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Abstract

Cognitive processes do not occur by pure insertion and instead depend on the full complement of
co-occurring mental processes, including perceptual and motor functions. As such, there is limited
ecological validity to human neuroimaging experiments that use highly controlled tasks to isolate
mental processes of interest. However, a growing literature shows how dynamic, interactive tasks
have allowed researchers to study cognition as it more naturally occurs. Collective analysis across
such neuroimaging experiments may answer broader questions regarding how naturalistic
cognition is biologically distributed throughout the brain. We applied an unbiased, data-driven,
meta-analytic approach that uses k-means clustering to identify core brain networks engaged
across the naturalistic functional neuroimaging literature. Functional decoding allowed us to, then,
delineate how information is distributed between these networks throughout the execution of
dynamical cognition in realistic settings. This analysis revealed six recurrent patterns of brain
activation, representing sensory, domain-specific, and attentional neural networks that support the
cognitive demands of naturalistic paradigms. Though gaps in the literature remain, these results
suggest that naturalistic fMRI paradigms recruit a common set of networks that that allow both
separate processing of different streams of information and integration of relevant information to

enable flexible cognition and complex behavior.
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Introduction

Across the life sciences, researchers often seek a balance between ecological validity and careful
laboratory control when making experimental design decisions. This entails weighing the value of
creating realistic stimuli representative of real-world, interactive experiences versus artificial,
reductionist stimuli facilitating precise assessment of ‘isolated’ mental process of interest via
cognitive subtraction. Cognitive subtraction assumes that a single added cognitive process does
not alter the other, co-occurring processes, both neutrally and cognitively. As such, task-based
fMRI has traditionally utilized precisely controlled tasks to study the neurobiological substrates of
cognition. However, cognition does not occur by pure insertion; the functioning of any cognitive
process is not wholly independent from other co-occurring processes (Friston et al., 1996). Instead,
cognition is highly interactive, encompassing measurable changes in neural activity that are
dependent on the full amalgamation of relevant social, cognitive, perceptual, and motor processes.
Thus, it is perhaps unreasonable to expect findings from a highly restricted assessment of a

psychological construct in the scanner to fully generalize to real-world behaviors and settings.

With advances in technology and a desire to study cognition with greater ecological validity,
increasing numbers of studies are utilizing realistic, interactive, and rich stimuli in more
ecologically valid experimental designs that fit within the scanner’s confines (Hasson and Honey,
2012; Maguire, 2012; Wang et al., 2016). “Naturalistic” paradigms employ dynamic and complex
stimuli (Fehr et al., 2014; Kauttonen et al., 2015; Burunat et al., 2014), in terms of multimodal
demands (Lahnskoski et al., 2012; Maguire et al., 2012; Nardo et al., 2014; Dick et al., 2014; Reed
et al., 2014; Bishop et al., 2014), or in relation to the length of the stimulus presentation (Maguire
etal.,2012; Cong et al., 2014). Specifically, the use of video games, film clips, and virtual reality,

among others, has brought a new dimension to cognitive neuroimaging experiments permitting
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researchers to study brain activity as participants engage in tasks that more closely represent real-
life demands on attention and multimodal sensory integration. Appreciation of such attention and
integration processes necessitates more complex stimuli than simple static images presented on a
screen. For example, researchers have studied spatial navigation with virtual reality environments
as complex as the city of London (Spiers and Maguire, 2006) and as classic as a virtual radial arm
maze (Marsh et al., 2010). Similarly, social cognition has been probed with displays of human
social interactions from a dramatic, social television drama (Spunt and Lieberman, 2012) to clips

of facial expressions with little context (Li et al., 2015).

Everyday activities, such as navigation or social observation, involve the integration of processes
associated with object recognition, speech comprehension, motor control, and spatial orienting,
which all require the interpretation of dynamic signals often from more than one sensory modality
(e.g. audiovisual film watching or visuotactile image tracing) and necessitate different attentional
demands compared to the simplistic stimuli used in traditional fMRI experiments (Giard and
Peronnet, 1999; McGurk and MacDonald, 1976; Sailer et al., 2000; Spence, 2010). Recently, this
trend has produced open-source efforts such as studyforrest, a freely-available dataset of MRI
scans, eye-tracking, and extensive annotations, using the movie Forrest Gump as a rich,
multimodal stimulus (studyforrest.org; Hanke et al., 2016; 2015; 2014). Although studies of
participants freely viewing films or navigating virtual environments have been used since the early
days of fMRI, the naturalistic studies represent a small portion of the overall task-based fMRI
literature (Beauregard et al., 2001; Burgess et al., 2001; Maguire, 2012). Despite offering
advantages, the growing body of naturalistic fMRI research has yet to be quantitatively assessed,
and little is known of how the neural bases of these tasks support complex information processing

and behavioral demands.
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Here, we applied an unbiased, data-driven, meta-analytic approach to quantitatively explore and
classify knowledge embedded in the naturalistic fMRI literature. Using an approach developed by
Laird et al. (2015), we capitalized on the wealth and flexibility of published naturalistic paradigms
and investigated recurrent patterns of brain activation reported across a wide variety of tasks and
behaviors of interest. This method is based on the premise that functionally similar tasks engage
spatially similar patterns of brain activity and that, by clustering activation patterns from
experimental contrasts, similar experimental paradigms can be identified. Naturalistic paradigms
are uniquely rich here, due to the multitude of component processes contributing to realistic
behavior that can be illuminated by modeling strategies in data analysis. To this end, we extracted
relevant information about the stimuli and task demands of these paradigms and assessed motifs
in the arrangement of this information, with respect the data-driven clustering analysis, to
determine which paradigm aspects elicited activation patterns that subserve common and
dissociable cognitive processes. Although naturalistic paradigms vary greatly and are designed to
probe a wide range of psychological constructs and behaviors, we hypothesized that complex,
multisensory processing are associated with a set of core neural networks engaged by similar
content domains and task demands. The objectives of this study were to first elucidate core brain
networks engaged by the myriad processes that underlie behavior during naturalistic fMRI
paradigms and, then to characterize how information processing is potentially distributed between

these networks to facilitate complex behaviors in realistic settings.

Methods

Naturalistic fMRI Paradigms

Here, “naturalistic” paradigms were operationally defined as tasks employing any stimulus which

demanded continuous, real-time integration of dynamic streams of information. This definition
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excludes any paradigms based on still-frame stimulus presentation, which intrinsically impose
static constraints that are rarely present in the world and, thus, limit ecological their validity.
Importantly, a key distinction of naturalistic tasks is that stimuli are continuously presented across
the duration of the task, while other tasks in the literature rely on repeated trials of stimuli. As real-
world behavior contextually involves all sensory modalities, we included naturalistic tasks in
which such stimuli were presented via the visual, auditory, or tactile modalities or any combination
thereof. Visual naturalistic tasks require either a real-time interaction with visual stimuli, in the
case of video games and virtual reality, or the continuous integration of real-time information, such
as during film viewing. Auditory tasks, including the perception of music and spoken stories,
similarly require the continuous integration of, and often interaction with, real-time information.
Our operational definition also included tactile naturalistic paradigms, which involve the
manipulation and recognition of physical objects. During these tactile tasks, participants gather
and integrate sensory information to create a mental representation of the object and, if necessary,
form an appropriate behavioral response. Lastly, we note the inclusion of multisensory tasks. As
in life, many naturalistic experiments simultaneously present auditory, visual, and tactile
information, and such tasks demand the real-time integration of information from multiple sensory

modalities.

Literature Search, Filtering, and Annotation

An extensive literature search was performed to amass a corpus of naturalistic fMRI studies that
were published since the emergence of fMRI in 1992. To identify published naturalistic fMRI
studies, PubMed searches were carried out by focusing on stimulus types common to naturalistic
research (e.g., video games, film, virtual reality). The first search string, performed on January 13,

2016, used the following string to identify relevant studies by their titles and abstracts:
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((“naturalistic”’[Title/Abstract] OR “real-world”[Title/Abstract] OR "ecologically
valid"[Title/Abstract] OR "true-to-life"[Title/Abstract] OR "realistic"[Title/Abstract] OR "video
game"[Title/Abstract] OR “film”[Title/Abstract] OR “movie”’[Title/Abstract] OR "virtual
reality"[Title/Abstract]) AND ("fMRI"[Title/Abstract] OR "functional magnetic resonance
imaging"[Title/Abstract]) AND (“Humans”[MeSH])). This search yielded 679 studies (January
2016), some of which utilized stimulus types that we had not included in our initial query,
including music, speech, and tactile objects. To identify any studies using these tasks that may not
have been returned by initial query, a second search was performed on January 20,2016 using the
string [("music"[Title/Abstract] OR "speech"[Title/Abstract] OR "spoken"[Title/Abstract] OR
"tactile object"[Title/Abstract]) AND (“naturalistic”’[Title/Abstract] OR “real-
world”[Title/Abstract] OR "ecologically valid"[Title/Abstract] OR "true-to-life"[Title/Abstract]
OR '"realistic"[Title/Abstract]) AND ("fMRI"[Title/Abstract] OR "functional magnetic resonance
imaging"[Title/Abstract]) AND "Humans"[MeSH]]. This secondary search returned 48 studies,
some of which were included in the results of the first search. The two sets of search results were
pooled to identify 754 unique studies, which were then reviewed and filtered to identify studies

utilizing naturalistic paradigms as defined above.

Each of 754 candidate studies was first screened and then reviewed according to the following
exclusion criteria (Figure 1; Moher, Liberati, Tetzlaff, Altman, & Altman, 2009). The screening
process examined the Abstracts and Methods of each paper to exclude non-naturalistic tasks in
which static, timed blocks of stimuli were presented with a well-defined window for participant
response. In this step, we also excluded studies that assessed training or learning across multiple
trials or across some period of practice (e.g., pre vs. post contrasts), as our focus was on neural

underpinnings of the tasks themselves and not training-induced changes thereof. In determining
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eligibility of each paper, studies of participants under the age of 18 or of participants with any
history of neurological or psychiatric diagnosis were excluded. After this study-level examination,
we then inspected each reported experimental contrast within each paper. In this context,
“experiment” represents each statistical parametric image presented, as the result of some
functional image data analysis, such as contrasting experimental conditions (Fox et al., 2005).
Experiments from analyses that used an a priori region(s) of interest to investigate activation or
functional connectivity were omitted permitting identification of whole-brain neural networks. We
also excluded contrasts modeling ANOVA interaction-specific activations, due to the inherent
complexity of such effects. In this step, any studies/contrasts that did not meet the minimum
requirements for coordinate-based meta-analysis, reporting the brain activation locations in a

three-dimensional, standardized coordinate space, were discarded.
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Papers returned by first
PubMed search (Jan. 13,
2016): n =753

Papers returned by
second PubMed search
(Jan. 20, 2016): n = 40

Review remaining papers after
removing duplicates (n = 754)

Identification

Review stimuli
descriptions in
the Methods of
each paper

Screening

Exclude (n = 446)

Review N = 233 papers

Review data
analysis
specifications in
Methods

Exclude (n = 104)

Eligibility

Review N = 129 papers

Review the
results of each
statistical
contrast

Exclude (n=19)

Included

Include N = 110 paperst

Figure 1. PRISMA flow chart of inclusion and exclusion criteria. Each of the experiments returned

by the PubMed queries were screened according to this schematic.

During inspection of each contrast, one study associate (KLB) manually annotated each
experiment with terms that described the experimental design with respect to stimulus type

utilized, sensory modality engaged, and the task nature. These terms described the salient aspects
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of the stimuli and behaviors associated with each individual experimental contrast from the corpus
of naturalistic paradigms, annotating the particular aspects of the tasks highlighted by each
modeled experimental contrast, and not the intended psychological construct interrogated by the
original report. These manual annotations were then independently reviewed and confirmed by a
second study associate (JSF) to assure consistency and accuracy. Any disagreements or
inconsistencies between KLB and JSF were resolved following a final conversation between the

two associates.

Experimental Design and Statistical Analysis

Modeled Activation Maps

Following the identification of relevant papers and experiments/contrasts, reported brain activation
coordinates were extracted. All Talairach atlas-based coordinates (Talairach and Tournoux, 1988)
were converted to Montreal Neurological Institute (MNI) space (Collins et al., 1994; Evans et al.,
1993) using the tal2icbm transformation (Lancaster et al., 2007; Laird et al., 2010). Probabilistic
modeled activation (MA) maps were created from the foci reported in each individual contrast by
modeling a spherical Gaussian blur around each focus with FWHM determined by the number of
subjects in each experiment in order to represent the uncertainty induced by the inherent variability
from individual differences and between-lab differences (Eickhoff et al., 2009). These MA maps
were concatenated into an array of n experiments by p voxels, which was then analyzed for
pairwise correlations that reflected the degree of spatial similarity between the MA maps from
each of the n experiment and those of every other experiment. The resultant n X n correlation
matrix represented the similarity of spatial topography of MA maps between every possible pair

of experiments.

K-Means Clustering Analysis
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Individual naturalistic experiments (n MA maps) were then classified into K groups based on their
spatial topography similarities. The k-means clustering procedure was performed in Matlab
(Mathworks, R2013b for Linux), which grouped experiments by pairwise similarity, calculating
correlation distance by one minus the correlation between MA maps (from the aforementioned
correlation matrix) and finding the “best” grouping by minimizing the sum of correlation distances
within each cluster (code available at https://github.com/62442katieb/meta-analytic-kmeans). This
approach begins by choosing K arbitrary maps as representative centroids for each of K clusters
and assigning experiments to each cluster based on the closest (most similar) centroid. This process

continued iteratively until a stable solution was reached.

Solutions were investigated for a range of K = 2 — 10 clusters. Once the clustering analysis was
complete for all K, we compared each solution to the neighboring solutions and assessed for
improvement across parcellation schemes using four metrics describing cluster separation and
stability (Bzdok et al., 2015; Eickhoff et al., 2016a). This allowed us to objectively select the
number of clusters that most optimally divided the data set. The first metric, average cluster
silhouette across clustering solutions, assessed the separation between clusters and described
whether clusters were distinct or overlapping. A higher silhouette value indicates that greater
separation is ideal and that each experiment fits well into its cluster, with lower misclassification
likelihood of fringe experiments into neighboring clusters. Stability is indicated by a relatively
minimal change in silhouette from one solution (K) to the next (K + 1), indicated by the positive
derivative of the silhouette score closest to zero, with greatest stability evidenced by the smallest
change between two points. Second, we considered the consistency of experiment assignment by
comparing the ratio of the minimum number of experiments consistently assigned to a cluster

relative to the mean number of experiments consistently assigned to that cluster. In this case, only
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ratios above 0.5, in which at least half of the experiments were consistently assigned, were
considered viable solutions. Third, the variation of information was quantified, which compared
the entropy of clusters with the mutual information shared between them for each solution K and
its K — 1 and K + 1 neighbors. A large decrease in variation of information from K — 1 to K and
increase from K to K + 1, a local minimum in the plot of variation of information across K,
indicated a decrease in overlap between solutions and, thus, stability of solution K. In this case,
“large” is defined, too, in relative terms, with the largest decrease indicating greatest stability of
the solutions considered. Finally, we computed a hierarchy index for each solution, which assessed
how clusters split from the K — 1 to K solution to form the additional cluster. A lower hierarchy
index indicated that clusters present in K stemmed from fewer of the clusters present in K — 1,
another indication of stability in groupings demonstrated by a local minimum across values of K.
An optimal clustering solution is one that demonstrated minimal overlap between clusters (i.e.,
high silhouette value), while exhibiting relative stability in comparison with the previous and next
solutions (i.e., consistency > 0.5, a local minimum in variation of information, and lower hierarchy

index than previous).
Meta-Analytic Groupings

From the identified optimal clustering solution, we probed the underlying neural topography
associated with each of the K groups of experiments (Laird et al., 2015). To this end, the ALE
meta-analysis algorithm (Turkeltaub et al., 2002; Laird et al., 2005) was applied to generate a map
of convergent activation for each grouping of experiments with similar topography. The ALE
algorithm includes a weighting of the number of subjects when computing these maps of
convergent activation and accounts for uncertainty associated with individual, template, and

registration differences between and across experiments (Eickhoff et al., 2009; Turkeltaub et al.,
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2012). The union of these probability distributions was used to calculate ALE scores, a quantitative
assessment of convergence between brain activation across different experiments, which was
compared against 1000 permutations of a null distribution of random spatial arrangements
(Eickhoff et al., 2012). These ALE values for each meta-analytic grouping of experiments were
thresholded at P < 0.01 (cluster-level corrected for family-wise error) with a voxel-level, cluster-
forming threshold of P <0.001 (Eickhoff et al.,2016b; Woo et al., 2014). The resultant ALE maps
thus reflected the convergent activation patterns within each of the K clusters. The experimental K
clusters are hereafter referred to as meta-analytic groupings (MAGs), representing meta-analytic

groups of experiments demonstrating similar activation patterns.

Functional Decoding

Once we elucidated convergent activation patterns within MAGs, we sought to gain insight into
what aspects of the naturalistic paradigms were most frequently associated with each MAG via
functional decoding. Functional decoding is a quantitative, data-driven method by which
researchers can infer which mental processes are related to activation in a specific brain region (or
set of brain regions) across published fMRI studies. We chose to use two complementary
functional decoding approaches, one based on our study-specific, subjective manual annotations
mentioned above, and another based on the objective, automated annotations provided by the
Neurosynth database for over 11,000 functional neuroimaging studies (Yarkoni et al., 2011;
Neurosynth.org). First, the manually annotated terms associated with each experiment were
grouped into the MAGs identified above and were assessed by frequency of occurrence in each
MAG. The distribution of stimulus modality, stimulus type, and salient terms across MAGs
allowed us to evaluate the relationship between activation patterns and the aspects of naturalistic

paradigms that elicited them. Second, we included an automated, data-driven annotation method

Bottenhorn et al. — Page 12



10

11

12

13

14

15

16

17

18

19

20

21

22

using Neurosynth, which includes automatically extracted terms that occur at a high frequency in
the abstract of each archived study. To functionally decode our MAGs, we compared the MAGs’
activation patterns with those reported across published neuroimaging papers in the Neurosynth
database. To this end, we uploaded each ALE map to NeuroVault, a web-based repository for 3D
statistical neuroimaging maps that directly interfaces with Neurosynth (Gorgolewski et al., 2015;
NeuroVault.org,). NeuroVault enables “functional decoding” by correlating unthresholded
uploaded maps with term-specific meta-analytic maps extracted from Neurosynth’s database of
published functional neuroimaging studies. The Neurosynth functional decoding results were
exported as a set of terms and correlation values representing how well the spatial distribution of
activation associated with each term in the database matched the activation pattern of the uploaded

map.

Both sets of terms (i.e., obtained via manual and automated approaches) were evaluated to assess
the specific aspects of naturalistic paradigms associated with each MAG. The Neurosynth terms
representing broad behavioral aspects across fMRI studies that elicit similar brain activation
profiles provides both an unbiased description of the experiments engaging each MAG, as well as
a comparison of our corpus of studies with the broader literature. On the other hand, manual
annotation provides more concise, accurate description of the paradigms, though it is predisposed
to the subjective bias of human annotation. The results of this two-pronged functional decoding
approach were designed to describe the processes that engage brain networks similar to each MAG
and how these processes may be similar or different in naturalistic fMRI studies compared to the
broader functional neuroimaging literature. The distribution of stimulus modalities and types

across MAGs was assessed, too. Together, the functional decoding results and distributions of

Bottenhorn et al. — Page 13



10

11

12

13

14

15

different stimuli were interpreted to provide insight into how information processing is

functionally segregated across cooperating neural systems during naturalistic tasks.

Results

The literature search yielded a combined set of 110 studies that reported coordinates of brain
activation from naturalistic fMRI tasks among healthy adults (Figure 1, PubMed IDs available in
Supplementary Table 1). The final data set included activation foci from 376 experimental
contrasts (N = 1,817 subjects) derived from tasks using a variety of stimulus types and sensory
modalities. Across our corpus of naturalistic fMRI experiments, approximately 55% assessed a

single stimulus modality, including 40% visual stimuli, 13% auditory, and 1% tactile.

Stimulus Modality = Number of Experiments

Auditory 50 (13%)
Audiovisual 154 (41%)
Visual 150 (40%)
Visual + tactile (pain) 9 2%)
Visual + tactile 5 (1%)
Tactile 4 (1%)

Table 1. Distribution of stimulus modalities across the naturalistic corpus. Paradigms engaged

auditory, visual, and tactile sensory modalities, both separately and in combination.

Conversely, 45% of experiments utilized multisensory stimuli, including 41% that employed
audiovisual stimuli, 2% in which a visual stimulus was paired with painful, tactile stimuli, and 1%

pairing visual and non-painful tactile stimuli (Table 1). Of the visual experiments, 69% involved
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a motor response, as did 25% of the audiovisual experiments, ranging from a button press to
joystick and object manipulation. The stimulus types most frequently used across the included

experiments were films (45%), virtual reality (32%), speech (9%), and music (6%) (Table 2).

Number of

Stimulus Type

Experiments
Film 169 (45%)
Virtual Reality 121 (32%)
Speech 32 (9%)
Music 21 (6%)
Video Game 13 (4%)
3D image 6 2%)
Tactile 6 2%)
Picture 4 (1%)
Sounds 1 (<1%)

Table 2. Distribution of stimulus types across the naturalistic corpus. Within each stimulus

modality, multiple types of experimental stimuli were included across the data set.

K-Means Clustering Solutions

MA maps were created for each contrast, and then clustered to identify groups with similar
activation topographies. For completeness, the k-means clustering solutions for K =2 — 10 clusters
were quantitatively evaluated across four metrics to identify an optimal solution (Figure 2). When

considering the average silhouette metric (Fig. 2A), values generally increased as K increased and
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the smallest increase was observed between K = 6 to K = 7, indicating little additional separation
between clusters gained by moving from 6 to 7 clusters. With respect to the consistency of assigned
experiments metric (Fig. 2B), each of the solutions K = 2 — 10 met the stability requirement
whereby the minimum number of experiments included in any iteration of the solution was at least
50% of the mean number of experiments included across iterations. The variation of information
metric (Fig. 2C), suggested the stability of a 6-cluster solutions as parameter value decreases were
observed when moving from K = 5 to K = 6, combined with parameter increases when moving
from K = 6 to K = 7, indicating that a 6-cluster solution demonstrates relative stability. The
hierarchy index metric (Fig.2D) further corroborated a 6-cluster solution, as a local minimum as

observed at K = 6. Due to agreement across these metrics, we chose to proceed with the K = 6

solution.
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Figure 2. Metrics computed for K =2 — 10 clustering solutions. (A) The average cluster silhouette

for each solution K from 2 to 10 clusters, showing the distribution of average silhouette values at
each value of K, resampled 100 times leaving one random experiment out each time. (B)
Consistency in experiments assignment to clusters, plotting the minimum consistently assigned
clusters next to the mean of consistently assigned clusters. (C) The change in variation of
information, a distance metric, from the K — 1 to K and from K to K + 1. (D) The hierarchy index
for each of K clustering solutions, which provides information about how clusters in the K solution

stemmed from clusters in the K — 1 solution.

Meta-Analytic Groupings

The optimal clustering solution yielded six meta-analytic groupings (MAGs) of experiments in our
corpus, suggesting similarities in brain activation across this sample of the naturalistic literature
coalesce into six distinct patterns. The number of experiments that were clustered into each MAG
ranged from 50 to 83 experiments (mean = 62.67; SD=12.46). ALE maps of the six MAGs were
generated and demonstrated little overlap in activation patterns, suggesting distinct patterns of
recurrent activation across our set of naturalistic experiments (Figure 3, Supplementary Table 2).
Whereas some of the MAGs exhibited focal patterns of convergent activation, restricted to a single
or neighboring gyri (e.g., MAG 1 and 5), others presented with distributed convergence across
multiple lobes (e.g., MAG 2 and 6). Most of the resulting MAGs were restricted to cortical
activation patterns, although MAG 3 exhibited convergent activation in subcortical and brainstem

regions (results available on NeuroVault at https://neurovault.org/collections/3179/).
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Figure 3. Convergent activation patterns of MAGs from the naturalistic corpus. ALE meta-

analysis of experiments in each MAG yielded six patterns of convergent activation.

MAG 1 included convergent activation in the bilateral posterior temporal areas, including portions
of the inferior, middle, and superior temporal gyri, extending into the inferior parietal lobule and
into the middle occipital gyrus, as well as in the left supramarginal gyrus, right precentral and
middle frontal gyri, and in the bilateral precuneus. MAG 2 exhibited convergence in left inferior
frontal gyrus, left precentral gyrus, anterior and posterior aspects of the middle temporal gyrus,
precuneus, in addition to both the left and right superior frontal gyri. MAG 3 demonstrated a largely
symmetric convergence pattern across multiple subcortical structures including bilateral
amygdalae, putamen, thalamus, parahippocampal gyrus, and periaqueductal gray, with cortical

clusters observed in the left inferior frontal sulcus and inferior frontal gyrus, bilateral anterior
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cingulate cortex, and bilateral fusiform gyri. MAG 4 exhibited convergent activation in bilateral
medial temporal lobes, parahippocampal regions, bilateral precuneus, retrospenial posterior
cingulate cortex, occipital regions including the lingual gyrus, right calcarine sulcus, and cuneus,
in addition to a small, bilateral portion of the middle frontal gyri. MAG 5 showed convergence in
the bilateral superior temporal gyri. MAG 6 demonstrated convergence in the bilateral superior
frontal sulci, intraparietal sulci, and superior parietal lobules as well as convergence in higher-

order visual processing areas in the middle occipital and lingual gyri.

Stimulus Distribution Across MAGs

Each stimulus modality was represented in multiple MAGs, but modalities were not evenly
distributed across MAGs (Figure 4A). Experiments utilizing audiovisual tasks were somewhat
uniformly distributed across the MAGs, with a slightly higher proportion of audiovisual tasks in
MAGs 1,3, and 5. In contrast, more than half of the experiments using auditory tasks were grouped
into MAGs 2 and 6. Notably, more experiments based on auditory and audiovisual stimuli were
clustered into MAG 5 than any other MAG. Experiments in which participants experienced
physical pain were not present in MAGs 1, 5, and 6, but distributed nearly evenly among MAGs
2 through 4, with a slightly higher portion in MAG 3. More than half of experiments that used
tactile stimuli were grouped into MAG 5 and 6. Visual experiments were more evenly distributed
across clusters, though there was a markedly smaller proportion in MAG 5 than any other MAG.
One stimulus type, “Sounds”, was represented only once across the corpus and was, thus, excluded
from Figure 4. The complete distribution of stimulus modalities across MAGs is provided in

Supplementary Table 3.
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A. Stimulus Modality Across MAGs
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Figure 4. Distribution of stimulus modalities and types across MAGs. (A) The presence of each

sensory modality across the corpus that is associated with each MAG. (B) The proportion of each

stimulus type present within the corpus that is associated with each MAG. These percentages
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represent the proportion modality or stimulus type present in each MAG, compared to the total

count of that modality or stimulus type across all MAGs.

As with stimulus modality, most stimulus types showed unequal, but not necessarily selective,
distribution across MAGs (Figure 4B). Film-based experiments were uniformly distributed across
MAGs and tasks utilizing spoken stimuli were more frequently grouped into MAGs 2 and 5. Again,
auditory stimuli were highly associated with MAG 5, as more than 50% of music experiments and
20% of speech experiments were clustered into MAG 5. Experiments that required subjects to play
video games were most often grouped into MAGs 4, and 6. Experimental contrasts which included
a condition in which participants received tactile stimulation or manipulated tactile objects, were
most prevalent in MAGs 3 and 6. A detailed distribution of stimulus types across MAGs is shown

in Supplementary Table 4.

Functional Decoding

Two approaches for functionally decoding each MAG, manual and automated annotations, were
performed to develop a functional interpretation of each MAGs’ association with aspects of

naturalistic paradigms.

Manual Annotations

Our manual annotations utilized a list of 26 corpus-specific metadata terms, which captured salient
features of the naturalistic design, rather than the psychological constructs assumed to be involved.
Table 4 displays each of these terms and their frequency of occurrence across MAGs and across

the entire corpus (Column = “Total”), highlighting which terms described the largest number of
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9 <6 9 <6 9 <6

experiments (e.g., “navigation”, “visual features”, “emotional film”, “attention’), as well as those
that accounted for a minimal number of experiments (e.g., “violence”, “tactile”, “pain”). Values
in Table 4 indicate the percent of experiments labeled with each term, or the base-rate of each term
throughout the data set, keeping in mind that each experiment was labeled with only one or two
terms. Once the experiments were clustered into six MAGs, we evaluated the relative contributions
of each term per MAG, controlling for base-rate by dividing each term’s per-MAG count by that
term’s total count across the corpus (Table 4). We assessed, too, the ability of each term to predict
whether an experiment labeled with that term will be clustered into each MAG, (P(MAGlterm) or
“forward inference”, and the ability of belongingness to each MAG to predict whether an
experiment will be labeled with a particular term, (P(termIMAG)) or “reverse inference”. These
outcomes provide the association of each term with each MAG (Table 4). Some of the terms in the
manual annotation analysis corresponded to stimulus types in Figure 4B (e.g., per-MAG
distribution for “music” and “video game”). However, many of the manually derived terms
highlighted experimental aspects that reflect the unique and salient features of the naturalistic

corpus (e.g., “anthropomorphic”, “violence”) and are not included in standard neuroimaging

paradigm ontologies such as BrainMap (Fox et al., 2005) or CogPO (Turner and Laird, 2012).

Automated Neurosynth Annotations

To complement the manual annotation analysis, we used Neurosynth’s automated annotations,
which describes experiments that engage each MAG based on published neuroimaging data,
allowing comparison of our corpus with the broader literature. MAG results were decoded in
Neurosynth, yielding correlation values indicating the similarity of the input map (i.e., each
MAG’s ALE map) and maps associated with each term from the Neurosynth database. To facilitate

interpretation, the top ten terms with the highest correlation values for each MAG are presented

Bottenhorn et al. — Page 22



(Table 5). Terms that were near-duplicates of terms already included in the list were removed,
such as “emotion” and “emotions” if “emotional” was higher on the list. Non-content terms (e.g.

“abstract”, “reliable”) and terms that described brain regions, such as “insula” or “mt”, were also

excluded.
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1

Frequency per MAG

Term Total MAG 1 MAG 2 MAG 3 MAG 4 MAG 5 MAG 6
anthropomorphic 21 3% 10T 48% 0 0% 2 10% 2 10% 4 19% 3 14%
attention 50 7% 18*1  36% 3 6% 2 4% 8 16% 10%  20% 9 18%
auditory features 17 3% 0 0% 1 6% 1 6% 2 12% 12%F  71% 1 6%
congruence 22 3% 7 32% 4 18% 0 0% 2 9% 3 14% 6 27%
emotional film 61 9% 17%  28% 8 13% 17%F  28% 4 7% 1% 18% 4% 7%
encoding 24 4% 1 4% 3 13% 1 4% 6 25% 0 0% 13*7  54%
erotic 15 2% 1 7% 0 0% 8 53% 1 7% 0 0% 5 33%
faces 21 3% 5 24% 2 10% 2 10% 2 10% 8 38% 2 10%
imagination 23 3% 4 17% 6 26% 2 9% 2 9% 4 17% 5 22%
inference 11 2% 4 36% 6 55% 0 0% 1 9% 0 0% 0 0%
language 47  T% 9 19% 11*  23% 3 6% 4 9% 14%%  30% 6 13%
movement 14 2% 4 29% 0 0% 1 7% 2 14% 2 14% 5 36%
music 21 3% 2 10% 3 14% 3 14% 1 5% 11*7  52% 1 5%
narrative 30 4% 5 17% 5 17% 1 3% 4 13% 11%F  37% 4 13%
navigation 81 12% 8* 10% 7 9% 10%  12% 261 32% 2 2% 28*  35%
negative valence 27 4% 8 30% 3 11% 9 33% 1 4% 4 15% 2 7%
pain 9 1% 0 0% 2 22% 4% 44% 3 33% 0 0% 0 0%
positive valence 11 2% 2 18% 4 36% 2 18% 2 18% 1 9% 0 0%
recognition 12 2% 0 0% 4 33% 2 17% 1 8% 1 8% 4 33%
retrieval 23 3% 1 4% 5 22% 2 9% 4 17% 1 4% 10 43%
social 26 4% 9 35% 8 31% 2 8% 3 12% 1 4% 3 12%
spatial memory 10 1% 0 0% 2 20% 0 0% T 70% 0 0% 1 10%
tactile 9 1% 0 0% 1 11% 1 11% 0 0% 3 33% 4 44%
video game 15 2% 1 7% 2 13% 2 13% 4 27% 0 0% 6 40%
violence 8 1% 1 13% 2 25% 2 25% 2 25% 0 0% 1 13%
visual features 65 10% 23*  35% 4 6% 0 0% 10 15% 10¥  15% 18%f  28%

Table 4. Manual functional decoding results across meta-analytic groupings. The relative contributions of each manually-derived
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1  metadata term (e.g., term frequencies) were computed for all MAGs, controlling for the base-rate by dividing each term’s per-MAG
2 count by that term’s total count across the corpus. Base-rates are provided as the total count for each term. *Indicates significant forward

3 inference at peoreced < 0.05 and findicates significant reverse inference at peorecea < 0.05 (corrected for false discovery rate).
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Functional Interpretation of MAGs

The combined knowledge gained from the MAGs topography, as well as the manual and
automated metadata decoding analyses provided insight into the functional interpretation of the
clustering results. Overall, the terms yielded by Neurosynth decoding generally agreed with the
manual annotation terms in characterizing the MAGs. Below is a summary of the six MAGs; note
that reported labels do not refer to the definitive function of these regions, but rather indicate how
each MAG reflects differential network contributions during naturalistic fMRI paradigms.

Manual annotations indicated that MAG 1 experiments involved attention and the processing of
dynamic visual features, in addition to visually-presented anthropomorphic forms and faces. Most
of the stimuli in these experiments were films (Fig 4B), especially affective films. Neurosynth
results largely converged with these manual annotations, as terms including “videos”, “body”,
“observation”, and “visual motion” (Table 5) were associated with activations in MAG 1 regions.
These annotations, together with the presence of convergent activation across regions commonly
associated with higher-level visual processing, suggest that MAG 1 was associated with the

Observation of Body and Biological Motion (Figure 3.1).

Manual annotations indicated that MAG 2 experiments involved language processing, inference,
and judgements about congruence. This MAG included relatively large proportions of the
experiments using speech, video games, and tactile stimulation (Fig 3B). Neurosynth results
supported the manual annotations’ indication that this MAG was associated with language
processing and comprehension, as terms such as “sentence”, “comprehension”, “semantic”, and
“mentalizing” (Table 5) were returned. These annotations and the presence of convergent

activation in predominately left lateralized regions typically associated with higher-order cognition

and language suggest that MAG 2 related to Language Processing (Figure 3.2).
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Manual annotations indicated that MAG 3 experiments involved human interactions or affective
displays, including emotional and erotic films. Films were the predominantly used stimuli across
these experiments, while most paradigms using painful stimuli were grouped into this MAG (Fig
4B). Neurosynth results corroborated these manual annotation interpretations regarding affective,
aversive, and social processing, with terms such as “emotion”, “facial expressions”, “fearful’”, and
“affective” (Table 5). Together, these annotations and a convergent activation pattern involving

bilateral amygdalae suggest that MAG 3 was associated with Emotional Processing (Figure 3.3).
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MAG 1 MAG 2 MAG 3 MAG 4 MAG 5 MAG 6

NS term corr. NS term corr. NS term corr. NS term corr. NSterm corr. NS term COIT.
motion 0.555 comprehension 0.417 neutral 0.446 navigation 0.324 sounds 0.74 visual 0.431
body 0.451 sentence 0.408 fearful 0.437 scenes 0.316 auditory 0.732 spatial 0414
static 0.441 language 0.375 facial 0.435 episodic 0.294 listening 0.711 attention 0.342
moving 0.415 semantic 0.351 emotion 0.434 virtual 0.278 acoustic 0.675 eye movements 0.300
viewed 0.406 linguistic 0.336 expressions 0.431 memory 0.276 speech  0.669 execution 0.299
visual 0.403 theory mind 0.318 happy 0.404 retrieval 0.270 music 0.625 task 0.286
visual motion 0.381 mental state 0.309 angry 0.401 episodic memory 0.258 pitch 0.612 visuospatial 0.279
videos 0.360 mind 0.306 affective 0.397 place 0.208 spoken  0.590 movements 0.274
perception 0.359 mentalizing 0.304 facial expressions 0.395 autobiographical 0.201 tones 0.572 spatial attention 0.256
observation 0.350 language comprehension 0.289 neutral faces 0.385 remembering 0.201 voice 0.568 hand 0.250
1

2 Table 5. Automated functional decoding results from Neurosynth. The top ten Neurosynth (NS) terms are provided for each MAG,

[98)

along with the corresponding Pearson’s correlation coefficient (“‘corr’”) that indicates the strength of similarity between Neurosynth

4 maps and each MAG
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Manual annotations indicated that MAG 4 heavily represented experiments involving navigation
through virtual reality environments, with spatial memory demands related to encoding unfamiliar
virtual landscapes for future use. A few of these experiments required language processing, as
well, and half of the experiments that used 3D images were grouped into MAG 5 (Fig. 4B). The
manual annotations were reflected in the Neurosynth results, as similar patterns of activation have
been associated with “navigation”, “scenes”, “memory”, and “place”. Additional related terms
added depth to our characterization, expanding on the memory demands with “retrieval”,
“episodic memory”, and “remembering” (Table 5). Overall, these experimental characteristics and

convergent activation in medial temporal regions and along the visual processing stream suggest

that MAG 5 was associated with Navigation and Spatial Memory (Figure 3 .4).

Manual annotations showed that MAG S experiments primarily involved either film or music
stimuli (Figure 4B) and engaged either audiovisual or purely auditory processing (Fig. 4A). More
than half of the included experiments that used music as stimuli were grouped into this MAG (Fig.
2B), with some stimuli involving an emotional quality (Table 4). Neurosynth corroborated these
interpretations returning terms such as “auditory”, “sounds”, “listening”, and “speech” associated
with activation of the regions in this MAG. These metadata descriptions combined with convergent

activation in superior temporal regions suggest this MAG’s association with Auditory Processing

(Figure 3.5).

Manual annotations of MAG 6 experiments implicated tasks involving visual attentional demands
and the processing of visual features, as participants engaged in video games, tactile stimulation,
and virtual reality navigation (Figure 4B, Table 4). Stimuli with high visuospatial demands (i.e.
video games, virtual reality, pictures, were represented more by this MAG than any other, while

stimuli with low visuospatial demands (i.e. music, speech) were represented the least in this MAG.
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Some experiments involved memory encoding, and visual processing. Neurosynth supported this

2 6 b5 6

characterization returning terms including “visual,” “attention”, “eye movements”, “saccades’,
and “spatial attention” associated with activation of the regions in this MAG (Table 5). These
annotations and convergent activation in regions resembling the dorsal attention network and areas

of higher level visual processing (e.g., superior frontal and parietal regions, extrastriate cortex)

suggest this MAG’s association with Visuospatial Attention (Figure 3.6).

Discussion

To characterize a core set of brain networks engaged in more ecologically valid neuroimaging
designs, we employed a data-driven approach that meta-analytically grouped published naturalistic
fMRI results according to their spatial topographies. Objective metrics suggested that a solution
of K = 6 clusters provided the most stable and disparate grouping of experiments across the
naturalistic fMRI literature, and ALE meta-analysis delineated convergent activation across
spatially distinct brain regions for each meta-analytic grouping (MAG) of experiments. We then
considered how such networks subdivide information processing by assessing the characteristics
of the constituent experiments from each MAG. Utilizing both manual and automated functional
decoding approaches, enhanced interpretations of the mental processes associated with specific
constellations of brain regions were gleaned such that the outcomes of the two approaches
generally agreed, with differences highlighting domain-specific and domain-general processes

associated with naturalistic paradigms.

Distributed Processing for Complex Functions

Though the six identified MAGs are spatially distinct and appear to correspond with dissociable

mental processes, most of the included naturalistic tasks that reported more than one statistical
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contrast recruited more than one MAG (66 of 86). This is consistent with functional segregation
and the flexible nature of the naturalistic design, demonstrating that the manipulation of different
contrasts can identify distinct networks that likely cooperate to successfully perform a complex
task. Further indicative of coordinated interactions and distributed processing, each MAG included
experiments that utilized different task modalities and task types. Overwhelmingly, the identified
MAGs and the functional characterizations thereof support the notion that complex behaviors are
facilitated by coordinated interactions between several large-scale sensory, attentional, and
domain-specific networks, a position increasingly endorsed in neuroimaging endeavors (Barrett
and Satpute, 2013; Lindquist et al., 2012; MiSi¢ and Sporns, 2016; Spreng et al., 2013). The
characterization of identified MAGs from aspects of the naturalistic paradigms that elicit them
suggest an information processing model of cooperating systems (Figure 5) for sensory input
(MAGs 1 and 5), attentional control (MAG 6), and domain-specific processing (MAGs 2, 3, and
4), into and from which information is segregated and integrated to enable complex behaviors
(e.g., language, emotion, spatial navigation). Output relevant to the corresponding input would be
relegated by motor planning and execution systems, which are notably absent from the
characterization of MAGs presented here, as experiments requiring a motor response were evenly

distributed across MAGs, rather than clustered together.
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Figure 5. Complex systems for dynamical information processing. The identified MAGs present

a framework of component systems that interact to enable complex information processing needed
for naturalistic behavior, including necessary input systems, as well as systems for modality-
specific (indicated by dashed line) visuospatial attentional gating of irrelevant information and

domain-specific processing for language-, emotion-, and navigation-related tasks.

MAGs 1 and 5 primarily represent the perceptual processing streams of incoming auditory and
visual information, and likely cooperate to process audiovisual information. Functional decoding
suggests that MAG 1 is involved in viewing faces and anthropomorphic figures, which is
consistent with previous research showing that posterior temporal and temporo-occipital regions
corresponding with area V5/MT are associated with the perception of movement, specifically

biological movement (Cohen Kadosh et al., 2010; Pelphrey et al., 2005, 2004; Puce et al., 1998;
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Wheaton et al., 2004). Similarly, MAG 5 is associated with listening to music and speech, as well
as perceiving pitch and tone, stretching across primary auditory cortex and into regions of higher
auditory processing (Gray et al., 2009; Tiire et al., 1999). Per functional decoding of MAG 6 of
both manual and automated annotations, MAG 6 is associated with visuospatial attention. This
functional characterization is also supported by corresponding fronto-parietal activations that are
often associated with attending to visual stimuli (Braga et al., 2016; Puschmann et al., 2016).

MAGs 1 and 5 represent the perceptual processing streams of audiovisual information.

Information processing depends on input from perceptual systems, filtered by attentional gating,
but proceeds in a functionally-segregated manner, seen in domain-specific MAGs for linguistic,
emotional, and spatial processing. When considering language processing, there is necessary input
to primary auditory areas (MAG 5), that is further processed by higher-level language areas that
facilitate speech perception and comprehension (MAG 2). More than a third of contrasts from
experiments that utilized speech-based paradigms contributed to the convergent activation pattern
of MAG 2, which was linked by both functional decoding techniques to language-related
processes. Furthermore, the regions of MAG 2 resembles a neural “language network™ (Friederici
and Gierhan, 2013; Heim et al., 2003; Price, 2010; Saur et al., 2010), including some regions
associated with orofacial articulation (lip, tongue, and jaw movements) and motor planning (SMA,
pre-SMA) that allow the motor components of speech. By presenting language in a context that is
more representative of how we process language in everyday life, such as through the use of
spoken fictional narratives (AbdulSabur et al., 2014; Wallentin et al., 2011; Xu et al., 2005a) or
scene descriptions (Summerfield et al., 2010), naturalistic fMRI paradigms allow researchers to
explore the multiple neural networks at work in performing the cooperating processes that facilitate

language processing. Similarly, emotional processing (MAG 3) often necessitates audiovisual
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input (MAGs 1 and 5) and necessitates attention (MAG 6). Emotional films recruited regions
across these four MAGs, suggesting a similarly diverse group of coordinated neural systems are
engaged when observing affective displays. Additionally, navigation (Burgess et al., 2002;
Kalpouzos et al., 2010; Wolbers et al., 2004) depends on visual input (MAG 1), effective
visuospatial attentional (MAG 6), and spatial memory and processing (MAG 4). The functional
characterization of MAG 4 from manual and Neurosynth decoding highlights its involvement in
navigation and spatial memory, supported by studies of rats and humans with brain lesions that
indicate the importance of medial temporal, hippocampal, and precuneus regions in processing
visual scenes and spatial information (Bird and Burgess, 2008; Epstein, 2008; Lee et al., 2005;

Sailer et al., 2000; Squire et al., 2004; Summerfield et al., 2010; Xu et al., 2005b).

Finally, the characterization of MAG 6 indicates a domain-specific attentional system, as both
manual and automated Neurosynth decoding highlight its involvement in visual processing in the
absence of any association with other modalities. This is reflected by the distributions of stimuli
across MAGs (Figure 4), which show low numbers of auditory and pain-related stimuli represented
in MAG 6, while rich visual stimuli that include spatial information (i.e. video games, virtual
reality, pictures) are highly represented across the experiments in MAG 6. Curiously, tactile object
manipulation was highly represented in MAG 6, representing the perception of spatial information
in the absence of visual information (Figure 4, Table 4). Together, these suggest that MAG 6

provides modality-specific attentional gating, depicted by the dashed line in Figure 5.

Limitations

The present results may be limited by the k-means clustering method, which is limited by the
assumptions of the algorithm and underlying topology of the data, as it is sensitive to spherical

clusters and assumes the data are linearly separable. Furthermore, there is a potential for bias with
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this method, certain parameters are specified by the researcher beforehand. To address this
potential for bias and the stability of our clustering solution, we performed duplicate clustering
analyses with both linear (hierarchical clustering using Ward’s method) and nonlinear (kernel -
means and density-based spatial clustering) methods. The results of these analyses are provided in
the Supplementary Material (Supplementary Figures 1 — 3) and confirmed that our choice of the
k-means clustering method provided optimal separation of the data into 6 clusters. Experiments in
our corpus were grouped using the kmeans++ algorithm for each of K = 2 through K =20 solutions,
repeated 1000 times to ensure that each solution minimized the point-to-centroid distance,
indicative of optimal clustering (Kanungo et al., 2004). Pearson’s correlation was selected as the
distance metric, as recommended by Laird et al. (2015). The K = 6 solution was designated as an
optimal candidate solution before assessing the convergent activation patterns of each MAG, based
on the aforementioned metrics, yielding a data-driven result. These results are, of course,
influenced by the choice of clustering method, and should be considered accordingly. As this was
a meta-analytic effort, it is limited, too, by the initial modeling of the data. Despite this, coordinate-
based meta-analyses are considered a robust method for synthesis of previously published
functional neuroimaging literature (Eickhoff et al., 2012, 2009; Fox et al., 2005)._Although the
functional decoding based manual annotations relied on a subjective process, the results were
largely confirmed by comparison with the wider body of functional neuroimaging literature
facilitated by Neurosynth’s automated functional decoding. It is worth noting that the naturalistic
literature is somewhat limited, with an emphasis on navigation and affective processing, and
continued research and expansion of this corpus will facilitate development of a more

comprehensive model of the neural networks that support realistic behavior.

Summary and Future Work
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In summary, this meta-analysis of naturalistic fMRI studies that apply dynamic, lifelike tasks to
explore the neural correlates of behavior has shown that these paradigms engage a set of core
neural networks, supporting both separate processing of different streams of information and the
integration of related information to enable flexible cognition and complex behavior. We identified
seven patterns of consistent activation that correspond with neural networks that are involved in
sensory input, top-down attentional control, domain-specific processing, and motor planning,
representing the set of behavioral processes elicited by naturalistic paradigms in our corpus. Across
the corpus, tasks provided mainly visual and auditory sensory input which engaged regions across
MAGs 1 and 5, while MAG 6 appeared to contribute to top-down attentional control to filter out
nonessential visual and/or spatial information. Salient information can be processed by the relevant
domain-specific networks, shown in MAGs 2 (language), 3 (emotion), and 4 (navigation and
spatial memory), informing the appropriate response. Most naturalistic tasks engaged multiple
networks to process the relevant information from a stimulus and generate an appropriate response.
A shift in favor of utilizing naturalistic paradigms, when possible, would greatly benefit the field,
as naturalistic stimuli more closely approximate the full complement of processing necessary for
realistic behavior. Due to the availability of naturalistic fMRI data from sources such as
studyforrest.org, the Human Connectome Project, and the Healthy Brain Network Serial Scanning
Initiative (HBNSSI), an intriguing next step in this line of work would include validating these
MAGs in the primary analysis of imaging data. Exploring how multifaceted processes interact and,
ultimately, contribute to behavior will allow us to better understand the brain and human behavior
in the real world. In the future, studies of this sort would greatly benefit from an automated
annotation process for an objective functional decoding of included papers, instead of subjective

manual annotation.

Bottenhorn et al. — Page 36



10

11

Accessibility of Data and Other Materials

The authors have released all code and data associated with this manuscript. The code and
tabular data are available on GitHub (https://github.com/62442katieb/meta-analytic-kmeans),
and the unthresholded maps of each MAG are available on NeuroVault

(https://neurovault.org/collections/3179/).
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