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ABSTRACT

Problem solving is a complex skill engaging multi-stepped reasoning processes to find unknown
solutions. The breadth of real-world contexts requiring problem solving is mirrored by a similarly broad,
yet unfocused neuroimaging literature, and the domain-general or context-specific brain networks
associated with problem solving are not well understood. To more fully characterize those brain
networks, we performed activation likelihood estimation meta-analysis on 280 neuroimaging problem
solving experiments reporting 3,166 foci from 1,919 individuals across 131 papers. The general map of
problem solving revealed broad fronto-cingulo-parietal convergence, regions similarly identified when
considering separate mathematical, verbal, and visuospatial problem solving domain-specific analyses.
Conjunction analysis revealed a common network supporting problem solving across diverse contexts,
and difference maps distinguished functionally-selective sub-networks specific to task type. Our results
suggest cooperation between representationally specialized sub-network and whole-brain systems
provide a neural basis for problem solving, with the core network contributing general purpose
resources to perform cognitive operations and manage problem demand. Further characterization of

cross-network dynamics could inform neuroeducational studies on problem solving skill development.

KEYWORDS: problem solving; reasoning; cognitive control; functional neuroimaging; meta-analysis;
activation likelihood estimation (ALE); domain-generality; domain-specificity



1. INTRODUCTION

Problem solving has been investigated across human and animal models for decades; it is a process that
is central to numerous everyday tasks involving the execution of a complex, multi-step sequence of goal-
oriented objectives. In humans, problem solving has been used to quantify general intelligence (Jung
and Haier, 2007; Savage, 1974), assess educational or learning outcomes (Hmelo-Silver, 2004; Jonassen,
1997; Pellegrino and Hilton, 2012; Yerushalmi et al., 2007), understand age-related cognitive declines
(Mienaltowski, 2011; Paas et al., 2001), or characterize neurocognitive or developmental disorders
(Kodituwakku, 2009; Ozonoff and Jensen, 1999; Sachdev et al., 2014), and has been investigated across
multiple research domains including medicine (Elstein, 2002), economics (von Hippel, 1994), education
(Jonassen, 2000; NCTM, 2010), physics (Hsu et al., 2004; Maloney, 2011), psychology (Davidson and
Sternberg, 2003; Simon A. and Newell, 1971), and cognitive neuroscience (Fink et al., 2009; Unterrainer

and Owen, 2006).

Given this universal and multidisciplinary interest in problem solving, numerous definitions of the
construct have been articulated by experts from different domains with varying theoretical knowledge
bases. In the present study, we adopt the definition of a problem as a “situation in which you are trying
to reach some goal, and must find a means for getting there” (Chi & Glaser, 1985, pp. 229). The act of
problem solving then involves identifying and/or performing critical thinking processes related to
evaluating the problem, planning or sequencing actions to solve it, and executing operations that
conform to some rule set (e.g., semantic, algebraic, logical, mechanical, or other delimiting frameworks)
to arrive at a correct, or sometimes most appropriate, previously unknown solution. Within this
operational definition, problem solving can be considered as a sequential and/or parallel orchestration
of a series of integrative cognitive maneuvers wherein solutions are systematically, but not necessarily
immediately, derived. Such framing acknowledges that problem solving encompasses iterative
algorithmic steps, as well as exploratory and innovative processes wherein solution paths draw on
creativity and insight. It is of note that an important component of solving a problem may be in the
initial characterization of the problem itself, a step in which one must identify the rule set implied or
relevant to the problem’s context. In this way, the problem solving processes can be highly content-
specific while simultaneously grounded in a common framework that is context-independent. Thus,
problem solving-related processes are dynamic, frequently involve the confluence of learning, cognitive
ability, and previously acquired knowledge, and span developmental stage and social context. Problem

solving can range from formative human experiences such as a toddler interacting with environmental



affordances as objects and tools are tested to replicate observed functions, to more technical or
abstract undertakings such as scientists drawing on experiment, technique, and knowledge to address

unresolved questions from their discipline.

In human functional neuroimaging research, numerous and diverse experimental tasks have been used
to elicit cognitive processes viewed as central to problem solving. Various neuroimaging studies have
considered problem solving from the perspectives of mathematical calculation (e.g., Dehaene et al.,
1999), deductive or inductive reasoning (e.g., Goel, 2007), insight solution generation (e.g., Luo and Niki,
2003), verbal or picture-based analogical reasoning (e.g., Bunge et al., 2005), fluid intelligence (e.g.,
Prabhakaran et al., 1997), or puzzle solving and game-play (e.g., Atherton et al., 2003). However, little is
known about the neurobiological processes underlying problem solving as a general endeavor, and a
broad comparison of activation results across these multiple diverse problem solving tasks has not been
conducted. Thus, it is not known if there exists a constellation of common brain regions supporting
general problem solving, irrespective of topic, scope, or discipline, or if problem solving is a relatively
specific mental activity that instead relies more strongly on particular neural correlates most relevant to
the problem’s specific context and features. By addressing this question, we may be better able to
characterize the nature of problem solving across its many interdisciplinary conceptions in the service of

facilitating improvements to strategies promoting problem solving skill development.

While problem solving remains a relatively equivocally defined construct, particularly within the
neuroimaging literature, initial insight into the neural substrates of many of the constituent processes
noted above may be gleaned from the executive function domain. For example, Minzenberg et al. (2009)
and Niendam et al. (2012) characterized executive functions as those mental processes that direct,
regulate, and integrate goal-oriented behavior. Cognitive control is a term often used synonymously
with, or to emphasize the regulatory aspects of, executive function wherein many cognitive processes
together dynamically manage information to guide actions and achieve a common purpose (Miller,
2000). This ‘managerial system’ responsible for directing necessarily coherent, purposeful, and stepwise
actions is likely a central element across many, if not all, forms of problem solving. Yet, it remains
unclear which of the neural correlates of cognitive control are also essential for problem solving, and

whether a common network exists linked with problem solving across contexts.

Brain regions associated with executive function have been relatively well studied, are often collectively
referred to as the Central Executive Network (CEN), and typically reveal functionally connected inter-

and intra-hemispheric regions across association cortices. Early perspectives on executive function



attempted to map specific and theoretically distinct cognitive processes onto individual brain regions
(Luria, 1966; Shallice, 1988). However, as experimental techniques in fMRI deepened the scientific
understanding of cognitive control, consensus shifted away from simple one-to-one function-structure
mappings and towards a more system-based perspective wherein whole-brain distributed networks
support multiple cognitive constructs (Carpenter, 2000; Menon and Uddin, 2010). Goal-oriented,
complex cognition is maintained by such multiregional interactions (Cocchi et al., 2013), and intra-
hemispheric frontoparietal connections may be one neurobiological aspect contributing to species-
specific behavioral differences between human and non-human primates (Wey et al., 2013). The
dorsolateral prefrontal cortex (dIPFC), medial prefrontal cortex (mPFC), and posterior parietal cortex
(PPC) are together frequently implicated across executive function paradigms such as working memory
n-back tasks (Owen et al., 2005; Curtis, 2003), attentional control tasks including go/no-go and Stroop
paradigms (Cieslik, 2015), and others such as the oddball vigilance task, tower maze planning task, and

Wisconsin card sorting flexibility task (Lie et al., 2006; Linden, 1999; Unterrainer and Owen, 2006).

In an extensive meta-analysis across executive function tasks, Niendam and colleagues (2012)
considered 193 neuroimaging studies reporting outcomes from flexibility, inhibition, working memory,
initiation, planning, and vigilance paradigms. Those authors identified a cross-domain cognitive control
system including dIPFC, frontopolar cortex, orbitofrontal cortex, anterior cingulate cortex (ACC),
superior and inferior parietal and occipito-temporal cortex, cerebellum, and limbic areas such as the
caudate, putamen, and thalamus. This so-called superordinate cognitive control system constituted a
shared network supporting various disparate paradigm activations, and thus suggested that multiple
executive functions are supported across a common set of fronto-cingulo-limbic-parietal brain regions.
Similar observations of common prefrontal, insular, and parietal brain regions responsible for a diversity
of goal-oriented tasks have also been demonstrated across attentional processes (Duncan, 2006) and
show enhanced involvement when task demands are increased, regardless the type of task performed
(Duncan and Owen, 2000; Fedorenko et al., 2013). This system has been termed the multiple demand
(MD) network because of its high flexibility across contexts and has been argued to be critically involved
in task control, attentional focusing, managing cognitive load, and may play a central role in interfacing
with different brain systems that accomplish sub-tasks or specific cognitive operations within structured
mental operations (Duncan, 2013, 2010). Given the close ties between problem solving and this
multitude of diverse cognitive functions, a reasonable working hypothesis is that a similar network is

associated with problem solving across diverse representational domains.



While a collection of brain regions commonly activated across problem solving tasks may be indicative
of a supervisory control network, there is also evidence for simultaneous domain-specific regional
involvement during problem solving. Neural findings from individual problem solving studies support the
notion of a supervisory control network that also subtends functionally specific regional interactions. For
example, in an investigation of math and word problem solving, Newman and others (2011) identified a
common set of CEN regions, including superior parietal lobule (SPL) and horizontal intraparietal sulcus
(IPS), that supported both representational modalities of problem solving. In addition to this common
problem solving network, they also observed distinct activations across Broca’s and Wernicke’s areas in
word but not number problems, and identified enhanced activation in IPS specific to number but not
word problems. These results highlight the importance of not only a common network for problem
solving, but also the separate and distinctive interaction of regions specific to problem solving

representation.

To date, results from the wide range of neuroimaging problem solving paradigms have not been
collectively assessed to identify common and differential brain activation patterns across problem
solving representational contexts and distinct domains. To this end, we first identified a set of published
neuroimaging experiments that utilized high-level critical thinking and reasoning tasks. If the tasks were
consistent with our operational definition of problem solving, we selected related experimental
contrasts according to inclusion criteria. These tasks involved healthy adults answering novel questions
by way of generating or verifying solutions. We then applied a quantitative, coordinate-based meta-
analysis method to comprehensively synthesize this literature corpus with the purpose of identifying the
neural networks associated with problem solving. Using this methodology, we sought to: (1) determine
if convergent neurobiological substrates are present across the diversity of problem solving tasks; and
conversely, (2) identify those brain regions exhibiting consistent functional specificity within distinct

representation domains.

2. METHODS

To identify consistent and dissociable brain activation patterns linked with problem solving, we
conducted a series of Activation Likelihood Estimation (ALE) meta-analyses (Turkeltaub et al., 2002; Laird
et al., 2005; Eickhoff et al., 2009; 2012; Turkeltaub et al., 2012) delineating convergent results reported

within and across distinct representational categories.

2.1. Literature Search and Experiment Selection Criteria



We began by establishing our definition of problem solving, independent of any literature searches or
reviews. Then, a search to compile a comprehensive set of peer-reviewed functional neuroimaging
studies investigating problem solving published in English between January 1st 1997 and March 14, 2015

was performed across multiple literature indexing services, including PubMed (www.pubmed.com),

Web of Science (www.webofknowledge.com), and Google Scholar (www.scholar.google.com). Searches

were constructed to identify functional magnetic resonance imaging (fMRI) or positron emission
tomography (PET) studies indexed by keywords such as problem solving, calculation, verbal reasoning,
visuospatial reasoning, insight, deductive reasoning, inductive reasoning, or fluid reasoning. References
within papers matching these search criteria were examined and appropriate studies not previously
identified were added to the pool of potential papers for inclusion. To avoid bias introduced by the
selection process, we gathered a large corpus of papers extending across a range of experiments,
ensuring cluster convergence was not due to the particular studies selected but rather was
representative of a general result across a spectrum of experiments. We determined if tasks in these
studies were reasonably described by the two-part problem solving definition we had adopted (i.e., first
having a goal, followed by a need to figure out a way to reach it). Once the set of problem solving tasks
were identified, associated studies were filtered to identify problem solving experiments/contrasts that
isolated one or more of the cognitive processes central to the problem solving task. Of those identified,
we selected only those contrasts reporting either blood oxygen level dependent (BOLD) or regional
cerebral blood flow (rCBF) signal increases; results associated with BOLD or rCBF decreases were
excluded. Group-level effects in healthy adult individuals were targeted, while disease-, age-, and
gender-related group comparisons were excluded. Experiments were further filtered to include only
those that reported task-related increases as stereotactic coordinate results in either Talairach or
Montreal Neurological Institute (MNI) standardized space. The final set of experiments was constrained

to include only whole-brain analyses and exclude region of interest (ROI) results.

Three main paradigm groupings emerged as separate problem solving domains within the neuroimaging
literature: tasks in which participants solved computational or mathematical problems, language-based
or verbal problems, or picture-based or visuospatial problems. Representational domains were defined
by the stimulus modality used: mathematical problems involved number manipulation, verbal problems
presented questions with sentence, word, or letter stimuli, and visuospatial problems involved pictorial
or spatial tasks. Within these representational sets, five distinct contrast types were included in the
meta-analyses: contrasts in which (1) a baseline condition was subtracted from a problem solving task

(i.e., problem solving > baseline), (2) problem solving questions were parametrically compared across



varying difficulty, abstraction, or complexity (e.g., complex problem solving > simple problem solving),
(3) untrained, previously unseen, and novel problems were solved and contrasted with previously
memorized or solved problems of the same type (i.e., untrained problem solving > trained problem
solving), (4) problem solving was compared across different rule sets or representational modalities (i.e.,
problem solving type 1 > problem solving type 2; e.g., multiplication problems > addition problems or
word problems > number problems), or (5) distinct and sequential problem solving phases were
contrasted with each other (e.g., problem solving late phase > problem solving early phase). Several
studies used problem solving to investigate differences between healthy controls and either patient
populations or populations with intellectually gifted individuals (e.g., mathematical prodigies or high-1Q
individuals). Experiments were included from these studies if within-group results for healthy controls
were separately reported, without any group interaction effects or comparison with an experimental

group.
2.2. Activation Likelihood Estimation

Stereotactic coordinates were extracted from the identified set of problem solving contrasts. To reduce
disparity between MNI and Talairach coordinates (Laird et al., 2010), foci originally reported in Talairach
space were transformed into MNI space using the tal2icom algorithm (Lancaster, 2007). A series of
activation likelihood estimation meta-analyses was performed in the MATLAB environment to assess
concordance across studies and within each problem solving representational domain using the revised
non-additive ALE algorithm (Laird et al., 2005; Eickhoff et al., 2009; Turkeltaub et al., 2012). This
random-effects approach models activation foci as three-dimensional Gaussian probability distributions
whose widths reflect variances in experimental sample size and uncertainty inherent to spatial
normalization. The ALE algorithm first computes a set of modeled activation (MA) maps by selecting the
maximum probability associated with any one Gaussian within each experiment (Turkeltaub et al.,
2012). This method was employed to alleviate artificial conflation of MA values due to within-
experiment coordinate proximity and thus limits the maximum contribution any single experiment can
have on the overall ALE results. After the within-experiment activations were modeled, voxel-wise focal
overlap across experiments was determined by computing the union of all activation probabilities
(known as the voxel’s ALE score), a quantity representing convergence of results across studies. This
union was anatomically constrained by a grey matter mask based on the ICBM tissue probability maps of
Evans et al. (1994). Statistical significance within this so-called ALE map was determined by comparing

the distribution of ALE scores to a null-distribution modeled by 10,000 permutations of random data,



each containing identical characteristics to those of the actual experiments (e.g., simulated subject and
foci numbers). Computationally, foci from the dataset were replaced with coordinates randomly
selected from the gray matter template and the union of their values was computed to form the
empirically derived null-distribution used to test the null hypothesis of randomly distributed activations.
Then, above-chance clustering between experiments was assessed by computing P-values given by the
proportion of ALE scores equal to or greater than those obtained under the null-distribution. A
correction for multiple comparisons was implemented by using a voxel-level threshold of P < 0.001, and
then ALE results were family-wise error (FWE) corrected at a cluster extent threshold of P < 0.05

(Eickhoff et al., 2017).

First, to identify common activation patterns across problem solving, coordinate results from all
representational domains (i.e., mathematical, verbal, and visuospatial domains) were pooled and
assessed for convergence. The resulting ‘global network’ was agnostic to variants in problem solving
type and therefore useful in evaluating whether a content-general problem solving meta-analytic
network could be identified. Here, and in following sections, we refer to the term ‘meta-analytic
network’ (or simply ‘network’) as a collection of brain regions that together represent the common
activation patterns resulting from meta-analytic results. Because clusters revealed by the global network
need not be similarly observable across sub-domains, we performed follow-up characterizations of
within-domain activation patterns to resolve context-relevant networks. To investigate which brain
regions were consistently activated within content-specific tasks, we delineated experiments by
representational domain and separately assessed coordinate convergence across mathematical, verbal,
and visuospatial problem solving variants. We then inspected these within-domain ALE maps for three-
way conjunctions to identify overlap indicative of common and convergent activation among all types of
problem solving (i.e., a core network). Specifically, we conducted a conservative minimum statistic
conjunction analysis (Nichols, 2005) to identify significant voxels commonly present across all domain-
specific problem solving ALE maps. Next, to decipher the functional role of this core network and
identify specific cognitive processes contributing to problem solving in general, we performed functional
decoding (which is a statistical approach used to determine psychologically-linked terms given observed
brain activation patterns) on the resulting conjunction map (Poldrack, 2011). To do this, we fit a
Generalized Correspondence Latent Dirichlet Allocation (GC-LDA; Rubin et al., 2016, 2017) model with
200 topics to the Neurosynth literature corpus (Yarkoni et al., 2011). The GC-LDA model associates each
topic with a probability distribution across terms from article abstracts and with a spatial distribution (in

this case as a bilateral pair of Gaussian distributions) across voxels in MNI space. These topics reflect



words and foci which frequently co-occur across studies in the literature and facilitate distinguishing the
conceptual structure associated with terms that can be imprecise or variously defined across studies.
Next, we fed the conjunction map into the decoding algorithm, which used the P(topic|voxel)
distribution estimated by the topic model to estimate P(topic|map). Finally, we expanded the topic
weights to word weights by computing the dot product between the P(topic|map) vector and the

P(word|topic) distribution estimated by the model.

Then, to statistically compare each problem solving domain and isolate differential activations patterns
selective to each of the three problem solving types, we ran formal contrast ALE meta-analyses using
methods described in detail in Laird et al. (2005) and Bzdok et al. (2015). These three-way ALE contrasts
were determined by computing difference maps across pairs of domain-specific ALE images and then
assessing the conjunction, using the minimum statistic approach, across the difference maps. For
example, to isolate the brain activity specifically associated with mathematical problem solving, we first
calculated the contrasts of Mathematical — Verbal problem solving and Mathematical — Visuospatial
problem solving. We then computed the conjunction between these two differences (i.e.,
[Mathematical — Verbal] N [Mathematical — Visuospatial]), which isolated brain regions uniquely
contributing to mathematical problem solving separated from verbal and visuospatial modalities. Similar
conjunction analyses were performed for verbal ([Verbal — Mathematical] N [Verbal — Visuospatial]) and
visuospatial specific contrasts ([Visuospatial — Mathematical] N [Visuospatial — Verbal]). This method for
computing the contrasts of multiple ALE images determines which clusters are statistically selective in
one ALE map from those regions shared with all other ALE maps. Thus, we assessed domain specificity
by examining if one task domain demonstrated greater convergence compared to both of the other task
domains. All contrast analyses were generated with voxel-wise thresholding at P < 0.01 (false-discovery
rate corrected) using 250 mm?* minimum cluster volumes and 10,000 permutations. The anatomical

locations of the observed clusters are labeled and reported in MNI space.

Lastly, we conducted a meta-analysis in which we considered the role of cognitive demand within
problem solving. Our approach in this analysis was similar to that previously adopted by Duncan and
Owen (2000) in their observation of the multiple demand network. We selected contrasts for this final
meta-analysis that compared high to low demands across problem tasks (i.e. Complex > Simple Problem
Solving) that were otherwise identical. In this way, we assessed convergence across a range of different

problem solving experiments, each of which isolated the specific neural underpinning associated with



problem difficulty while still controlling for additional factors potentially impacting demand (e.g. task

type).

3. RESULTS
3.1. Literature Search Results

The results of the problem solving literature search across mathematical, verbal, and visuospatial
domains are described in detail below; the specific contrasts are detailed in Supplementary Table 1,
along with the numbers of foci and subjects, task, stimulus, contrast classification, and neuroimaging

modality.
3.1.1. Mathematical Problem Solving Paradigms

Numerical calculation was the most widely studied representational domain within the neuroimaging
problem solving literature. Overall, the literature search identified 99 mathematical problem solving
contrasts, yielding 1,044 activation foci from 41 published papers. A total of 65 of these contrasts
compared problem solving with a rest or low-level baseline condition, 21 contrasted two different forms
of mathematical problem solving, and 13 compared complex versus simple conditions. Although
operand tasks took varying forms, basic paradigm structure involved mental binary operations (i.e.,
addition, subtraction, multiplication, division) being performed on integer Arabic numerals to arrive at
single valued answers. A 2011 meta-analysis on number sense and calculation (Arsalidou and Taylor,
2011) previously identified several mathematical problem solving studies relevant to the investigation at
hand. Thus, these experiments were included in this meta-analysis, along with additional neuroimaging
studies matching our inclusion criteria. Included paradigms are further described below and in

Supplementary Table 1a.

Number Operation Tasks

The majority of included calculation paradigms involved mental quantity manipulations of either one- or
two-digit Arabic numerals so as to generate, select, or verify solutions to mathematical expressions (e.g.,
“6 + 8” or “12 x 55”). Most number operation tasks presented two numeric values on which a single
binary operation was performed. However, tasks of this class also included operand manipulations on
multi-number lists. Participants responded to numerical and symbolic stimuli by either overtly speaking
solutions, internally identifying them, or using a button press to select the correct value from a list of

answer choices. Calculation verification paradigms presented participants with numerical equations

10



such as “5 — 13 = -8” and participants decided if the statements were true or false. Most numerical
operand paradigms utilized visual stimuli of Arabic digits and/or binary mathematical operands,
however some tasks also presented subjects with Roman numerals, auditory Arabic numerals, or English

words of Arabic numerals.

Baseline or control conditions for operand tasks took one of several forms including identifying,
matching, or comparing target number values. In identification conditions, participants overtly recited
values or pressed a button when a target number, letter, word, or symbol appeared on a screen.
Baseline matching conditions instructed participants to select an identical number to a previously
presented stimulus. In comparison tasks, participants viewed number pairs and identified the digit of
larger value. Number comparison, which is sometimes used to measure numeric distance or number
sense, did not fit our cognitively demanding definition for problem solving; thus, we considered these

tasks as appropriate high-level control conditions for calculation tasks (i.e., Calculation > Comparison).

The present meta-analysis additionally included high-level contrasts such as Multiplication > Addition,
Complex > Simple, Number Problems > Word Problems, or Exact Calculation > Approximation. While
these control conditions were themselves instances of problem solving, their cognitive subtractions
yielded coordinate results specific to characteristics central in mathematical problem solving (i.e., in the
respective above examples these were operand type, difficulty level, representation modality, solution
method). Because we sought to include results from multiple varieties of questions and across
characteristics, we likewise included reverse contrasts such as Addition > Multiplication and so on.
Although these reverse contrasts yielded disjoint sets of activation patterns, we considered each
contrast as an independent experiment targeting specific qualities inherent to mathematical problem
solving. Because both sets of coordinate results highlighted specific characteristics within the general
umbrella of mathematical problem solving, they were included. The literature search produced 80 (out
of 99 total mathematical problem solving) number operations contrasts associated with 776 activation

foci from 30 papers for inclusion in the meta-analysis.

Paced Auditory/Visual Serial Addition Test

The paced addition serial attention test (PASAT), modified PASAT (mPASAT), or paced visual serial
attention test (PVSAT) are neuropsychological tests widely used to study cognitive impairments,
attention, information processing speed, and working memory (Tombaugh, 2006). The primary
procedure in this paradigm involves mentally and serially adding digits together. Participants are

presented with either an auditory (PASAT or mPASAT) or a visual (PVSAT) sequence of numbers, with

11



individual digits ranging between 0 and 9, and are instructed to mentally add the first and second
numbers. This sum is then mentally added to the third value, and so on, until the sum of digits equals
10. The participant indicates the sum equals 10 with a button press or hand gesture and begins the
serial summation again. While the paradigm has been used to investigate working memory (Lazeron et
al., 2003; Mainero et al., 2004) this calculation task employs sequential addition of an unknown number
of random digits until a final value is determined. Thus, the paradigm implicates multi-stepped analytical
thinking within the rule set of addition until completion, with the goal of correctly identifying the closing
number in the additive sequence. Accordingly, we characterized the PA/VSAT task as a mathematically-
based problem solving paradigm and included these tasks in the mathematical meta-analysis. The
literature search yielded 7 (out of 99 total mathematical problem solving) PA/VSAT contrasts, which

included 138 activation foci from 6 papers.

Additional Mathematical Tasks

Several neuroimaging paradigms targeted mathematical problem solving processes employing less
common number or math-based stimuli. Such tasks included percent estimation problems (“what is 44
percent of 70?”; Venkatraman et al., 2006), equation-based algebraic or calculus problem manipulations
(Krueger et al., 2008; Newman et al., 2011), or other algorithm-based problems such as pyramid
problems (Delazer et al., 2005) or number bisection problems (Wood et al., 2008). In pyramid problems
participants viewed non-standard operation expressions such as 5453 and were trained to perform the
corresponding “S” algorithm (in this example, 54+53+52 where 54 is the ‘base number’ and 3 is the
‘addition span number’). Number bisection problems cued participants with ordered number triplets
such as (44,62,87) and participants determined if the middle value was also the mean of the flanking
numbers. The literature search yielded 12 additional (out of 99 total) mathematical contrasts reporting

130 activation foci from 5 papers for inclusion in the meta-analysis.
3.1.2. Verbal Problem Solving Paradigms

Neuroimaging problem solving paradigms in the verbal domain asked questions via letter, word, or
sentence stimuli, and participants used logic or content knowledge to comprehend, generate, or identify
solutions. Overall, the literature search identified 93 verbal problem solving contrasts, which reported
1,028 activation foci from 43 published papers. Of the 93 verbal contrasts identified, 49 compared
problem solving with a baseline condition, 13 contrasted complex to simple problem solving in the
verbal domain, 22 contrasted differing types of verbal problem solving, 7 identified activation at distinct

problem solving phases by contrasting distinct stages in the problem solving process, and two compared

12



untrained to trained verbal problem solving. Paradigms in this category included deductive and
inductive reasoning sentences, riddles and insight questions, paragraph-based word problems, and word
or letter string analogy sets. These paradigms displayed diversity in stimuli and reasoning methods used,
and participants responded via button press to either select from a set of solution options, indicate if a
given problem was logical or illogical, or if they had been successfully able to arrive at a solution to the
verbal problem before the time expired and an answer was revealed. Included paradigms are described

below and in Supplementary Table 1b.

Deductive Reasoning Paradigms

Deduction is a logical process in which specific conclusions are inferred from general rules.
Neuroimaging paradigms typically explore mechanisms supporting deductive reasoning across
categorical (e.g., All A’s are B’s, All B’s are C’s, therefore all A’s are C’s), relational (e.g., A is to the right
of B, B is to the right of C, A is to the right of C), or propositional (e.g., If A then B; A; Therefore B)
argument types. In these paradigms, subjects considered sentence- or letter-based arguments and
determined if a given conclusion logically followed from the premises. Participants were instructed to
respond to questions by pressing a button to indicate if the argument was valid or invalid. Deductive
reasoning control conditions typically asked logic questions whose answers were trivially false (e.g., “if A
is to the right of B and B is the right of C, is D is to the right of F?”) A 2011 neuroimaging meta-analysis
(Prado et al., 2011) of deductive reasoning tasks served as an initial model for studies included in our
language-based problem solving analysis. We included appropriate studies from this deduction meta-

analysis and updated and extended the corpus of deductive linguistic papers for the present study.

While the majority of included verbal deductive reasoning paradigms took one of the conditional forms
described above, several paradigms also included in this category presented linguistically challenging
word problems that required logical deduction. For example, in Newman et al. (2011) participants
viewed statements such as, “The day before my favorite day is two days after Thursday”, and then
determined which day was the favorite. Another study (Kroger et al., 2008) presented word problems
such as, “There are five students in a room. Three or more of these students are joggers. Three or more
of these students are writers. Three or more of these students are dancers. Does it follow that at least
one of the students in the room is all three: a jogger, a writer, and a dancer?”. Some of these studies, as
in Zarnhofer et al. (2013), asked participants to solve arithmetic word problems (e.g., “Anna goes for a
walk. She walks 4 km/h. What distance does she cover in 3 hours?”). These problems, although

mathematical in nature, were included in the verbal meta-analysis because their stimuli were sentence-
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based. The literature search produced 60 (out of 93 total verbal problem solving) deductive reasoning

contrasts associated with 688 activation foci published in 25 papers for inclusion in the meta-analysis.

Verbal Inductive/Probabilistic Reasoning Paradigms

While deductive reasoning is used to make claims on specific information by applying general rules,
inductive reasoning is a procedure by which broad rules are inferred from particular instances (e.g.,
“Mike is a basketball player, Mike is tall. All basketball players are tall.”). While counterexamples can
disprove inductive reasoning statements, they can never be fully logically proved. Thus, in inductive
neuroimaging paradigms, participants determine if the concluding statements are plausible or not

plausible. These inductive tasks are sometimes also referred to as probabilistic reasoning tasks.

Paradigms in this category frequently took a categorical form and the task was to determine of the
statement had a greater chance of being true or false (e.g., “House cats have 32 teeth; Lions have 32
teeth; All felines have 32 teeth?”; Goel and Dolan, 2004). Other probabilistic paradigms included in this
analysis presented participants with event frequencies from hypothetical experiments with known
outcomes and participants probabilistically determined which experiment the results came from. For
example, in Blackwood et al. (2004), participants viewed a serial presentation of positive and negative
words. They were told these words had been drawn from a survey that received a positive to negative
response ratio of either 60:40 or 40:60. Participants were asked to choose which survey the viewed
words had likely been drawn from. The literature search yielded 5 (out of 93 total verbal problem
solving) inductive reasoning contrasts that included 34 activation foci from 4 papers for inclusion in the

meta-analysis.

Verbal Analogy Problems

Analogical reasoning relies on the ability to draw conclusions about relationships from given information
and/or by using background knowledge. Typical analogy problems across the neuroimaging literature,
such as those in Luo et al. (2003), present participants with dual word pairs and subjects determine if
these formed analogous or general semantically related sets (e.g., analogy: “drummer, band” = “soldier,
army”; semantic: “refrigerator, kitchen” = “lounge, room”). Other linguistic analogy tasks were
sentence-based and asked participants to complete phrases such as, “black is to white and high is to
....2” (Wendelken et al., 2008). We also included analogy tasks in this meta-analysis that involved
semantic word retrieval (Wagner et al., 2001) in which participants viewed a cue word and then target

words that were either unrelated, weakly related, or strongly related to the cue (e.g., strongly related:
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“cue = rain; targets = pillow, puddle, book, sneaker”; weakly related: “cue = candle; targets = design,

halo, exists, bald”); subjects selected the target word most related to the cue.

Analogy tasks sometimes used purely letter-based representations; for example, in Geake and Hansen
(2005) participants viewed two successive non-word letters strings that revealed an order- or
alphabetic-based transformation rule (e.g., ird implies dri). Subjects were then shown a third letter
string and choose or generated the letter string that best followed the transformation rule (e.g., ykw
implies ?). Many so-called “fluid analogy” problems, such as in this example, required both semantic and
content knowledge to choose the most plausible answer. A similar paradigm, drawn from the
Educational Testing Service Kit of Factor Referenced Cognitive Sets (Ekstrom et al., 1976), presented
participants with non-word letter strings with some common alphabetic or translational rule, and
participants were asked to identify the “odd one out” from a set of choices (Duncan et al., 2000). The
literature search produced 9 (out of 93 total verbal problem solving) analogy contrasts that reported a

total of 78 activation foci from 5 papers.

Insight Problem Solving

Insight question paradigms are language-based paradigms that targeted the “aha” moment within
problem solving and frequently take the form of sentence- or character-based riddle problems. Riddle
solving involves careful consideration of phrasings and/or semantic indicators such as syntactic or
logographic structure. Neuroimaging riddle paradigms, such as in (Luo and Niki, 2003), used problems
like “What can move heavy logs, but cannot move a small nail?” (solution: “a river”). Other riddle-like
paradigms relied on word play within Chinese character idioms (or “Chengyu”) whose figurative
meanings are often distinct from their literal ones (e.g., an English-language idiom of similar kind is “kick
the bucket”, which has the figurative meaning “to die”; Zhang, 2012). The goal of these paradigms is to
identify the expression’s metaphoric meaning by decomposing constituent characters into meaningful
semantic chunks. For example, in Qiu et al. (2010), participants were given phrases such as A7 IR I,
which translates to “having eyes but being unable to see”, and were asked to derive the idiom’s
underlying meaning. In this case, the answer is 15 (which means “blind”), and is derived by combining
the phonetic symbol = with the semantic radical H that appears as a constituent chunk in the Chengyu
component fi}. Insight paradigms based on chunk decomposition of logograms took multiple but similar

forms in the neuroimaging literature and appropriate studies were included in this meta-analysis.
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Other neuroimaging paradigms that study insight are anagrams puzzles in which letters from words have
been scrambled beyond the point of recognition. Participants, such as those in Aziz-Zadeh et al. (2009),
were presented with these scrambled words and are asked to determine the original word. Several
additional non-standard insight problem solving paradigms were identified as appropriate for this meta-
analysis; one such study (Luo et al., 2013) considered insight in scientific problem solving specifically. In
that study, subjects were presented with paragraph-based real world scientific and engineering
guestions, some of which contained explicit hints towards a solution path. Participants were asked to
determine solutions to these scientific/engineering questions and insight moments were facilitated by
heuristic use. The literature search yielded 19 (out of 93 total verbal problem solving) insight contrasts

reporting 215 activation foci from 12 papers.
3.1.3. Visuospatial Problem Solving Paradigms

In our third and final representational domain, we identified neuroimaging experiments using
visuospatial problem solving to study analogic or relational reasoning by pattern identification,
visualization, induction, and visual processing. Overall, the literature search identified 88 visuospatial
problem solving contrasts which reported 1094 activation foci published in 50 papers. A total of 47 of
these contrasts took the general form of visuospatial problem solving versus a baseline condition, 14
considered complex versus simple visuospatial problem solving, 16 contrasted two types of visuospatial
problem solving, 10 contrasted untrained to trained visuospatial problem solving, and one contrasted
problem solving across different phases. The visual problems sets identified as part of this literature
search varied significantly across studies and many experiments in this representational domain utilized
novel task paradigms. In all included visuospatial problem solving paradigms, participants used
reasoning to respond to picture stimuli. Included paradigms are described below and in Supplementary

Table 1c.

Visuospatial Fluid Reasoning Tasks

“u_n,

Fluid reasoning (sometimes called fluid intelligence, “Spearman's g”, or simply “Gf” or “g”; Spearman,
1928) is the ability to reason in novel situations, independent of prior knowledge or culturally embedded
context (Ferrer et al., 2009). Two canonical neuropsychological paradigms frequently used to investigate
the visuospatial component of fluid reasoning are the Raven’s Progressive Matrices (RPM; Raven, 2000)
and the Cattell’s Culture Fair Test (Cattell, 1973). In the former, participants view 3 x 3 picture grids
whose images progress horizontally and/or vertically by an analogical rule. Participants must determine

the rule(s) of progression and, from a set of options, choose the image that completes the final grid
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entry. Similarly, the Culture Fair Test presents a set of drawings sharing a relational rule. Participants
identify this rule and select either the “odd one out” from the image set, or choose an additional image
that follows similarly. Each paradigm contains problems that parametrically increase in complexity level
(“low” to “high” g) and simple problems are often used as control conditions to more complex fluid

reasoning questions.

Variations of these two visuospatial reasoning tasks have been used across the literature and were also
included in this meta-analysis. The Nagliri Nonverbal Intelligence Test (Kalbfleisch et al., 2007), the Fluid
Intelligence Test (Ebisch et al., 2012), the Geometric Analogical Reasoning Task (Preusse et al., 2011),
and the Nonverbal Reasoning Task (Hampshire et al. 2011) all require subject’s use of relational
integration abilities to identify visual pattern-based rules and make rule-based judgments on images.
The literature search produced 19 (out of 88 total visuospatial problem solving) fluid reasoning contrasts

associated with 200 activation foci from 11 papers that were included in the meta-analysis.

Visual Analogy Problems

Similar to fluid reasoning paradigms, visual analogy problems use picture-based stimuli to depict a
deducible visuospatial rule set. In these types of tasks, participants viewed dual shape or image pairs
(with A:B and C:D structure) that were related via pattern, color, geometric form, or physical
appearance. Participants selected the answer that followed the visual analogical rule or indicated if an
item did or did not follow that rule. For example, in Watson and Chatterjee (2012), problems presented
colored shape strings illustrating a progression rule and participants choose from answer options
putatively illustrating the same rule (e.g., target: red triangle, blue triangle, red circle; answer options:
red diamond, blue diamond, red diamond or red diamond, blue diamond, red square). Similarly, Preusse
et al. (2010) used a task where the rule set was given by mirror symmetry of geometric ensembles.
Participants in this study viewed dual square grids in which blocked shapes depicted transformations
about vertical, horizontal, and/or diagonal axes. The task was to indicate if a second grid pair followed

the same reflection rule as the first.

Not all analogical problems of this category portrayed visual rules via abstract shapes. For example, Cho
et al. (2010) used the People Pieces Analogy Task (Sternberg, 1977) to elicit analogical reasoning by
presenting subjects with two analogical pairs of drawings of human forms. Each pair shared some
common quality (e.g., width, height, gender...) and participants were given a list of these dimensions.
They were asked if dual sets of people pairs correspond across a given dimension. This task involved

problem solving across scales of both relational complexity and levels of attention interference. The
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literature search across visual analogy problems yielded 5 (out of 88 total visuospatial problem solving)

analogical reasoning contrasts reporting 28 activation foci from 4 papers.

Tower of London Task

In the Tower of London (TOL) (Shallice, 1982) or Tower of Hanoi task (Zhang and Norman, 1994),
participants are presented with an initial and target configuration of stacked colored balls or disks (e.g.,
red, green, blue) that lie along three columns. These colored objects can be moved one at a time and
from the top of each stack, and placed on the top of any of the three columns. Participants are tasked
with identifying the minimum number of moves needed to transform an initial arrangement into a final
configuration. This paradigm is frequently used as an assessment of planning within problem solving.
Control tasks for TOL sometimes involved simply counting the number of balls present in a configuration
or watching balls change positions and counting the number of moves (Wagner et al.,, 2006). The
literature search yielded 12 (out of 88 total visuospatial problem solving) Tower of London and Tower of

Hanoi contrasts containing 161 activation foci, as reported in 9 papers included in the meta-analysis.

Spatial Navigation Problem Solving Tasks

Navigation neuroimaging paradigms generally focus on probing the neural mechanisms of spatial
memory (e.g., task objective: “remember the location of objects/places encountered in a virtual
environment and recall the placements later) or spatial planning and learning (e.g., task objective: “find
your way from a starting point to a target location within a map/virtual environment.”) Tasks of the
latter variety aligned with our operational definition of problem solving and appropriate experiments of
this kind were included in the present meta-analysis. Experiments displayed pictures of mazes or maps
from allocentric or egocentric reference frames, and baseline conditions often took the form of route
following along visually guided paths. We included relevant experiments identified in a 2014
neuroimaging meta-analysis of spatial navigation (Boccia et al., 2014) and updated and extended the

corpus of navigation problem solving papers for the present study.

The majority of included tasks asked participants to make one or several critical decisions at intersection
points during navigation, and subjects learned through trial and error which sequence of decisions led to
the desired end location. Other contrasts involved navigating mazes that had been learned during a
training session but that appeared within scanning as shuffled or with significantly altered visual
features, making navigation difficult or in some cases impossible. Tasks of this type sometimes involved
navigation along learned routes containing unexpected features inhibiting passage (e.g., a “roadblock”

requiring detour planning as in Campbell et al., 2009 or laria et al., 2008). Spatial navigation tasks not
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included in this study were those that lacked the crucial problem solving component of figuring out a
means in order to reaching the task goal, for example tasks wherein participants memorized a spatial
layout during training and traversed the same environment during scanning, paradigms involving
navigation from one familiar landmark to another within a participant's home city, or tasks in which the
target location was clearly visible from the starting location. The literature search yielded 39 (out of 88
total visuospatial problem solving) visuospatial navigation problem solving contrasts associated with 531

activation foci from 18 published papers for inclusion in the meta-analysis.

Visuospatial Relational Reasoning

As in verbal deduction paradigms, relational reasoning problems in the visuospatial domain explore
transitive inference across relational argument types (e.g., A is to the left of B, B is to the left of C, A is to
the left of C). Typically, participants completing these tasks undergo initial out-of-scanner training where
they encode multiple ordered shape pairs (e.g., A<B, B<C, C<D, and so on). Taken together these pairs
implicitly represented elements drawn from an ordered shape string (e.g., A<B<C<D<...<N). Then, during
MRI scanning, participants viewed non-sequential pairs of encoded relational shapes and selected the

right-most shape (e.g., Cin A<C or D in B<D; Acuna, 2002; Heckers et al., 2004).

Variations on these relational paradigms involved conditional rule completion or falsifications tasks
wherein participants viewed colored shape configurations and were asked if they could complete or
falsify a relational rule (e.g., "if there is not a red square on the left, then there is a yellow circle on the
right"; Eslinger et al., 2009; Houdé et al., 2000). One such falsification task depicted five colored balls of
equal or unequal weights appearing across four balance scales (Wendelken and Bunge, 2010). The scales
were drawn balanced or tipped to indicate the relative ball weights. The task was to determine if a fifth
scale drawing violated or verified the inferred weight rule. The literature search produced 6 (out of 88
total visuospatial problem solving) relational reasoning contrasts associated with 75 activation foci from

5 papers.

Visual Inductive/Probabilistic Reasoning Paradigms

Inductive reasoning paradigms wherein general rules are inferred from specific instances were less
ubiquitously used in the visuospatial domain. However, appropriate paradigms that presented visual
information and asked participants to decide on generalizable rules or plausible answer choices were
included in this analysis. In one such task (Goel and Dolan, 2000) participants considered sets of animal
drawings where the animal’s physical characteristics (e.g., tail length, abdomen shape) varied along

several degrees of similarity. The task was to generate a rule to determine if all animals in a set were
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likely of the same species. Another task (Blackwood et al., 2004) showed serial images of blue and red
balls and participants determined if the balls had been drawn from a bottle containing either a 40:60 or
a 60:40 ratio of blue to red balls. In another task (Lu et al., 2010) participants viewed inverted triangles
displaying numeric values at each vertex. Each triangle followed a known (e.g., left — right) or unknown
(e.g., bottom + right = left, right + left = bottom) calculation rule. Participants performed simple
calculation (control condition) or inferred the triangle’s rule from a target triangle and then applied that
rule to a new triangle (activation condition). We included this paradigm in the visuospatial problem
solving meta-analysis, even though numerical calculation was involved, because the target problems
used visuospatial stimuli to illustrate spatially encoded induction rules. The literature search yielded 4
(out of 88 total visuospatial problem solving) inductive reasoning contrasts associated with 46 activation

foci from 3 published papers for inclusion in the meta-analysis.

Additional Visuospatial Tasks

We also included visual problem solving within game-play contexts. Strategy-based board games such as
Chess or Go involve abstract reasoning, planning, and visuospatial processing. Although not prevalent in
the literature, some studies (Atherton et al., 2003; Chen et al., 2003) have investigated the neural
correlates involved in this level of strategic game-play. Participants in these experiments viewed in-
progress game boards and either identified the position of target pieces (control condition) or
determined the best next move within a mid-game board configuration (activation condition). The
literature search yielded 3 (out of 88 total visuospatial problem solving) additional visuospatial contrasts

containing 53 activation foci from 2 papers.
3.2. Global Meta-Analysis

After completing the literature search, an ALE meta-analysis was performed across the total set of 131
papers that examined problem solving within all modalities and paradigms to identify convergent brain
regions associated across all problem solving task described above. When multiple contrasts were
reported within a single paper they were modeled as separate experiments provided they met our
inclusions criteria (with 2.10 contrast included on average per paper, and no single paper contributing
more than seven separate contrasts.) This global problem solving meta-analysis included 280
contrasts, which reported a total of 3,166 foci from 1,919 individuals. Convergence across experiments
was observed in the frontal and parietal cortices, bilaterally including the superior, middle, and inferior
frontal gyri (SFG, MFG, and IFG), as well as the dIPFC, dorsomedial prefrontal cortex (dmPFC), and ACC

(Figure 1; coordinates listed in Table 1). Bilateral parietal regions were observed across the medial
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posterior parietal cortex including the SPL, inferior parietal lobule (IPL), and precuneus. In addition to
these frontoparietal clusters, consistent activation was observed in the bilateral anterior insular cortex
(alC), extending into the claustrum, lentiform nucleus, caudate, and anterior thalamus. Primary visual
regions were also implicated in problem solving with bilateral convergence occurring in the inferior and

lateral occipital gyri (I0G and LOG), including the lingual gyrus (LG) and fusiform gyrus (FG).
3.3. Mathematical Problem Solving Meta-Analysis

We next investigated 99 experiments reporting a total of 1,044 foci across 41 papers wherein 560
participants completed mental mathematical problem solving tasks using number, mathematical
symbols, and/or letter- or symbol-based stimuli. Significant ALE-based convergence across these studies
was observed in the frontoparietal cortices, including the dIPFC, dmPFC, ACC, SPL, IPL, and precuneus
(Figure 2A, Table 2a). Similar to the global analysis, multiple bilateral MFG clusters were observed
alongside convergence in SFG extending into the ACC. Peak ALE scores were observed in large bilateral
clusters centered about the IFG, alC, and in portions of anterior prefrontal cortex (PFC). These frontal
regions included somewhat larger left-lateralized ALE clusters. In addition to frontal regions, sizeable
posterior parietal clusters were observed in the supramarginal gyrus as well as bilateral IPL and SPL.
Unlike other representation-specific analyses, the mathematical problem solving analysis displayed

bilateral occipital convergence in the I0G, LOG, FG, and LG.
3.4. Verbal Problem Solving Meta-Analysis

Convergence across 93 verbal-based problem solving experiments reporting 1,028 foci in 43 papers and
including 650 participants was next tested. Similar patterns of convergence occurred across the bilateral
dIPFC, dmPFC, and posterior parietal regions, although somewhat smaller clusters were observed
compared to the calculation analysis (Figure 2B, Table 2b). Verbal problem solving revealed left-
emphasized MFG convergence extending from precentral gyrus / presupplementary motor area (Pre-
SMA), across dIPFC, left MFG, and left orbitofrontal cortex. Specific to this domain were clusters in the
left-lateralized middle temporal gyrus as well as bilateral thalamus. Convergence was also observed in

the LG, and clusters were observed in the cerebellar uvula and pryamis/tuber.
3.5. Visuospatial Problem Solving Meta-Analysis

The third and final domain-based ALE meta-analysis included 88 experiments revealing 1094 activation
foci appearing in 50 papers in which 745 participants engaged in picture-based problem solving tasks.

Within the visuospatial domain, problem solving meta-analysis revealed similar regions of convergence
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as in the global as well as language- and mathematical-based problem solving analyses, including medial
posterior parietal cortex, bilateral horizontal IPS, right SPL, precuneus, bilateral alC, and bilateral mid
and superior frontal gyri (Figure 2C, Table 2c). Multiple precuneus, posterior cingulate,
parahippocampus, and retrosplenial cortex clusters were observed for this visuospatial analysis that
were not revealed by the other representational domains. Additionally, the cortical clusters were overall
more strongly lateralized compared to the mathematical and verbal meta-analyses, and larger regions of

dIPFC convergence were observed in the right compared to left hemisphere.
3.6. Conjunction Across Domains

Next, we sought to identify a core set of brain regions commonly linked with problem solving across all
representational domains by performing a conjunction analysis (Nichols, 2005) across the mathematical,
verbal, and visuospatial ALE results. Nine clusters were identified in this conjunction analysis (Figure 2D,
Table 3). These clusters included the dorsal aspect of the cingulate gyrus/SFG, as well as left dIPFC,
inferior middle frontal gyri (IMFG), left alC, and the horizontal segment of the IPS, with greater cluster
extent observed in the left hemisphere. Table 4 illustrates the ten top terms most associated with the

core problem solving network resulting, as resulting from formal reverse inference analysis.
3.7. Contrast Analyses

Then, to examine functional specialization we performed formal contrast meta-analyses (Bzdok et al.,
2015; Laird et al., 2005) and identified regions of domain specificity for mathematical problem solving
(Figure 3A, Table 5a), verbal problem solving (Figure 3B, Table 5b), and visuospatial problem solving
(Figure 3C, Table 5c). Mathematical problem solving uniquely recruited multiple clusters within a dorsal,
frontal, insular, and occipital network of regions. Superior parietal lobules, IPS, and postcentral sulci
were observed bilaterally along with the left posterior precuneus and bilateral pars opercularis/IFG. The
left of these IFG clusters showed significant extent along the precentral sulcal boundary towards the
precentral gyrus. Mathematical-specific clusters were also observed in the bilateral anterior insula
cortices, bilateral occipital poles, and in the left temporo-occipital part of the left inferior temporal
gyrus. Verbal problem solving was specifically associated with convergence in a strongly left-emphasized
set of frontal, temporal, and occipital areas. Large clusters occurred in Wernicke’s area / left posterior
temporal gyrus, Broca’s area / left pars triangularis, bilateral dorsal striatum (putamen and caudate),
and in the left angular gyrus. Clusters with lesser extent were observed in the left dIPFC, left lingual
gyrus, and in the dorsomedial PFC. This contrast analysis revealed two additional clusters selectively

observed in verbal problem solving studies in the left posterior lobe and the right anterior lobe of the
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cerebellum. Visuospatial problem solving studies showed domain-specific fronto-parietal convergence
bilaterally in the superior frontal sulci, precentral sulci, and in right dIPFC, with cluster extent from
rostral to caudal subdivisions. Visuospatial-specific clusters were additionally observed for bilateral

precuneus, right inferior parietal lobule, posterior cingulate, retrosplenial cortex, and parahippocampus.
3.8. Problem Demand Analysis

Lastly, we wished to examine the common activation patterns associated with problem solving demand
generalized across problem type. We employed a similar selection procedure to that adopted by Duncan
and Owen (2000) in their observation of their multiple demand network by locating convergent neural
correlates associated with task load while simultaneously controlling for variability across problem type.
We selected contrasts that compared problem difficulty across different levels of identical problem tasks
(see Supplementary Table 1d). We tested convergence across 41 Complex > Simple problem solving
experiments reporting 505 foci in 21 papers and including 355 participants. Patterns of co-activation
associated with problem demand were similar to common activity patterns revealed by the global,
domain, and conjunction analyses. Bilateral dIPFC, dmPFC/ACC, left precentral sulcus, bilateral alC, left
lateral frontopolar cortex, left precuneus, bilateral SPL, IPL, and horizontal IPS were associated with
increased problem demand (Figure 4 purple, Table 6). This problem demand network showed significant

overlap with each of the within-domain meta-analytic maps, as well as with the conjunction network.

4. DISCUSSION

We assessed the diverse collection of problem solving neuroimaging studies and performed multiple
guantitative coordinate-based meta-analyses to identify common and distinct brain networks
consistently engaged across various tasks. This study is the first to systematically explore convergent
brain areas evoked by problem solving across its multiple representationally diverse forms. The meta-
analytic corpus of 131 studies included paradigms that, while traditionally considered distinct, met a
common operational definition of problem solving wherein participants performed multi-stepped,
solution-driven critical thinking operations bounded by mathematical, verbal, or visuospatial rule sets.
Global analysis across domains revealed broad involvement of frontal, parietal, insular, and occipital
regions. Separate domain-specific analyses revealed consistent but unique convergent activation
patterns in the dIPFC, mPFC, IPLs, alC, and in temporal, occipital, and subcortical structures. To delineate
content-general or content-specific convergence of activation, we then performed formal conjunction

and contrast analyses across mathematical, verbal, and visuospatial networks. We thus identified a core
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system of dIPFC, dmPFC, IPS, and SPL areas that subtends all types of problem solving. Domain-specific
maps revealed multiple clusters in left temporal gyrus, bilateral insula, occipital pole, bilateral pars
opercularis, and areas across the superior parietal lobules that displayed functional selectivity within
task sub-types. Lastly, problem demand was associated with activation across a broad set of frontal,

parietal, and insular areas similar to those revealed in the domain and conjunction analyses.
4.1. A Core Problem Solving Network

Results from the global problem solving meta-analysis provide evidence that problem solving processes
across traditionally distinct paradigms involving diverse content types engage regions within a consistent
and broad network of fronto-cingulo-limbic-parietal regions. This network included frontal gyri,
especially in dorsal lateral and dorsal medial PFC, anterior cingulate, parietal lobules, precuneus,
occipitotemporal gyri, anterior insula, caudate, putamen, and thalamus. Of these regions, robust
problem solving-related convergence was observed across principal nodes in the well-characterized
central executive (Minzenberg et al., 2009; Niendam et al.,, 2012), Multiple Demand (Duncan, 2013,
2010, 2006; Duncan and Owen, 2000), and salience networks (Seeley et al., 2007). From a systems-level
perspective of brain function, in which distinct distributed networks dynamically interact to flexibly
guide complex behaviors (Cohen et al., 2004), our findings suggest generalized problem solving relies on
a cooperation between perceptual and regulatory systems. Specifically, the alC has been described as a
node connecting central executive and salience networks which translates pertinent bottom-up
information from sensory and limbic inputs to CEN areas, thereby negotiating network switching
between internally focused (i.e., autobiographical) and externally directed (i.e., goal-oriented) states
(Cocchi et al., 2013; Goulden et al., 2014; Menon and Uddin, 2010; Uddin, 2015). This interaction is
thought to initiate CEN regions to implement top-down control and direct coordinated responses and
behavior. Multiple areas across the PFC have been implicated in a range of broad executive functions
including working memory (Curtis and D’Esposito, 2003; Owen et al., 2005), planning (Owen, 1997),
flexibility (Armbruster et al., 2012; Leber et al., 2008), language comprehension (Ferstl et al., 2008),
reasoning (Donoso et al., 2014; Krawczyk et al., 2011), and decision making (Keuken et al., 2014).
Observed parietal CEN areas are also associated with a dorsal attention network and regions within the
superior and inferior parietal lobules support a range of processes including learning (Sarma et al.,
2016), visuospatial working memory (Zago and Tzourio-Mazoyer, 2002), congruency in space, time, and
number sense (Riemer et al., 2016), calculation (Arsalidou and Taylor, 2011; Dehaene et al., 2003),

metacognitive monitoring of information retrieval (Elman et al., 2012), and visual attention (Behrmann
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et al., 2004; Blankenburg et al., 2010; Duncan, 2006). The convergent activation within CEN and salience
networks identified in the global problem solving analysis suggests the areas and their associated
cognitive functions, as influenced by bottom-up signals mediated by alC, play critical roles in problem

solving across content domains.

While the global analysis identified common regions of convergence, domain-separated problem solving
meta-analyses revealed distinct networks that, importantly, showed agreement across a focused set of
frontoparietal areas. These conjunction results suggest problem solving consistently relies on a network-
level subdivision of core executive regions that may bring to bear common cognitive and attentional
elements fundamental to all problem solving processes. Our functional decoding analysis revealed this

2

core network as being associated with psychologically-linked terms such as “monitoring”, “switching”,
“attention”/“attentional”, “working memory”/“memory”, and “demands”, indicating the core network
likely provides multiple general purpose resources including supervisory control (e.g., managerial
support directing or monitoring cognition), attentional and memory processes, and perceptual and
cognitive resources to achieve a broad range of problem solving tasks. One proposed role of such
distributed network subdivisions is in actively managing the explicit within-network engagement of brain
areas to accomplish specific actions and goals (Cole et al., 2013; Fedorenko and Thompson-Schill, 2014;
Mill et al., 2017; Telesford et al., 2016). In this way, particular zones may be differentially engaged based
on the demands and resources required to complete a task, and shared zones may be involved with
mental operations that are critical to, and potentially transferable across, multiple task types (Cole et al.,
2013; Duncan, 2010; Niendam et al., 2012). Common centralized activity across a range of tasks may
also be responsible for making available basic cognitive resources, such as working memory
maintenance or adaptable processing elements, that are critical in performing demanding tasks (Cabeza
and Nyberg, 2000; Fuster, 2013). Indeed, these core regions are frequently functionally coupled across
diverse paradigms (Duncan and Owen, 2000; Niendam et al., 2012) and likely are central in providing
flexible attentional focus in many forms of human cognition (Duncan, 2013, 2006). Thus, the within-
domain problem solving conjunction map engaging dmPFC, mid-DLPFC, IMFG/inferior frontal junction,
left precentral gyrus, precuneus, left horizontal IPS, and bilateral areas in the SPL may represent a
shared sub-network that commonly provides subordinate processing resources (e.g., those engaged in
order to carry out directed cognitive tasks) as well as broader administrative support across problem
solving in general. Focused parietal cortex activity, such as that observed here, has previously been

implicated in start-cue processes, and dedicated sections of the dmPFC and dIPFC are believe to form a

core system responsible for information maintenance, monitoring, and intentioned sustaining of goal-
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oriented task-sets (Dosenbach et al., 2006; Miller and Cohen, 2001). Mid-dIPFC and IMFG/IF) regions are
thought to accomplish process-relevant attentional shifting and task coordination (Brass et al., 2005;
Bunge et al., 2002; Derrfuss et al., 2004). Additionally, it has been proposed that a similar set of core
regions common across demanding cognitive tasks together may also act to flexibly trigger specific
context-dependent schemata appropriate for task performance (Cieslik et al., 2015). These observations
are consistent with the Multiple Demand system, proposed by Duncan et al. (2010, 2006; Duncan and
Owen, 2000), that functions by reducing complex reasoning processes into sub-parts and engaging brain
areas to carry out cognitive operations necessary for successive task steps. Thus, it is plausible that the
common engagement of these multiple core CEN sub-regions during problem solving may support
managerial processes involving initiating, sustaining, and directing attentional demands between
multiple sub-goals that are part of inherently complex multi-stepped processes, while simultaneously
providing basic cognitive resources to aid in processing within a wider set of functionally- and
situationally-relevant sub-networks. Though additional empirical work should be conducted to establish
definitive functional roles and mechanisms, we posit that this common network provides shared general
purpose cognitive processes that commonly guide cognitive operations during problem solving to

access, manage, and allocate relevant executive resources.
4.2. Representational Domain Specificity

The set of regions observed as common across all problem solving contrasts represents a necessary but
insufficient neural system for accomplishing the demands of problem solving within particular contexts.
Separate verbal, visuospatial, and mathematical meta-analyses revealed robust networks each
containing regional dissociations across domains. Therefore, to better characterize domain specificities
in the context of problem solving type, we performed contrast analyses examining brain function
selective to each domain. Our aim was to identify any segregated areas that may be responsible for
particular roles, and thereby distinguish and describe the multilevel processes occurring within context-

specific problem solving.

In the case of mathematical problem solving, the explicit recruitment of fronto-parietal, occipito-
temporal, intraparietal sulcal, and alC sub-regions is consistent with accumulating evidence that a
specific constellation of cortical areas is critically involved in calculation and together may act as a circuit
for mathematical cognition. Numerical manipulation, number ordering, arithmetic, and magnitude
processing all engage a set of such sub-areas (Ansari, 2008; Arsalidou and Taylor, 2011; Bueti and Walsh,

2009; Dehaene et al., 2003; Piazza and Eger, 2016). Moreover, the left temporo-occipital part of the
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inferior temporal gyrus, which was identified in this analysis, has been characterized as a “number form
brain area” responsible for processing visual numerals (Grotheer et al., 2016; Merkley et al., 2016; Shum
et al., 2013). The so-called triple-code model of number processing (Dehaene, 1992; Dehaene and
Cohen, 1995) conceives of a ventral visual pathway that communicates numeral information from
occipital poles to the number form area, where numerals are then represented in a mental scratchpad.
Information is then routed along either a temporo-occipital pathway to the IPS/SPL for magnitude
representation, or onto language processing areas where numbers are represented syntactically and/or
fact-based knowledge is accessed. According to this model, prefrontal circuits then enact the sequential
multi-stepped operations necessary for calculation. Our results coincide with this model and we posit
that the contrast clusters here revealed constitute a functional sub-system to execute mathematically

relevant reasoning processes.

While consensus has not yet been reached on functional pathways subtending linguistic and verbal
processes in language-brain research (Poeppel and Hickok, 2004), it is clear that specific cortical areas, in
line with those uncovered in the present verbal contrast analysis, play vital roles in language processing
(Binder et al., 1997). Significant domain-selective convergence during verbal problem solving occurred in
the classical Wernicke’s and Broca’s areas, which support a broad range of language processes (DeWitt
and Rauschecker, 2013; Gough et al., 2005; Lesser et al., 1986; Poeppel et al., 2008; Wagner et al.,
2001). Left-hemispheric language lateralization (Powell et al., 2006) was observed across several clusters
in posterior and superior temporal sulcus/parieto-temporal junction, areas that co-activate with dorsal-
stream language regions (Erickson et al.,, 2017) and may be responsible for verbal working memory
subroutines (Poeppel and Hickok, 2004). Additionally, this contrast also identified verbal-selectivity in
the left angular gyrus, a region involved with reading comprehension and semantic processing (Seghier,
2013). Sub-cortical basal ganglia clusters (dorsal striatum/caudate) may support reasoning and decision-
making (Robertson et al., 2015), linguistic computation (Monti et al., 2009; Poeppel and Hickok, 2004),
and grammatical processing (Ullman, 2001). Thus, within the verbal domain, we posit that these
identified regions are responsible for actualizing verbally-relevant operations as they are applied within

the context of language-based problem solving.

Visuospatial-selective activity in the superior fontal sulci during problem solving topographically
corresponds to the primary cortical oculomotor areas, the so-called human frontal eye fields (FEFs;
Cieslik et al., 2016; Grosbras et al., 2005; Lobel et al., 2001; Vernet et al., 2014), associated with eye

movements and visual awareness processes, including covert (i.e. non-motor) attention shifts during
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visual discrimination (Grosbras et al., 2005; Muggleton et al., 2003; Vernet et al., 2014). The observed
right hemispheric visuospatially-selective MFG cluster in conjunction with the FEFs has been implicated
in visual search and spatial working memory tasks (Grosbras et al., 2005). Further, as part of the brain’s
gaze control system, the FEFs project to PFC and parietal areas, and increased interaction of regions
within this system occurs during visuospatial judgment, visual focus, and when visuospatial cognitive
demands are increased (de Graaf et al.,, 2010; Edin et al.,, 2007; Vannini et al., 2004). It has been
suggested that, when actively managing visuospatial working memory demands (Courtney et al., 1998),
FEFs send top-down signals to PPC for visuospatial feature analysis. This analysis is then focused to task-
relevant features in the visual stimuli via signals from the MFG (de Graaf et al., 2010), a finding that is
consistent with our visuospatially-specific observations. These contrast results suggest that visuospatial
problem solving engages a neural subsystem to allocate oculomotor and attentional capabilities for

visually salient stimuli.

While these above representational domain results provide convincing evidence that distinct
subsystems support problem solving within particular domains, we add a cautious note that these
findings should not be interpreted as having an overly selective functional role in modality type. For
example, the insula is one of most commonly activated regions of the brain (Behrens et al., 2013; Chang
et al., 2013), yet its involvement in the mathematical contrast results certainly should not be interpreted
as the region exhibiting functional selectivity for mathematics. The same holds true for the within-
domain maps: these results can resemble similar findings from relatively unrelated studies across the
literature (e.g., the mathematical domain network shares activity within regions also observed during
target detection and response inhibition, tasks which arguably have little mathematical demand;
Hampshire et al., 2010). Rather, we believe our results serve to highlight the full constellation of brain

regions that separately and/or cooperatively support problem solving within specific representational

types.

4.3. Cognitive Demand in Problem Solving

The above domain-general, representational, and contrast analyses focused on identifying brain activity
associated with or independent of problem type, as defined by representational modality. Included
experiments spanned a diverse set of contrasts, allowing us to broadly assess convergence in neural
activity linked with distinct varieties of problem solving. However, this pooling across varied contrasts
simultaneously limited our ability to delineate neural correlates associated with specific cognitive

processes central to problem solving. To address this limitation, we adopted the approach of Duncan
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and Owen (2000) and included only contrasts that clearly isolated the same aspect of problem solving,
namely problem difficulty, while also controlling for task type. In this way we were able to cleanly isolate
the neural activation patterns associated with cognitive demand across a breadth of problem solving

tasks.

The observed clusters in the dIPFC, frontopolar cortex, dmPFC, alC, and horizontal IPS represent the
collection of brain regions that consistently respond to increases in problem demand, independent of
problem type. We note that our observations are consistent with previous findings regarding the brain’s
multiple demand (MD) system (Camilleri et al., 2018; Duncan, 2010, 2006; Duncan and Owen, 2000;
Fedorenko et al., 2013). Significant overlap was observed between the problem demand regions and
each within-domain problem network. Thus, general problem solving seems to be broadly linked to the
wider MD system common across diverse tasks and responsible for flexibly accomplishing multiple
attentional and cognitive functions. The MD system is also thought to play a key role in focusing specific
cognitive operations and interfacing with multiple brain systems to execute structured and successive
goal-oriented subtasks (Duncan, 2010). It is not a particularly surprising result that a challenging
problem would draw on enhanced recruitment of this MD system, but what is perhaps more insightful is
that our results seem to suggest this is generally the case, regardless of the type or context of the

problem task.
4.4. A Model for Multi-Network Cooperation in Problem Solving

Viewed collectively, these global, common, domain-specific, and demand-related results outline a set of
related yet dissociable networks engaged during problem solving. The core set of activated regions
appears to be centrally involved in problem demand, and formal reverse inference suggests activation
across these areas provide a set of general cognitive resources that, perhaps, interface across broader
brain systems and focus attention within directed sequential action (Duncan, 2010). At the same time,
contrast results highlight separate representationally-specific sets of coordinated activation patterns
that appear to be honed for achieving precise operations. Together, activity across these domain-
general and domain-specific areas combine to form different aspects of the overall activation patterns
revealed by problem solving within representational domains. Fundamentally, meta-analytic results are
unequipped to evaluate such functional network dynamics, although these processes almost certainly
play an essential role within problem solving. While the particular analyses we conducted cannot isolate
mechanisms in how these dissociable activation patterns come together to achieve the aggregational

cognitive maneuvers that make up problem solving, empirical neuroimaging studies have begun to
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explore these dynamics in regional functional connectivity and network interactions. Additional work is
still needed to elucidate how such processes may support the large variety of problem solving processes
humans face on a day-to-day basis. Here, we outline one possible interpretation of how our multiple
network observations may come together to holistically achieve problem solving across diverse

contexts.

We propose a speculative model of general problem solving brain function that arises from a series of
sub-network and systems-level interactions that together orchestrate multifaceted cognitive
procedures. In our model, the core problem solving network exerts executive control over cognitive
steps to flexibly monitor and maintain neural resources. This process may involve top-down signals
dispatched from the core regions to trigger and coordinate distinct subroutines adapted to domain or
context-specific demands. Sub-processes that occur within broader networks, perhaps similar to those
resolved by our within-domain or global analyses, would likely engage multiple whole-brain systems
including salience and executive networks (Bressler and Menon, 2010). The role of these system-level
interactions in problem solving may be to facilitate integrative cross-network communication, search for
and detect solution relevant stimuli, and funnel information into linked sub-routines to adaptively focus
attention to achieve smaller, targeted reasoning procedures accomplishing focused cognition (Cohen
and D’Esposito, 2016; Duncan, 2013; Uddin, 2017). We propose that honed processes, as directed by the
core network, may participate in feedback loops delivering ascending analyzed information back to
whole-brain systems to sustain multi-stepped analytics and trigger confirmatory metacognitive
processes (e.g., consistency checking or error detection; Mayer, 1998). If this is the case, the core
network may aid in sustaining problem solving-related activity by re-dispatching or re-directing
reasoning subroutines as needed, ultimately informing decision making processes to produce problem
solutions. Of course, meta-analytic results alone cannot confirm this model, and a considerable amount
of additional research is needed to probe the dynamic cross-network connectivity patterns we have
here suggested. However, existing work that sheds light on network dynamics within problem solving,

outlined below, seem to be consistent with this proposed model.

Complex network interactions such as those we have proposed here would likely take on diverse forms
within problem solving, and understanding the ways in which multilevel systems share information may
be key in revealing the neural basis of problem solving efficacy. In language tasks, electrocorticography
has resolved dynamics across multiple left hemispheric sub-networks, and while these networks appear

to coordinate with similar stepwise profiles across subjects, individual differences in response times
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were also reported alongside subject-by-subject variation in sub-network duration during task
engagement (Collard et al., 2016). This suggests common network sequences subtend task completion,
but also distinctive contributions from these dynamics may influence behavioral differences. In fact,
performance in problem solving has been explicitly linked to variations in how brain systems interact
across problem steps. Anderson et al. (2012) revealed shifting combinations of whole-brain neural sub-
states in children as they solved algebra problems; individuals with high error rates utilized more sub-
states at each problem step than their high-performing peers, and reliance on multiple states decreased
as error-prone students achieved competency through practice. Such practice-related interactional
changes have also been observed in the case of motor learning where connectivity between visual and
motor systems decreased as learning occurred over time, suggesting whole-brain systems operate with
increased autonomy as procedures become rote and cognitive load diminishes (Bassett et al., 2015).
These findings suggest that difficulties in problem solving may be accompanied by increased cross-
network complexity, perhaps as characterized by cognitive lingering or looping between unnecessary or
convoluted neural states, and that ease in solution derivation may rely on more efficient multileveled

network dynamics.

Yet solving truly novel problems is rarely easy, and these network dynamics should be considered in the
context of problem solving as an implicitly challenging act that requires forging exploratory paths
towards unknown solutions. These processes can demand substantial cognitive load and may require a
certain degree of initial lingering within inefficient operations in order to flip positions of uncertainty
towards coordinated and meaningful maneuvers. It is likely, then, that successful problem solving relies
on a balance of multileveled and complex network crosstalk that eventually transitions towards efficient
cooperation between whole-brain systems and targeted sub-processes. The use of creativity within
problem solving is one resource that aids in flipping initial ineffectual processes towards productive
solution derivations (Aldous, 2007; Fink et al., 2009; Lubart and Mouchiroud, 2003), and increased
dynamic coupling between salience, DMN, and CEN regions has been observed to support such creative
idea production (Beaty et al., 2015). At the same time, creative processes in problem solving go hand in
hand with shifting attentional focus across problem features (Friedman et al., 2003; Wegbreit et al.,
2012; Wiley and Jarosz, 2012), and increased effective connectivity between salience and CEN regions
has been observed in individuals with a strong ability to engage in attentional switching, but not for
those with reduced capacity to shift attentional stances during tasks (Kondo et al., 2004). It is likely,
then, that differences in problem solving success may be characterized by the nature and process of

coupling between salience, CEN, and DMN systems. Individuals experiencing difficulty in solving
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problems may rely on more elongated creativity and attentional shifting mechanisms that drive
connectivity loops between fronto-cingulo-parietal regions. In contrast, individuals with more
experience in problem solving may be better able to transition that sustained cross-system driving
towards more effective honed sub-processes useful in solution derivation. Understanding the processes
by which networks interact may prove to be important when understanding individual or group-level
differences in problem solving competency. Meta-analytic techniques such as those employed in the
present study cannot resolve brain dynamics or measure between-network connectivity, but the broad
and processes-specific nature of our results suggest cooperation between large-scale brain systems and
functionally specific sub-networks may play a crucial role in problem solving. Observing how these
interactions occur may help elucidate remaining questions in how to better support problem solving

success across individuals.
4.5, Limitations and Future Work

This study broadly, and for the first time, characterized the common and dissociable neural correlates
underlying multiple examples of human problem solving. The investigation synthesized findings from a
corpus of neuroimaging experiments reporting coordinate-based results across varied problem solving
manifestations in healthy subjects. We included a wide variety of problem tasks and contrasts so that
we could determine convergent brain activity associated with domain general problem solving
networks. However, this approach had two main limitations. First, while this set of studies was
sufficiently diverse, problem solving as a whole is widely investigated across disciplines and contexts.
Thus, the mathematical, verbal, and visuospatial paradigms we examined constitute a subset of the
larger breadth of human problem solving. However, while the neural substrates uncovered in this study
may best model a particular slice of possible human problem solving processes, it is tenable that similar
systems of coordinating perceptual, regulatory, and/or contextually bound channels are also broadly

representative of generalizable neural mechanisms across the scope of human problem solving.

The second limitation stems from the diversity of contrasts chosen. We modeled problem solving as a
general process by including a wide variety of contrasts. This broad focus identified commonalities
across problem tasks and contexts, but simultaneously restricted our ability to resolve the differential
contributions specific cognitive processes had on the resulting meta-analytic maps. However, unlike our
domain-general or representationally specific results, the problem demand analysis included contrasts

of only one type (i.e., complex > simple problems), and was thus able to identify such common
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activation patterns linked with problem difficulty. Further investigations seeking to isolate other specific

constituent processes or characteristics central within problem solving can take a similar approach.

Further, all problem solving instances in this study were conducted in a laboratory environment. Yet,
there is a growing cross-disciplinary appreciation of the many ways social, motivational, and affective
processes can impact problem solving abilities (Beilock and Decaro, 2007; DeBellis and Goldin, 2006;
Heller et al., 1992; Mayer, 1998). Thus, the mental processes underlying problem solving in a controlled
setting may not identically resemble those of problem solving outside the laboratory. Additional studies
bridging problem solving neuroimaging investigations with social and affective neuroscience need to be
conducted before we are able to explore these topics with meta-analytic tools. Given these limitations,
it is likely that the neural representations of problem solving occurring across naturalistic settings and
contexts may involve different sets of activation patterns than those reported in this study. However,
our finding of a shared core network that may play a role in coordinating, engaging, or negotiating
sensory signals likely holds even for more distributed or complex networks. Integrating neuroimaging
research in problem solving with multileveled experimental methods that explicitly attend to ecological
significance may more appropriately characterize the ways affective and social factors influence the

neural makeup of problem solving.

Lastly, meta-analytic results are of course limited by the quality and volume of studies available in the
neuroimaging literature. There are several sources of error inherent to fMRI analyses, such as inter-
subject anatomical variability and spatial smoothing, that can lead to decreased resolution in group-level
fMRI analyses (Nieto-Castafion and Fedorenko, 2012), and in turn cause specious spatial overlap in
meta-analytic results. This issue impacts both fMRI group-level analyses and meta-analysis in general.
The results we present in this study show centralized and consistent co-activation patterns across
multiple task types and domains, and because of the coherences across our set of problem solving
network findings, they are not likely simply the product of sources of noise. However, spatial error may

still have contributed to lack of specificity in our observations.

This study leverages the existing wealth of problem solving activation-location findings to reveal
patterns of domain-general and context-specific brain networks associated with diverse problem solving
tasks. We propose that the coordinated set of these multiple systems may provide supervisory,
attentional, and perceptual support to accomplish problem solving across contexts. Promising next
steps in problem solving research may be to further measure these stepwise neural profiles, with an

explicit consideration on how naturalistic settings and behavioral factors can impact network
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interactions. Previous work has linked similar brain areas as those revealed here to inter-individual
variability in cognitive ability (Goodkind et al., 2015; Muller et al., 2015), but it is currently unclear how
variations in network or sub-network connectivity patterns may aid or inhibit individual differences in
problem solving success, and by understanding these processes from both a behavioral and
neuroscientific perspective we may be better able to characterize how problem solving skills develop
across training. Such insight could inform interventions to address the challenges posed by cognitive
dysfunction or affective deterrents on problem solving success (Ferrari, 2011). Neuroscience-based
interventions have already been used to successfully improve problem solving performance in students
via mindset shifting (e.g., from intelligence-as-fixed stances to beliefs in malleable cognitive abilities;
Blackwell et al., 2007; Dweck and Leggett, 1988). Such interventions have not yet been widely applied in
cases of cognitive deficits, but a detailed mapping of the neural bases of problem solving could be used
to develop tools and strategies to mitigate disadvantaging impacts of dyslexia or dyscalculia
(Butterworth et al., 2011; Gabrieli, 2009; Kaufmann, 2008). Arguably, one of the fundamental goals of
neuroimaging research as a whole is to impact and improve people’s everyday experiences and
behaviors. In this sense, one of the most promising future directions of neuroimaging problem solving
research is to inform evidence-based educational interventions that aid in successful reasoning and skill
development. Thus, understanding the neural mechanisms of problem solving, especially with a focus on
how cognitive, affective, and environmental factors can influence network dynamics and neural

development, has wide reaching applications.
5. Conclusions

In the present study, we performed multiple problem solving meta-analyses to answer the questions:
“How is content-general problem solving supported in the brain?”, “Does a common network direct all
types of problem solving processes?”, and “What neural underpinnings selectively represent problem
solving within specific content variants?”. By considering a comprehensive set of problem solving tasks
that, heretofore, have only been considered separately, we provide evidence for a common brain-based
mechanism for human problem solving in which a shared frontoparietal system provides dual
attentional and regulatory support across diverse problem solving tasks, and we identify distinguishable
activation patterns that may uniquely contribute to specific representationally-linked functions in
problem solving across contexts. Our results suggest multiple convergent neural systems, including

salience and cognitive control networks, give rise to generalized problem solving. Unique circuits within

these networks support context-specific sub-classes of problem solving, and consistency across diverse
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stimulus modalities demonstrates a core network that supports problem solving independent of content
or focus. This core network appears to play a key role in managing problem demand. The current work
provides a novel neurobiological perspective on the wider study of problem solving across knowledge
domains and may serve to inform neuroeducational techniques aiming to understand more about the

acquisition of problem solving skills.
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TABLES AND FIGURE CAPTIONS

Figure 1. Global Problem Solving Meta-Analysis. The global problem solving meta-analysis identified
convergence across 131 papers reporting coordinate results from a diverse range of problem solving
experiments. Multiple problem solving modalities were represented in this set, with 280 experimental
contrasts across 1,919 subjects. The broad engagement across whole-brain systems depicted by this
map represents the overall neural underpinnings of problem solving.

Figure 2. Representational Domain-specific and Conjunction Problem Solving Meta-Analyses. Problem
solving experiments were categorized into three representational variants. Within-domain meta-analytic
maps are shown for (a) mathematical problem solving (red) = 99 experiments, (b) verbal problem solving
(green) = 93 experiments, and (c) visuospatial problem solving (blue) = 88 experiments. A common set of
brain regions, present across this heterogeneous set of 280 problem solving contrasts, is depicted in (d),
which shows the minimum statistic conjunction between all three within-domain maps (pink).

Figure 3. Contrast Problem Solving Meta-Analyses. Contrast analysis for (a) mathematical problem
solving ([Mathematical — Verbal] N [Mathematical — Visuospatial]; rose), (b) verbal problem solving
([Verbal- Mathematical] N [Verbal — Visuospatial]; green), and (c) visuospatial problem solving
([Visuospatial — Verbal] N [Visuospatial — Mathematical]; light blue) shows representational specificity
across distinct cortical areas. The difference maps show context-bound variations across problem
solving types, confirming problem solving within specific domains relies on differential sets of
functionally precise neural circuitry.

Figure 4. Problem Demand Meta-Analyses and Domain-Specific Overlays. High vs. low demand
problem solving meta-analysis (= 41 experiments), as compared across problem solving by
representational domains. Meta-analysis of problem solving tasks contrasting high vs. low demand
(transparent purple) are overlaid with the three representational domain meta-analysis and the
conjunction meta-analysis: (a) mathematical domain (red), (b) verbal domain (green), (c) visuospatial
domain (blue), and (d) conjunction across domains (pink).

Table 1. Coordinates of convergent activation from the global problem solving meta-analysis.

Table 2. Coordinates of convergent activation from the (a) mathematical, (b) verbal, and (c) visuospatial
problem solving meta-analyses.

Table 3. Coordinates of convergent activation from the minimum statistic conjunction across
mathematical, verbal, and visuospatial problem solving meta-analyses.

Table 4. Top ten associated terms resulting from the functional decoding of the conjunction network.

Table 5. Coordinates of convergent activation from the contrast analyses across (a) mathematical, (b)
verbal, and c) visuospatial problem solving meta-analyses.

Table 6. Coordinates of convergent activation from the problem demand analysis.

Table 1.
Global Problem Solving Meta-Analysis: Cluster Results
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Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y Z

1 -8 -60 44 43272 4.963767915
2 -40 14 28 34880 5.141902878
3 0 16 48 14136 5.19457248
4 48 22 26 10424 4.716323501
5 34 24 -2 4376 4.996635954
6 28 4 56 4152 4.715339105
7 26 -90 -2 3944 3.877476901
8 -44 -68 -10 3392 4.341783053
9 -22 -90 -6 3256 3.65327546
10 12 8 0 1824 4.033060065
11 -10 -2 8 1184 3.545771589

Table 2.

a) Mathematical Problem Solving Meta-Analysis: Cluster Results

Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y Z
1 -40 12 28 23472 4.757348649
2 -32 -58 46 20760 4952114314
3 34 -56 46 12232 4.66749558
4 -2 14 50 8520 4.587236176
5 -38 -78 -8 6000 4.090342946
6 48 14 26 5776 4.553845298
7 36 22 -2 4048 4.601554238
8 30 -92 -2 2136 3.88118772
9 44 44 18 1744 4.158273835

b) Verbal Problem Solving Meta-Analysis: Cluster Results

Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y Z
1 -44 12 32 15312 4.33758957
2 0 18 46 9480 4.318861886
3 -36 -58 46 9040 3.971342055
4 28 -58 48 3912 4.051548754
5 -46 42 -4 3096 4.057574112
6 -56 -38 2 2296 3.895057602
7 46 16 26 2056 3.709159944
8 14 10 -6 1536 4.127226892
9 28 0 56 1528 3.712928623
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10 -32 18 -2 1472 3.861140029

11 -6 -76  -32 1296 4.355912738
12 -16 6 -2 1248 4.056552219
13 32 -60 -32 1088 3.83674567
14 -14 -90 -6 1072 3.594205998

c) Visuospatial Problem Solving Meta-Analysis: Cluster Results

Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y VA
1 -6 -64 44 12112 3.716603808
2 -26 -2 56 3848 4211441027
3 26 2 56 3104 3.989812445
4 46 28 28 2912 3.76056968
5 -22 -48 -8 2832 4.16922139
6 2 18 46 2424 3.894823741
7 26 -44 -8 2136 4.227535089
8 16 -50 10 1920 3.638302641
9 -30 22 2 1672 3.901817582
10 -14 -56 10 1504 3.596709638
11 30 22 -4 1416 3.786637829
12 -46 30 26 1000 3.550904407
13 42 -46 48 984 3.81960495
Table 3.

Conjunction Across Domains: Cluster Results

Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y Z
1 2 18 48 1536 3.795474291
2 -36 -54 42 864 3.402106762
3 -28 0 56 800 3.845850468
4 -32 20 0 560 3.640799761
5 -48 28 24 120 3.228693962
6 -20 -70 48 96 3.411124468
7 26 -66 42 88 3.235001564
8 48 26 26 40 3.147454739
9 38 -48 48 32 3.250995159
Table 4.

Functional Decoding Analysis:
Conjunction Network

Term Weight
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1 Monitoring 17.511787
2 Attention 16.065172
3 Working_memory 15.301581
4 Switching 14.103548
5 Motor 13.420883
6 Number 12.446875
7 Aging 10.583265
8 Memory 10.412371
9 Demands 9.7924593
10 Attentional 9.4440851
Table 5.

a) Mathematical Contrast Analysis: Cluster Results

Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y Z

1 -36 -54 46 7128 2.340867996
2 36 -58 48 3560 2.346692562
3 -48 6 30 2120 2.027558804
4 -48 -66 -14 1176 2.018541098
5 40 20 -4 1096 2.078261852
6 52 14 22 1096 2.07727766
7 -22 -96 0 664 2.101318121
8 34 -94 0 528 2.133773804
9 -36 28 -2 504 1.951239109
10 -48 36 20 464 1.945821404
11 2 4 62 464 1.890849352
12 46 -32 48 424 2.093444824
13 40 44 16 392 1.966767192
14 -10 -76 54 264 1.927932382
15 -10 18 48 24 1.77411747
16 10 20 34 24 1.752256036
17 42 46 28 16 1.736196518

b) Verbal Problem Solving Meta-Analysis: Cluster Results

Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y Z
1 -54 -38 0 2248 2.997398615
2 -50 20 14 1840 2.411432981
3 -6 -76  -32 1168 2.755334377
4 -18 6 -4 1016 2.47303915
5 -46 44 -4 928 1.907864809
6 16 10 -6 768 2.219819307
7 32 -58 -32 760 2.22034359
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8 -44 16 42 688

1.848007679

9 -48 -62 38 432 2.081069469
10 -8 6 44 248 1.883606553
11 -8 28 44 216 1.80697155
12 -52 24 -6 80 1.819324493
13 24 -60 46 48 1.733970284
14 8 12 54 32 1.815988064
15 -8 -90 -4 32 1.730034351
16 -20 -64 48 16 1.735799193
17 -14 -88 -8 16 1.734013796

c) Visuospatial Problem Solving Meta-Analysis: Cluster Results

Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y VA
1 -22 -48 -8 2648 2.875540972
2 26 -44 -8 2128 3.413183212
3 14 -70 44 2000 2.023887396
4 16 -50 10 1840 3.255892754
5 -14 -56 10 1408 2.71631217
6 -10 -60 44 1176 2.350823879
7 52 32 24 576 2.226128817
8 22 0 56 544 1.922692895
9 -22 -10 54 472 1.992258668
10 40 26 38 288 2.014489889
11 44 -50 50 232 1.95740664
12 28 20 -6 144 1.769598603
13 -4 -66 58 96 1.929203629
14 -12 -72 34 72 1.777338266
15 -28 16 10 48 1.747480989
16 -24 14 62 16 1.708054066
Table 6.

Problem Demand Meta-Analysis: Cluster Results

Cluster Center of Mass Cluster Mean ALE
(MNI space) Extent Score
(mm?)
X Y Z
1 2 20 46 8000 4.666377414
2 46 18 30 6048 4.15580997
3 -30 -62 46 5888 3.862501404
4 -46 18 30 5488 3.90340326
5 -48 42 -4 2952 3.816493092
6 -26 -2 56 2008 4.388107072
7 30 -60 48 1960 3.703304083
8 -32 20 -2 1712 4.010184277
9 34 24 -6 1496 3.495624957
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