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0. Abstract 48 

Neuroimaging research is growing rapidly, providing expansive resources for synthesizing 49 

data. However, navigating these dense resources is complicated by the volume of research 50 

articles and variety of experimental designs implemented across studies. The advent of 51 

machine learning algorithms and text-mining techniques has advanced automated labeling 52 

of published articles in biomedical research to alleviate such obstacles. As of yet, a 53 

comprehensive examination of document features and classifier techniques for annotating 54 

neuroimaging articles has yet to be undertaken. Here, we evaluated which combination of 55 

corpus (abstract-only or full-article text), features (bag-of-words or Cognitive Atlas terms), 56 

and classifier (Bernoulli Naïve Bayes, k-nearest neighbors, logistic regression, or support 57 

vector classifier) resulted in the highest predictive performance in annotating a selection of 58 

2,633 manually annotated neuroimaging articles. We found that, when utilizing full article 59 

text, data-driven features derived from the text performed the best, whereas if article 60 

abstracts were used for annotation, features derived from the Cognitive Atlas performed 61 

better. Additionally, we observed that when features were derived from article text, 62 

anatomical terms appeared to be the most frequently utilized for classification purposes 63 

and that cognitive concepts can be identified based on similar representations of these 64 

anatomical terms. Optimizing parameters for the automated classification of neuroimaging 65 

articles may result in a larger proportion of the neuroimaging literature being annotated 66 

with labels supporting the meta-analysis of psychological constructs.  67 
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1. Introduction 68 
 Neuroimaging research offers the potential to improve understanding of the neural 69 

mechanisms supporting a wide range of mental operations linked with mental health 70 

disorders and impacted by treatment interventions. These research endeavors are increasing 71 

in volume and scope, requiring “big data” methods to harness and translate this 72 

accumulated knowledge into improved cognitive models and ultimately intervention 73 

strategies. For example, a search of the National Center for Biotechnology Information 74 

PubMed engine (pubmed.gov) identified over 121,000 publications from 2007-2012 75 

matching the terms “fMRI” or “functional magnetic resonance imaging”. That number has 76 

risen to nearly 150,000 in the last five years, indicating that continued growth is to be 77 

expected. This body of literature represents a vast knowledge archive capturing a system-78 

level perspective of functional brain organization. This includes a variety of motor (e.g., 79 

hand/body movements, speech), perceptual (e.g., visual, auditory), cognitive (e.g., 80 

memory, language, attention), affective (e.g., personality, emotion, mood), and 81 

interoceptive (e.g., hunger, thirst, micturition) systems. Capturing and discriminating the 82 

neurocognitive concepts across this plethora of information in an automated fashion for 83 

harvesting and data synthesis has yet to be sufficiently accomplished. 84 

Biomedical text mining approaches have shown to be increasingly beneficial for 85 

extracting knowledge locked within text (Wang et al., 2007; Van Auken et al., 2012; Funk 86 

et al., 2014; Torii et al., 2014; Collier et al., 2015; Kim et al., 2015). Journal articles, patient 87 

electronic records, and social media posts may be mined to identify and predict relations 88 

among entities; for example, “drug X causes adverse event Y”. In various genomics or 89 

proteomics knowledge repositories, one focus has been to identify specific relationships 90 

between concepts such as “protein X phosphorylates receptor Y” (Torrecilla et al., 2007). 91 

However, these annotations often depend on identifying specific words such as the name 92 

of the gene, drug or protein, or specific phrases such as “opioid dependence” present in the 93 

text, or their variant forms or known synonyms from a dictionary, i.e., fairly simple design 94 

patterns (Castellini et al., 2012). In cognitive neuroscience, researchers seek to identify 95 

underlying neurobiological mechanisms, specifically relations between brain regions and 96 

mental functions. These include forward inferences, “mental function X activates brain 97 

network Y”, or reverse inferences, “brain network Y is engaged during mental function X” 98 
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(Poldrack et al., 2011). The challenge for cognitive neuroscience is that the particular name 99 

of the mental function, experimental paradigm, or brain network often does not appear per 100 

se in the text, nor does any simple synonym because there is an inherent variance in how 101 

authors describe experimental design. Automated labeling of the concepts requires 102 

inferring the concepts from large and non-contiguous sections of the text. To that end, 103 

Neurosynth (neurosynth.org; Yarkoni et al., 2011) was developed as an automated platform 104 

for archiving the results of neuroimaging articles, along with associated weightings of 105 

terms based on frequency of appearance in the articles’ abstracts. While this approach is 106 

capable of fast automated annotation of a substantial proportion of the literature, the 107 

annotations for a given article may lack sensitivity and specificity to relevant psychological 108 

constructs discussed in the article. An optimal platform would be one which utilizes the 109 

automated approach implemented in Neurosynth in conjunction with the structured 110 

vocabulary established by a more formalized ontology. 111 

While initial progress has been made in developing an efficient and accurate 112 

machine learning classification approach for automated labeling on the abstracts of 113 

neuroimaging papers (Turner et al., 2013; Chakrabarti et al., 2014), a comprehensive 114 

assessment of predictive performance using different features and classifiers across 115 

abstracts or full article text has yet to be conducted. We therefore sought to expand our 116 

prior work by (1) developing a framework for automated annotation of neuroimaging 117 

publications, (2) evaluating classifier performance across a range of variable parameters 118 

(i.e., corpus, feature space, classification algorithm), and (3) characterizing relationships 119 

between labels by assessing the similarities between persistent vocabularies extracted from 120 

article text.  121 
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2. Material and Methods 122 

2.1 Corpora 123 

In an effort to build an automated text-mining algorithm capable of classifying 124 

published neuroimaging articles, we utilized 2,633 articles from the BrainMap database 125 

(brainmap.org; Fox and Lancaster, 2002; Laird et al., 2005; 2009) that were published 126 

between 1992 and 2016 and their associated metadata labels derived by manual (i.e., 127 

human) annotation (http://brainmap.org). We extracted the text contained in the published 128 

abstracts using the PubMed API in Biopython (biopython.org). In addition, each 129 

neuroimaging publication was manually downloaded in PDF format, and the PDFMiner 130 

tool (github.com/euske/pdfminer) was applied to extract full document text. Image-based 131 

PDFs were excluded from further analysis. This yielded the full text available in the 132 

manuscript, including title, authors, keywords, main body of the publication, and 133 

references, the totality of which includes text describing the study purpose, neuroimaging 134 

methodology, results, and interpretations of findings in using specific, author-determined 135 

terminologies. Thus, two text corpora were generated for this study (i.e., “abstracts-only” 136 

and “full-text”), which were separately analyzed to determine if similar knowledge can be 137 

extracted from succinct study descriptions as compared to the document as a whole. 138 

 139 

2.2 Metadata labels 140 

For automated article annotation, a classifier must be established using a training 141 

dataset with labeled articles. The Cognitive Paradigm Ontology (CogPO; Turner and Laird, 142 

2012; cogpo.org) is a taxonomy of labels utilized to represent experimental conditions 143 

based on the stimuli presented, the instructions given, and the responses requested. Each 144 

neuroimaging article was annotated with the established system of labels defined by 145 

CogPO. In total, there are 358 CogPO terms that are separated into distinct dimensions, 146 

including: Behavioral Domain, Paradigm Class, Diagnosis, Context, Instruction, Stimulus 147 

Modality, Stimulus Type, Response Modality, and Response Type. Typically, CogPO terms 148 

are assigned to experimental contrasts, which are defined by a reported set of activation (or 149 

deactivation) coordinates. Behavioral Domain describes the construct or mental process 150 

ostensibly isolated by the experimental contrast, according to the participant behaviors 151 

elicited during the performed task, the latter of which is described by a Paradigm Class 152 
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term. Diagnosis refers to the participant population scanned during the neuroimaging study 153 

(including healthy individuals or participants with a disease or disorder), whereas Context 154 

describes what type of population effect was investigated (e.g., Disease Effects, Gender 155 

Effects, etc.). Instruction describes what the participant was instructed to do during the 156 

experiment, while Stimulus Type and Modality are descriptors for what stimuli were 157 

presented to the participants. Finally, Response Modality and Response Type describe the 158 

format for how the participant was instructed to overtly respond (if any), during the task. 159 

A complete list of all included CogPO terms is available in Supplemental Table 1. 160 

  161 

2.3 Manual annotations 162 

Each experimental contrast from the 2,633 neuroimaging publications archived in 163 

the BrainMap database was extracted, along with the set of metadata annotations derived 164 

from the CogPO labeling schema. Each experimental contrast was manually annotated by 165 

trained experts with a set of CogPO labels, and each publication may contain multiple 166 

experimental contrasts. Thus, in order to predict metadata label annotation for each 167 

publication, we collapsed all labels from each experimental contrast into one set of labels 168 

per neuroimaging article.  169 

Importantly, the Behavioral Domain and Paradigm Class dimensions are organized 170 

hierarchically. For example, the Behavioral Domain Cognition.Memory includes two sub-171 

types, Cognition.Memory.Working and Cognition.Memory.Explicit. Therefore, to enhance 172 

the ability of machine-learning classifiers to distinguish, at the highest level, between 173 

parent Behavioral Domains (i.e., Action, Cognition, Emotion, Interoception, Perception), 174 

we performed a hierarchical expansion procedure whereby all parent labels in a hierarchy, 175 

were assigned to the article in addition to the original label. For example, if a publication 176 

were assigned the Behavioral Domain Cognition.Memory.Working, it would have also 177 

been assigned the labels Cognition.Memory and Cognition. While Paradigm Classes do not 178 

necessarily have the same hierarchical structure across all labels, certain tasks do exhibit 179 

multiple variants, such as Covert and Overt Word Generation, and in such cases parent 180 

labels were assigned accordingly. To increase the power of certainty associated with label 181 

assignments using our machine-learning classifier, we only examined those labels with at 182 

least 80 instances (Figueroa et al., 2012) across neuroimaging publications. That is, if a 183 
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specific metadata term, regardless of dimension, did not appear in at least 80 articles, it 184 

was not considered for assessment, reducing the total number of CogPO labels assessed 185 

from 358 to 86 (Supplemental Table 2). 186 

We computed several descriptive measures pertaining to multi-label classification 187 

to provide reference for quantifying the variable range of label assignments to the 188 

neuroimaging articles. Label cardinality (LCavg) is the average number of labels per article. 189 

In addition to label cardinality, the minimum (LCmin) and maximum (LCmax) number of 190 

label assignments were calculated across all CogPO dimensions and for each dimension. 191 

Furthermore, label set proportions (Read et al., 2011) provide a reference for variability in 192 

label assignment across the articles and within dimensions. We subsequently calculated the 193 

proportion of unique label sets (Puniq) across all dimensions and for each dimension, as well 194 

as the proportion of the data that is assigned to the minimum (Pmin) and maximum (Pmax) 195 

number of labels. 196 

 197 

2.4 Analysis pipeline 198 

 To evaluate classification accuracy and consistency across a combination of 199 

variable factors including corpora, features, and classifiers, we developed an analysis 200 

pipeline (Figure 1) combining tools available in the Natural Language Toolkit (NLTK; 201 

Loper and Bird, 2002; Bird et al., 2009; nltk.org) and machine learning algorithms from 202 

scikit-learn (scikit-learn.org). For this purpose, we implemented a stratified, repeated 203 

cross-validation approach (Dietterich, 1998; Rodríguez et al., 2010) to ensure equal 204 

representation across folds, whereby for each combination of label, corpus, feature space, 205 

classification algorithm, and CogPO label,  the binary classifier model was trained using 206 

an optimized set of parameters on the training dataset, and the subsequent predicted label 207 

was recorded for the test dataset. We evaluated classification accuracy by aggregating 208 

across macro F1-scores for each label across iterations. Then, we utilized a hierarchical 209 

clustering analysis to observe which Behavioral Domains and Paradigms Classes 210 

demonstrated similar representations of features selected for classification across 211 

iterations. For reference, all code utilized to perform these analyses are available on GitHub 212 

(https://github.com/NBCLab/athena). 213 

 214 
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2.5 Feature Space Definition 215 

For each corpus investigated, we considered two feature spaces, for reducing the 216 

article text to terms (or features) used for classification purposes. In our analyses, the two 217 

types of features we used were defined by either “bag-of-words” or Cognitive Atlas terms, 218 

as described below. 219 

2.5.1 Bag-of-words 220 

In the bag-of-words method, every whitespace character in the text 221 

indicated a separation of words, so every word with at least 3 letters can be 222 

considered a single feature through a process called tokenization. Given the 223 

complex description of psychological constructs and experimental design used in 224 

the neuroimaging literature, we also allowed for terms composed of one, two or 225 

three words (unigrams, bigrams, or trigrams). Any such combinations of terms were 226 

considered as potential features for the classification procedure. We also 227 

implemented an abbreviation expander (github.com/NBCLab/abbr), which was 228 

used to identify the corresponding terms associated with an abbreviation defined in 229 

the text. This procedure identified abbreviations appearing in parentheses and 230 

associated them with the terms appearing before the parentheses and whose letters 231 

began with the abbreviation letters. All instances of the abbreviation in the text were 232 

identified and replaced with the full term. This process served to provide 233 

consistency across article texts that are potentially representing similar information 234 

in different formats. Additionally, all non-alphanumeric characters (such as 235 

punctuation), except for hyphens, were removed from the text, and all terms using 236 

British-English spelling were converted to American-English spelling using a 237 

dictionary of spelling differences (tysto.com/uk-us-spelling-list.html). An 238 

additional step for pre-processing the text included “stop word” removal. 239 

Commonly used terms that serve transitional or descriptive purposes, such as “the”, 240 

“and”, “are”, “at”, etc., are known as “stop words”, and are not beneficial for 241 

classification. We therefore filtered out the list of “stop words” provided by NLTK, 242 

available in the supplemental information (Supplemental Table 3). The final step 243 

for bag-of-words text pre-processing consisted of removing suffixes from terms 244 

such that each word was decomposed into its root form in a process called 245 
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“stemming.” We again relied on the NLTK package and the English language 246 

Snowball stemmer (Bird, 2006) for this purpose. Here, the purpose of stemming 247 

was to establish consistency across terms that have the same meaning and root form 248 

but vary in the text based on usage. For example, the terms “viewing”, “viewed”, 249 

and “views” are all variants of the root “view”, but would be considered separate 250 

terms (and subsequently, features) if not for stemming procedure. During this 251 

transformation, the features for the classification procedure are now composed of 252 

lexical roots, which may or may not be a complete word.  253 

2.5.2 Cognitive Atlas 254 

The Cognitive Atlas (Poldrack et al., 2011; cognitiveatlas.org) is a 255 

collaboratively developed ontology for the field of cognitive science. The majority 256 

of items in the Cognitive Atlas are categorized as Concepts, Tasks, or Disorders, 257 

and have been developed by experts in the fields of psychology, cognitive science, 258 

and neuroscience. Furthermore, relationships between terms, called assertions, 259 

permit for a structured hierarchy that informs associations between psychological 260 

constructs and experimental manipulation. Although specialized relationships may 261 

exist within and between item categories, we limited feature weighting to Concept-262 

Concept assertions; specifically, hypernym/hyponym (is-a). In a similar way that 263 

hierarchical expansion was performed for the metadata labels, we also implemented 264 

an ontological weighting schema between Cognitive Atlas terms defined by the “is-265 

a” relationship (Poldrack, 2017; see link in Acknowledgements section). For 266 

example, if a Cognitive Atlas term appeared a given number of times in a document 267 

and is a “kind of” another Cognitive Atlas term, then the second term would be 268 

assigned the same count as the first term plus the count for the term itself. This 269 

weighting system was applied iteratively until the entirety of all term relationships 270 

was completed such that a term with multiple “is-a” relationships was influenced 271 

by the appropriate proportion of those term frequencies. In total, there are 1,744 272 

terms in the Cognitive Atlas that describe Concepts, Tasks, or Disorders, along with 273 

10 categories, for a total of 1,754 Cognitive Atlas features. 274 

Text preprocessing for the “Cognitive Atlas” feature space was carried out 275 

in the same manner as the bag-of-words approach. The Cognitive Atlas provides 276 
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not only a dictionary of relevant cognitive neuroscience terms, but also synonyms 277 

and alternate forms (e.g., “executive function” and “executive control”). 278 

Supplementing the Cognitive Atlas recommended alternate forms, we generated 279 

additional alternate forms of terms by removing hyphens and possessive 280 

apostrophes, moving parenthetical statements to the beginning of the term, and 281 

derived similar terms separated by a forward slash “/”.  We additionally performed 282 

the “stemming” procedure as described above to reduce all Cognitive Atlas terms 283 

and their alternate forms to their roots.  284 

 285 

2.6 Feature Vectorization and Reduction 286 

We transformed raw counts of feature (bag-of-words or Cognitive Atlas terms) 287 

appearance by calculating the term frequency-inverse document frequency (tf-idf; see 288 

Supplemental Material for a formal definition) for each feature in each article of the 289 

training-dataset. Specifically, the number of appearances of a given feature was extracted 290 

and sub-linearly scaled using 1+log(tf) to reduce the effect of high-frequency features, then 291 

multiplied by the inverse document-frequency to account for feature presence across 292 

articles. The inverse document-frequency values were smoothed by adding 1 to document 293 

frequencies to prevent zero divisions. Additionally, a threshold was imposed requiring a 294 

minimum frequency of 80 instances for each feature to reflect the minimum number of 295 

instances necessary for a metadata label to receive consideration for classification. That is, 296 

because we required a label to have a minimum of 80 instances, we also required a feature 297 

to appear at least 80 times. Then, only for the case of the “bag-of-words” feature space, if 298 

the total number of potential features for the classification procedure was greater than the 299 

number of Cognitive Atlas terms, a chi-square test was utilized to subsequently identify 300 

and eliminate the features that were irrelevant for classification. To this end, the chi-square 301 

tests measured dependence between all potential features, and the top 1,754 “bag-of-302 

words” features that were least likely to be independent of class were retained. We chose 303 

to limit the number of bag-of-words terms to match the number of Cognitive Atlas terms 304 

to make the two feature spaces more directly comparable. 305 

 306 

2.7 Classifier, parameter tuning 307 
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We examined four different algorithms for classification, described below, to 308 

determine which approach produced the most reliable and accurate results. The 309 

performance of each classifier is dependent on the combination of different variables, or 310 

hyperparameters, that impact how the algorithm calculates the model for generating 311 

predictions. Each classifier is influenced by a unique set of hyperparameters. Thus, for 312 

each classifier, we performed a grid-search over different combinations of 313 

hyperparameters (from the classifier-specific set of hyperparameters) to determine which 314 

arrangement resulted in the most optimal classifier performance based on the training-315 

dataset (Bergstra and Bengio, 2012). Then, once the optimal combination of 316 

hyperparameters was identified, the classifier and hyperparameters were used to generate 317 

predictions of metadata labels. This procedure was performed for each fold and each 318 

iteration, and the distributions of hyperparameters chosen for each classifier can be found 319 

in the Supplemental Material (Supplemental Table 4).  Here, we briefly describe each 320 

classifier and the associated parameters chosen for tuning. 321 

 2.7.1 Bernoulli naïve Bayes 322 

The naïve Bayes algorithm is based on Bayes’ theorem with the assumption 323 

that each feature is independent. This classifier operates under the assumption that 324 

the probability of assigning a label to an article based on the specific tf-idf vector is 325 

proportional to the probability of that label occurring in the training-dataset 326 

multiplied by the union of probabilities of each feature’s association with that label 327 

(McCallum and Nigam, 1998; Metsis, Androutsopoulos and Paliouras, 2006; 328 

Manning, Raghavan and Scheutze, 2008). Essentially, the probability that an article 329 

in the test-dataset is about a given label is calculated using the product of the 330 

probabilities of the features (that appeared in the test-dataset) in the training-dataset 331 

that were annotated with that label. Thus, this model is dependent on binary feature 332 

occurrence rather than frequency of occurrence. In the Bernoulli naïve Bayes 333 

approach, the non-occurrence of a feature is penalized, rather than ignored, in the 334 

calculation of the probability that a feature is associated with the label. If the 335 

resulting probability exceeds a threshold of 0.5, then it is assumed that the article 336 

in question is considered to be about the label being evaluated. 337 
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The only parameter that required tuning for the Bernoulli naïve Bayes 338 

classifier was the additive (Laplace/Lidstone) smoothing parameter, which 339 

primarily accounts for features which are not present in the training-dataset, 340 

preventing the occurrence of a zero probability for those features in further 341 

computations. The values for the smoothing parameter tested in the tuning grid-342 

search were 0.01, 0.1, 1, and 10. 343 

 2.7.2 Support vector classifier 344 

Support vector machines construct a hyperplane in high-dimensional space 345 

that separates data-points according to binary classification (is or is not annotated 346 

with the label), where the optimal separation is achieved when the hyper-plane is 347 

maximally distant from the nearest training data-points of different classes (the 348 

maximum-margin hyperplane). In classification, the hyper-plane is constructed to 349 

separate articles in the tf-idf matrix that were or were not about a given label, after 350 

transformation by a radial basis function kernel which allows the feature space to 351 

be non-linear (Smola and Schölkopf, 2004). Put another way, the radial basis kernel 352 

function (defined in the Supplemental Text) incorporates a Gaussian function to 353 

calculate the distance between feature vectors. 354 

The parameters that required tuning for the support vector classifier were 355 

the penalty of the error term and kernel coefficient for the kernel function. For the 356 

radial basis function kernel, the error term trades misclassification of training 357 

examples against the simplicity of the decision surface, and the kernel coefficient 358 

defines the extent to which a single article in the training-dataset influences the 359 

classifier. The error terms used for tuning in the grid-search were 1, 10, and 100, 360 

and the potential kernel coefficients were 0.01, 0.1, and 1. 361 

 2.7.3 Logistic regression 362 

The logistic regression algorithm is a classification algorithm based on 363 

generalized linear models, where the probabilities that a given article is about a 364 

label is modeled using a logistic function (Yu, Huang, Lin et al., 2011). In the 365 

current approach, a binary classifier is independently developed for every label 366 

where the model coefficients corresponding to each feature in the training-dataset 367 

are calculated to minimize the error using a cost function. The LIBLINEAR library 368 
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utilizes a coordinate descent algorithm to optimize the regression model (Fan et al., 369 

2008). tf-idf weights from the testing-dataset article are entered into the resulting 370 

regression model, and the log-odds is then modeled as a probability using the 371 

logistic function. 372 

The parameters tuned in the grid-search accounted for the regularization 373 

strength and the function for penalty normalization. Regularization in machine 374 

learning is a term that prevents the model from overfitting to the training-dataset, 375 

and the lower the regularization, the more likely overfitting is to occur. Penalty 376 

normalization essentially adds either square loss or absolute deviation loss of the 377 

magnitude of the coefficients to the penalty term of the cost function. The 378 

regularization strengths submitted for tuning were 0.01, 0.1, 1, 10, and 100; and the 379 

penalty normalization functions were the L1-norm or the L2-norm. 380 

 2.7.4 K-nearest neighbors 381 

The kNN algorithm identifies the k articles in the training-dataset closest in 382 

distance between their respective tf-idf vectors and that of the test-article to be 383 

classified. That is, the distance between all tf-idf vectors in the training-dataset and 384 

the article to be classified was calculated using the appropriate distance metric, and 385 

the k articles with the smallest distance were identified. Then, a majority vote is 386 

calculated from those k-nearest articles to determine if the test-article should be 387 

annotated with a given label. In this instance, if more of the k-nearest articles are 388 

not classified with the label under consideration, then the model will not predict 389 

that label for the given article. 390 

The kNN algorithm is dependent on the chosen k, the distance metric, and 391 

distance weighting for predictions. Our parameter-tuning grid-search operated on k 392 

= 1,3,5,7,9; calculated distances between tf-idf vectors in the training- and test-393 

dataset, which have equivalent lengths (i.e., number of features) using both the 394 

Manhattan and Euclidean distance algorithms; and based predictions on uniform 395 

and weighted distances. Uniform distances indicated that all points in a 396 

neighborhood were weighted equally, whereas points could also be weighted by the 397 

inverse of their distance. In this case, closer neighbors of a query point had a greater 398 

influence than neighbors that were further way. As the input datasets are large and 399 
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the kNN classification approach requires all the data available, distance calculation 400 

algorithms can be used to identify the nearest neighbors. The algorithm (BallTree, 401 

KDTree, brute-force) used to compute the nearest neighbors were automatically 402 

determined based on the sparsity of the inputs (Bently 1975; Omohundro 1989).  403 

 404 

2.8 Classifier Training 405 

 For the unique combination of a given metadata label, corpora (“abstract only” or 406 

“full text”), and feature space (“bag-of-words” or “Cognitive Atlas”), a repeated five-fold 407 

cross-validation procedure was performed 100 times. In this scheme, for each iteration, the 408 

publications were first randomly split into 5 groups. Then, within the iteration, each of the 409 

groups was selected as the test dataset once (and the other four were combined into a 410 

training dataset). The tf-idf vectorization and feature reduction techniques described above 411 

were subsequently performed for the training-datasets in each fold and each iteration to 412 

increase generalizability of the model and improve learning performance (Tang et al., 413 

2013). For the bag-of-words feature space, the vocabulary (i.e., the set of unigrams, 414 

bigrams, and trigrams extracted from the text and used to train the classifier) was defined 415 

independently based on the fold’s training dataset, while for the Cognitive Atlas feature 416 

space the vocabulary was already defined. Bag-of-words features derived from the training 417 

dataset or Cognitive Atlas terms were then subjected to a similar tf-idf vectorization 418 

procedure in the test-dataset. This resulted in two independent matrices with dimensions 419 

equal to the number of features derived from the training-dataset and number of articles in 420 

the training-dataset and test-dataset, respectively (Manning, Raghavan and Schütze, 2008; 421 

Baeza-Yates and Ribeiro-Neto, 2011). The procedure outlined above, consisting of 422 

vectorization, feature reduction, and classifier training/testing was performed 5 times for 423 

each of the 100 iterations which were performed for each combination of feature space, 424 

corpus, and classifier for a total of 8000 permutations for each CogPO label. Within each 425 

iteration and fold, classifiers were then trained using the training-dataset tf-idf feature 426 

matrix, and predictions for articles in the test-dataset were made using the test-dataset tf-427 

idf feature matrix as input. 428 

 429 

2.9 Evaluation 430 
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  2.9.1 F1-scores 431 

To build and assess classifier performance in assigning CogPO labels to 432 

neuroimaging articles, we explored two corpora (“abstracts-only” and “full-text”), 433 

two feature spaces (“bag-of-words” and “Cognitive Atlas”), and four classifiers 434 

(“Bernoulli naïve Bayes”, “support vector classifier”, “logistic regression”, and “k-435 

nearest neighbors”). Classifiers for each label were modeled using a repeated cross-436 

validation procedure, whereby for each of the 100 iterations, the neuroimaging 437 

articles and associated labels were split into 5 training- and test-datasets (thus 438 

producing 500 estimates of classifier performance per label and per combination of 439 

corpus, feature space, and classifier). Macro F1-scores (see Supplemental Text for 440 

F1-score derivation) were used as the standard measure of classifier performance 441 

and calculated for each iteration for each label so that our results were not biased 442 

toward the most frequently occurring metadata labels within and across dimensions 443 

(Sokolova and Lapalme, 2009). For Macro-F1 calculation, the mean and standard 444 

deviation of F1-scores across iterations and folds provided average levels of 445 

performance and consistency of performance for each label. Then, to assess 446 

classifier performance for each CogPO dimension, the mean and standard deviation 447 

of F1-scores were calculated across iterations and folds for all labels within a 448 

dimension. Additionally, we calculated Micro F1-scores to obtain a 449 

characterization of classifier performance that does not over-emphasize classes that 450 

are under-represented while under-emphasizing classes that are over-represented. 451 

For Micro F1-score calculation, F1-scores were calculated across all labels within 452 

a CogPO dimension for each combination of corpora, feature space, and classifier, 453 

and averaged across iterations. Both Macro and Micro F1-scores can range from 0, 454 

the worst score possible, and 1, for perfect precision and recall.  455 

 2.9.2 Baseline Performance Estimation 456 

 To compare the classifiers, we calculated the level of performance one 457 

would expect based on simply choosing the most frequently occurring metadata 458 

labels, derived using each combination of parameters. To do this, Macro F1-scores 459 

were calculated for a pseudo-prediction matrix that was artificially generated by 460 

“predicting” that all articles were annotated with the metadata labels within each 461 
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dimension that occurred most frequently across the dataset. First, the average label 462 

cardinality (LCavg) for each dimension was used to select the (rounded) LCavg most 463 

frequently occurring metadata labels. Then, the pseudo-prediction matrix was filled 464 

in with a value of 1 for all articles using those selected metadata labels for each 465 

dimension. F1-scores were calculated using this “prediction matrix” to obtain a 466 

baseline level of classifier performance. 467 

 468 

2.9.3 Hierarchical Recall and Precision 469 

Additional metrics for evaluating classifier performance are hierarchical 470 

recall and precision. Due to the hierarchical nature of Behavioral Domains in 471 

CogPO and the current implementation of hierarchical expansion for label 472 

assignment, we explored evaluating these metrics to assess classifier performance. 473 

The purpose for evaluating hierarchical recall and precision is to determine the 474 

performance of predicting the parent label (e.g., Cognition.Memory) when an 475 

article is also predicted to have been annotated with one of its child domains (e.g., 476 

Cognition.Memory.Working). However, the current classification problem is one 477 

that generates binary classification models, and therefore label predictions are 478 

independent of one another. That is, classifiers for Cognition.Memory and 479 

Cognition.Memory.Working are trained, predicted, and evaluated independently of 480 

one another across 5 folds and 100 iterations for each combination of corpora, 481 

feature space, and classifier. Nonetheless, we derived hierarchical recall and 482 

precision metrics for hierarchical Behavioral Domain labels within iterations, and 483 

averaged over all iterations and Behavioral Domain labels. 484 

 485 

2.10 Feature similarity across labels 486 

The bag-of-words approach uses the most frequently appearing one-, two-, or three-487 

word terms across all articles annotated with a given label for features when generating a 488 

classification algorithm. Within each fold across iterations of the classification procedure, 489 

we chose to use the top 1,754 features for each label from the bag-of-words, the same 490 

number of Cognitive Atlas features, so that each feature space would be comparable in 491 

size. We sought to determine if, across folds and iterations, different sets of features from 492 
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the bag-of-words approach were more frequently used for classification across the CogPO 493 

dimensions Behavioral Domain and Paradigm Class. First, we calculated the average 494 

feature frequency for a given label within the “full-text” corpora and “logistic regression” 495 

classifier combination as it performed the best across the possible permutations when using 496 

Macro F1-scores as a proxy for classification performance. Then, we calculated the 497 

Spearman correlation coefficient between each possible pairing of feature frequency 498 

distributions from Behavioral Domain and Paradigm Class labels. To control for 499 

correlations that are influenced by labels that tend to be annotated together, we regressed 500 

the frequency of co-occurrence (as estimated by the Dice Similarity Index (Dice, 1945)), 501 

such that the resulting residuals represented a true similarity between the labels’ feature 502 

distributions.  Hierarchical clustering was then applied to the resulting cross-correlation 503 

matrix (Laird et al., 2015; Riedel et al., 2018) using the “correlation distance” and 504 

“weighted linkage” metrics in the MATLAB (Natick, MA) computing environment to 505 

observe how similar labels were classified based on similar sets of terms.  506 

The resulting clusters of labels from the hierarchical clustering analysis serve as a 507 

proxy for demonstrating how articles assigned with similar labels tend to use similar 508 

vocabulary. To demonstrate this effect, we then sought to present the most consistently 509 

utilized features across iterations for each cluster. As indicated above, before the classifiers 510 

were determined, the feature set for each label and each iteration was reduced from the full 511 

bag-of-words to the top 1,754 features. We calculated the mean occurrence of each feature 512 

across labels within a cluster and utilized the top ten percent of those bag-of-words features 513 

and their corresponding frequencies to generate a “word cloud” visualization 514 

(https://github.com/amueller/word_cloud). In this representation, the features exhibiting 515 

the highest frequency across labels in a cluster appear in larger font sizes in the word cloud.   516 
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3. Results 517 

A collection of 2,633 neuroimaging articles and their associated labels derived from 518 

the CogPO vocabulary were submitted to a repeated                                                                                                                                                                                                                        519 

cross-validation technique to determine which combination of corpora, features, and 520 

classifier resulted in an optimal performance of automated article labeling. A total of 100 521 

iterations of five-fold cross-validation were performed for each combination and label. 522 

Average predictive performance was assessed using the mean of Macro F1-scores across 523 

iterations and folds, and performance consistency was assessed using the standard 524 

deviation of Macro F1-scores for across iterations and folds. As indicated above, we 525 

utilized Macro F1-scores as our measure of performance such that our results would not be 526 

biased toward the most frequently occurring labels.  527 

3.1 Labels 528 

Our classification analysis included 26 Behavioral Domains, 17 Paradigm Classes, 529 

3 Context terms, 5 Diagnoses, 12 Instructions, 4 Stimulus Modalities, 12 Stimulus Types, 530 

3 Response Modalities, and 4 Response Types. Multi-label classification metrics, such as 531 

label cardinality and label set proportions, provide a means for interpreting the variable 532 

range of true label annotations to the neuroimaging articles. The average, minimum, and 533 

mean label cardinality and set proportions were calculated across all CogPO dimensions 534 

and for each dimension (Table 1). On average, each neuroimaging article was annotated 535 

with ~12 labels across all CogPO dimensions, while 1 article was annotated with only 1 536 

label (the minimum), and 2 articles were annotated with 37 labels (the maximum). 537 

Although there are 9 dimensions in CogPO, the reason that one neuroimaging article was 538 

only annotated with 1 label is because the other annotated labels did not occur in at least 539 

80 instances across the entire neuroimaging corpora. The number of unique combinations 540 

of label assignments across CogPO dimensions was about 87% of the total dataset, 541 

indicating a diversity of experimental designs across the neuroimaging corpora. When 542 

considering the individual CogPO dimensions, on average, each neuroimaging article was 543 

assigned approximately 3 Behavioral Domains, whereas all other dimensions were 544 

assigned on average about 1-1.5 labels. As previously mentioned, the minimum number of 545 

label assignments across all dimensions was 0. This occurred the most frequently in the 546 

Paradigm Class dimensions, where roughly 29% of the neuroimaging articles were not 547 
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assigned a label. It is also worth noting that every neuroimaging article had at least 1 label 548 

assignment after thresholding. 549 

3.2 Evaluation 550 

3.2.1 Overall Performance 551 

We ran an overall ANOVA to test for differences in Macro F1-scores when 552 

considering different parameters and combinations of parameters for classification (Figure 553 

2, Table 2). Two findings emerge from this analysis: that the interaction between the three 554 

parameters we tested indicated results will significantly vary depending on the corpus, 555 

feature space, and classifier chosen for article annotation, and importantly, that 556 

performance does not vary across those parameters when considering CogPO dimensions. 557 

This second point suggests that different classification parameters are NOT needed when 558 

annotating Behavioral Domains and Paradigm Classes, for instance. 559 

With respect to CogPO dimensions, Diagnosis labels demonstrated the highest 560 

performance and Stimulus Type labels demonstrated the most consistent performance 561 

across iterations (Supplemental Table 5). To provide insight into classification 562 

performance at different levels of combinations of the parameters varied, first we examined 563 

which combinations of corpora, feature space, and classifier independently performed the 564 

best (Supplemental Table 6). On average, when only considering corpus, “full text” out-565 

performed “abstracts” and was the most consistent. When only considering feature space, 566 

the “bag-of-words” approach out-performed the “Cognitive Atlas” and was the most 567 

consistent; and when only considering the classifiers, “support vector classifiers” out-568 

performed all others and was most consistent. Second, we examined which combination of 569 

parameters yielded the highest performance. We observed that the combination of “full-570 

text” and “support vector classifiers” out-performed all other combinations of corpus and 571 

classifier, and was the most consistent; the combinations of “bag-of-words” and “support 572 

vector classifiers” out-performed all other combinations of feature space and classifier, 573 

and was the third-most consistent; and “full text” and “bag-of-words” out-performed all 574 

other combinations of corpus and feature space, and was the most consistent. Interestingly, 575 

when considering “abstracts-only”, the “bag-of-words” and “Cognitive Atlas” corpora 576 

performed almost equivalently, with “bag-of-words” performing slightly better. Third, we 577 
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examined which combination performed the best across all three parameters. We observed 578 

that the average levels of performance were highest according to Macro F1-scores across 579 

all CogPO dimensions (Table 3) for the combination of “full text”, “bag-of-words”, and 580 

the “logistic regression” classifier, though the performance for “full text”, “bag-of-words”, 581 

and “support vector classifier” was not substantially different enough to indicate one 582 

approach is truly superior to the other. However, the subsequent ancillary analyses focus 583 

on the “logistic regression” classifier since it did perform the best. With respect to Micro 584 

F1-scores, the combination of “full text”, “bag-of-words”, and the “support vector 585 

classifier” performed best, though not substantially better than the same combination when 586 

using the “logistic regression”. Thus, across evaluation metrics (Macro/Micro F1-scores) 587 

performance was always highest when using the “full text” corpus, “bag-of-words” feature 588 

space, and either the “logistic regression” classifier or “support vector classifier”.  589 

3.2.2 Baseline Performance Estimation 590 

Our baseline performance estimation in which Macro F1-scores were calculated for 591 

a pseudo-prediction matrix yielded values for comparing our classifiers performance. In a 592 

few instances, some combinations of corpus, feature space, and classifier failed to 593 

outperform the baseline performance estimation for the CogPO dimensions Response 594 

Modality and Response Type. However, the best performing combination of parameters for 595 

each dimension always outperformed the baseline performance estimations. 596 

3.2.3 Hierarchical Recall and Precision 597 

Generally speaking, across all combinations of corpora, feature space, classifier, 598 

and Behavioral Domain labels, hierarchical recall was roughly 0.55, while hierarchical 599 

precision was 0.71. This difference between recall and precision indicates that more false 600 

negatives were identified than false positives, meaning articles annotated with a sub-label 601 

were not as frequently classified with the associated parent-label. This is not unexpected 602 

as feature differentiation among the parent label is greater and non-specific compared to 603 

the sub-label. Hierarchical recall and precision distributions calculated for each Behavioral 604 

Domain assessed across every combination of corpora, feature space, and classifier can be 605 

found in Supplemental Figures 2 and 3, respectively.  606 

 607 
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3.3 Feature similarity across labels 608 

 We implemented a hierarchical clustering analysis on a matrix of residual 609 

correlation coefficients between pairwise Behavioral Domain and Paradigm Class label 610 

feature representation distributions to observe which labels tended to demonstrate higher 611 

similarities of terms usage in the “full-text” (Figure 3) and “abstracts-only” 612 

(Supplemental Figure 4) extracted from neuroimaging articles. We chose an arbitrary 613 

clustering threshold based on visual inspection of the resulting dendrogram to relate 614 

CogPO labels assigned to individual clusters. We observed four clusters of CogPO labels 615 

in the dendrogram and their corresponding word clouds indicate not only which features 616 

were most consistently used across classifiers for each label in a cluster, but also represent 617 

an associated vocabulary respective to the constructs in each cluster. A persistent 618 

observation across all word clouds is the inclusion of a number of brain anatomy, structure, 619 

or location descriptors such as “anterior cingul” (anterior cingulate), “cingul cortex” 620 

(cingulate cortex), and “left amygdala”. Furthermore, terms corresponding to mental 621 

constructs such as “work memori” (working memory), “intern affect” (internal affect), and 622 

“express emot” (express emotion), coupled with experimental design descriptions like 623 

“event rel” (event related) and “pictur system” (picture system) provide a broad overview 624 

of psychological systems interrogated across a large set of studies. Additionally, diagnoses 625 

such as “major depress” (major depressive disorder) and “bipolar disord” (bipolar disorder) 626 

can provide insight into either the neural systems most studied in specific patient 627 

populations or the neural systems most affected in specific patient populations. Finally, 628 

journal titles and author names are also represented in these word clouds indicating specific 629 

emphases on certain topics by journals (which may be subsequently biased due to study 630 

inclusion in this analysis) or domain of study for different principal investigator’s labs. 631 

As a purely exploratory investigation, within these primary clusters, individual 632 

groupings of labels that are combinations of Behavioral Domain and Paradigm Classes 633 

emerge that represent similar psychological constructs. For instance, in one cluster (red), a 634 

grouping of the Behavioral Domain labels “Perception.Somesthesis” and 635 

“Perception.Somesthesis.Pain” and Paradigm Class label “Pain Monitor/Discrimination” 636 

represent a very specific subset of functional neuroimaging studies investigating the neural 637 

responses to “pain”. Further high-level psychological constructs that can be identified by 638 
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the dense grouping of similar CogPO labels include “Memory”, “Emotion”, and 639 

“Language”. Following the same procedure for generating word clouds corresponding to 640 

each cluster, we additionally created word clouds for each psychological construct to 641 

determine if specific terminology in each sub-grouping would yield a more informative 642 

knowledge base for describing these paradigms. The word clouds (Figure 4) associated 643 

with these individual sub-groupings of labels provide an even more fine-grained 644 

assessment of the most frequently used features in these inferred topics with terms such as 645 

“nonspati work” (nonspatial working), “verbal work” (verbal working), “term memori” 646 

(term memorization) in the “Memory” subset and “facial express” (facial expression), 647 

“fusiform gyrus”, and “amygdala activ” (amygdala activation) in the “Emotion” subset.   648 
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4. Discussion 649 

Neuroimaging meta-analyses for knowledge modeling are becoming increasingly 650 

prevalent due to the increasing rate and number of publications. Curating and synthesizing 651 

this data is time consuming, subjective, and prone to errors of omission simply because the 652 

scientific literature is too large. We utilized 2,633 neuroimaging articles to determine the 653 

most optimal combination of corpus (abstract, full-text), feature (bag-of-words, Cognitive 654 

Atlas), and classifier (Bernoulli naïve Bayes, support vector classifier, logistic regression, 655 

k-nearest neighbors), that resulted in the highest predictive performance. Our findings 656 

indicate that if CogPO labels are to be used for synthesizing neuroimaging articles and full-657 

article text is available, using the bag-of-words feature space and the logistic regression 658 

classifier will provide optimal performance of article annotation, though it only slightly 659 

outperformed the full-text, bag-of-words, and support vector classifier combination, 660 

whereas if only article abstracts are available, the Cognitive Atlas feature space and support 661 

vector classifier should be used. These recommendations are expanded upon in the ensuing 662 

discussion. 663 

 664 

4.1 Full-text vs abstracts 665 

 We sought to evaluate whether classifiers performed better when using the text 666 

from the entire neuroimaging article or just the article abstract. The motivation for 667 

performing this assessment was based on the idea that short, concise descriptors in article 668 

abstracts would be used to convey psychological constructs and experimental design, 669 

whereas phrases and terminology describing the study design would be captured by using 670 

full article text. Previous research has illustrated techniques utilized for document 671 

classification and short-text classification (e.g., Turner et al., 2013) and we identified one 672 

paper (Bui et al., 2016) which attempted to classify text patterns according to which section 673 

of an article it appeared in (i.e., title, abstract, text-body, etc.). In addition, within the 674 

context of text-mining in genetics literature, structural differences existed between 675 

abstract-only and full article text, with longer sentences and increased parenthesized 676 

material in the article text (Cohen et al., 2010). Cohen et al., (2010) additionally found that 677 

semantic classes (corresponding to gene, mutation, disease, and drug) exhibited differential 678 

densities in article and abstract text, yielding the potential for characterizing articles based 679 
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on densities of CogPO dimensions across sections of the article. Overall, across all feature 680 

spaces and classifiers, predictive performance was higher when using text extracted from 681 

the full-text, rather than just the abstracts. One reason to suspect full-text classification 682 

outperformed abstract-only classification could be based on a reduced total number of 683 

features when considering the abstracts-only text. For instance, when considering the bag-684 

of-words feature space, the imposed 80-instance threshold more than likely reduced the 685 

total number of potential features for classification using abstract text because unique 686 

phrases are less likely to occur frequently because of study and author specific terminology. 687 

To this point, the number of unique features used to classify all labels using abstracts text 688 

was 740, compared to 15,004 unique features using full article text. In addition, references 689 

are included as components of the full article text, so authors and article titles are also 690 

considered as features. References were included in the full-text assessments in part 691 

because of the demonstrated networks of author collaborations in the AuthorSynth tool 692 

(Sochat et al., 2015).  Similarly, when considering the Cognitive Atlas feature space, terms 693 

may have not been represented as frequently (if at all) in the abstract text compared with 694 

the full article text. These findings are indicative of 1) more semantic variability across 695 

abstracts yielding fewer features with high enough frequency for classification purposes, 696 

and 2) less differentiation of features used for classification amongst labels, potentially 697 

leading to less accurate predictive performance. 698 

 699 

4.2 Bag-of-words vs. Cognitive Atlas 700 

 Additionally, we sought to determine if a feature space derived from an expert 701 

defined vocabulary, the Cognitive Atlas, describing psychological constructs, mental 702 

operations, and experimental conditions could match or exceed the classification 703 

performance when using features derived from neuroimaging article text. This assessment 704 

was based on the premise that author-derived terms are non-specific with respect to the 705 

context of the article, and the frequency of terms associated with cognitive concepts and 706 

tasks from the Cognitive Atlas would be better suited for annotation using CogPO labels. 707 

These hypotheses are driven by evidence supporting dictionary matching algorithms in 708 

genetics research increasing prediction performance in concept recognition (Funk et al., 709 

2016). When considering classification using full article text, the bag-of-words features 710 
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outperformed the Cognitive Atlas features, though the difference (0.05) falls within the 711 

error range of consistency (0.20) of prediction accuracy for the bag-of-words approach. 712 

Additionally, if one considers the current scenario of article annotation using abstract text 713 

until full article text becomes more readily available, the Cognitive Atlas feature space 714 

actually outperforms bag-of-words. This finding, aside from gross feature representation 715 

differences in article abstracts (as reported above), supports the notion that article abstracts 716 

contain high-level, context specific terminology that Cognitive Atlas can leverage for 717 

classification purposes, whereas the bag-of-words features, which are subjected to a 718 

reduction technique that ensures sufficient power, show either 1) high semantic variability 719 

within a single label, or 2) low heterogeneity across all CogPO labels. Thus, while we 720 

generally identified comparable performance using the Cognitive Atlas feature space, we 721 

acknowledge that these findings are contextualized within the cognitive neuroimaging 722 

literature when using CogPO labels. 723 

 724 

4.3 Classification algorithm 725 

 Based on overall performance, average Macro F1-scores across Cog PO labels and 726 

iterations were highest for the full-text corpora and bag-of-words feature space when using 727 

the logistic regression algorithm; although the performance was almost equivalent when 728 

using the support vector classifier algorithm. On average, the Bernoulli naïve Bayes and k-729 

nearest neighbors algorithms failed to achieve equivalent predictive performance as the 730 

logistic regression and support vector classifiers, regardless of the corpora or feature space 731 

chosen. The Bernoulli naïve Bayes algorithm is based on binary feature representation; 732 

thus, frequency of appearance is not emphasized. The lack of emphasis on feature 733 

representation could be detrimental in weighting key terms used frequently about a specific 734 

cognitive domain, though it has been shown to be beneficial in document classification 735 

(McCallum et al., 1998). The k-nearest neighbors algorithm annotates labels based on a 736 

majority vote of the k labels from the training-dataset with the smallest distance with the 737 

test-dataset. Annotation performance can thus vary based on the selected value of k, 738 

exhibits a U-shaped relationship with the number of relevant features (Okamoto and 739 

Yugami, 2003), and generally performs worse in the case of high-dimensional data 740 

(Mitchell et al., 1990). Aside from reduced performance levels, another limitation of the k-741 
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nearest neighbor algorithm is that it is computationally expensive regarding processing 742 

time and storage requirements, as no model is actually trained and distances must be 743 

calculated for every class. Support vector classifiers are robust and have been used for 744 

classification of cancer (Fury et al., 2000; Guyon et al., 2002), image (Chapelle et al., 1999) 745 

and audio (Guo et al., 2003) classification, and identifying smokers compare to non-746 

smokers (Pariyadath et al., 2014). In general, because of their ability to operate in high 747 

dimensional spaces, support vector classifiers have few drawbacks, with the exception of 748 

high processing times and memory consumption during the training and classification 749 

stages (Khan et al., 2010). Logistic regression is another of the more popular classification 750 

approaches for medical data classification (Dreiseitl and Ohno-Machado, 2002). Logistic 751 

regression models are generally less prone to overfitting and thus have a higher degree of 752 

generalizability. This is particularly important in the current context as there are 753 

unbalanced representations of CogPO labels used for training classifiers, and annotation of 754 

future articles may not be suspect to overfitting based on the data utilized in the current 755 

work. 756 

 757 

4.4 Feature representation 758 

Our exploratory analysis yielded word clouds for different clusters and 759 

demonstrated that anatomical terms appeared to dominate the most frequently utilized 760 

features for article classification across labels. This finding is important for two reasons: 761 

first, it suggests that semantic variability is greater for functional terms or task descriptors 762 

than anatomical labels; and second, frequently used anatomical terms are represented in a 763 

meaningful way that exhibit dense associations with similar cognitive concepts. For 764 

instance, it is not surprising to find that “superior temporal gyrus” is one of the most 765 

commonly utilized anatomical terms used to classify CogPO labels related to language 766 

(Friederici et al., 2003), or likewise the association between “amygdala” and emotion labels 767 

(Gallagher et al., 1996). However, these anatomical terms are not domain-specific, and 768 

leveraging a feature space that weighs heavily toward anatomical descriptors could result 769 

in less confidence for article annotation, particularly in the cases where experimental 770 

designs are increasingly complex, interrogating multiple cognitive domains or brain 771 

networks. For instance, recent meta-analytic endeavors (Laird et al., 2015; Riedel et al., 772 
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2018; Bottenhorn et al., 2018) have demonstrated robust brain network activation across 773 

activation maps associated with distinct neuroimaging task paradigms. In this respect, a 774 

classification system whereby features are derived from an ontology of psychological 775 

concepts, such as the Cognitive Atlas, would rely more on authors’ discussion of 776 

experimental design and findings related to cognitive neuroscience and psychology. In this 777 

respect, efforts in text-mining the neuroimaging literature can be enhanced by referencing 778 

the genomics classification methodologies, as advanced concept and synonym recognition 779 

techniques are prevalent (Funk et al., 2016). Nonetheless, relationships between brain 780 

regions and neurological disorders can be delineated, providing invaluable knowledge of 781 

the either brain regions most commonly associated with specific disorders or, given the 782 

association between brain location with cognitive domains, which disorders are most 783 

commonly studied within a given domain. Finally, it is somewhat surprising that canonical 784 

brain networks did not emerge as frequently used features. Some of the most highly studied 785 

networks, such as the “default-mode” and “salience” networks reflect very little semantic 786 

variability. To this end, it would seem that authors tend to discuss their findings in terms 787 

of constituent components of these networks. Alternatively, the majority of the publications 788 

included in this assessment occurred prior to and including the year 2008, while seminal 789 

brain-network papers were published around that time (Seeley et al., 2007; Menon 2011), 790 

indicating a lack of representation in the current database.  791 

 792 

4.5 Limitations and Future Directions 793 

During the planning phase of our analyses, we considered the distinctions between 794 

CogPO and the Cognitive Atlas as developed ontologies for classification purposes. 795 

Ultimately, we believed that the Cognitive Atlas is more suitable to be leveraged as a 796 

feature space than as a label set because CogPO is meant to be more static, which fits the 797 

function of stable article annotations, whereas the Cognitive Atlas is meant to evolve. To 798 

this end, relationships between concepts in the Cognitive Atlas can be evaluated as weights 799 

between features for each classifier, and prediction performance can be improved as these 800 

relationships are further refined and Cognitive Atlas becomes more fully specified through 801 

crowd-sourcing efforts. Furthermore, evolving the Cognitive Atlas vocabulary to 802 
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incorporate synonyms based on constituent parts of the features may serve to strengthen 803 

prediction performance (Funk et al., 2016). 804 

Following best standards and practices, we only utilized CogPO labels that were 805 

annotated at least 80 times, which drastically reduced the number of labels used for 806 

classification. Thus, the context with which these results should be interpreted are with 807 

respect to those 86 labels that were trained and tested here. Public release will include 808 

classifiers for CogPO labels trained on the entire dataset. Additionally, as there were 809 

varying levels of performance across combinations of parameters, it is difficult to conclude 810 

that one combination is superior to the other. Using the full-text, bag-of-words, and logistic 811 

regression approach resulted in the best overall performance, but this was only slightly 812 

greater than when using the support vector machine classifier (and full-text, bag-of-words). 813 

Thus, subtle differences in classifier performance should be considered, and annotation 814 

performance in smaller datasets according to the classification algorithm should be 815 

investigated. 816 

We utilized the largest known corpus of studies with manual annotations for 817 

deriving classifiers for CogPO labels, and as such, included all articles for training and 818 

testing purposes for labels to reach a sufficient power for analysis. An independent dataset 819 

is necessary for validation of the classifiers, and future work includes using manually 820 

annotated datasets to evaluate the ATHENA derived classifiers in the domain of executive 821 

function, social cognition, decision making, and cue reactivity. Furthermore, we are meta-822 

analytically assessing whether spatial distinctions exist between executive control network 823 

depending on the specific nomenclature authors used to describe it (e.g., cognitive control 824 

network, executive function network, dorsal attention network, etc.). 825 

All classifiers produced by the work performed may be integrated into existing 826 

tools, including Neurosynth, Brainspell & MetaCurious, and NiMARE. Neurosynth is a 827 

platform in which automated methods are used to extract relevant information from 828 

neuroimaging articles for the purpose of large-scale meta-analysis. These classifiers may 829 

be used to provide a new set of labels by which users can perform meta-analyses using 830 

Neurosynth’s database. Further development of the ATHENA classifiers through formal 831 

comparison with Neurosynth’s bag-of-words annotation approach is ongoing. Brainspell 832 

and MetaCurious allows researchers to search across the literature, manually curate 833 
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collections of articles for meta-analyses, and add human annotation to the existing 834 

automated annotations for Neurosynth, which form the basis of the Brainspell database. 835 

The curation process involves adding labels to the articles, which can be used to improve 836 

ATHENA classifiers. Additionally, the classifiers may be used to improve the accuracy of 837 

targeted searches in MetaCurious, which will make comprehensive literature searches 838 

easier for meta-analysts. NiMARE is a Python package that implements a wide range of 839 

tools for neuroimaging meta-analysis, and it is in NiMARE that the ATHENA classifiers 840 

may be implemented and interact with Neurosynth and MetaCurious.	 	841 
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Figures 1080 
 1081 

 1082 
Figure 1. Analysis plan. The schematic describes the approach utilized in this analysis to 1083 
identify the best classifier for automating the annotation process for published 1084 
neuroimaging articles. The articles have been manually annotated to with metadata labels 1085 
described by the Cognitive Paradigm Ontology (CogPO) and can be evaluated based on 1086 
the text in the abstracts-only or the full extent of the article. The text can be extracted using 1087 
the raw terms in the article (bag-of-words) or based on usage of terms from a defined 1088 
vocabulary (Cognitive Atlas). Then, a repeated (100 iterations) cross-validation technique 1089 
is performed for generating the classifiers where first the full dataset is split into 5 equally 1090 
sized subsets, which are then split into training (80%) and testing (20%) datasets. The 1091 
features (bag-of-words or Cognitive Atlas terms) are vectorized based on frequency of 1092 
appearance and reduced to the only the most frequently used terms. Then, based on the 1093 
specific classifier being used, the appropriate hyperparameters are tuned based on the 1094 
training dataset, and then a classifier is constructed for each CogPO metadata label using 1095 
the training dataset. 1096 
 1097 
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 1098 
Figure 2. Overall predictive performance across classifiers. Predictive performance 1099 
evaluated as the average of Micro F1-scores for each combination of parameters over all 1100 
CogPO dimensions provides an outlook of comparative performances. The combination of 1101 
parameters with the highest performance occurred for bag of words, full-text, and logistic 1102 
regression; however, bag of words, full-text, and support vector classifier performed nearly 1103 
equivalently. Performance levels for the Bernoulli Naïve Bayes classifier, Cognitive Atlas 1104 
feature space and full-text and abstract-only analyses were the same, indicating why it does 1105 
not appear in the current figure. 1106 
 1107 

 1108 
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Figure 3. Label similarity dendrogram. Similarity between Behavioral Domain and 1109 
Paradigm Class metadata labels based on features selected for classification across folds 1110 
and iterations. Clusters are representative of labels and their corresponding manuscript in 1111 
which similar language was used throughout the whole text. The associated “word clouds” 1112 
were generated by using the top 10% of the most frequently used bag-of-words features 1113 
across labels and iterations in each cluster. 1114 
 1115 

 1116 
Figure 4. Feature “word clouds” from cluster subsets. “Word clouds” for the four 1117 
subsets of clusters were generated by utilizing the top 10% of the most frequently used 1118 
bag-of-words features across labels in each subset. Larger words indicate a larger 1119 
representation of feature frequency within each distribution.1120 
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Table 1. Label cardinality and set proportions. Label cardinality metrics, such as the average (LCavg), minimum (LCmin), and maximum (LCmax) 
number of labels assigned to a neuroimaging article, were calculated for each Cognitive Paradigm Ontology dimension and across all dimensions. 
These metrics were derived using the known manual annotations. Additionally, label set proportions were calculated, such as the proportion of 
articles assigned with the minimum (Pmin) or maximum (Pmax) number of labels and the proportion of unique label set combinations (Puniq) across all 
neuroimaging articles. 
	

Dimension 
Behavioral  

Domain Context Diagnosis Instruction 
Paradigm  

Class 
Response  
Modality 

Response  
Type 

Stimulus  
Modality 

Stimulus  
Type Overall 

LCavg 2.96 0.98 1.02 1.52 0.85 1.27 1.22 1.19 1.40 12.41 

LCmin 0 0 0 0 0 0 0 0 0 1 

LCmax 13 3 3 6 4 3 3 4 7 37 

Puniq 12.19 15.34 0.61 7.41 5.36 0.30 0.57 0.61 6.84 86.86 

Pmin 2.16 16.82 6.68 2.96 29.05 1.14 2.73 1.48 6.27 0.04 

Pmax 0.04 0.61 0.49 0.15 0.19 0.76 0.76 0.08 0.04 0.08 
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Table 2. ANOVA Results. An overall ANOVA test was performed to test differences between F-scores 
for each potential combination of parameters tested in our analysis. Interactions between parameters 
were also included to inform the effect of different combinations parameters on the resulting F-scores. 
 
ANOVA Results F Df Pr(>F) Sig 
dimension 3.734 8 0.000976 *** 
classifier 128.301 3 <2E-16 *** 
dimension x classifier 1.758 24 0.0187 * 
corpora 104.061 1 5.99E-16 *** 
dimension x corpora 0.242 8 0.981  
feature 20.504 1 2.14E-05 *** 
dimension x feature 2.065 8 0.0496 * 
classifier x corpora 52.56 3 <2E-16 *** 
dimension x classifier x corpora 0.68 24 0.869  
classifier x feature 85.522 3 <2E-16 *** 
dimension x classifier x feature 2.142 24 0.00214 ** 
corpora x feature 34.221 1 1.13E-07 *** 
dimension x corpora x feature 1.124 8 0.357  
classifier x corpora x feature 45.15 3 <2E-16 *** 
dimension x classifier x corpora x feature 0.98 24 0.493  

 

 
*** (p < 0.001) ** (p<0.01) * (p<0.05)  
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Table 3. Macro F1-scores for combinations of variables. Performance measures for each possible combination of options from all potential variables, 
as indicated by average and standard deviations of the Macro F1-scores across iterations for each Cognitive Paradigm Ontology dimension. 
	

Dimension Behavioral 
Domain Context Diagnosis Instruction Paradigm 

Class 
Response 
Modality 

Response 
Type 

Stimulus 
Modality 

Stimulus 
Type Overall 

Baseline 

 0.06 0.31 0.21 0.09 0.01 0.49 0.36 0.30 0.07  

Corpora + Feature Space + Classifier 
abstract-only + bag-of-
words 

          

Bernoulli naïve Bayes 0.38 (0.26) 0.62 (0.32) 0.45 (0.26) 0.28 (0.23) 0.26 (0.21) 0.57 (0.20) 0.45 (0.27) 0.53 (0.20) 0.27 (0.19) 0.36 (0.26) 

k-nearest neighbor 0.45 (0.25) 0.61 (0.36) 0.65 (0.32) 0.24 (0.22) 0.33 (0.24) 0.54 (0.27) 0.42 (0.30) 0.57 (0.24) 0.21 (0.21) 0.39 (0.28) 

logistic regression 0.43 (0.33) 0.58 (0.41) 0.69 (0.34) 0.12 (0.25) 0.28 (0.32) 0.49 (0.33) 0.36 (0.37) 0.55 (0.34) 0.15 (0.27) 0.34 (0.36) 

support vector classifier 0.56 (0.23) 0.69 (0.31) 0.73 (0.30) 0.33 (0.24) 0.44 (0.23) 0.61 (0.19) 0.50 (0.25) 0.66 (0.19) 0.31 (0.21) 0.49 (0.27) 
abstract-only + Cognitive 
Atlas 

          

Bernoulli naïve Bayes 0.38 (0.31) 0.52 (0.38) 0.45 (0.31) 0.16 (0.22) 0.22 (0.27) 0.46 (0.33) 0.35 (0.35) 0.49 (0.31) 0.09 (0.19) 0.29 (0.31) 

k-nearest neighbor 0.51 (0.20) 0.51 (0.37) 0.57 (0.29) 0.30 (0.18) 0.38 (0.24) 0.52 (0.26) 0.43 (0.27) 0.55 (0.22) 0.18 (0.15) 0.41 (0.25) 

logistic regression 0.44 (0.30) 0.53 (0.38) 0.68 (0.34) 0.20 (0.27) 0.29 (0.35) 0.48 (0.34) 0.42 (0.32) 0.51 (0.32) 0.06 (0.17) 0.34 (0.34) 

support vector classifier 0.57 (0.18) 0.62 (0.28) 0.72 (0.27) 0.41 (0.15) 0.50 (0.21) 0.60 (0.20) 0.52 (0.23) 0.62 (0.18) 0.32 (0.15) 0.51 (0.22) 

full-text + bag-of-words 
          

Bernoulli naïve Bayes 0.54 (0.17) 0.70 (0.28) 0.61 (0.15) 0.41 (0.16) 0.46 (0.15) 0.64 (0.17) 0.57 (0.21) 0.64 (0.16) 0.39 (0.13) 0.51 (0.18) 

k-nearest neighbor 0.46 (0.21) 0.58 (0.27) 0.69 (0.20) 0.28 (0.19) 0.36 (0.21) 0.64 (0.19) 0.49 (0.30) 0.59 (0.16) 0.25 (0.15) 0.41 (0.24) 

logistic regression 0.70 (0.13) 0.85 (0.10) 0.87 (0.08) 0.51 (0.19) 0.63 (0.19) 0.76 (0.09) 0.63 (0.26) 0.77 (0.13) 0.51 (0.23) 0.65 (0.20) 

support vector classifier 0.69 (0.14) 0.86 (0.10) 0.87 (0.09) 0.51 (0.17) 0.62 (0.19) 0.77 (0.09) 0.66 (0.21) 0.77 (0.14) 0.50 (0.21) 0.65 (0.20) 

full-text + Cognitive Atlas 
          

Bernoulli naïve Bayes 0.37 (0.28) 0.55 (0.39) 0.64 (0.19) 0.12 (0.22) 0.22 (0.24) 0.49 (0.33) 0.40 (0.33) 0.41 (0.35) 0.07 (0.17) 0.29 (0.31) 

k-nearest neighbor 0.61 (0.18) 0.64 (0.29) 0.71 (0.18) 0.39 (0.18) 0.50 (0.19) 0.64 (0.17) 0.52 (0.25) 0.64 (0.20) 0.29 (0.21) 0.52 (0.23) 

logistic regression 0.58 (0.28) 0.58 (0.41) 0.85 (0.07) 0.21 (0.27) 0.46 (0.31) 0.61 (0.24) 0.49 (0.32) 0.58 (0.35) 0.17 (0.26) 0.46 (0.34) 

support vector classifier 0.67 (0.14) 0.73 (0.22) 0.87 (0.07) 0.49 (0.15) 0.60 (0.19) 0.69 (0.13) 0.60 (0.21) 0.71 (0.16) 0.39 (0.19) 0.60 (0.21) 
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Table 4. Micro F1-scores for combinations of variables. Performance measures for each possible combination of options from all potential variables, 
as indicated by average and standard deviations of the Micro F1-scores across iterations for each Cognitive Paradigm Ontology dimension. 
	

Dimension Behavioral 
Domain Context Diagnosis Instruction Paradigm 

Class 
Response 
Modality 

Response 
Type 

Stimulus 
Modality 

Stimulus 
Type Overall 

Baseline 

 0.06 0.31 0.21 0.09 0.01 0.49 0.36 0.30 0.07  

Corpora + Feature Space + Classifier 
abstract-only + bag-of-
words 

          

Bernoulli naïve Bayes 0.57 (0) 0.64 (0) 0.83 (0) 0.85 (0) 0.8 (0) 0.86 (0) 0.47 (0) 0.38 (0) 0.36 (0) 0.61 (0.16) 

k-nearest neighbor 0.61 (0) 0.63 (0) 0.84 (0) 0.81 (0.01) 0.85 (0.01) 0.85 (0) 0.38 (0) 0.4 (0) 0.33 (0.01) 0.64 (0.19) 

logistic regression 0.63 (0) 0.68 (0) 0.88 (0) 0.89 (0.01) 0.89 (0.01) 0.91 (0) 0.43 (0) 0.5 (0) 0.4 (0.01) 0.63 (0.19) 

support vector classifier 0.62 (0.01) 0.68 (0.01) 0.84 (0) 0.83 (0) 0.89 (0.01) 0.89 (0) 0.42 (0) 0.49 (0) 0.44 (0.01) 0.68 (0.17) 
abstract-only + Cognitive 
Atlas 

          

Bernoulli naïve Bayes 0.62 (0) 0.75 (0) 0.83 (0) 0.91 (0.01) 0.8 (0.01) 0.91 (0) 0.52 (0) 0.61 (0) 0.46 (0) 0.58 (0.21) 

k-nearest neighbor 0.59 (0) 0.72 (0) 0.85 (0) 0.86 (0.01) 0.87 (0.01) 0.89 (0) 0.36 (0) 0.45 (0.01) 0.34 (0.01) 0.62 (0.19) 

logistic regression 0.6 (0) 0.77 (0) 0.84 (0) 0.92 (0) 0.9 (0) 0.93 (0) 0.46 (0) 0.61 (0) 0.41 (0.01) 0.60 (0.20) 

support vector classifier 0.71 (0) 0.75 (0.01) 0.87 (0) 0.89 (0.01) 0.9 (0.01) 0.92 (0) 0.5 (0) 0.57 (0.01) 0.54 (0) 0.66 (0.15) 

full-text + bag-of-words 
          

Bernoulli naïve Bayes 0.44 (0) 0.68 (0) 0.69 (0) 0.66 (0) 0.69 (0) 0.71 (0) 0.76 (0) 0.39 (0) 0.33 (0) 0.65 (0.14) 

k-nearest neighbor 0.41 (0.01) 0.67 (0.01) 0.7 (0) 0.65 (0.01) 0.68 (0.01) 0.7 (0) 0.73 (0.01) 0.23 (0.01) 0.21 (0.02) 0.64 (0.20) 

logistic regression 0.51 (0) 0.71 (0) 0.72 (0) 0.69 (0) 0.71 (0) 0.77 (0) 0.8 (0) 0.34 (0) 0.39 (0) 0.76 (0.11) 

support vector classifier 0.53 (0) 0.68 (0) 0.71 (0) 0.67 (0) 0.7 (0) 0.73 (0) 0.77 (0) 0.28 (0) 0.4 (0) 0.77 (0.12) 

full-text + Cognitive Atlas 
          

Bernoulli naïve Bayes 0.66 (0) 0.72 (0) 0.8 (0) 0.71 (0) 0.79 (0.01) 0.75 (0) 0.85 (0) 0.45 (0) 0.59 (0.01) 0.59 (0.22) 

k-nearest neighbor 0.56 (0) 0.69 (0) 0.74 (0) 0.68 (0) 0.73 (0.01) 0.71 (0) 0.79 (0) 0.22 (0) 0.37 (0) 0.69 (0.16) 

logistic regression 0.65 (0) 0.75 (0) 0.81 (0) 0.73 (0.01) 0.8 (0.01) 0.79 (0) 0.86 (0) 0.31 (0) 0.58 (0) 0.68 (0.17) 

support vector classifier 0.63 (0) 0.74 (0) 0.77 (0) 0.72 (0.01) 0.75 (0) 0.8 (0) 0.83 (0) 0.42 (0) 0.5 (0) 0.74 (0.13) 

	
 
 


