
 Bottenhorn et al. – Page 0 

Cooperating yet distinct brain networks engaged during naturalistic paradigms: A meta-1 

analysis of functional MRI results 2 

Running Title: Brain networks & naturalistic paradigms 3 

 4 

Katherine L. Bottenhorn1, Jessica S. Flannery1, Emily R. Boeving1, Michael C. Riedel2, Simon B. 5 

Eickhoff3,4, Matthew T. Sutherland1, Angela R. Laird2 6 

 7 

1Department of Psychology, Florida International University, Miami, FL 8 

2Department of Physics, Florida International University, Miami, FL  9 

3Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 10 

Düsseldorf, Germany 11 

4Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, 12 

Jülich, Germany 13 

Corresponding Author 14 

Dr. Angela R. Laird, Ph.D. 15 

Professor, Department of Physics 16 

Florida International University 17 

Modesto Maidique Campus 18 

11200 SW 8th Street 19 

Miami, FL 33199 20 

305.348.6737 (phone) 21 

305.348.6700 (fax) 22 

alaird@fiu.edu 23 



 

 Bottenhorn et al. – Page 1 

Abstract 1 

Cognitive processes do not occur by pure insertion and instead depend on the full complement of 2 

co-occurring mental processes, including perceptual and motor functions. As such, there is limited 3 

ecological validity to human neuroimaging experiments that use highly controlled tasks to isolate 4 

mental processes of interest. However, a growing literature shows how dynamic, interactive tasks 5 

have allowed researchers to study cognition as it more naturally occurs. Collective analysis across 6 

such neuroimaging experiments may answer broader questions regarding how naturalistic 7 

cognition is biologically distributed throughout the brain. We applied an unbiased, data-driven, 8 

meta-analytic approach that uses k-means clustering to identify core brain networks engaged 9 

across the naturalistic functional neuroimaging literature. Functional decoding allowed us to, then, 10 

delineate how information is distributed between these networks throughout the execution of 11 

dynamical cognition in realistic settings. This analysis revealed six recurrent patterns of brain 12 

activation, representing sensory, domain-specific, and attentional neural networks that support the 13 

cognitive demands of naturalistic paradigms. Though gaps in the literature remain, these results 14 

suggest that naturalistic fMRI paradigms recruit a common set of networks that that allow both 15 

separate processing of different streams of information and integration of relevant information to 16 

enable flexible cognition and complex behavior. 17 

 18 

  19 
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Introduction 1 

Across the life sciences, researchers often seek a balance between ecological validity and careful 2 

laboratory control when making experimental design decisions. This entails weighing the value of 3 

creating realistic stimuli representative of real-world, interactive experiences versus artificial, 4 

reductionist stimuli facilitating precise assessment of ‘isolated’ mental process of interest via 5 

cognitive subtraction. Cognitive subtraction assumes that a single added cognitive process does 6 

not alter the other, co-occurring processes, both neutrally and cognitively. As such, task-based 7 

fMRI has traditionally utilized precisely controlled tasks to study the neurobiological substrates of 8 

cognition. However, cognition does not occur by pure insertion; the functioning of any cognitive 9 

process is not wholly independent from other co-occurring processes (Friston et al., 1996). Instead, 10 

cognition is highly interactive, encompassing measurable changes in neural activity that are 11 

dependent on the full amalgamation of relevant social, cognitive, perceptual, and motor processes. 12 

Thus, it is perhaps unreasonable to expect findings from a highly restricted assessment of a 13 

psychological construct in the scanner to fully generalize to real-world behaviors and settings.  14 

With advances in technology and a desire to study cognition with greater ecological validity, 15 

increasing numbers of studies are utilizing realistic, interactive, and rich stimuli in more 16 

ecologically valid experimental designs that fit within the scanner’s confines (Hasson and Honey, 17 

2012; Maguire, 2012; Wang et al., 2016). “Naturalistic” paradigms employ dynamic and complex 18 

stimuli (Fehr et al., 2014; Kauttonen et al., 2015; Burunat et al., 2014), in terms of multimodal 19 

demands (Lahnskoski et al., 2012; Maguire et al., 2012; Nardo et al., 2014; Dick et al., 2014; Reed 20 

et al., 2014; Bishop et al., 2014), or in relation to the length of the stimulus presentation (Maguire 21 

et al., 2012; Cong et al., 2014). Specifically, the use of video games, film clips, and virtual reality, 22 

among others, has brought a new dimension to cognitive neuroimaging experiments permitting 23 
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researchers to study brain activity as participants engage in tasks that more closely represent real-1 

life demands on attention and multimodal sensory integration. Appreciation of such attention and 2 

integration processes necessitates more complex stimuli than simple static images presented on a 3 

screen. For example, researchers have studied spatial navigation with virtual reality environments 4 

as complex as the city of London (Spiers and Maguire, 2006) and as classic as a virtual radial arm 5 

maze (Marsh et al., 2010). Similarly, social cognition has been probed with displays of human 6 

social interactions from a dramatic, social television drama (Spunt and Lieberman, 2012) to clips 7 

of facial expressions with little context (Li et al., 2015).  8 

Everyday activities, such as navigation or social observation, involve the integration of processes 9 

associated with object recognition, speech comprehension, motor control, and spatial orienting, 10 

which all require the interpretation of dynamic signals often from more than one sensory modality 11 

(e.g. audiovisual film watching or visuotactile image tracing) and necessitate different attentional 12 

demands compared to the simplistic stimuli used in traditional fMRI experiments (Giard and 13 

Peronnet, 1999; McGurk and MacDonald, 1976; Sailer et al., 2000; Spence, 2010). Recently, this 14 

trend has produced open-source efforts such as studyforrest, a freely-available dataset of MRI 15 

scans, eye-tracking, and extensive annotations, using the movie Forrest Gump as a rich, 16 

multimodal stimulus (studyforrest.org; Hanke et al., 2016; 2015; 2014). Although studies of 17 

participants freely viewing films or navigating virtual environments have been used since the early 18 

days of fMRI, the naturalistic studies represent a small portion of the overall task-based fMRI 19 

literature (Beauregard et al., 2001; Burgess et al., 2001; Maguire, 2012). Despite offering 20 

advantages, the growing body of naturalistic fMRI research has yet to be quantitatively assessed, 21 

and little is known of how the neural bases of these tasks support complex information processing 22 

and behavioral demands. 23 
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Here, we applied an unbiased, data-driven, meta-analytic approach to quantitatively explore and 1 

classify knowledge embedded in the naturalistic fMRI literature. Using an approach developed by 2 

Laird et al. (2015), we capitalized on the wealth and flexibility of published naturalistic paradigms 3 

and investigated recurrent patterns of brain activation reported across a wide variety of tasks and 4 

behaviors of interest. This method is based on the premise that functionally similar tasks engage 5 

spatially similar patterns of brain activity and that, by clustering activation patterns from 6 

experimental contrasts, similar experimental paradigms can be identified. Naturalistic paradigms 7 

are uniquely rich here, due to the multitude of component processes contributing to realistic 8 

behavior that can be illuminated by modeling strategies in data analysis. To this end, we extracted 9 

relevant information about the stimuli and task demands of these paradigms and assessed motifs 10 

in the arrangement of this information, with respect the data-driven clustering analysis, to 11 

determine which paradigm aspects elicited activation patterns that subserve common and 12 

dissociable cognitive processes. Although naturalistic paradigms vary greatly and are designed to 13 

probe a wide range of psychological constructs and behaviors, we hypothesized that complex, 14 

multisensory processing are associated with a set of core neural networks engaged by similar 15 

content domains and task demands. The objectives of this study were to first elucidate core brain 16 

networks engaged by the myriad processes that underlie behavior during naturalistic fMRI 17 

paradigms and, then to characterize how information processing is potentially distributed between 18 

these networks to facilitate complex behaviors in realistic settings.  19 

Methods 20 

Naturalistic fMRI Paradigms 21 

Here, “naturalistic” paradigms were operationally defined as tasks employing any stimulus which 22 

demanded continuous, real-time integration of dynamic streams of information. This definition 23 
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excludes any paradigms based on still-frame stimulus presentation, which intrinsically impose 1 

static constraints that are rarely present in the world and, thus, limit ecological their validity. 2 

Importantly, a key distinction of naturalistic tasks is that stimuli are continuously presented across 3 

the duration of the task, while other tasks in the literature rely on repeated trials of stimuli. As real-4 

world behavior contextually involves all sensory modalities, we included naturalistic tasks in 5 

which such stimuli were presented via the visual, auditory, or tactile modalities or any combination 6 

thereof. Visual naturalistic tasks require either a real-time interaction with visual stimuli, in the 7 

case of video games and virtual reality, or the continuous integration of real-time information, such 8 

as during film viewing. Auditory tasks, including the perception of music and spoken stories, 9 

similarly require the continuous integration of, and often interaction with, real-time information. 10 

Our operational definition also included tactile naturalistic paradigms, which involve the 11 

manipulation and recognition of physical objects. During these tactile tasks, participants gather 12 

and integrate sensory information to create a mental representation of the object and, if necessary, 13 

form an appropriate behavioral response. Lastly, we note the inclusion of multisensory tasks. As 14 

in life, many naturalistic experiments simultaneously present auditory, visual, and tactile 15 

information, and such tasks demand the real-time integration of information from multiple sensory 16 

modalities.  17 

Literature Search, Filtering, and Annotation 18 

An extensive literature search was performed to amass a corpus of naturalistic fMRI studies that 19 

were published since the emergence of fMRI in 1992. To identify published naturalistic fMRI 20 

studies, PubMed searches were carried out by focusing on stimulus types common to naturalistic 21 

research (e.g., video games, film, virtual reality). The first search string, performed on January 13, 22 

2016, used the following string to identify relevant studies by their titles and abstracts: 23 
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((“naturalistic”[Title/Abstract] OR “real-world”[Title/Abstract] OR "ecologically 1 

valid"[Title/Abstract] OR "true-to-life"[Title/Abstract] OR "realistic"[Title/Abstract] OR "video 2 

game"[Title/Abstract] OR “film”[Title/Abstract] OR “movie”[Title/Abstract] OR "virtual 3 

reality"[Title/Abstract]) AND ("fMRI"[Title/Abstract] OR "functional magnetic resonance 4 

imaging"[Title/Abstract]) AND (“Humans”[MeSH])). This search yielded 679 studies (January 5 

2016), some of which utilized stimulus types that we had not included in our initial query, 6 

including music, speech, and tactile objects. To identify any studies using these tasks that may not 7 

have been returned by  initial query, a second search was performed on January 20, 2016 using the 8 

string [("music"[Title/Abstract] OR "speech"[Title/Abstract] OR "spoken"[Title/Abstract] OR 9 

"tactile object"[Title/Abstract]) AND (“naturalistic”[Title/Abstract] OR “real-10 

world”[Title/Abstract] OR "ecologically valid"[Title/Abstract] OR "true-to-life"[Title/Abstract] 11 

OR "realistic"[Title/Abstract]) AND ("fMRI"[Title/Abstract] OR "functional magnetic resonance 12 

imaging"[Title/Abstract]) AND "Humans"[MeSH]]. This secondary search returned 48 studies, 13 

some of which were included in the results of the first search. The two sets of search results were 14 

pooled to identify 754 unique studies, which were then reviewed and filtered to identify studies 15 

utilizing naturalistic paradigms as defined above.  16 

Each of 754 candidate studies was first screened and then reviewed according to the following 17 

exclusion criteria (Figure 1; Moher, Liberati, Tetzlaff, Altman, & Altman, 2009). The screening 18 

process examined the Abstracts and Methods of each paper to exclude non-naturalistic tasks in 19 

which static, timed blocks of stimuli were presented with a well-defined window for participant 20 

response. In this step, we also excluded studies that assessed training or learning across multiple 21 

trials or across some period of practice (e.g., pre vs. post contrasts), as our focus was on neural 22 

underpinnings of the tasks themselves and not training-induced changes thereof. In determining 23 
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eligibility of each paper, studies of participants under the age of 18 or of participants with any 1 

history of neurological or psychiatric diagnosis were excluded. After this study-level examination, 2 

we then inspected each reported experimental contrast within each paper. In this context, 3 

“experiment” represents each statistical parametric image presented, as the result of some 4 

functional image data analysis, such as contrasting experimental conditions (Fox et al., 2005). 5 

Experiments from analyses that used an a priori region(s) of interest to investigate activation or 6 

functional connectivity were omitted permitting identification of whole-brain neural networks. We 7 

also excluded contrasts modeling ANOVA interaction-specific activations, due to the inherent 8 

complexity of such effects. In this step, any studies/contrasts that did not meet the minimum 9 

requirements for coordinate-based meta-analysis, reporting the brain activation locations in a 10 

three-dimensional, standardized coordinate space, were discarded.  11 



 

 Bottenhorn et al. – Page 8 

	1 

Figure 1. PRISMA flow chart of inclusion and exclusion criteria. Each of the experiments returned 2 

by the PubMed queries were screened according to this schematic. 3 

During inspection of each contrast, one study associate (KLB) manually annotated each 4 

experiment with terms that described the experimental design with respect to stimulus type 5 

utilized, sensory modality engaged, and the task nature. These terms described the salient aspects 6 



 

 Bottenhorn et al. – Page 9 

of the stimuli and behaviors associated with each individual experimental contrast from the corpus 1 

of naturalistic paradigms, annotating the particular aspects of the tasks highlighted by each 2 

modeled experimental contrast, and not the intended psychological construct interrogated by the 3 

original report. These manual annotations were then independently reviewed and confirmed by a 4 

second study associate (JSF) to assure consistency and accuracy. Any disagreements or 5 

inconsistencies between KLB and JSF were resolved following a final conversation between the 6 

two associates. 7 

Experimental Design and Statistical Analysis  8 

Modeled Activation Maps 9 

Following the identification of relevant papers and experiments/contrasts, reported brain activation 10 

coordinates were extracted. All Talairach atlas-based coordinates (Talairach and Tournoux, 1988) 11 

were converted to Montreal Neurological Institute (MNI) space (Collins et al., 1994; Evans et al., 12 

1993) using the tal2icbm transformation (Lancaster et al., 2007; Laird et al., 2010). Probabilistic 13 

modeled activation (MA) maps were created from the foci reported in each individual contrast by 14 

modeling a spherical Gaussian blur around each focus with FWHM determined by the number of 15 

subjects in each experiment in order to represent the uncertainty induced by the inherent variability 16 

from individual differences and between-lab differences (Eickhoff et al., 2009). These MA maps 17 

were concatenated into an array of n experiments by p voxels, which was then analyzed for 18 

pairwise correlations that reflected the degree of spatial similarity between the MA maps from 19 

each of the n experiment and those of every other experiment. The resultant n X n correlation 20 

matrix represented the similarity of spatial topography of MA maps between every possible pair 21 

of experiments. 22 

K-Means Clustering Analysis 23 
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Individual naturalistic experiments (n MA maps) were then classified into K groups based on their 1 

spatial topography similarities. The k-means clustering procedure was performed in Matlab 2 

(Mathworks, R2013b for Linux), which grouped experiments by pairwise similarity, calculating 3 

correlation distance by one minus the correlation between MA maps (from the aforementioned 4 

correlation matrix) and finding the “best” grouping by minimizing the sum of correlation distances 5 

within each cluster (code available at https://github.com/62442katieb/meta-analytic-kmeans). This 6 

approach begins by choosing K arbitrary maps as representative centroids for each of K clusters 7 

and assigning experiments to each cluster based on the closest (most similar) centroid. This process 8 

continued iteratively until a stable solution was reached.  9 

Solutions were investigated for a range of K = 2 – 10 clusters. Once the clustering analysis was 10 

complete for all K, we compared each solution to the neighboring solutions and assessed for 11 

improvement across parcellation schemes using four metrics describing cluster separation and 12 

stability (Bzdok et al., 2015; Eickhoff et al., 2016a). This allowed us to objectively select the 13 

number of clusters that most optimally divided the data set. The first metric, average cluster 14 

silhouette across clustering solutions, assessed the separation between clusters and described 15 

whether clusters were distinct or overlapping. A higher silhouette value indicates that greater 16 

separation is ideal and that each experiment fits well into its cluster, with lower misclassification 17 

likelihood of fringe experiments into neighboring clusters. Stability is indicated by a relatively 18 

minimal change in silhouette from one solution (K) to the next (K + 1), indicated by the positive 19 

derivative of the silhouette score closest to zero, with greatest stability evidenced by the smallest 20 

change between two points. Second, we considered the consistency of experiment assignment by 21 

comparing the ratio of the minimum number of experiments consistently assigned to a cluster 22 

relative to the mean number of experiments consistently assigned to that cluster. In this case, only 23 
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ratios above 0.5, in which at least half of the experiments were consistently assigned, were 1 

considered viable solutions. Third, the variation of information was quantified, which compared 2 

the entropy of clusters with the mutual information shared between them for each solution K and 3 

its K – 1 and K + 1 neighbors. A large decrease in variation of information from K – 1 to K and 4 

increase from K to K + 1, a local minimum in the plot of variation of information across K, 5 

indicated a decrease in overlap between solutions and, thus, stability of solution K. In this case, 6 

“large” is defined, too, in relative terms, with the largest decrease indicating greatest stability of 7 

the solutions considered. Finally, we computed a hierarchy index for each solution, which assessed 8 

how clusters split from the K – 1 to K solution to form the additional cluster. A lower hierarchy 9 

index indicated that clusters present in K stemmed from fewer of the clusters present in K – 1, 10 

another indication of stability in groupings demonstrated by a local minimum across values of K. 11 

An optimal clustering solution is one that demonstrated minimal overlap between clusters (i.e., 12 

high silhouette value), while exhibiting relative stability in comparison with the previous and next 13 

solutions (i.e., consistency > 0.5, a local minimum in variation of information, and lower hierarchy 14 

index than previous). 15 

Meta-Analytic Groupings 16 

From the identified optimal clustering solution, we probed the underlying neural topography 17 

associated with each of the K groups of experiments (Laird et al., 2015). To this end, the ALE 18 

meta-analysis algorithm (Turkeltaub et al., 2002; Laird et al., 2005) was applied to generate a map 19 

of convergent activation for each grouping of experiments with similar topography. The ALE 20 

algorithm includes a weighting of the number of subjects when computing these maps of 21 

convergent activation and accounts for uncertainty associated with individual, template, and 22 

registration differences between and across experiments (Eickhoff et al., 2009; Turkeltaub et al., 23 
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2012). The union of these probability distributions was used to calculate ALE scores, a quantitative 1 

assessment of convergence between brain activation across different experiments, which was 2 

compared against 1000 permutations of a null distribution of random spatial arrangements 3 

(Eickhoff et al., 2012). These ALE values for each meta-analytic grouping of experiments were 4 

thresholded at P < 0.01 (cluster-level corrected for family-wise error) with a voxel-level, cluster-5 

forming threshold of P < 0.001 (Eickhoff et al., 2016b; Woo et al., 2014). The resultant ALE maps 6 

thus reflected the convergent activation patterns within each of the K clusters. The experimental K 7 

clusters are hereafter referred to as meta-analytic groupings (MAGs), representing meta-analytic 8 

groups of experiments demonstrating similar activation patterns. 9 

Functional Decoding 10 

Once we elucidated convergent activation patterns within MAGs, we sought to gain insight into 11 

what aspects of the naturalistic paradigms were most frequently associated with each MAG via 12 

functional decoding. Functional decoding is a quantitative, data-driven method by which 13 

researchers can infer which mental processes are related to activation in a specific brain region (or 14 

set of brain regions) across published fMRI studies. We chose to use two complementary 15 

functional decoding approaches, one based on our study-specific, subjective manual annotations 16 

mentioned above, and another based on the objective, automated annotations provided by the 17 

Neurosynth database for over 11,000 functional neuroimaging studies (Yarkoni et al., 2011; 18 

Neurosynth.org). First, the manually annotated terms associated with each experiment were 19 

grouped into the MAGs identified above and were assessed by frequency of occurrence in each 20 

MAG. The distribution of stimulus modality, stimulus type, and salient terms across MAGs 21 

allowed us to evaluate the relationship between activation patterns and the aspects of naturalistic 22 

paradigms that elicited them. Second, we included an automated, data-driven annotation method 23 
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using Neurosynth, which includes automatically extracted terms that occur at a high frequency in 1 

the abstract of each archived study. To functionally decode our MAGs, we compared the MAGs’ 2 

activation patterns with those reported across published neuroimaging papers in the Neurosynth 3 

database. To this end, we uploaded each ALE map to NeuroVault, a web-based repository for 3D 4 

statistical neuroimaging maps that directly interfaces with Neurosynth (Gorgolewski et al., 2015; 5 

NeuroVault.org,). NeuroVault enables “functional decoding” by correlating unthresholded 6 

uploaded maps with term-specific meta-analytic maps extracted from Neurosynth’s database of 7 

published functional neuroimaging studies. The Neurosynth functional decoding results were 8 

exported as a set of terms and correlation values representing how well the spatial distribution of 9 

activation associated with each term in the database matched the activation pattern of the uploaded 10 

map.  11 

Both sets of terms (i.e., obtained via manual and automated approaches) were evaluated to assess 12 

the specific aspects of naturalistic paradigms associated with each MAG. The Neurosynth terms 13 

representing broad behavioral aspects across fMRI studies that elicit similar brain activation 14 

profiles provides both an unbiased description of the experiments engaging each MAG, as well as 15 

a comparison of our corpus of studies with the broader literature. On the other hand, manual 16 

annotation provides more concise, accurate description of the paradigms, though it is predisposed 17 

to the subjective bias of human annotation. The results of this two-pronged functional decoding 18 

approach were designed to describe the processes that engage brain networks similar to each MAG 19 

and how these processes may be similar or different in naturalistic fMRI studies compared to the 20 

broader functional neuroimaging literature. The distribution of stimulus modalities and types 21 

across MAGs was assessed, too. Together, the functional decoding results and distributions of 22 
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different stimuli were interpreted to provide insight into how information processing is 1 

functionally segregated across cooperating neural systems during naturalistic tasks. 2 

Results 3 

The literature search yielded a combined set of 110 studies that reported coordinates of brain 4 

activation from naturalistic fMRI tasks among healthy adults (Figure 1, PubMed IDs available in 5 

Supplementary Table 1). The final data set included activation foci from 376 experimental 6 

contrasts (N = 1,817 subjects) derived from tasks using a variety of stimulus types and sensory 7 

modalities. Across our corpus of naturalistic fMRI experiments, approximately 55% assessed a 8 

single stimulus modality, including 40% visual stimuli, 13% auditory, and 1% tactile.  9 

Stimulus Modality Number of Experiments 

Auditory 50 (13%) 

Audiovisual 154 (41%) 

Visual 150 (40%) 

Visual + tactile (pain) 9 (2%) 

Visual + tactile 5 (1%) 

Tactile 4 (1%) 

Table 1. Distribution of stimulus modalities across the naturalistic corpus. Paradigms engaged 10 

auditory, visual, and tactile sensory modalities, both separately and in combination. 11 

 12 

Conversely, 45% of experiments utilized multisensory stimuli, including 41% that employed 13 

audiovisual stimuli, 2% in which a visual stimulus was paired with painful, tactile stimuli, and 1% 14 

pairing visual and non-painful tactile stimuli (Table 1). Of the visual experiments, 69% involved 15 
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a motor response, as did 25% of the audiovisual experiments, ranging from a button press to 1 

joystick and object manipulation. The stimulus types most frequently used across the included 2 

experiments were films (45%), virtual reality (32%), speech (9%), and music (6%) (Table 2).  3 

Stimulus Type 
Number of 

Experiments 

Film 169 (45%) 

Virtual Reality 121 (32%) 

Speech 32 (9%) 

Music 21 (6%) 

Video Game 13 (4%) 

3D image 6 (2%) 

Tactile 6 (2%) 

Picture 4 (1%) 

Sounds 1 (<1%) 

Table 2. Distribution of stimulus types across the naturalistic corpus. Within each stimulus 4 

modality, multiple types of experimental stimuli were included across the data set. 5 

 6 

K-Means Clustering Solutions 7 

MA maps were created for each contrast, and then clustered to identify groups with similar 8 

activation topographies. For completeness, the k-means clustering solutions for K = 2 – 10 clusters 9 

were quantitatively evaluated across four metrics to identify an optimal solution (Figure 2). When 10 

considering the average silhouette metric (Fig. 2A), values generally increased as K increased and 11 
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the smallest increase was observed between K = 6 to K = 7, indicating little additional separation 1 

between clusters gained by moving from 6 to 7 clusters. With respect to the consistency of assigned 2 

experiments metric (Fig. 2B), each of the solutions K = 2 – 10 met the stability requirement 3 

whereby the minimum number of experiments included in any iteration of the solution was at least 4 

50% of the mean number of experiments included across iterations. The variation of information 5 

metric (Fig. 2C), suggested the stability of a 6-cluster solutions as parameter value decreases were 6 

observed when moving from K = 5 to K = 6, combined with parameter increases when moving 7 

from K = 6 to K = 7, indicating that a 6-cluster solution demonstrates relative stability. The 8 

hierarchy index metric (Fig.2D) further corroborated a 6-cluster solution, as a local minimum as 9 

observed at  K = 6. Due to agreement across these metrics, we chose to proceed with the K = 6 10 

solution.  11 

 12 
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Figure 2. Metrics computed for K = 2 – 10 clustering solutions. (A) The average cluster silhouette 1 

for each solution K from 2 to 10 clusters, showing the distribution of average silhouette values at 2 

each value of K, resampled 100 times leaving one random experiment out each time. (B) 3 

Consistency in experiments assignment to clusters, plotting the minimum consistently assigned 4 

clusters next to the mean of consistently assigned clusters. (C) The change in variation of 5 

information, a distance metric, from the K – 1 to K and from K to K + 1. (D) The hierarchy index 6 

for each of K clustering solutions, which provides information about how clusters in the K solution 7 

stemmed from clusters in the K – 1 solution. 8 

 9 

Meta-Analytic Groupings 10 

The optimal clustering solution yielded six meta-analytic groupings (MAGs) of experiments in our 11 

corpus, suggesting similarities in brain activation across this sample of the naturalistic literature 12 

coalesce into six distinct patterns. The number of experiments that were clustered into each MAG 13 

ranged from 50 to 83 experiments (mean = 62.67; SD= 12.46). ALE maps of the six MAGs were 14 

generated and demonstrated little overlap in activation patterns, suggesting distinct patterns of 15 

recurrent activation across our set of naturalistic experiments (Figure 3, Supplementary Table 2). 16 

Whereas some of the MAGs exhibited focal patterns of convergent activation, restricted to a single 17 

or neighboring gyri (e.g., MAG 1 and 5), others presented with distributed convergence across 18 

multiple lobes (e.g., MAG 2 and 6). Most of the resulting MAGs were restricted to cortical 19 

activation patterns, although MAG 3 exhibited convergent activation in subcortical and brainstem 20 

regions (results available on NeuroVault at https://neurovault.org/collections/3179/).  21 
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 1 

Figure 3. Convergent activation patterns of MAGs from the naturalistic corpus. ALE meta-2 

analysis of experiments in each MAG yielded six patterns of convergent activation. 3 

 4 

MAG 1 included convergent activation in the bilateral posterior temporal areas, including portions 5 

of the inferior, middle, and superior temporal gyri, extending into the inferior parietal lobule and 6 

into the middle occipital gyrus, as well as in the left supramarginal gyrus, right precentral and 7 

middle frontal gyri, and in the bilateral precuneus. MAG 2 exhibited convergence in left inferior 8 

frontal gyrus, left precentral gyrus, anterior and posterior aspects of the middle temporal gyrus, 9 

precuneus, in addition to both the left and right superior frontal gyri. MAG 3 demonstrated a largely 10 

symmetric convergence pattern across multiple subcortical structures including bilateral 11 

amygdalae, putamen, thalamus, parahippocampal gyrus, and periaqueductal gray, with cortical 12 

clusters observed in the left inferior frontal sulcus and inferior frontal gyrus, bilateral anterior 13 
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cingulate cortex, and bilateral fusiform gyri. MAG 4 exhibited convergent activation in bilateral 1 

medial temporal lobes, parahippocampal regions, bilateral precuneus, retrospenial posterior 2 

cingulate cortex, occipital regions including the lingual gyrus, right calcarine sulcus, and cuneus, 3 

in addition to a small, bilateral portion of the middle frontal gyri. MAG 5 showed convergence in 4 

the bilateral superior temporal gyri. MAG 6 demonstrated convergence in the bilateral superior 5 

frontal sulci, intraparietal sulci, and superior parietal lobules as well as convergence in higher-6 

order visual processing areas in the middle occipital and lingual gyri. 7 

 8 

Stimulus Distribution Across MAGs 9 

Each stimulus modality was represented in multiple MAGs, but modalities were not evenly 10 

distributed across MAGs (Figure 4A). Experiments utilizing audiovisual tasks were somewhat 11 

uniformly distributed across the MAGs, with a slightly higher proportion of audiovisual tasks in 12 

MAGs 1, 3, and 5. In contrast, more than half of the experiments using auditory tasks were grouped 13 

into MAGs 2 and 6. Notably, more experiments based on auditory and audiovisual stimuli were 14 

clustered into MAG 5 than any other MAG. Experiments in which participants experienced 15 

physical pain were not present in MAGs 1, 5, and 6, but distributed nearly evenly among MAGs 16 

2 through 4, with a slightly higher portion in MAG 3. More than half of experiments that used 17 

tactile stimuli were grouped into MAG 5 and 6. Visual experiments were more evenly distributed 18 

across clusters, though there was a markedly smaller proportion in MAG 5 than any other MAG. 19 

One stimulus type, “Sounds”, was represented only once across the corpus and was, thus, excluded 20 

from Figure 4. The complete distribution of stimulus modalities across MAGs is provided in 21 

Supplementary Table 3.  22 
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 1 

Figure 4. Distribution of stimulus modalities and types across MAGs. (A) The presence of each 2 

sensory modality across the corpus that is associated with each MAG. (B) The proportion of each 3 

stimulus type present within the corpus that is associated with each MAG. These percentages 4 
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represent the proportion modality or stimulus type present in each MAG, compared to the total 1 

count of that modality or stimulus type across all MAGs. 2 

 3 

As with stimulus modality, most stimulus types showed unequal, but not necessarily selective, 4 

distribution across MAGs (Figure 4B). Film-based experiments were uniformly distributed across 5 

MAGs and tasks utilizing spoken stimuli were more frequently grouped into MAGs 2 and 5. Again, 6 

auditory stimuli were highly associated with MAG 5, as more than 50% of music experiments and 7 

20% of speech experiments were clustered into MAG 5. Experiments that required subjects to play 8 

video games were most often grouped into MAGs 4, and 6. Experimental contrasts which included 9 

a condition in which participants received tactile stimulation or manipulated tactile objects, were 10 

most prevalent in MAGs 3 and 6. A detailed distribution of stimulus types across MAGs is shown 11 

in Supplementary Table 4. 12 

 13 

Functional Decoding  14 

Two approaches for functionally decoding each MAG, manual and automated annotations, were 15 

performed to develop a functional interpretation of each MAGs’ association with aspects of 16 

naturalistic paradigms.  17 

Manual Annotations 18 

Our manual annotations utilized a list of 26 corpus-specific metadata terms, which captured salient 19 

features of the naturalistic design, rather than the psychological constructs assumed to be involved. 20 

Table 4 displays each of these terms and their frequency of occurrence across MAGs and across 21 

the entire corpus (Column = “Total”), highlighting which terms described the largest number of 22 
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experiments (e.g., “navigation”, “visual features”, “emotional film”, “attention”), as well as those 1 

that accounted for a minimal number of experiments (e.g., “violence”, “tactile”, “pain”). Values 2 

in Table 4 indicate the percent of experiments labeled with each term, or the base-rate of each term 3 

throughout the data set, keeping in mind that each experiment was labeled with only one or two 4 

terms. Once the experiments were clustered into six MAGs, we evaluated the relative contributions 5 

of each term per MAG, controlling for base-rate by dividing each term’s per-MAG count by that 6 

term’s total count across the corpus (Table 4). We assessed, too, the ability of each term to predict 7 

whether an experiment labeled with that term will be clustered into each MAG, (P(MAG|term) or 8 

“forward inference”, and the ability of belongingness to each MAG to predict whether an 9 

experiment will be labeled with a particular term, (P(term|MAG)) or “reverse inference”. These 10 

outcomes provide the association of each term with each MAG (Table 4). Some of the terms in the 11 

manual annotation analysis corresponded to stimulus types in Figure 4B (e.g., per-MAG 12 

distribution for “music” and “video game”). However, many of the manually derived terms 13 

highlighted experimental aspects that reflect the unique and salient features of the naturalistic 14 

corpus (e.g., “anthropomorphic”, “violence”) and are not included in standard neuroimaging 15 

paradigm ontologies such as BrainMap (Fox et al., 2005) or CogPO (Turner and Laird, 2012). 16 

Automated Neurosynth Annotations 17 

To complement the manual annotation analysis, we used Neurosynth’s automated annotations, 18 

which describes experiments that engage each MAG based on published neuroimaging data, 19 

allowing comparison of our corpus with the broader literature. MAG results were decoded in 20 

Neurosynth, yielding correlation values indicating the similarity of the input map (i.e., each 21 

MAG’s ALE map) and maps associated with each term from the Neurosynth database. To facilitate 22 

interpretation, the top ten terms with the highest correlation values for each MAG are presented 23 



 

 Bottenhorn et al. – Page 23 

(Table 5). Terms that were near-duplicates of terms already included in the list were removed, 1 

such as “emotion” and “emotions” if “emotional” was higher on the list. Non-content terms (e.g. 2 

“abstract”, “reliable”) and terms that described brain regions, such as “insula” or “mt”, were also 3 

excluded.4 
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Term 
   Frequency per MAG 
Total   MAG 1   MAG 2   MAG 3   MAG 4   MAG 5   MAG 6 

anthropomorphic 21 3%  10† 48%  0 0%  2 10%  2 10%  4 19%  3 14% 
attention 50 7%  18*† 36%  3 6%  2 4%  8 16%  10* 20%  9 18% 
auditory features 17 3%  0 0%  1 6%  1 6%  2 12%  12*† 71%  1 6% 
congruence 22 3%  7 32%  4 18%  0 0%  2 9%  3 14%  6 27% 
emotional film 61 9%  17* 28%  8 13%  17*† 28%  4 7%  11* 18%  4† 7% 
encoding 24 4%  1 4%  3 13%  1 4%  6 25%  0 0%  13*† 54% 
erotic 15 2%  1 7%  0 0%  8† 53%  1 7%  0 0%  5 33% 
faces 21 3%  5 24%  2 10%  2 10%  2 10%  8† 38%  2 10% 
imagination 23 3%  4 17%  6 26%  2 9%  2 9%  4 17%  5 22% 
inference 11 2%  4 36%  6† 55%  0 0%  1 9%  0 0%  0 0% 
language 47 7%  9 19%  11* 23%  3 6%  4 9%  14*† 30%  6 13% 
movement 14 2%  4 29%  0 0%  1 7%  2 14%  2 14%  5 36% 
music 21 3%  2 10%  3 14%  3 14%  1 5%  11*† 52%  1 5% 
narrative 30 4%  5 17%  5 17%  1 3%  4 13%  11*† 37%  4 13% 
navigation 81 12%  8* 10%  7 9%  10* 12%  26*† 32%  2 2%  28* 35% 
negative valence 27 4%  8 30%  3 11%  9 33%  1 4%  4 15%  2 7% 
pain 9 1%  0 0%  2 22%  4† 44%  3 33%  0 0%  0 0% 
positive valence 11 2%  2 18%  4 36%  2 18%  2 18%  1 9%  0 0% 
recognition 12 2%  0 0%  4 33%  2 17%  1 8%  1 8%  4 33% 
retrieval 23 3%  1 4%  5 22%  2 9%  4 17%  1 4%  10 43% 
social 26 4%  9 35%  8 31%  2 8%  3 12%  1 4%  3 12% 
spatial memory 10 1%  0 0%  2 20%  0 0%  7† 70%  0 0%  1 10% 
tactile 9 1%  0 0%  1 11%  1 11%  0 0%  3 33%  4 44% 
video game 15 2%  1 7%  2 13%  2 13%  4 27%  0 0%  6 40% 
violence 8 1%  1 13%  2 25%  2 25%  2 25%  0 0%  1 13% 
visual features 65 10%  23* 35%  4 6%  0 0%  10 15%  10* 15%  18*† 28% 

Table 4. Manual functional decoding results across meta-analytic groupings. The relative contributions of each manually-derived 1 
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metadata term (e.g., term frequencies) were computed for all MAGs, controlling for the base-rate by dividing each term’s per-MAG 1 

count by that term’s total count across the corpus. Base-rates are provided as the total count for each term. *Indicates significant forward 2 

inference at pcorrected < 0.05 and †indicates significant reverse inference at pcorrected < 0.05 (corrected for false discovery rate). 3 
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Functional Interpretation of MAGs 1 

The combined knowledge gained from the MAGs topography, as well as the manual and 2 

automated metadata decoding analyses provided insight into the functional interpretation of the 3 

clustering results. Overall, the terms yielded by Neurosynth decoding generally agreed with the 4 

manual annotation terms in characterizing the MAGs. Below is a summary of the six MAGs; note 5 

that reported labels do not refer to the definitive function of these regions, but rather indicate how 6 

each MAG reflects differential network contributions during naturalistic fMRI paradigms.  7 

Manual annotations indicated that MAG 1 experiments involved attention and the processing of 8 

dynamic visual features, in addition to visually-presented anthropomorphic forms and faces. Most 9 

of the stimuli in these experiments were films (Fig 4B), especially affective films. Neurosynth 10 

results largely converged with these manual annotations, as terms including “videos”, “body”, 11 

“observation”, and “visual motion” (Table 5) were associated with activations in MAG 1 regions. 12 

These annotations, together with the presence of convergent activation across regions commonly 13 

associated with higher-level visual processing, suggest that MAG 1 was associated with the 14 

Observation of Body and Biological Motion (Figure 3.1).  15 

Manual annotations indicated that MAG 2 experiments involved language processing, inference, 16 

and judgements about congruence. This MAG included relatively large proportions of the 17 

experiments using speech, video games, and tactile stimulation (Fig 3B). Neurosynth results 18 

supported the manual annotations’ indication that this MAG was associated with language 19 

processing and comprehension, as terms such as “sentence”, “comprehension”, “semantic”, and 20 

“mentalizing” (Table 5) were returned. These annotations and the presence of convergent 21 

activation in predominately left lateralized regions typically associated with higher-order cognition 22 

and language suggest that MAG 2 related to Language Processing (Figure 3.2). 23 



 

 Bottenhorn et al. – Page 27 

Manual annotations indicated that MAG 3 experiments involved human interactions or affective 1 

displays, including emotional and erotic films. Films were the predominantly used stimuli across 2 

these experiments, while most paradigms using painful stimuli were grouped into this MAG (Fig 3 

4B). Neurosynth results corroborated these manual annotation interpretations regarding affective, 4 

aversive, and social processing, with terms such as “emotion”, “facial expressions”, “fearful”, and 5 

“affective” (Table 5). Together, these annotations and a convergent activation pattern involving 6 

bilateral amygdalae suggest that MAG 3 was associated with Emotional Processing (Figure 3.3). 7 
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 1 

Table 5. Automated functional decoding results from Neurosynth. The top ten Neurosynth (NS) terms are provided for each MAG, 2 

along with the corresponding Pearson’s correlation coefficient (“corr”) that indicates the strength of similarity between Neurosynth 3 

maps and each MAG4 

MAG 1 MAG 2 MAG 3 MAG 4 MAG 5 MAG 6 

NS term corr. NS term corr. NS term corr. NS term corr. NS term corr. NS term corr. 

motion 0.555 comprehension 0.417 neutral 0.446 navigation 0.324 sounds 0.74 visual 0.431 

body 0.451 sentence 0.408 fearful 0.437 scenes 0.316 auditory 0.732 spatial 0.414 

static 0.441 language 0.375 facial 0.435 episodic 0.294 listening 0.711 attention 0.342 

moving 0.415 semantic 0.351 emotion 0.434 virtual 0.278 acoustic 0.675 eye movements 0.300 

viewed 0.406 linguistic 0.336 expressions 0.431 memory 0.276 speech 0.669 execution 0.299 

visual 0.403 theory mind 0.318 happy 0.404 retrieval 0.270 music 0.625 task 0.286 

visual motion 0.381 mental state 0.309 angry 0.401 episodic memory 0.258 pitch 0.612 visuospatial 0.279 

videos 0.360 mind 0.306 affective 0.397 place 0.208 spoken o.590 movements 0.274 

perception 0.359 mentalizing 0.304 facial expressions 0.395 autobiographical 0.201 tones 0.572 spatial attention 0.256 

observation 0.350 language comprehension 0.289 neutral faces 0.385 remembering 0.201 voice 0.568 hand 0.250 
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Manual annotations indicated that MAG 4 heavily represented experiments involving navigation 1 

through virtual reality environments, with spatial memory demands related to encoding unfamiliar 2 

virtual landscapes for future use. A few of these experiments required language processing, as 3 

well, and half of the experiments that used 3D images were grouped into MAG 5 (Fig. 4B). The 4 

manual annotations were reflected in the Neurosynth results, as similar patterns of activation have 5 

been associated with “navigation”, “scenes”, “memory”, and “place”. Additional related terms 6 

added depth to our characterization, expanding on the memory demands with “retrieval”, 7 

“episodic memory”, and “remembering” (Table 5). Overall, these experimental characteristics and 8 

convergent activation in medial temporal regions and along the visual processing stream suggest 9 

that MAG 5 was associated with Navigation and Spatial Memory (Figure 3.4). 10 

Manual annotations showed that MAG 5 experiments primarily involved either film or music 11 

stimuli (Figure 4B) and engaged either audiovisual or purely auditory processing (Fig. 4A). More 12 

than half of the included experiments that used music as stimuli were grouped into this MAG (Fig. 13 

2B), with some stimuli involving an emotional quality (Table 4). Neurosynth corroborated these 14 

interpretations returning terms such as “auditory”, “sounds”, “listening”, and “speech” associated 15 

with activation of the regions in this MAG. These metadata descriptions combined with convergent 16 

activation in superior temporal regions suggest this MAG’s association with Auditory Processing 17 

(Figure 3.5). 18 

Manual annotations of MAG 6 experiments implicated tasks involving visual attentional demands 19 

and the processing of visual features, as participants engaged in video games, tactile stimulation, 20 

and virtual reality navigation (Figure 4B, Table 4). Stimuli with high visuospatial demands (i.e. 21 

video games, virtual reality, pictures, were represented more by this MAG than any other, while 22 

stimuli with low visuospatial demands (i.e. music, speech) were represented the least in this MAG. 23 
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Some experiments involved memory encoding, and visual processing. Neurosynth supported this 1 

characterization returning terms including “visual,” “attention”, “eye movements”, “saccades”, 2 

and “spatial attention” associated with activation of the regions in this MAG (Table 5). These 3 

annotations and convergent activation in regions resembling the dorsal attention network and areas 4 

of higher level visual processing (e.g., superior frontal and parietal regions, extrastriate cortex) 5 

suggest this MAG’s association with Visuospatial Attention (Figure 3.6). 6 

Discussion 7 

To characterize a core set of brain networks engaged in more ecologically valid neuroimaging 8 

designs, we employed a data-driven approach that meta-analytically grouped published naturalistic 9 

fMRI results according to their spatial topographies. Objective metrics suggested that a solution 10 

of K = 6 clusters provided the most stable and disparate grouping of experiments across the 11 

naturalistic fMRI literature, and ALE meta-analysis delineated convergent activation across 12 

spatially distinct brain regions for each meta-analytic grouping (MAG) of experiments. We then 13 

considered how such networks subdivide information processing by assessing the characteristics 14 

of the constituent experiments from each MAG. Utilizing both manual and automated functional 15 

decoding approaches, enhanced interpretations of the mental processes associated with specific 16 

constellations of brain regions were gleaned such that the outcomes of the two approaches 17 

generally agreed, with differences highlighting domain-specific and domain-general processes 18 

associated with naturalistic paradigms.  19 

Distributed Processing for Complex Functions 20 

Though the six identified MAGs are spatially distinct and appear to correspond with dissociable 21 

mental processes, most of the included naturalistic tasks that reported more than one statistical 22 
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contrast recruited more than one MAG (66 of 86). This is consistent with functional segregation 1 

and the flexible nature of the naturalistic design, demonstrating that the manipulation of different 2 

contrasts can identify distinct networks that likely cooperate to successfully perform a complex 3 

task. Further indicative of coordinated interactions and distributed processing, each MAG included 4 

experiments that utilized different task modalities and task types. Overwhelmingly, the identified 5 

MAGs and the functional characterizations thereof support the notion that complex behaviors are 6 

facilitated by coordinated interactions between several large-scale sensory, attentional, and 7 

domain-specific networks, a position increasingly endorsed in neuroimaging endeavors (Barrett 8 

and Satpute, 2013; Lindquist et al., 2012; Mišić and Sporns, 2016; Spreng et al., 2013). The 9 

characterization of identified MAGs from aspects of the naturalistic paradigms that elicit them 10 

suggest an information processing model of cooperating systems (Figure 5) for sensory input 11 

(MAGs 1 and 5), attentional control (MAG 6), and domain-specific processing (MAGs 2, 3, and 12 

4), into and from which information is segregated and integrated to enable complex behaviors 13 

(e.g., language, emotion, spatial navigation). Output relevant to the corresponding input would be 14 

relegated by motor planning and execution systems, which are notably absent from the 15 

characterization of MAGs presented here, as experiments requiring a motor response were evenly 16 

distributed across MAGs, rather than clustered together. 17 
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 1 

Figure 5. Complex systems for dynamical information processing. The identified MAGs present 2 

a framework of component systems that interact to enable complex information processing needed 3 

for naturalistic behavior, including necessary input systems, as well as systems for modality-4 

specific (indicated by dashed line) visuospatial attentional gating of irrelevant information and 5 

domain-specific processing for language-, emotion-, and navigation-related tasks. 6 

 7 

MAGs 1 and 5 primarily represent the perceptual processing streams of incoming auditory and 8 

visual information, and likely cooperate to process audiovisual information. Functional decoding 9 

suggests that MAG 1 is involved in viewing faces and anthropomorphic figures, which is 10 

consistent with previous research showing that posterior temporal and temporo-occipital regions 11 

corresponding with area V5/MT are associated with the perception of movement, specifically 12 

biological movement (Cohen Kadosh et al., 2010; Pelphrey et al., 2005, 2004; Puce et al., 1998; 13 
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Wheaton et al., 2004). Similarly, MAG 5 is associated with listening to music and speech, as well 1 

as perceiving pitch and tone, stretching across primary auditory cortex and into regions of higher 2 

auditory processing (Gray et al., 2009; Türe et al., 1999). Per functional decoding of MAG 6 of 3 

both manual and automated annotations, MAG 6 is associated with visuospatial attention. This 4 

functional characterization is also supported by corresponding fronto-parietal activations that are 5 

often associated with attending to visual stimuli (Braga et al., 2016; Puschmann et al., 2016). 6 

MAGs 1 and 5 represent the perceptual processing streams of audiovisual information.  7 

Information processing depends on input from perceptual systems, filtered by attentional gating, 8 

but proceeds in a functionally-segregated manner, seen in domain-specific MAGs for linguistic, 9 

emotional, and spatial processing. When considering language processing, there is necessary input 10 

to primary auditory areas (MAG 5), that is further processed by higher-level language areas that 11 

facilitate speech perception and comprehension (MAG 2). More than a third of contrasts from 12 

experiments that utilized speech-based paradigms contributed to the convergent activation pattern 13 

of MAG 2, which was linked by both functional decoding techniques to language-related 14 

processes. Furthermore, the regions of MAG 2 resembles a neural “language network” (Friederici 15 

and Gierhan, 2013; Heim et al., 2003; Price, 2010; Saur et al., 2010), including some regions 16 

associated with orofacial articulation (lip, tongue, and jaw movements) and motor planning (SMA, 17 

pre-SMA) that allow the motor components of speech. By presenting language in a context that is 18 

more representative of how we process language in everyday life, such as through the use of 19 

spoken fictional narratives (AbdulSabur et al., 2014; Wallentin et al., 2011; Xu et al., 2005a) or 20 

scene descriptions (Summerfield et al., 2010), naturalistic fMRI paradigms allow researchers to 21 

explore the multiple neural networks at work in performing the cooperating processes that facilitate 22 

language processing. Similarly, emotional processing (MAG 3) often necessitates audiovisual 23 
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input (MAGs 1 and 5) and necessitates attention (MAG 6). Emotional films recruited regions 1 

across these four MAGs, suggesting a similarly diverse group of coordinated neural systems are 2 

engaged when observing affective displays. Additionally, navigation (Burgess et al., 2002; 3 

Kalpouzos et al., 2010; Wolbers et al., 2004) depends on visual input (MAG 1), effective 4 

visuospatial attentional (MAG 6), and spatial memory and processing (MAG 4). The functional 5 

characterization of MAG 4 from manual and Neurosynth decoding highlights its involvement in 6 

navigation and spatial memory, supported by studies of rats and humans with brain lesions that 7 

indicate the importance of medial temporal, hippocampal, and precuneus regions in processing 8 

visual scenes and spatial information (Bird and Burgess, 2008; Epstein, 2008; Lee et al., 2005; 9 

Sailer et al., 2000; Squire et al., 2004; Summerfield et al., 2010; Xu et al., 2005b).  10 

Finally, the characterization of MAG 6 indicates a domain-specific attentional system, as both 11 

manual and automated Neurosynth decoding highlight its involvement in visual processing in the 12 

absence of any association with other modalities. This is reflected by the distributions of stimuli 13 

across MAGs (Figure 4), which show low numbers of auditory and pain-related stimuli represented 14 

in MAG 6, while rich visual stimuli that include spatial information (i.e. video games, virtual 15 

reality, pictures) are highly represented across the experiments in MAG 6. Curiously, tactile object 16 

manipulation was highly represented in MAG 6, representing the perception of spatial information 17 

in the absence of visual information (Figure 4, Table 4). Together, these suggest that MAG 6 18 

provides modality-specific attentional gating, depicted by the dashed line in Figure 5. 19 

Limitations 20 

The present results may be limited by the k-means clustering method, which is limited by the 21 

assumptions of the algorithm and underlying topology of the data, as it is sensitive to spherical 22 

clusters and assumes the data are linearly separable. Furthermore, there is a potential for bias with 23 
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this method, certain parameters are specified by the researcher beforehand. To address this 1 

potential for bias and the stability of our clustering solution, we performed duplicate clustering 2 

analyses with both linear (hierarchical clustering using Ward’s method) and nonlinear (kernel k-3 

means and density-based spatial clustering) methods. The results of these analyses are provided in 4 

the Supplementary Material (Supplementary Figures 1 – 3) and confirmed that our choice of the 5 

k-means clustering method provided optimal separation of the data into 6 clusters. Experiments in 6 

our corpus were grouped using the kmeans++ algorithm for each of K = 2 through K = 20 solutions, 7 

repeated 1000 times to ensure that each solution minimized the point-to-centroid distance, 8 

indicative of optimal clustering (Kanungo et al., 2004). Pearson’s correlation was selected as the 9 

distance metric, as recommended by Laird et al. (2015). The K = 6 solution was designated as an 10 

optimal candidate solution before assessing the convergent activation patterns of each MAG, based 11 

on the aforementioned metrics, yielding a data-driven result. These results are, of course, 12 

influenced by the choice of clustering method, and should be considered accordingly. As this was 13 

a meta-analytic effort, it is limited, too, by the initial modeling of the data. Despite this, coordinate-14 

based meta-analyses are considered a robust method for synthesis of previously published 15 

functional neuroimaging literature (Eickhoff et al., 2012, 2009; Fox et al., 2005). Although the 16 

functional decoding based manual annotations relied on a subjective process, the results were 17 

largely confirmed by comparison with the wider body of functional neuroimaging literature 18 

facilitated by Neurosynth’s automated functional decoding. It is worth noting that the naturalistic 19 

literature is somewhat limited, with an emphasis on navigation and affective processing, and 20 

continued research and expansion of this corpus will facilitate development of a more 21 

comprehensive model of the neural networks that support realistic behavior.  22 

Summary and Future Work 23 
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In summary, this meta-analysis of naturalistic fMRI studies that apply dynamic, lifelike tasks to 1 

explore the neural correlates of behavior has shown that these paradigms engage a set of core 2 

neural networks, supporting both separate processing of different streams of information and the 3 

integration of related information to enable flexible cognition and complex behavior. We identified 4 

seven patterns of consistent activation that correspond with neural networks that are involved in 5 

sensory input, top-down attentional control, domain-specific processing, and motor planning, 6 

representing the set of behavioral processes elicited by naturalistic paradigms in our corpus. Across 7 

the corpus, tasks provided mainly visual and auditory sensory input which engaged regions across 8 

MAGs 1 and 5, while MAG 6 appeared to contribute to top-down attentional control to filter out 9 

nonessential visual and/or spatial information. Salient information can be processed by the relevant 10 

domain-specific networks, shown in MAGs 2 (language), 3 (emotion), and 4 (navigation and 11 

spatial memory), informing the appropriate response. Most naturalistic tasks engaged multiple 12 

networks to process the relevant information from a stimulus and generate an appropriate response. 13 

A shift in favor of utilizing naturalistic paradigms, when possible, would greatly benefit the field, 14 

as naturalistic stimuli more closely approximate the full complement of processing necessary for 15 

realistic behavior. Due to the availability of naturalistic fMRI data from sources such as 16 

studyforrest.org, the Human Connectome Project, and the Healthy Brain Network Serial Scanning 17 

Initiative (HBNSSI), an intriguing next step in this line of work would include validating these 18 

MAGs in the primary analysis of imaging data. Exploring how multifaceted processes interact and, 19 

ultimately, contribute to behavior will allow us to better understand the brain and human behavior 20 

in the real world. In the future, studies of this sort would greatly benefit from an automated 21 

annotation process for an objective functional decoding of included papers, instead of subjective 22 

manual annotation. 23 
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Accessibility of Data and Other Materials 1 

The authors have released all code and data associated with this manuscript. The code and 2 

tabular data are available on GitHub (https://github.com/62442katieb/meta-analytic-kmeans), 3 

and the unthresholded maps of each MAG are available on NeuroVault 4 

(https://neurovault.org/collections/3179/). 5 
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