and
distance weighting for predictions. Our parameter-tuning grid-search operated on &
= 1,3,5,7,9; calculated distances between #f-idf vectors in the training- and test-
dataset, which have equivalent lengths (i.e., number of features) using both the
Manhattan and Euclidean distance algorithms; and based predictions on uniform
and weighted distances. Uniform distances indicated that all points in a
neighborhood were weighted equally, whereas points could also be weighted by the
inverse of their distance. In this case, closer neighbors of a query point had a greater

influence than neighbors that were further way. As the input datasets are large and

12
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the kNN classification approach requires all the data available, distance calculation
algorithms can be used to identify the nearest neighbors. The algorithm (BallTree,
KDTree, brute-force) used to compute the nearest neighbors were automatically

determined based on the sparsity of the inputs (Bently 1975; Omohundro 1989).

2.8 Classifier Training

For the unique combination of a given metadata label, corpora (“abstract only” or
“full text”), and feature space (‘“bag-of-words” or “Cognitive Atlas”), a repeated five-fold
cross-validation procedure was performed 100 times. In this scheme, for each iteration, the
publications were first randomly split into 5 groups. Then, within the iteration, each of the
groups was selected as the test dataset once (and the other four were combined into a
training dataset). The #f-idf vectorization and feature reduction techniques described above
were subsequently performed for the training-datasets in each fold and each iteration to
increase generalizability of the model and improve learning performance (Tang et al.,
2013). For the bag-of-words feature space, the vocabulary (i.e., the set of unigrams,
bigrams, and trigrams extracted from the text and used to train the classifier) was defined
independently based on the fold’s training dataset, while for the Cognitive Atlas feature
space the vocabulary was already defined. Bag-of-words features derived from the training
dataset or Cognitive Atlas terms were then subjected to a similar #f~idf vectorization
procedure in the test-dataset. This resulted in two independent matrices with dimensions
equal to the number of features derived from the training-dataset and number of articles in
the training-dataset and test-dataset, respectively (Manning, Raghavan and Schiitze, 2008;
Baeza-Yates and Ribeiro-Neto, 2011). The procedure outlined above, consisting of
vectorization, feature reduction, and classifier training/testing was performed 5 times for
each of the 100 iterations which were performed for each combination of feature space,
corpus, and classifier for a total of 8000 permutations for each CogPO label. Within each
iteration and fold, classifiers were then trained using the training-dataset #f~idf feature
matrix, and predictions for articles in the test-dataset were made using the test-dataset #f-

idf feature matrix as input.

2.9 Evaluation

13
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2.9.1 Fl-scores

To build and assess classifier performance in assigning CogPO labels to
neuroimaging articles, we explored two corpora (“abstracts-only” and “full-text”),
two feature spaces (‘“bag-of-words” and “Cognitive Atlas), and four classifiers
(“Bernoulli naive Bayes”, “support vector classifier”, “logistic regression”, and “k-
nearest neighbors™). Classifiers for each label were modeled using a repeated cross-
validation procedure, whereby for each of the 100 iterations, the neuroimaging
articles and associated labels were split into 5 training- and test-datasets (thus
producing 500 estimates of classifier performance per label and per combination of
corpus, feature space, and classifier). Macro F1-scores (see Supplemental Text for
F1-score derivation) were used as the standard measure of classifier performance
and calculated for each iteration for each label so that our results were not biased
toward the most frequently occurring metadata labels within and across dimensions
(Sokolova and Lapalme, 2009). For Macro-F1 calculation, the mean and standard
deviation of Fl-scores across iterations and folds provided average levels of
performance and consistency of performance for each label. Then, to assess
classifier performance for each CogPO dimension, the mean and standard deviation
of Fl-scores were calculated across iterations and folds for all labels within a
dimension. Additionally, we calculated Micro Fl-scores to obtain a
characterization of classifier performance that does not over-emphasize classes that
are under-represented while under-emphasizing classes that are over-represented.
For Micro F1-score calculation, F1-scores were calculated across all labels within
a CogPO dimension for each combination of corpora, feature space, and classifier,
and averaged across iterations. Both Macro and Micro F1-scores can range from 0,

the worst score possible, and 1, for perfect precision and recall.

2.9.2 Baseline Performance Estimation

To compare the classifiers, we calculated the level of performance one
would expect based on simply choosing the most frequently occurring metadata
labels, derived using each combination of parameters. To do this, Macro F1-scores
were calculated for a pseudo-prediction matrix that was artificially generated by

“predicting” that all articles were annotated with the metadata labels within each

14
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dimension that occurred most frequently across the dataset. First, the average label
cardinality (LCuy,) for each dimension was used to select the (rounded) LC,y, most
frequently occurring metadata labels. Then, the pseudo-prediction matrix was filled
in with a value of 1 for all articles using those selected metadata labels for each
dimension. F1-scores were calculated using this “prediction matrix” to obtain a

baseline level of classifier performance.

2.9.3 Hierarchical Recall and Precision

Additional metrics for evaluating classifier performance are hierarchical
recall and precision. Due to the hierarchical nature of Behavioral Domains in
CogPO and the current implementation of hierarchical expansion for label
assignment, we explored evaluating these metrics to assess classifier performance.
The purpose for evaluating hierarchical recall and precision is to determine the
performance of predicting the parent label (e.g., Cognition.Memory) when an
article is also predicted to have been annotated with one of its child domains (e.g.,
Cognition.Memory.Working). However, the current classification problem is one
that generates binary classification models, and therefore label predictions are
independent of one another. That is, classifiers for Cognition.Memory and
Cognition.Memory.Working are trained, predicted, and evaluated independently of
one another across 5 folds and 100 iterations for each combination of corpora,
feature space, and classifier. Nonetheless, we derived hierarchical recall and
precision metrics for hierarchical Behavioral Domain labels within iterations, and

averaged over all iterations and Behavioral Domain labels.

2.10 Feature similarity across labels

The bag-of-words approach uses the most frequently appearing one-, two-, or three-
word terms across all articles annotated with a given label for features when generating a
classification algorithm. Within each fold across iterations of the classification procedure,
we chose to use the top 1,754 features for each label from the bag-of-words, the same
number of Cognitive Atlas features, so that each feature space would be comparable in

size. We sought to determine if, across folds and iterations, different sets of features from
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the bag-of-words approach were more frequently used for classification across the CogPO
dimensions Behavioral Domain and Paradigm Class. First, we calculated the average
feature frequency for a given label within the “full-text” corpora and “logistic regression”
classifier combination as it performed the best across the possible permutations when using
Macro Fl-scores as a proxy for classification performance. Then, we calculated the
Spearman correlation coefficient between each possible pairing of feature frequency
distributions from Behavioral Domain and Paradigm Class labels. To control for
correlations that are influenced by labels that tend to be annotated together, we regressed
the frequency of co-occurrence (as estimated by the Dice Similarity Index (Dice, 1945)),
such that the resulting residuals represented a true similarity between the labels’ feature
distributions. Hierarchical clustering was then applied to the resulting cross-correlation
matrix (Laird et al., 2015; Riedel et al., 2018) using the “correlation distance” and
“weighted linkage” metrics in the MATLAB (Natick, MA) computing environment to

observe how similar labels were classified based on similar sets of terms.

The resulting clusters of labels from the hierarchical clustering analysis serve as a
proxy for demonstrating how articles assigned with similar labels tend to use similar
vocabulary. To demonstrate this effect, we then sought to present the most consistently
utilized features across iterations for each cluster. As indicated above, before the classifiers
were determined, the feature set for each label and each iteration was reduced from the full
bag-of-words to the top 1,754 features. We calculated the mean occurrence of each feature
across labels within a cluster and utilized the top ten percent of those bag-of-words features
and their corresponding frequencies to generate a “word cloud” visualization

(https://github.com/amueller/word_cloud). In this representation, the features exhibiting

the highest frequency across labels in a cluster appear in larger font sizes in the word cloud.
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3. Results

A collection of 2,633 neuroimaging articles and their associated labels derived from
the CogPO vocabulary were submitted to a repeated
cross-validation technique to determine which combination of corpora, features, and
classifier resulted in an optimal performance of automated article labeling. A total of 100
iterations of five-fold cross-validation were performed for each combination and label.
Average predictive performance was assessed using the mean of Macro F1-scores across
iterations and folds, and performance consistency was assessed using the standard
deviation of Macro Fl-scores for across iterations and folds. As indicated above, we
utilized Macro F1-scores as our measure of performance such that our results would not be
biased toward the most frequently occurring labels.
3.1 Labels

Our classification analysis included 26 Behavioral Domains, 17 Paradigm Classes,
3 Context terms, 5 Diagnoses, 12 Instructions, 4 Stimulus Modalities, 12 Stimulus Types,
3 Response Modalities, and 4 Response Types. Multi-label classification metrics, such as
label cardinality and label set proportions, provide a means for interpreting the variable
range of true label annotations to the neuroimaging articles. The average, minimum, and
mean label cardinality and set proportions were calculated across all CogPO dimensions
and for each dimension (Table 1). On average, each neuroimaging article was annotated
with ~12 labels across all CogPO dimensions, while 1 article was annotated with only 1
label (the minimum), and 2 articles were annotated with 37 labels (the maximum).
Although there are 9 dimensions in CogPO, the reason that one neuroimaging article was
only annotated with 1 label is because the other annotated labels did not occur in at least
80 instances across the entire neuroimaging corpora. The number of unique combinations
of label assignments across CogPO dimensions was about 87% of the total dataset,
indicating a diversity of experimental designs across the neuroimaging corpora. When
considering the individual CogPO dimensions, on average, each neuroimaging article was
assigned approximately 3 Behavioral Domains, whereas all other dimensions were
assigned on average about 1-1.5 labels. As previously mentioned, the minimum number of
label assignments across all dimensions was 0. This occurred the most frequently in the

Paradigm Class dimensions, where roughly 29% of the neuroimaging articles were not
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assigned a label. It is also worth noting that every neuroimaging article had at /least 1 label

assignment after thresholding.
3.2 Evaluation
3.2.1 Overall Performance

We ran an overall ANOVA to test for differences in Macro Fl-scores when
considering different parameters and combinations of parameters for classification (Figure
2, Table 2). Two findings emerge from this analysis: that the interaction between the three
parameters we tested indicated results will significantly vary depending on the corpus,
feature space, and classifier chosen for article annotation, and importantly, that
performance does not vary across those parameters when considering CogPO dimensions.
This second point suggests that different classification parameters are NOT needed when

annotating Behavioral Domains and Paradigm Classes, for instance.

With respect to CogPO dimensions, Diagnosis labels demonstrated the highest
performance and Stimulus Type labels demonstrated the most consistent performance
across iterations (Supplemental Table 5). To provide insight into classification
performance at different levels of combinations of the parameters varied, first we examined
which combinations of corpora, feature space, and classifier independently performed the
best (Supplemental Table 6). On average, when only considering corpus, “full text” out-
performed “abstracts” and was the most consistent. When only considering feature space,
the “bag-of-words” approach out-performed the “Cognitive Atlas” and was the most
consistent; and when only considering the classifiers, “support vector classifiers” out-
performed all others and was most consistent. Second, we examined which combination of
parameters yielded the highest performance. We observed that the combination of “full-
text” and “support vector classifiers” out-performed all other combinations of corpus and
classifier, and was the most consistent; the combinations of “bag-of-words” and “support
vector classifiers” out-performed all other combinations of feature space and classifier,
and was the third-most consistent; and “full text” and “bag-of-words” out-performed all
other combinations of corpus and feature space, and was the most consistent. Interestingly,
when considering “abstracts-only”, the “bag-of-words” and “Cognitive Atlas” corpora

performed almost equivalently, with “bag-of-words” performing slightly better. Third, we
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examined which combination performed the best across all three parameters. We observed
that the average levels of performance were highest according to Macro F1-scores across
all CogPO dimensions (Table 3) for the combination of “full text”, “bag-of-words”, and
the “logistic regression” classifier, though the performance for “full text”, “bag-of-words”,
and “support vector classifier” was not substantially different enough to indicate one
approach is truly superior to the other. However, the subsequent ancillary analyses focus
on the “logistic regression” classifier since it did perform the best. With respect to Micro
Fl-scores, the combination of “full text”, “bag-of-words”, and the “support vector
classifier” performed best, though not substantially better than the same combination when
using the “logistic regression”. Thus, across evaluation metrics (Macro/Micro F1-scores)
performance was always highest when using the “full text” corpus, “bag-of-words” feature

space, and either the “logistic regression” classifier or “support vector classifier”.
3.2.2 Baseline Performance Estimation

Our baseline performance estimation in which Macro F1-scores were calculated for
a pseudo-prediction matrix yielded values for comparing our classifiers performance. In a
few instances, some combinations of corpus, feature space, and classifier failed to
outperform the baseline performance estimation for the CogPO dimensions Response
Modality and Response Type. However, the best performing combination of parameters for

each dimension a/ways outperformed the baseline performance estimations.
3.2.3 Hierarchical Recall and Precision

Generally speaking, across all combinations of corpora, feature space, classifier,
and Behavioral Domain labels, hierarchical recall was roughly 0.55, while hierarchical
precision was 0.71. This difference between recall and precision indicates that more false
negatives were identified than false positives, meaning articles annotated with a sub-label
were not as frequently classified with the associated parent-label. This is not unexpected
as feature differentiation among the parent label is greater and non-specific compared to
the sub-label. Hierarchical recall and precision distributions calculated for each Behavioral
Domain assessed across every combination of corpora, feature space, and classifier can be

found in Supplemental Figures 2 and 3, respectively.
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3.3 Feature similarity across labels

We implemented a hierarchical clustering analysis on a matrix of residual
correlation coefficients between pairwise Behavioral Domain and Paradigm Class label
feature representation distributions to observe which labels tended to demonstrate higher
similarities of terms usage in the “full-text” (Figure 3) and ‘“abstracts-only”
(Supplemental Figure 4) extracted from neuroimaging articles. We chose an arbitrary
clustering threshold based on visual inspection of the resulting dendrogram to relate
CogPO labels assigned to individual clusters. We observed four clusters of CogPO labels
in the dendrogram and their corresponding word clouds indicate not only which features
were most consistently used across classifiers for each label in a cluster, but also represent
an associated vocabulary respective to the constructs in each cluster. A persistent
observation across all word clouds is the inclusion of a number of brain anatomy, structure,
or location descriptors such as “anterior cingul” (anterior cingulate), “cingul cortex”
(cingulate cortex), and “left amygdala”. Furthermore, terms corresponding to mental
constructs such as “work memori” (working memory), “intern affect” (internal affect), and
“express emot” (express emotion), coupled with experimental design descriptions like
“event rel” (event related) and “pictur system” (picture system) provide a broad overview
of psychological systems interrogated across a large set of studies. Additionally, diagnoses
such as “major depress” (major depressive disorder) and “bipolar disord” (bipolar disorder)
can provide insight into either the neural systems most studied in specific patient
populations or the neural systems most affected in specific patient populations. Finally,
journal titles and author names are also represented in these word clouds indicating specific
emphases on certain topics by journals (which may be subsequently biased due to study

inclusion in this analysis) or domain of study for different principal investigator’s labs.

As a purely exploratory investigation, within these primary clusters, individual
groupings of labels that are combinations of Behavioral Domain and Paradigm Classes
emerge that represent similar psychological constructs. For instance, in one cluster (red), a
grouping of the Behavioral Domain labels “Perception.Somesthesis” and
“Perception.Somesthesis.Pain” and Paradigm Class label “Pain Monitor/Discrimination”
represent a very specific subset of functional neuroimaging studies investigating the neural

responses to “pain”. Further high-level psychological constructs that can be identified by
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the dense grouping of similar CogPO labels include “Memory”, “Emotion”, and
“Language”. Following the same procedure for generating word clouds corresponding to
each cluster, we additionally created word clouds for each psychological construct to
determine if specific terminology in each sub-grouping would yield a more informative
knowledge base for describing these paradigms. The word clouds (Figure 4) associated
with these individual sub-groupings of labels provide an even more fine-grained
assessment of the most frequently used features in these inferred topics with terms such as
“nonspati work” (nonspatial working), “verbal work™ (verbal working), “term memori”
(term memorization) in the “Memory” subset and “facial express” (facial expression),

“fusiform gyrus”, and “amygdala activ”’ (amygdala activation) in the “Emotion” subset.
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4. Discussion

Neuroimaging meta-analyses for knowledge modeling are becoming increasingly
prevalent due to the increasing rate and number of publications. Curating and synthesizing
this data is time consuming, subjective, and prone to errors of omission simply because the
scientific literature is too large. We utilized 2,633 neuroimaging articles to determine the
most optimal combination of corpus (abstract, full-text), feature (bag-of-words, Cognitive
Atlas), and classifier (Bernoulli naive Bayes, support vector classifier, logistic regression,
k-nearest neighbors), that resulted in the highest predictive performance. Our findings
indicate that if CogPO labels are to be used for synthesizing neuroimaging articles and full-
article text is available, using the bag-of-words feature space and the logistic regression
classifier will provide optimal performance of article annotation, though it only slightly
outperformed the full-text, bag-of-words, and support vector classifier combination,
whereas if only article abstracts are available, the Cognitive Atlas feature space and support
vector classifier should be used. These recommendations are expanded upon in the ensuing

discussion.

4.1 Full-text vs abstracts

We sought to evaluate whether classifiers performed better when using the text
from the entire neuroimaging article or just the article abstract. The motivation for
performing this assessment was based on the idea that short, concise descriptors in article
abstracts would be used to convey psychological constructs and experimental design,
whereas phrases and terminology describing the study design would be captured by using
full article text. Previous research has illustrated techniques utilized for document
classification and short-text classification (e.g., Turner et al., 2013) and we identified one
paper (Bui et al., 2016) which attempted to classify text patterns according to which section
of an article it appeared in (i.e., title, abstract, text-body, etc.). In addition, within the
context of text-mining in genetics literature, structural differences existed between
abstract-only and full article text, with longer sentences and increased parenthesized
material in the article text (Cohen et al., 2010). Cohen et al., (2010) additionally found that
semantic classes (corresponding to gene, mutation, disease, and drug) exhibited differential

densities in article and abstract text, yielding the potential for characterizing articles based
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on densities of CogPO dimensions across sections of the article. Overall, across all feature
spaces and classifiers, predictive performance was higher when using text extracted from
the full-text, rather than just the abstracts. One reason to suspect full-text classification
outperformed abstract-only classification could be based on a reduced total number of
features when considering the abstracts-only text. For instance, when considering the bag-
of-words feature space, the imposed 80-instance threshold more than likely reduced the
total number of potential features for classification using abstract text because unique
phrases are less likely to occur frequently because of study and author specific terminology.
To this point, the number of unique features used to classify all labels using abstracts text
was 740, compared to 15,004 unique features using full article text. In addition, references
are included as components of the full article text, so authors and article titles are also
considered as features. References were included in the full-text assessments in part
because of the demonstrated networks of author collaborations in the AuthorSynth tool
(Sochat et al., 2015). Similarly, when considering the Cognitive Atlas feature space, terms
may have not been represented as frequently (if at all) in the abstract text compared with
the full article text. These findings are indicative of 1) more semantic variability across
abstracts yielding fewer features with high enough frequency for classification purposes,
and 2) less differentiation of features used for classification amongst labels, potentially

leading to less accurate predictive performance.

4.2 Bag-of-words vs. Cognitive Atlas

Additionally, we sought to determine if a feature space derived from an expert
defined vocabulary, the Cognitive Atlas, describing psychological constructs, mental
operations, and experimental conditions could match or exceed the classification
performance when using features derived from neuroimaging article text. This assessment
was based on the premise that author-derived terms are non-specific with respect to the
context of the article, and the frequency of terms associated with cognitive concepts and
tasks from the Cognitive Atlas would be better suited for annotation using CogPO labels.
These hypotheses are driven by evidence supporting dictionary matching algorithms in
genetics research increasing prediction performance in concept recognition (Funk et al.,

2016). When considering classification using full article text, the bag-of-words features
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outperformed the Cognitive Atlas features, though the difference (0.05) falls within the
error range of consistency (0.20) of prediction accuracy for the bag-of-words approach.
Additionally, if one considers the current scenario of article annotation using abstract text
until full article text becomes more readily available, the Cognitive Atlas feature space
actually outperforms bag-of-words. This finding, aside from gross feature representation
differences in article abstracts (as reported above), supports the notion that article abstracts
contain high-level, context specific terminology that Cognitive Atlas can leverage for
classification purposes, whereas the bag-of-words features, which are subjected to a
reduction technique that ensures sufficient power, show either 1) high semantic variability
within a single label, or 2) low heterogeneity across all CogPO labels. Thus, while we
generally identified comparable performance using the Cognitive Atlas feature space, we
acknowledge that these findings are contextualized within the cognitive neuroimaging

literature when using CogPO labels.

4.3 Classification algorithm

Based on overall performance, average Macro F1-scores across Cog PO labels and
iterations were highest for the full-text corpora and bag-of-words feature space when using
the logistic regression algorithm; although the performance was almost equivalent when
using the support vector classifier algorithm. On average, the Bernoulli naive Bayes and k-
nearest neighbors algorithms failed to achieve equivalent predictive performance as the
logistic regression and support vector classifiers, regardless of the corpora or feature space
chosen. The Bernoulli naive Bayes algorithm is based on binary feature representation;
thus, frequency of appearance is not emphasized. The lack of emphasis on feature
representation could be detrimental in weighting key terms used frequently about a specific
cognitive domain, though it has been shown to be beneficial in document classification
(McCallum et al., 1998). The k-nearest neighbors algorithm annotates labels based on a
majority vote of the & labels from the training-dataset with the smallest distance with the
test-dataset. Annotation performance can thus vary based on the selected value of £,
exhibits a U-shaped relationship with the number of relevant features (Okamoto and
Yugami, 2003), and generally performs worse in the case of high-dimensional data

(Mitchell et al., 1990). Aside from reduced performance levels, another limitation of the -
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nearest neighbor algorithm is that it is computationally expensive regarding processing
time and storage requirements, as no model is actually trained and distances must be
calculated for every class. Support vector classifiers are robust and have been used for
classification of cancer (Fury et al., 2000; Guyon et al., 2002), image (Chapelle et al., 1999)
and audio (Guo et al., 2003) classification, and identifying smokers compare to non-
smokers (Pariyadath et al., 2014). In general, because of their ability to operate in high
dimensional spaces, support vector classifiers have few drawbacks, with the exception of
high processing times and memory consumption during the training and classification
stages (Khan et al., 2010). Logistic regression is another of the more popular classification
approaches for medical data classification (Dreiseitl and Ohno-Machado, 2002). Logistic
regression models are generally less prone to overfitting and thus have a higher degree of
generalizability. This is particularly important in the current context as there are
unbalanced representations of CogPO labels used for training classifiers, and annotation of
future articles may not be suspect to overfitting based on the data utilized in the current

work.

4.4 Feature representation

Our exploratory analysis yielded word clouds for different clusters and
demonstrated that anatomical terms appeared to dominate the most frequently utilized
features for article classification across labels. This finding is important for two reasons:
first, it suggests that semantic variability is greater for functional terms or task descriptors
than anatomical labels; and second, frequently used anatomical terms are represented in a
meaningful way that exhibit dense associations with similar cognitive concepts. For
instance, it is not surprising to find that “superior temporal gyrus” is one of the most
commonly utilized anatomical terms used to classify CogPO labels related to language
(Friederici et al., 2003), or likewise the association between “amygdala” and emotion labels
(Gallagher et al., 1996). However, these anatomical terms are not domain-specific, and
leveraging a feature space that weighs heavily toward anatomical descriptors could result
in less confidence for article annotation, particularly in the cases where experimental
designs are increasingly complex, interrogating multiple cognitive domains or brain

networks. For instance, recent meta-analytic endeavors (Laird et al., 2015; Riedel et al.,
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2018; Bottenhorn et al., 2018) have demonstrated robust brain network activation across
activation maps associated with distinct neuroimaging task paradigms. In this respect, a
classification system whereby features are derived from an ontology of psychological
concepts, such as the Cognitive Atlas, would rely more on authors’ discussion of
experimental design and findings related to cognitive neuroscience and psychology. In this
respect, efforts in text-mining the neuroimaging literature can be enhanced by referencing
the genomics classification methodologies, as advanced concept and synonym recognition
techniques are prevalent (Funk et al., 2016). Nonetheless, relationships between brain
regions and neurological disorders can be delineated, providing invaluable knowledge of
the either brain regions most commonly associated with specific disorders or, given the
association between brain location with cognitive domains, which disorders are most
commonly studied within a given domain. Finally, it is somewhat surprising that canonical
brain networks did not emerge as frequently used features. Some of the most highly studied
networks, such as the “default-mode” and “salience” networks reflect very little semantic
variability. To this end, it would seem that authors tend to discuss their findings in terms
of constituent components of these networks. Alternatively, the majority of the publications
included in this assessment occurred prior to and including the year 2008, while seminal
brain-network papers were published around that time (Seeley et al., 2007; Menon 2011),

indicating a lack of representation in the current database.

4.5 Limitations and Future Directions

During the planning phase of our analyses, we considered the distinctions between
CogPO and the Cognitive Atlas as developed ontologies for classification purposes.
Ultimately, we believed that the Cognitive Atlas is more suitable to be leveraged as a
feature space than as a label set because CogPO is meant to be more static, which fits the
function of stable article annotations, whereas the Cognitive Atlas is meant to evolve. To
this end, relationships between concepts in the Cognitive Atlas can be evaluated as weights
between features for each classifier, and prediction performance can be improved as these
relationships are further refined and Cognitive Atlas becomes more fully specified through

crowd-sourcing efforts. Furthermore, evolving the Cognitive Atlas vocabulary to

26



803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

incorporate synonyms based on constituent parts of the features may serve to strengthen
prediction performance (Funk et al., 2016).

Following best standards and practices, we only utilized CogPO labels that were
annotated at least 80 times, which drastically reduced the number of labels used for
classification. Thus, the context with which these results should be interpreted are with
respect to those 86 labels that were trained and tested here. Public release will include
classifiers for CogPO labels trained on the entire dataset. Additionally, as there were
varying levels of performance across combinations of parameters, it is difficult to conclude
that one combination is superior to the other. Using the full-text, bag-of-words, and logistic
regression approach resulted in the best overall performance, but this was only slightly
greater than when using the support vector machine classifier (and full-text, bag-of-words).
Thus, subtle differences in classifier performance should be considered, and annotation
performance in smaller datasets according to the classification algorithm should be
investigated.

We utilized the largest known corpus of studies with manual annotations for
deriving classifiers for CogPO labels, and as such, included all articles for training and
testing purposes for labels to reach a sufficient power for analysis. An independent dataset
is necessary for validation of the classifiers, and future work includes using manually
annotated datasets to evaluate the ATHENA derived classifiers in the domain of executive
function, social cognition, decision making, and cue reactivity. Furthermore, we are meta-
analytically assessing whether spatial distinctions exist between executive control network
depending on the specific nomenclature authors used to describe it (e.g., cognitive control
network, executive function network, dorsal attention network, etc.).

All classifiers produced by the work performed may be integrated into existing
tools, including Neurosynth, Brainspell & MetaCurious, and NIMARE. Neurosynth is a
platform in which automated methods are used to extract relevant information from
neuroimaging articles for the purpose of large-scale meta-analysis. These classifiers may
be used to provide a new set of labels by which users can perform meta-analyses using
Neurosynth’s database. Further development of the ATHENA classifiers through formal
comparison with Neurosynth’s bag-of-words annotation approach is ongoing. Brainspell

and MetaCurious allows researchers to search across the literature, manually curate
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collections of articles for meta-analyses, and add human annotation to the existing
automated annotations for Neurosynth, which form the basis of the Brainspell database.
The curation process involves adding labels to the articles, which can be used to improve
ATHENA classifiers. Additionally, the classifiers may be used to improve the accuracy of
targeted searches in MetaCurious, which will make comprehensive literature searches
easier for meta-analysts. NIMARE is a Python package that implements a wide range of
tools for neuroimaging meta-analysis, and it is in NIMARE that the ATHENA classifiers

may be implemented and interact with Neurosynth and MetaCurious.
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Software Dependencies

As described above, the analyses presented in this work rely on the following
dependencies: numpy (van de Walt, Colbert, & Varoquaux, 2011), pandas (McKinney,
2010), statsmodels (Seabold & Perktold, 2010), SciPy (Jones, Oliphant, & Peterson, 2014),
scikit-learn (Pedregosa et al., 2011), I[Python (Perez & Granger, 2007), nltk (Bird, Klein,
& Loper, 2009), pdfminer (Shinyama, 2007), seaborn (Waskom et al., 2017), and many
core libraries provided with Python 2.7.11. Additionally, the ontological expansion of
Cognitive  Atlas term  weights was influenced by Poldrack (2017):
https://github.com/poldrack/cognitive_encoding_model/blob/master/neurosynth_prep/exp
and_ontology.py (Poldrack, 2017)

Data will be shared and freely available on GitHub.
Code and partial data (article text is copyrighted and can not be shared) for this study are
publicly available in a GitHub repository (https://github.com/NBCLab/athena). The

manual annotations in the analysis are not openly available due to BrainMap’s data sharing
policies; however, anyone interested in acquiring these annotations may contact the
BrainMap Development Team and request access to these data through a collaborative use

agreement (http://www.brainmap.org/collaborations.html).
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Figure 1. Analysis plan. The schematic describes the approach utilized in this analysis to
identify the best classifier for automating the annotation process for published
neuroimaging articles. The articles have been manually annotated to with metadata labels
described by the Cognitive Paradigm Ontology (CogPO) and can be evaluated based on
the text in the abstracts-only or the full extent of the article. The text can be extracted using
the raw terms in the article (bag-of-words) or based on usage of terms from a defined
vocabulary (Cognitive Atlas). Then, a repeated (100 iterations) cross-validation technique
is performed for generating the classifiers where first the full dataset is split into 5 equally
sized subsets, which are then split into training (80%) and testing (20%) datasets. The
features (bag-of-words or Cognitive Atlas terms) are vectorized based on frequency of
appearance and reduced to the only the most frequently used terms. Then, based on the
specific classifier being used, the appropriate hyperparameters are tuned based on the
training dataset, and then a classifier is constructed for each CogPO metadata label using
the training dataset.
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Figure 2. Overall predictive performance across classifiers. Predictive performance
evaluated as the average of Micro Fl-scores for each combination of parameters over all
CogPO dimensions provides an outlook of comparative performances. The combination of
parameters with the highest performance occurred for bag of words, full-text, and logistic
regression; however, bag of words, full-text, and support vector classifier performed nearly
equivalently. Performance levels for the Bernoulli Naive Bayes classifier, Cognitive Atlas
feature space and full-text and abstract-only analyses were the same, indicating why it does
not appear in the current figure.
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Figure 3. Label similarity dendrogram. Similarity between Behavioral Domain and
Paradigm Class metadata labels based on features selected for classification across folds
and iterations. Clusters are representative of labels and their corresponding manuscript in
which similar language was used throughout the whole text. The associated “word clouds”
were generated by using the top 10% of the most frequently used bag-of-words features
across labels and iterations in each cluster.
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Figure 4. Feature “word clouds” from cluster subsets. “Word clouds” for the four
subsets of clusters were generated by utilizing the top 10% of the most frequently used
bag-of-words features across labels in each subset. Larger words indicate a larger
representation of feature frequency within each distribution.
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Table 1. Label cardinality and set proportions. Label cardinality metrics, such as the average (LCayg), minimum (LCpin), and maximum (LCrax)
number of labels assigned to a neuroimaging article, were calculated for each Cognitive Paradigm Ontology dimension and across all dimensions.
These metrics were derived using the known manual annotations. Additionally, label set proportions were calculated, such as the proportion of
articles assigned with the minimum (Pmin) or maximum (Pmax) number of labels and the proportion of unique label set combinations (Puniq) across all
neuroimaging articles.

Behavioral Paradigm Response Response Stimulus Stimulus

Dimension Domain Context Diagnosis Instruction Class Modality Type Modality Type Overall
LCavg 2.96 0.98 1.02 1.52 0.85 1.27 1.22 1.19 1.40 12.41
LCmin 0 0 0 0 0 0 0 0 0 1
LCrax 13 3 3 6 4 3 3 4 7 37
Puniq 12.19 15.34 0.61 7.41 5.36 0.30 0.57 0.61 6.84 86.86
Prmin 2.16 16.82 6.68 2.96 29.05 1.14 2.73 1.48 6.27 0.04
Prmax 0.04 0.61 0.49 0.15 0.19 0.76 0.76 0.08 0.04 0.08
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Table 2. ANOVA Results. An overall ANOVA test was performed to test differences between F-scores
for each potential combination of parameters tested in our analysis. Interactions between parameters
were also included to inform the effect of different combinations parameters on the resulting F-scores.

ANOVA Results F Df Pr(>F) Sig
dimension 3.734 8 0.000976 ***
classifier 128.301 3 <2E-16 ***
dimension x classifier 1.758 24 0.0187 *
corpora 104.061 1 5.99E-16 ***
dimension x corpora 0.242 8 0.981
feature 20.504 1 2.14E-05 ***
dimension x feature 2.065 8 0.0496 *
classifier x corpora 52.56 3 <2E-16 ***
dimension x classifier x corpora 0.68 24 0.869
classifier x feature 85.522 3 <2E-16 ***
dimension x classifier x feature 2.142 24 0.00214 **
corpora x feature 34.221 1 1.13E-07 ***
dimension x corpora x feature 1.124 8 0.357
classifier x corpora x feature 45.15 3 <2E-16 ***
dimension x classifier x corpora x feature 0.98 24 0.493

¥** (0 <0.001) **(p<0.01) * (p<0.05)
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Table 3. Macro F1-scores for combinations of variables. Performance measures for each possible combination of options from all potential variables,
as indicated by average and standard deviations of the Macro F1-scores across iterations for each Cognitive Paradigm Ontology dimension.

. . Behavioral . . . Paradigm Response Response Stimulus Stimulus
Dimension Domain Context Diagnosis Instruction Class Modality Type Modality Type Overall
Baseline
0.06 0.31 0.21 0.09 0.01 0.49 0.36 0.30 0.07
Corpora + Feature Space + Classifier
abstract-only + bag-of-
words
Bernoulli naive Bayes 0.38 (0.26) 0.62 (0.32) 0.45 (0.26) 0.28 (0.23) 0.26 (0.21) 0.57 (0.20) 0.45 (0.27) 0.53 (0.20) 0.27 (0.19) 0.36 (0.26)
k-nearest neighbor 0.45 (0.25) 0.61 (0.36) 0.65 (0.32) 0.24 (0.22) 0.33 (0.24) 0.54 (0.27) 0.42 (0.30) 0.57 (0.24) 0.21(0.21) 0.39 (0.28)
logistic regression 0.43 (0.33) 0.58 (0.41) 0.69 (0.34) 0.12 (0.25) 0.28 (0.32) 0.49 (0.33) 0.36 (0.37) 0.55 (0.34) 0.15 (0.27) 0.34 (0.36)
support vector classifier 0.56 (0.23) 0.69 (0.31) 0.73 (0.30) 0.33(0.24) 0.44 (0.23) 0.61 (0.19) 0.50 (0.25) 0.66 (0.19) 0.31(0.21) 0.49 (0.27)
abstract-only + Cognitive
Atlas
Bernoulli naive Bayes 0.38 (0.31) 0.52 (0.38) 0.45 (0.31) 0.16 (0.22) 0.22 (0.27) 0.46 (0.33) 0.35(0.35) 0.49 (0.31) 0.09 (0.19) 0.29 (0.31)
k-nearest neighbor 0.51 (0.20) 0.51(0.37) 0.57 (0.29) 0.30(0.18) 0.38 (0.24) 0.52 (0.26) 0.43 (0.27) 0.55 (0.22) 0.18 (0.15) 0.41 (0.25)
logistic regression 0.44 (0.30) 0.53(0.38) 0.68 (0.34) 0.20 (0.27) 0.29 (0.35) 0.48 (0.34) 0.42 (0.32) 0.51(0.32) 0.06 (0.17) 0.34 (0.34)
support vector classifier 0.57 (0.18) 0.62 (0.28) 0.72 (0.27) 0.41 (0.15) 0.50 (0.21) 0.60 (0.20) 0.52(0.23) 0.62 (0.18) 0.32(0.15) 0.51(0.22)
full-text + bag-of-words
Bernoulli naive Bayes 0.54 (0.17) 0.70(0.28) 0.61 (0.15) 0.41 (0.16) 0.46 (0.15) 0.64 (0.17) 0.57 (0.21) 0.64 (0.16) 0.39(0.13) 0.51(0.18)
k-nearest neighbor 0.46 (0.21) 0.58 (0.27) 0.69 (0.20) 0.28 (0.19) 0.36 (0.21) 0.64 (0.19) 0.49 (0.30) 0.59 (0.16) 0.25 (0.15) 0.41 (0.24)
logistic regression 0.70 (0.13) 0.85(0.10) 0.87 (0.08) 0.51(0.19) 0.63 (0.19) 0.76 (0.09) 0.63 (0.26) 0.77 (0.13) 0.51 (0.23) 0.65 (0.20)
support vector classifier 0.69 (0.14) 0.86 (0.10) 0.87 (0.09) 0.51(0.17) 0.62 (0.19) 0.77 (0.09) 0.66 (0.21) 0.77 (0.14) 0.50 (0.21) 0.65 (0.20)
full-text + Cognitive Atlas
Bernoulli naive Bayes 0.37(0.28) 0.55(0.39) 0.64 (0.19) 0.12 (0.22) 0.22 (0.24) 0.49 (0.33) 0.40 (0.33) 0.41 (0.35) 0.07 (0.17) 0.29 (0.31)
k-nearest neighbor 0.61 (0.18) 0.64 (0.29) 0.71(0.18) 0.39 (0.18) 0.50 (0.19) 0.64 (0.17) 0.52 (0.25) 0.64 (0.20) 0.29 (0.21) 0.52 (0.23)
logistic regression 0.58 (0.28) 0.58 (0.41) 0.85 (0.07) 0.21 (0.27) 0.46 (0.31) 0.61 (0.24) 0.49 (0.32) 0.58 (0.35) 0.17 (0.26) 0.46 (0.34)
support vector classifier 0.67 (0.14) 0.73 (0.22) 0.87 (0.07) 0.49 (0.15) 0.60 (0.19) 0.69 (0.13) 0.60 (0.21) 0.71(0.16) 0.39 (0.19) 0.60 (0.21)
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Table 4. Micro F1-scores for combinations of variables. Performance measures for each possible combination of options from all potential variables,
as indicated by average and standard deviations of the Micro F1-scores across iterations for each Cognitive Paradigm Ontology dimension.

Behavioral Paradigm Response Response Stimulus Stimulus

Dimension Domain Context Diagnosis Instruction Class Modality Type Modality Type Overall
Baseline
0.06 0.31 0.21 0.09 0.01 0.49 0.36 0.30 0.07
Corpora + Feature Space + Classifier
abstract-only + bag-of-
words
Bernoulli naive Bayes 0.57 (0) 0.64 (0) 0.83 (0) 0.85 (0) 0.8 (0) 0.86 (0) 0.47 (0) 0.38 (0) 0.36 (0) 0.61 (0.16)
k-nearest neighbor 0.61 (0) 0.63 (0) 0.84 (0) 0.81 (0.01) 0.85 (0.01) 0.85 (0) 0.38 (0) 0.4 (0) 0.33(0.01) 0.64 (0.19)
logistic regression 0.63 (0) 0.68 (0) 0.88 (0) 0.89 (0.01) 0.89 (0.01) 0.91 (0) 0.43 (0) 0.5 (0) 0.4 (0.01) 0.63 (0.19)
support vector classifier 0.62 (0.01) 0.68 (0.01) 0.84 (0) 0.83 (0) 0.89 (0.01) 0.89 (0) 0.42 (0) 0.49 (0) 0.44 (0.01) 0.68 (0.17)
abstract-only + Cognitive
Atlas
Bernoulli naive Bayes 0.62 (0) 0.75 (0) 0.83 (0) 0.91 (0.01) 0.8 (0.01) 0.91 (0) 0.52 (0) 0.61 (0) 0.46 (0) 0.58 (0.21)
k-nearest neighbor 0.59 (0) 0.72 (0) 0.85 (0) 0.86 (0.01) 0.87 (0.01) 0.89 (0) 0.36 (0) 0.45 (0.01) 0.34 (0.01) 0.62 (0.19)
logistic regression 0.6 (0) 0.77 (0) 0.84 (0) 0.92 (0) 0.9 (0) 0.93 (0) 0.46 (0) 0.61 (0) 0.41 (0.01) 0.60 (0.20)
support vector classifier 0.71 (0) 0.75 (0.01) 0.87 (0) 0.89 (0.01) 0.9 (0.01) 0.92 (0) 0.5(0) 0.57 (0.01) 0.54 (0) 0.66 (0.15)
full-text + bag-of-words
Bernoulli naive Bayes 0.44 (0) 0.68 (0) 0.69 (0) 0.66 (0) 0.69 (0) 0.71 (0) 0.76 (0) 0.39 (0) 0.33(0) 0.65 (0.14)
k-nearest neighbor 0.41 (0.01) 0.67 (0.01) 0.7 (0) 0.65 (0.01) 0.68 (0.01) 0.7 (0) 0.73 (0.01) 0.23 (0.01) 0.21 (0.02) 0.64 (0.20)
logistic regression 0.51 (0) 0.71 (0) 0.72 (0) 0.69 (0) 0.71 (0) 0.77 (0) 0.8 (0) 0.34 (0) 0.39 (0) 0.76 (0.11)
support vector classifier 0.53 (0) 0.68 (0) 0.71 (0) 0.67 (0) 0.7 (0) 0.73 (0) 0.77 (0) 0.28 (0) 0.4 (0) 0.77 (0.12)
full-text + Cognitive Atlas
Bernoulli naive Bayes 0.66 (0) 0.72 (0) 0.8 (0) 0.71 (0) 0.79 (0.01) 0.75 (0) 0.85 (0) 0.45 (0) 0.59 (0.01) 0.59 (0.22)
k-nearest neighbor 0.56 (0) 0.69 (0) 0.74 (0) 0.68 (0) 0.73 (0.01) 0.71 (0) 0.79 (0) 0.22 (0) 0.37 (0) 0.69 (0.16)
logistic regression 0.65 (0) 0.75 (0) 0.81 (0) 0.73 (0.01) 0.8 (0.01) 0.79 (0) 0.86 (0) 0.31(0) 0.58 (0) 0.68 (0.17)
support vector classifier 0.63 (0) 0.74 (0) 0.77 (0) 0.72 (0.01) 0.75 (0) 0.8 (0) 0.83 (0) 0.42 (0) 0.5 (0) 0.74 (0.13)

41



