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Abstract:

Nanoindentation has been widely adopted for mechanical properties characterization of
two-dimensional (2D) materials, where one typically starts with measuring the indentation
load-displacement relationship of a selected 2D material, either free-standing or on a substrate,
and then fits the result to an analytical model to extract the elastic modulus and strength of the
material. However, the existing indentation models were not originally intended to be used for
atomically thin materials, which has led to some controversies and confusion in the field.
There is now an urgent need to develop new analytical models capable of describing the
indentation response of 2D materials for accurate characterization of their mechanical
properties. Here, we review recent progress in this field to identify existing issues and
opportunities for future studies.
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1. Introduction

Two-dimensional (2D) materials, including graphene [1], layered transition metal
dichalcogenides (e.g., MoS, and WS, [2-4]) and layered black phosphorous (BP) [5, 6] have
attracted worldwide research interest due to their unique electrical, thermal and mechanical
properties. Many potential applications of 2D materials (e.g., 2D nanodevices) are related to
their mechanical properties [7-12], such as elastic modulus E, Poisson ratio v and intrinsic
strength &, Due to the nanoscale thickness of 2D materials, measuring their mechanical
properties via conventional tensile and bending testing approaches is challenging [13-15].
Numerical studies to investigate the intrinsic mechanical properties of 2D materials have been
primarily based on atomic simulations, including classic meolecular dynamics (MD) with
empirical interatomic potentials [16-20] and quantum mechanics (QM)-based techniques
[21-26].

The mechanical behavior of 2D materials depends on the range of applied loads. Based
on the first principle calculations [21-24], graphene exhibits an anisotropic nonlinear behavior
under sufficiently large deformation (e.g., ¢ > 5%), whereas it follows an isotropic linear
behavior under very small deformation. Similar statements can be made for other 2D
materials except for BP, which behaves highly anisotropic [18, 26, 27]. Therefore, other than
BP, most 2D materials undergoing small deformations can be regarded as isotropic and linear
elastic with Young’s modulus £ and Poisson ratio v. Under moderate to large deformations,
2D materials are often modeled as a continuum thin shell with the following constitutive
relationship [17, 21, 24, 25, 28-30]:

o=FEs+Ds’ (1)
where the coefficient DD of the second-order term is typically taken to be negative (D < 0),
leading to a reduced stiffness with increasing tensile strain. The maximum value of g, at

which 0o /0de =0, defines the so-called intrinsic strength and strain to failure as follows:
o, =—E*[AD atthe strain g, =-E/2D. 2)

Note that there are also more sophisticated nonlinear and anisotropic constitutive models [22,

24, 31, 32], which have more model parameters and can more accurately describe nonlinear



and anisotropic behaviors of a 2D material under large deformation. However, determining all
the parameters associated with these models via experiments is challenging.

Indentation testing is by far the most frequently adopted method for characterizing the
mechanical properties of 2D materials. This method can be divided into two categories: (1)
indentation of free-standing (FS) 2D materials via AFM, referred to as frec-standing
indentation (FSI) testing [27, 33-53], and (2) instrumented nanoindentation of 2D materials
on a substrate [54-57]. In such tests, the indentation load-displacement relationship of a 2D
material, either FS or on a substrate, is measured, and the material’s mechanical properties are
then extracted by fitting the measured load-displacement curve to an analytical model. 2D
materials subject to indentation are typically regarded as lincar and isotropic, and all existing
indentation models are derived based on the assumption of an isotropic linear elastic solid.

In measuring the elastic modulus of a 2D material via indentation, the indenter
displacement is typically quite small, which causes a small in-plane tensile strain in the 2D
material except in the vicinity of the indenter tip [33, 55, 56, 58, 59]. In such cases, the elastic
modulus determined from a nonlinear eclastic model of the 2D material is similar to that
obtained from the linear elastic model. Measuring the strength of a 2D material often leads to
large indenter displacement and large in-plane tensile strain in the 2D material, such that a
nonlinear elastic ' model should be used otherwise the strength of the 2D material will be
overestimated [33]. However, there is no analytical solution for the relationship between
indenter load and the maximum in-plane stress for nonlinear membranes (modeled via Eq.(1)),
such that numerical simulations (e.g., FEM [33, 40, 55, 60, 61]) are often employed, in which
the nonlinear elastic behavior (e.g., represented by DD in Eq.(1)) can be effectively obtained.
For anisotropic materials (e.g., single-layer BP) [27], an average of the Young’s moduli along
different orientations is obtained along with the minimum value of strengths along different
orientations.

One problem with this approach is that the existing indentation models were not
originally intended for atomically thin 2D materials, which has led to some controversies and

confusion in the field. Here, we review selected theoretical and experimental studies related to



mechanical properties characterization of 2D materials via indentation testing. The aims of
this review are (1) to emphasize some of the key issues associated with the indentation testing
of 2D materials which might affect their mechanical properties characterization and (2) to
highlight some opportunities for future studies in this field.

This paper is organized as follows: Section 2 provides the theoretical studies of FSI
response of continuous structures (including basic equations associated with FSI). The FSI
testing of 2D materials is discussed in Section 3, which starts from the theoretical model
(equations and methods), followed by analysis of different issues associated with the FSI
testing of 2D materials, including the effects of the sample geometry, boundary conditions,
pre-stress, material nonlinearity (in-plane nonlinear stress-strainrelationship of 2D materials),
defects (e.g., grain boundaries), and van der Waals (vdW) interactions with an AFM tip and
with a substrate near the boundary of the FS region. Section 4 describes the indentation
testing of 2D materials mounted on a substrate, where the issues of interest include the
influence of the elastic modulus ratio of the 2D material to its substrate and the effects of
material nonlinearity and interfacial properties. The final section provides a summary of some
of the existing issues in the indentation characterization of 2D materials and selected topics of
interest for future studies.

2. Theoretical studies of FSI response of continuous structures

Classical models of beam bending and membrane stretching have been used to predict
the indentation response of 2D materials [35, 62-70]. When the ratio of sample size to
indenter tip radius, @/R, is large (e.g., a/R > 30), the indenter load-displacement relationship is
not sensitive to the tip radius (R) so that the indenter can be regarded as a point load [62]. In
this way, the elastic modulus of a sample measured via FSI is commonly based on the point
load assumption, e.g.. for a clamped circular thin plate [62]. However, when the ratio of
sample size to tip radius is not large enough (e.g., @/R < 30), the indenter load-displacement
relationship can be significantly influenced by the indenter tip radius R, and thus, a finite size
tip should be considered [65]. A finite radius should always be used for determining the

intrinsic strength.



2.1 Clamped beam
The relationship between the indentation load (P) and displacement (&) of a doubly

clamped beam subject to a point force at the center of the beam [33, 71] is as follows:

4 3 2 4 3
P JrEW(Lj =T 5r+7rEWr(ij, 3)
6 \L) 2L 8 \L

where 7" denotes a pre-tension in the beam, 7 is the beam width, L is the beam length, and 7 is

the beam thickness. The three terms on the right-hand side of Eq. (3) are associated with
bending, pre-tension and stretching. Note that Eq. (3) i1s an approximate solution, with a
typical error of a few percent relative to the exact beam solution [72].

For a small indentation displacement relative to the sample thickness, ie., & < £ a
sample subjected to FSI primarily undergoes bending, and the stretching term in Eq. (3) can
be neglected. In this case, the P-& relationship i1s approximately linear with the following

slope:

4
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The contribution from stretching, represented by the third term in Eq. (3), increases
rapidly with increasing indentation displacement and becomes dominant when & >> f. In that

case, the first term in Eq. (3) becomes negligible, and the P-4 relationship can be expressed

J &)

as follows:

B n'Wia, (6, N LWt
2 i 8

~ |

where o, =7/ (Wr).

2.2 Clamped circular thin plate
The relationship between the indentation load and displacement of a clamped circular

thin plate subject to a point force at the center of the plate is as follows [62, 64, 65]:

ArEr 5, N
P—{m'FT];'FE(g ta)[aj (6)

where a is the sample radius and & -1/(1.049-0.15v—0.16v*) is a function of Poisson ratio v.
P



Similar to Eq. (3), the three terms on the right-hand side of Eq. (6) correspond to bending,
pre-tension, and stretching.

When the indentation displacement is smaller than the sample thickness, stretching is
considered small; consequently, the third term in Eq. (6) can be neglected. In this case, the
indentation stiffness arises primarily from bending and pre-tension, and the P-& relationship

is approximately linear with the slope:

P AzaE (rJlg
_5t_3(1—v2) a )

ad

For & >> i, the first term in Eq. (6) becomes negligible, and the P- g relationship becomes:

P=ao(m)i+E(§3m)(if (8)
a a
where op = T/(mat).
2.3 Fracture strength

For a clamped, linear elastic, cireular membrane subject to indentation, if the ratios of
Rl/a and op/E are small (R denotes the indenter tip radius), an analytical relationship between
the indentation load and the maximum membrane stress (&) in the contact region directly

underneath the indenter can be approximately obtained [70]. The restriction condition for this

approximate solution is given via a dimensionless factor [70]:

1 2
2o B (RY:
=23 28 - 9
¢ (E %] ©)
If £ << 1, the P-g;, relationship can be estimated as P:4ERIG;/E . the value of o,

corresponding to the maximum indentation load (7)) is typically considered as the fracture
strength of membrane, expressed as follows [70]:
L
P.E Y (10)
o, =] ——
7\ 4zRt
3. FSI testing of 2D materials
FSI testing performed via atomic force microscopy (AFM) is widely used to measure the

mechanical properties of 2D materials [27, 33-51]. In such tests, typically, a clamped



beam/drum-like sample of a 2D material of interest is fabricated in one of the following ways:
(I) mechanical exfoliation of bulk layered materials onto a substrate with patterned cylindrical
holes (or trenches) [33, 34, 50, 51, 73, 74]; (II) removing the substrate underneath the 2D
material through etching [38]; and (III) transferring the 2D material onto a substrate with
patterned cylindrical holes or trenches [11, 40, 41, 44, 52, 61, 75]. In all cases, the 2D
material sample binds tightly with the substrate outside the patterned holes (or trenches) via
vdW interactions [76]. The FS part of the 2D material over a cylindrical hole (or trench) is
indented via an AFM tip, and the relationship between the indentation load (P) and
displacement (&) is recorded. The mechanical properties of the 2D material are then extracted
by fitting the measured P-¢; relationship with an analytical model. In such tests, the 2D
material is deformed in two different modes (bending and stretching) based on the ratio of the
indentation displacement to its thickness (&/1).

Fig. 1 shows images of selected 2D materials measured with FSI [27, 33, 34, 43, 45, 46];
the properties obtained from such tests are listed in Table 1, and the associated geometrical
parameters and loading conditions are listed in Table 2.

3.1 Existing analytical models for I'SI

The FS portion of the 2D material over a trench or circular-hole in the substrate is treated
as a doubly clamped beam (Fig. 2) or a circumferentially clamped drum (see Fig. 4);
consequently, the analytical solutions about the beam bending and membrane stretching can
be used to predict the indentation response of 2D materials [35, 62-70]. In the existing models
for FSL, the selected 2D material is typically assumed to be clamped, the AFM tip idealized as
a point force, and the sample deflection () assumed to be equal to the AFM tip displacement
(4).

Note that the existing indentation analyses are not intended for atomically thin 2D
materials; rather, they were originally developed for clamped continuum beams, plates and
membranes. This discrepancy has led to some controversies in modeling the indentation
response for mechanical properties characterization of 2D materials via FSI testing, as

discussed below.



3.1.1 Doubly clamped beam model

In this model, the relationship between the indentation load and displacement of a 2D
material over a trench in the substrate is modeled by Eq. (3) [27, 34-39, 53, 71]. For a small
indentation displacement relative to the sample thickness, 1.e., & < ¢, a 2D material subjected
to FSI primarily undergoes bending. In this case, the P-§ relationship is approximately linear
(see Fig. 3(a) [34]) with a slope estimated by Eq. (4). For pre-stretched 2D materials, the
clastic modulus £ cannot be directly obtained from Eq. (4) due to the substantial presence of
the second term in Eq. (4), but E can still be extracted from the measured results by varying
the geometric parameters (length L or thickness 1). For example, £ can be obtained from the
fitted relationship between £ and #/L, as shown in Fig. 3(b) [34, 36, 38]. In such cases, it is
typically assumed that the 2D material is subjected to a constant pre-tension (7) that is
insensitive to the thickness ¢ but related to the vdW adhesion strength from the substrate
sidewall (more details are given in section 3.4.2). A larger value ¢ results in a smaller
contribution of 7 to the FSI response and a more accurate estimate of £ using Eq. (4) without
the second term in the right-hand side. For example, the elastic modulus of a multilayered BP
was extracted by fitting its measured P-¢6; curve with a linear relationship [27], resulting in
E.ig = 58.6211.7 GPa along the zigzag direction and Eg., = 27.244.1 GPa along the armchair
direction.

The contribution from stretching, represented by the third term in Eq. (3), increases
rapidly with increasing indentation displacement and becomes dominant when & >> £. In that
case, the first term in Eq. (3) becomes negligible, and the P-4 relationship can be expressed
as (5) [39]. Using Eq. (5). Liet al. [39] determined the elastic modulus of graphene to be £ =
0.8 TPa.

3.1.2 Clamped drum model

In this model, the P-4 relationship is commonly modeled by Eq. (6) [33, 40-50]. When

the indentation displacement is smaller than the sample thickness, the indentation stiffness

arises primarily from bending and pre-tension, and the P-& relationship is approximately

linear with a slope as Eq. (7) [42, 48, 49] (see Fig. 4(b)). With the pre-tension 7 considered



insensitive to t [34, 42], E can be extracted from the relationship between & and /o, as
shown in Fig. 4(¢c). Using Eq. (7), Castellanos-Gomez et al. determined the elastic moduli of
multilayer MoS; and mica to be 330 £ 70 GPa (with the number of layers # = 5-25) [42] and
202 =22 GPa (n = 2-14) [49], respectively; they also found that the elastic moduli of these 2D
materials are not sensitive to their thickness ¢.

For & >> i, the first term in Eq. (6) becomes negligible, and the P-4 relationship is
expressed as Eq. (8) [33, 41, 43-45, 62, 77-80] (see Fig. 5(a)). Fitting the measured P-&
relationship with Eq. (8), Lee et al. [33] reported £ = 1.0 = 0.1 TPa for monolayer graphene;
for mono- and bi-layer MoS,, Bertolazzi et al. [41] reported £ = 270£100 GPa (n = 1) and
200260 GPa (n = 2), and Liu et al. [43] reported £ = 264£18 GPa (n = 1) and 231210 GPa (n
= 2) [43], respectively.

3.1.3 Fracture strength

In the FSI testing of a clamped 2D material, the intrinsic strength of a 2D material can be
typically estimated using Eq. (10) [33, 41, 46, 49] (as shown in Fig. 5(b)). For example, Wang
¢t al. [46] estimated the intrinsic strength of a multilayered BP as 25 GPa, and Bertolazzi et al.
[41] reported the fracture strength of mono- and bi-layer MoS; as 22 GPa and 21 GPa,
respectively.

Note that the existing indentation models are not intended for atomically thin 2D
materials; rather, they were originally developed for clamped continuum beams, plates and
membranes. This discrepancy has led to some controversy in modeling the indentation
response for the mechanical property characterization of 2D materials via FSI testing, as
discussed below.

3.2 Geometrical issues with FSI models
3.2.1 Clamped beam model
In continuum mechanics, a beam typically refers to as a slender structure with a large

length-to-width ratio (Z/1). In applying the clamped beam model to a 2D material under FSI,

the plane strain modulus (E~ = E/ (1— v )), instead of the elastic modulus E, is obtained using

Egs. (4) and (5) when ¥ > 5t [81]. However, the width of such clamped 2D materials

10



fabricated using a transfer technique is typically larger than their length [34, 39], sometimes
several times larger [37, 53], as shown in Fig. 6(a). This geometric issue can induce
substantial error in estimating the elastic modulus using Eqgs. (4) and (5), which can be
corrected using a doubly clamped plate model instead of the beam model mentioned
previously. Consequently, the first term in Eq. (4) is rewritten as follows [37, 64]:

k;ﬁ;ii(i]g (11)
6, 12a(1-v*)\L

:
where the geometrical parameter « depends on the ratio of L/W and the boundary condition
(e.g., for L/IW =1, = 0.0116 for a simply supported plate, whereas @ = 0.00724 for a doubly
clamped plate). Kunz ¢t al. [37] determined the elastic modulus of clay tactoids (with ¢ < 25
nm) as £ = 2119 GPa by fitting their measured P-¢&; relationship with Eq. (11) (see Fig. 6 (b)).

For a plate with a pre-stress or large indentation depth, the beam model (Eqs. (4) and (5))
may induce a large error in estimating elastic modulus; a more accurate solution can be
determined using finite element methed (FEM) simulations since more accurate analytical
solutions are not available. For example, following the functional form of Eq. (6), the P-¢&

relationship of a pre-stretched plate can be expressed as follows:
EF Et
P:|:A?+BGOI:|51‘+CF5: (12)

where the fitting parameters 4, B and C can be determined from FEM simulations.
3.2.2 Clamped drum model

In the existing FST models (e.g., (6)-(8)), the 2D materials are assumed to be subjected to
a central point load, and the size effect of the indenter tip is neglected [62, 77-79]. However,
the ratio of the sample size to tip radius, /R, is finite in actual indentation tests. Begley et al.
reported that the central point load assumption is effective only when o/R > 30 [65]. A
comparison of the stretching term calculated using Egs. (6)-(8) with FEM simulations shows
an error of ~2% for a/R = 50, but this error increases to 16% with &/R = 9, indicating that the
stretching term shown in the above equations is accurate only for very large a/R.

For relatively small a/R, it is suggested that the cubic term in Eqs. (6)-(8) should be

11



corrected by a factor of (a/R)" [65, 69]. Using MD simulations, Tan et al. [82] found that the
clastic modulus of graphene is still overestimated for the case of @/R = 6 after introducing this
correction factor. Due to the associated high computational cost, the tip radius R selected in
MD simulations of spherical indentations should be as low as possible while having a similar
ratio of a/R as experiments (e.g., /R = 20-50 [33]); however, a very small R may cause an
unrealistically high stress concentration; thus, R = 2 nm is typically selected in MD
simulations. Even with R = 2 nm, ¢ must be 100 nm to reach «/R = 50, which is still too
expensive to obtain the effective mechanical properties of 2D materials from the MD results
alone. To address this issue, Zhou et al [16, 83-86] selected a cylindrical tip in MD
simulations (instead of a spherical tip), in which the cylindrical surface is used to indent a
rectangular 2D material sample. Both the sample and the cvlindrical tip are subject to periodic
boundary conditions along the axial direction of the tip, which not only eliminates the
boundary effect along the lateral direction but also significantly reduces the computational
cost. With this configuration, it was also found that the elastic modulus of graphene tends to
be overestimated with a relatively small ratio of /R [84, 83].

Komaragiri et al. [62] showed that the P-¢ relationship of a pre-stretched, circular
membrane 1s actually related to a/R and that when the pre-stress op is much larger than the

membrane stress induced by P, the P- ¢ relationship can be expressed as follows [63, 87]:

2rota | 0,
P—m(ﬂ ¢

Consequently, the FSI response of a pre-stretched 2D material (e.g., Eq. (8)) can be rewritten

as follows [52]:

2rata (o, " 53
-8

Since typically a/R > & in FSI testing (e.g., a/R = 9-50 [33, 44], see Table II), the pre-tension
op in Eq. (14) is higher than that from Eq. (8), and this discrepancy increases with increasing

a/R (e.g., oy is doubled when a/R = 45 [33]).

The thickness of a 2D material has been widely discussed [17, 18, 88-95], and is often

12



1
treated as that of a thin plate (#) to be obtained from equation ¢, =(12D(1—V2)/E2D)2 i

the continuum plate theory, where D is the bending stiffness and F*? = E, the tensile stiffness.
The 2D elastic modulus £t and 2D mtrinsic strength ( &,:f) of the material are associated with
membrane stretching and Ef’ is associated with bending,

In summary, there can be a substantial size effect associated with the indenter tip in the
FSI response of 2D materials, and the combined influence of this size effect and pre-tension
should be further investigated.

3.3 Effect of boundary conditions in FSI models
3.3.1 Experimental investigations

Careful examination of typical FSI tests has revealed that 2D materials do not lie
perfectly flat over a cylindrical hole/trench in a substrate and that a small portion of the 2D
material close to the edge of the FS region is actually attached to the sidewall of the
hole/trench (or it can be said that the FS portion is actually larger in size than the substrate
hole/trench) [33, 41, 43-45, 74-76, 96, 97]. This sidewall adhesion is typically attributed to
the vdW mteraction between the FS 2D material and the substrate sidewall. Due to the
nanoscale thickness of the 2D material, the strength of adhesion to the substrate is assumed to
be sufficiently strong that the FS 2D material can be considered clamped at the boundary, as
shown in Fig. 7 [74]. However, some recent experimental examinations have indicated that
the portion of the 2D material adhered to the substrate sidewall can be delaminated by a small
indentation load [44, 97]; thus, the conventional assumption of a clamped boundary in the
existing FSI models might be inappropriate, as discussed below.

The Raman G-band frequency (@) of graphene typically decreases with increasing
in-plane tensile strain, but a contradictory result was reported by Kitt et al. [97]. They
measured the variation of @, of an FS graphene membrane with an applied pressure difference
(Ap) across 1t and found that there is an imitial small increase in @,, which contradicts the
expected increase in membrane stretching with Ap, as shown in Fig. 8. Kitt et al. hypothesized
that this apparent paradox might be caused by the delamination of graphene from the substrate

sidewall. They also found that the @, of the portion of graphene outside the hole decreases
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with increasing Ap (see Fig. 9 [97]), suggesting that this outside portion is also stretched,
therefore, the FS portion of the graphene was not well clamped.

Lin et al. [44] also found that the adhered portion of graphene could be delaminated from
the substrate sidewall under a small indentation load (~100 nN) by monitoring the geometry
of the FS region before and after loading (see Fig. 10). The initial topology of the FS of
graphene is shown in Fig. 10(a), with a small portion of graphene (~6 nm) adhered onto the
sidewall of the substrate; Fig. 10(b) shows the topology of the FS of graphene under a small
indentation load, which clearly shows that the initially adhered portion has been delaminated.
In addition, a much lower elastic modulus of graphene than its theoretical value (~1 TPa) was
reported in their work, and the initial stage of the measured P-& curve shows a much lower
nonlinear behavior than that predicted by the existing indentation model (Eq. (8)) [44].
Therefore, the separation of the adhesive boundary of 2D materials in FSI tests secems
possible, and the clamped boundary condition used in the existing models might be
inappropriate.

3.3.2 Numerical investigations

Zhou et al. [83] investigated the FSI response of a graphene membrane with an adhesive
boundary condition using an MD simulation in which the graphene membrane consisted of
two portions: a vertical portion adhered to the substrate sidewall and a horizontally suspended
portion, as shown in Fig. 11. The simulation results showed that a small indentation load can
indeed delaminate the vertically adhered portion from the substrate sidewall and that the
horizontal portion is stretched only after the adhered portion is fully delaminated. Using MD
simulations, the vdW adhesion strength between the graphene and the substrate sidewall
(Si0y) was caleulated as Ay = 0.1-0.2 J/m®; it was also found that the carbon atoms in the
adhered portion are delaminated layer by layer with no substantial sliding [83].

The FSI response of 2D materials with the adhesive boundary condition has also been
investigated via FEM in our recent work [98]. As observed in the experiments, the FEM
model of the sample consists of a large horizontal FS region and a small vertical portion that

is adhered to the sidewall of the substrate-hole, as shown in Fig. 12(a). The vdW interaction
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between the substrate sidewall and the adhered 2D material was simulated using a cohesive
zone model, as shown in Fig. 12(b), with model parameters fitted from the MD simulation
results. The vdW adhesion from the substrate sidewall induces a pre-tension in the FS portion
represented by the FEM (g = Ay/EY). The calculated P-4 curves of the 2D materials consist of
two stages based on the evolution of their boundary condition (see Fig. 13) [98]. In stage L,
the adhesive curve behaves less nonlinearly than the corresponding clamped curve, which
indicates that the adhesive boundary condition reduces nonlinearity in the indentation
response; in stage 11, the adhesive curve is parallel with the clamped curve, suggesting that the
sidewall-adhered portion has been fully delaminated. Clearly, the P-4 relationship at the
sidewall delamination stage is not related to the elastic modulus of the 2D materials since the
FS portion is not stretched; thus, their elastic moduli can be effectively determined only after
the adhered portion is fully delaminated from the substrate sidewall.
3.4 Effect of prestress in I'SI models
3.4.1 Experimental investigations

Tensile prestress (ap), which 18 commonly reported in the FSI testing of 2D materials,
can be caused by the vdW interaction between the FS 2D material and the sidewall of the
substrate. The prestress s typically determined from fitting the measured P-&; relationship
with the existing indentation models (¢.g.. Eq. (8)). e.g.. oy = 0.07-1 Nm™ for graphene [33.
34, 44, 50], oy = 0:04-0.07 Nm™ for graphene oxide (GO) [75], oy = 0.02-0.2 Nm™ for Mo$,
[41-43] and oy = 0.06-0.2 Nm for mica [49]. However, a contradictory finding is that oy is
also identified for an FS monolayer graphene grown by chemical vapor deposition (CVD)
with many wrinkles or ripples [44]. Since the bending stiffness of graphene 1s negligible, a
tensile prestress should be easily released by flattening out the wrinkles. T.i et al. [39]
proposed that there is no pre-tension in the FS graphene with wrinkles (observed from AFM
images), and consequently, they neglected the first term in Eq. (8) when they measured the
elastic modulus of CVD-grown graphene.

The reported tensile prestress oy in FSI testing is not consistent with the observed tensile

pre-strain gy, which is estimated from the length of the adhesive portion onto the substrate
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sidewall. For example, Lee et al. [33] observed an adhesive length of approximately 2-10 nm
in their FSI tests on graphene. The pre-strain was then estimated as g = 0.2-1% with ¢ = 0.5
nm, corresponding to a tensile prestress of oy = 0.7-3.4 Nm™', which is much larger than its
counterpart obtained from Eq. (8). Lee et al. [33] attributed this difference to an existing
pre-compression in FS graphene membranes, which might be caused by the lattice mismatch
between graphene and the selected substrate (e.g., Si0;). In the FS region of graphene, the
pre-compression is released, and the resulting increase in the FS area is then adhered onto the
substrate sidewall by vdW adhesion, which also induces a pre-tension in the FS portion.

Considering the effect of the adhesive boundary in the FSI testing of 2D materials, the
pre-tension in an FS 2D material can be released by delaminating the adhered portion from
the substrate sidewall [98]. In this case, this pre-tension may not substantially contribute to
the indentation stiffness of a 2D material and cannot be effectively determined from the P-&
relationship. In addition, the FS portion of a 2D material should be larger than the substrate
hole due to the delamination of the adhered portion. Therefore, a FS 2D material is more often
subjected to a “pre-wrinkling strain™ instead of a pre-tension.
3.4.2 Theoretical investigations

The vdW adhesion from the substrate sidewall causes a small adhered length (s;) of the
2D material onto the substrate sidewall and simultaneously creates a pre-tension in the FS 2D
material. For a eylindrical substrate hole, the biaxial pretension &, = gg¢ = & = 51 /a in the
suspended 2D material (v < a) and &, = & = 5; /a and £g9= 0 in the adhered portion (g < r < a
+ s57), where g, and ggp are strains along the radial and circumferential directions, respectively.
Schematic illustrations on the adhesive boundary condition and the associated pre-tension of a
2D material in FST have been included on Fig. 14.

The value of s; related to the pre-tension can be determined through minimization of the

system potential energy dU,,[/ds, =0 [98]:
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U:az = US + Uadfs
U, =-2ras Ay

US=Upm=fra2t%€02+%E€0((a+s)z—a )l(w Jrf—tvs (15)
Ay(1-

%=-27mm/+27r£51 =0 - 51=Ma

ds, 1-v Ef

where U is the strain energy and Uy, the vdW adhesion energy from the portion of the 2D
material adhered to the sidewall (s;) of a cylindrical hole in the substrate. Initially, the strain
energy Uy 1s mainly from the pretension energy Up, where the two terms on the right-hand of
the third expression in Eq. (15) are associated with biaxial pretension in the suspended portion
and pretension in the adhered portion, respectively. Due to the small value of s;, the strain
energy of the adhered portion is much lower than that of the suspended portion.

With the expression of s; (the last expression in Eq: (15)), the magnitude of pre-tension
in an FS 2D material can be estimated from its vdW adhesion strength Ay with the
substrate-sidewall as follows:

80_%=—Ay(llg—rv) anslf—;ag=%g =Ay (16)

Thus, the pre-tension 7 is not sensitive to the thickness ¢ of the 2D material but can be
estimated from Ay using Eq. (16). Using MD simulations, Ay is estimated as 0.2 Jm™ for
graphene/SiO; [83].0.26 Jm™ for MoS,/Si0; and 0.4 Jm™ for graphene/graphene interfaces
[99]. However, the pre-tension oyt in 2D materials determined from FSI tests typically
deviates from the theoretical value predicted by Eq. (16), suggesting that it is not created by
the vdW adhesion near the boundary of FS 2D materials. For example, the opf of FS graphene
from the experiments (ot < 1 N/m [33, 34, 44, 50]) is significantly higher than its theoretical
value predicted by Eq. (16) (opt £ 0.2 Nm'l); although the apt of FS MoS; is slightly higher
than that of FS graphene from Eq. (16), the experimental value of oyt for FS graphene is
significantly higher [41-43]; GO has a similar oyt as graphene (as determined from Eq. (16)),
but the experimental value of oyt in FS GO (apt £ 0.07 N/m [75]) is approximately one order
of magnitude lower than that of FS graphene.

MD simulations are widely used to investigate the FSI response of 2D materials [16,
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82-86, 100-104]. Neek-Amal et al. [101] and Tan et al. [82] calculated the FSI response of a
clamped circular graphene membrane and found that the simulated P- & relationship followed
Eq. (8) closely. Although no pre-tension was assigned in the simulation, a lincar term of &
was still obtained from fitting the simulated P- & relationship with Eq. (8) [82, 83, 101],i¢.,a
pre-tension was determined from a graphene membrane with no pre-stretching using the
existing indentation model. Their results indicate that the linear term of & obtained from
numerical fitting is not necessarily related to the prestress of the 2D material.

Using MD simulations, Lu et al. [99] and Zhou et al. [83] found that pre-tension in the
FS of graphene with an adhesive boundary is quite small, e.g.; & ~ 3.0 x 10” and 8.3 x 10™
for SiO; and carbon-type sidewalls, respectively, which follows Eq. (16) closely. The
corresponding prestress is roughly one order of magnitude smaller than its experimental value
identified using the existing indentation model. In addition, the value of & s not sensitive to
the length of the adhered or suspended portion; rather, it is related only to the adhesive
strength Ay for a given material, suggesting that the pre-tension can be effectively predicted
using Eq. (16) [83].

Similar to the FEM results shown in the preceding section, the MD simulation results
also showed separation of the adhesive boundary under a small indentation load. Both the
FEM and MD simulation results indicated that the pre-tension in the FS graphene can be
rapidly released with boundary separation and do not affect the calculated P- &, relationship
[83]. With the delamination of the adhesive portion, the FS portion is larger than the substrate
hole, corresponding to a pre-compression in the 2D material. However, the adhesive P-6
relationship calculated using the FEM also follows the existing indentation model (as
described by Eq. (8)), including both linear and cubic terms of ¢, in agreement with the
experimental results [98].

Therefore, separation of an adhesive boundary can also create a linear term of & in the
fitted P-¢& relationship, indicating that the linear term of & obtained from the measured P-&
relationship might not be related only to a tensile prestress in the 2D material.

3.5 Analytical model with adhesive boundary conditions
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If an FS 2D material is larger than the substrate hole, it will adhere to the substrate
sidewall, as observed in both experiments and the simulations. In FSI testing, the applied load
results in either an increase in the strain energy (Us) of the FS 2D material or a decrease in the
adhesive energy (i.e., delamination of the adhered portion), both of which tend to increase the
system energy. The pre-strain in the FS graphene varies with a delamination length x as
follows:

X 2.8 0,50;
§<x<s, 6,<0,<0; (17)
x=s5, 0,50,

where s is the total adhesive length and &; and &y are the indentation displacements
corresponding to the delamination lengths of 5; and s, respectively. Therefore, both the strain
energy caused by the pre-tension and the adhesive energy vary with x as follows:

Er (s—xY
. :(Slax] x<Sl, Umz{Zfra(x—s)Ay x <8
0 g5 g

(18)

pre
0 x >4

Pre-tension exists in the FS 2D material only when & < or, when ¢ > &, the delaminated
portion enlarges the radius of the suspended portion (¢ + x), 1.e., & < 0.

With an adhesive boundary condition, the strain energy induced by the indentation load
is similar to that of an FS film with continuously varying & under the clamped boundary

condition, as follows:
Upe = [ Pd5, P.= cBte,( grx)+EtEa™(6,+x) (P.>0) (19)
where « is a geometrical parameter and the subscript ¢ represents the clamped boundary

condition. From the minimization of the total potential energy (U, =U,,, +U,;+U 4>

dU,/dx = 0), the delaminated length x can be approximately expressed as a function of & as

follows [98]:

2
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where

2

The work done by the indentation load s W =U,, +AU_  +AU,,

AU, = 7rEl‘(251x—x2 )/(1 —v) and AU_,, =27axAy . The P-§ relationship can be estimated

from the derivative of I#" with respect to ¢ as follows [98]:

2
A=oAy, B=|&-—2 _|Eta?, 5,<6
i {SE 4%(1—1/)} r =0y
2
p B a5 el - PEE. £-—2 __|Bta? 5,565,556, (1)
ds. oa—& 4(a-&°)
A=oaEt(s,—s)/a, B=Et&a?, 6, <6,

The value of the parameter « is further determined using the FEM based on the selected ratio
of R/a. As described by Eq. (21), the P-¢; relationship of an FS 2D material with the adhesive
boundary includes three stages: the first two involve the delamination of the adhered portion
from the substrate sidewall, in which the indentation load is related to the adhesive interaction
(including the adhesive strength and adhesive length); in the third stage, the FS membrane is
stretched and becomes larger than the substrate hole. Therefore, the elastic modulus of an FS
2D material can only be effectively determined from the third stage of the indentation
P-& curve.
3.6 Effect of tip-sample vdW interactions
3.6.1 Experimental investigation

In the conventional indentation tests performed via AFM, a negative indentation force (P
< 0) oceurs first as the AFM tip is attracted downward to contact the sample; after the
indentation displacement is continuously increased, the indentation load smoothly changes to
positive, and the initial contact point (& = 0) should be set as the beginning of a segment of
positive P [105]. In the FSI test of a 2D material, the vdW interaction between the AFM-tip
and the 2D material bends the 2D material upward towards the AFM tip [106, 107]. When &
is small, the vdW adhesion energy is negative and has a larger magnitude than the
deformation energy of the 2D material; consequently, the beginning of a positive indentation

load may not correspond to the true initial contact point (6= 0). Therefore, due to this vdW
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effect, it is challenging to accurately determine the initial contact point of a 2D material in
FSI tests, as shown in previous experiments [33, 44].

Lee et al. [33] and Lin et al. [44] found that there is an initial linear stage of the P-&
curve measured in the FSI test of graphene (different from the behavior predicted by Eq. (8)),
which is hypothesized to be caused by the vdW interaction between the AFM tip and the
graphene. Lee ¢t al. [33] arbitrarily selected the midpoint of this linear stage as the initial
contact point (e, P = 0, & = 0). Lin et al. [44] conducted a more comprehensive
investigation to determine the initial contact point of the 21D materials in FST tests. They found
that the clastic modulus E of graphene is highly sensitive to the initial contact point based on
the existing indentation model and that a perturbation of 1 nm causes a change of ~10 GPa in
£, which linearly increases with the right-shifting of the initial contact point (see Fig. 15).
Using the beginning, midpoint and endpoint of the linear stage as the initial contact points, the
elastic modulus of graphene is determined as E =~ 417, 700, 935 GPa, respectively [44]. Due
to the highly scattered experimental results, it is challenging to accurately determine the
beginning, midpoint or endpoint of the initial linear stage, i.¢., the initial contact point cannot
be accurately identified. An'incorrect assessment of initial contact can cause significant errors
in the estimated elastic modulus of graphene.

To reduce the effect of the arbitrarily selected mitial contact point on the elastic modulus,
Lin et al. [44] proposed a new analytical indentation model (see the inset figure of Fig. 15 (b))

based on'a selected reference point (P, &) as follows:

3
PP, =cyn(6-6,)+ 22 (5-6,) (22)

a
They found that £ is no longer sensitive to the selected initial contact point from Eq. (22)
(~540 GPa, as shown in Fig. 15(b)), whereas it is significantly lower than the F reported by
Lee et al. [33]. Relative to Eq. (8), Eq. (22) has two additional fitting parameters.
3.6.2 Numerical investigation

Although the AFM tip is typically assumed to be spherical and idealized as a point load

in the existing FSI models [33], a spherical tip in MD simulations (see Fig. 16 (a)) can induce
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a very high stress concentration [19, 108] and can even induce wrinkles [109] in the FS 2D
material since the idealized tip radius is approximately one order of magnitude lower than its
actual value. Due to the above issues, it can be highly challenging to determine the influence
of tip-sample adhesion on the indentation response.

A cylindrical tip can apply a uniformly distributed load along the mid-line of the sample,
as shown in Fig. 16 (b), which can eliminate the stress concentration or wrinkles induced by a
spherical tip [16, 83-86, 110]. If the out-of-plane deformation of the portion in contact with
the cylindrical tip is neglected, the FS graphene actually undergoes uniaxial tensile-strain
deformation. Consequently, with a small indentation displacement, the strain energy of the
membrane Uy in FSI is similar to its uniaxial tensile-strain energy (under the linear elastic

assumption) [84, 85]:

U, 1 E a,

4

=i £
WL 2(1-v2)

(23)

The in-plane stain ¢ can be easily estimated from the membrane deflection & based on a

geometrical relationship (assuming 0= &):

8=«\’(5/L)2+1—1=k0(5/1,)2 ~ k(8 /LY (24)
where kp = 0.5 1s a fitting parameter. After substituting Eq. (24) into Eq. (23), the P-&

relationship of an FS membrane under a cylindrical tip is derived as follows:

3 3
P=dU, |d5 and §=4k§ £ (%) ~ 42 22 (%J 25)

1—v? " 1—y?
If a pre-strain g exists in the membrane, the ¢ ¢ relationship can be rewritten as follows:
g=g,+k(8/LY ~g,+k, (8 /LY, (26)
and the P-& relationship becomes the following:
§ = 45 1—Efﬂ [g 4k, %[9 ~ 4 1—Efﬂ (%JB + 4k, f‘i”z (%J @7)

Relative to the existing spherical indentation model, Eq. (27) has a similar functional

form as Eq. (8) (including a linear term plus a cubic term). The clamped circular membrane
under a central point load is exposed mainly to uniaxial tensile stress along the radial
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direction, whereas the clamped rectangular membrane under a line load is exposed mainly to
uniaxial tensile strain (perpendicular to the cylindrical axis). After we replace Er/(l-vz) by Et
and select W = . = R, the cubic term in Eq. (27) is roughly equal to that in Eq. (8), but the
coefficient of the linear term in Eq. (27) (e.g., 4ko =~ 2) is lower than that in Eq. (8) (e.g., n).

The tip-graphene vdW interaction has a detectable effect on the graphene morphology at
the initial contact point [83, 84], as shown in Fig. 17. The FS graphene remaing flat without
the vdW interaction, whereas the membrane is bent upward in the presence of vdW attraction
(Le., e> 0 at & = 0) (see Figs. 17(a) and 17(b)). The vdW effect onthe FS graphene is related
to the pre-strain of the membrane: the vdW effect increases with inereasing & when g < 0
(representing a larger size of the FS portion than the substrate hole) (see Fig. 17(¢)), and the
vdW effect decreases with increasing & when & > 0 (see Fig. 17(d)).

The vdW effect can be clarified via an energy analysis [83]. For a 2D material measured
through FSI, the vdW interaction energy between the 2D material and indenter tip Uya, is at
the same level as the strain energy Uy when & 1s small, and the expected system potential
energy 18 Uy = Uy + Usgy. Fige 18 shows the MD simulation results of Uy, Uy and Uygw
varying with the in-plane strain ¢ normalized by the membrane area [84]. It 1s found that U, >
0, Uygw < 0 and Uy, < 0 at the initial contact point; consequently, the commonly used criterion
for determining the initial contact point (in which & = 0 is set at £ > 0) is not valid for 2D
materials. Theoretically, the indentation depth at the minimum of U, should be set as the
initial contact point, from which P monotonically increases with increasing & (dU/d& = 0 at
& = 0), but this position is challenging to determine in experiments.

Due to the effect of the vdW interaction (see Fig. 18), the UG relationship does not
follow Eq. (23) closely, which indicates that the elastic modulus cannot be correctly
determined from Eq. (23). The strain energy of graphene follows Uy o & quite well, and the
elastic modulus determined from Eq. (23) is close to that obtained from uniaxial tension. With
increasing in-plane stramn g, U, rapidly increases, whereas U,y remains roughly constant. The
vdW effect (represented by the ratio of U,gw/Uy) rapidly decreases with increasing &

consequently, the elastic modulus can be more accurately determined from a large indentation
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load [84].

The accuracy in estimating the in-plane strain ¢ is also affected by the tip-sample vdW
interaction, as shown in Fig. 19(a) [85]. From the MD simulations, Eq. (24) can describe the
o~¢ relationship closely, but this equation is not consistent with the &-¢ relationship, which
indicates that the tip-graphene vdW interaction produces a detectable deviation from & to &.
Although this deviation decreases slightly with increasing /R, the vdW effect mentioned
above is not negligible in experiments (see Fig. 19(b) [85]). Consequently, Eq. (25) very
accurately describes the P-¢ relationship but not the P-4 relationship, resulting in an
overestimation of the elastic modulus.

The P-4 relationship of non-prestretched graphene caleulated from MD simulations
follows Eq. (8) closely, leading to a fictitious pre-tension [82, 83, 101]. Zhou et al. [83] noted
that the deviation of & from & might be the main cause for this fictitious pre-stress. Due to the
tip-graphene vdW interaction, ¢ is larger than &. Combining Eq. (25) with Eq. (27), a

fictitious pre-tension is analytically derived as follows:
2 2
g, =k(5—£—ij (28)

Therefore, the assumption of & = & in the existing indentation model is, strictly speaking,
inappropriate for 2D materials.

The pre-tension reduces the contact area 4 between the membrane and the tip, but the
pre-compression (corresponding to a larger size of the FS membrane than the substrate hole)
increases 4. The vdW interaction scales with A. Consequently, the deviation of ¢ from & also
depends on the membrane prestress, decreasing with pre-tension (g > 0) but increasing with
pre-compression (g < 0) [83]. Therefore, it could be beneficial to introduce a pre-tension in
the measured 2D materials, which would reduce the tip-sample vdW effect and yield more
accurate values of £ and &, as shown in Fig. 20.

3.7 Effect of material nonlinearity in I'SI
Numerical simulations show that 2D materials behave highly nonlinearly (see Eq. )

when the in-plane stress reaches their intrinsic strength [18, 21, 24-26, 30]. Using the FEM,
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Lee et al. [33] studied the FSI responses of graphene with both linear and nonlinear models
(see Fig. 21(a) and 21(b)). Although the FSI response of 2D materials is not sensitive to
material nonlinearity with a small indentation displacement, the fracture strength is
substantially overestimated using the linear elastic assumption (e.g., overestimated by ~30%
[33]). In addition, the FEM results based on the linear eclastic model of graphene match
closely with the predictions of Eq. (10), which is consistent with the fact that Eq. (10) is
derived with the linear elastic assumption leading to the overestimation of the fracture
strength. Currently, there is no analytical solution for the relationship between the indentation
load and the indentation stress that accounts for material nonlinearity.

Using a nonlinear ¢lastic model of 2D materials, Lee et al. [33] and Wei et al. [60]
estimated the fracture strength of graphene via an inverse analysis in conjunction with the
FEM. The solution procedure is summarized as follows [33]: (I) The failure indentation load
and displacement (Prand o) are measured from FSI tests via AFM; (IT) The 2D material is
modeled using a two-parameter nonlinear elastic model described by Eq. (1), where the
nonlinear ¢lastic coefficient D is obtained using the inverse analysis and the geometrical
parameters and loading conditions are selected to be the same as those used in experiments.
With a known £ value and a series of assumed values of DD, the corresponding indentation
P-¢ relationships-are then calculated using the FEM; if the calculated values of Prand & are
consistent with the ¢xperimental measurements, the input value of D is considered to be its
true value; (IIT) The fracture strength is estimated from Eq. (2) after the value of D is
determined.

According to the above procedure, Lee et al. [33] estimated the nonlinear elastic
coefficient of graphene as DD = -690 N/m, and its fracture strength and the corresponding
fracture strain were then determined as or = 130 GPa and & = 0.25, respectively. This
measured fracture strength is ~40% higher than the corresponding value calculated via DFT
(90-98 GPa) [21, 22, 24]; however, the elastic modulus calculated from DFT is close to its
experimental value reported by Lee et al. [33]. Based on numerical simulations, Zhou et al.

[24] attributed the deviation of the measured oy from its DFT counterpart to the simplification
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of the stress-strain (o-¢) relationship of graphene with Eq. (1). In reality, the o-¢ relationship
of graphene can be more accurately expressed as follows [24]:
o=Es+D'e* +1¢ (29)

where D’ and A are higher-order parameters (< 0, and A > 0). In other words, the nonlinear
elastic coefficient D in Eq. 1is not a constant; rather, it decreases in magnitude with
increasing in-plane strain (D = D'+ Ag). Consequently, the values of oy and & of graphene
increase with increasing £ from Eq. (2), as shown in Fig. 22, when normalized by their DFT
counterparts (O'* and 5*). From Eq. (2), the value of oy can be changed by 100% in the present
fitting range and matches its DFT value only when £ < 0.15 (i.e., of c = 1). For the loading
range in the experiments, £ < 0.25, and oﬂo-* = 1.35-1.4, as reported in the FSI tests [33].
Theretore, the value of oy is overestimated by the approach developed by Lee et al. [33]

Based on the o-¢ relationship modeled by the fifth-order anisotropic strain energy
expression obtained from DFT calculations [22], Rassol et al. [61] calculated the relationship
between the indentation stress and indentation load of graphene using the FEM; from the
measured fracture indentation load, they estimated the fracture stress of graphene as or =
90-94 GPa, in agreement with the intrinsic strength calculated from DFT [61]. Their results
indicate that the measured fracture strength of graphene is close to its DFT value if the o¢
relationship of graphene is accurately described with the FEM; on the other hand, the strength
is overestimated if the two-parameter nonlinear model shown in Eq. (1) is used.

The Poisson ratio v of 2D materials cannot be measured from FSI tests or other
experimental approaches. The theoretical value of v obtained from first-principle calculations
is typically used, e.g., v= 0.186 for monolayer graphene [33]. However, it is found that v for
graphene is not actually a constant; rather, it decreases with increasing tensile strain in the
DFT calculations [21, 24], e.g., Vo = V= 0.186 with £ = 0.01, whereas v, = 0.1 and v, =
0.05 with £=0.25 (with subscripts ac and zz representing the armchair and zigzag directions,
respectively). Currently, the possible effect of a varying v on the indentation response has not
been investigated.

3.8 Effect of material defects in FSI
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CVD has been widely used to fabricate polycrystalline 2D materials that contain
numerous lattice defects [20, 40, 61, 111-114], including grain boundaries that typically
consist of 7-5 defects [61, 115-117].

3.8.1 Experimental investigations

Ruiz-Vargas et al. [52] measured the fracture load (F) of polycrystalline graphene and
then estimated its fracture strength (cy) based on Eq. (10) (ie., using the linear elastic
assumption). By varying the distance between the indenting point and a grain boundary, they
found that the fracture strength near the grain boundary is much lower (~35 GGPa) than that in
the grain interior (~84 GPa) and the theoretical lower limit of grain boundary strength (50-100
GPa) reported by Grantab et al. [118]. Recently, an even smaller theoretical lower limit of
38-100 GPa was reported on the basis of MD simulations of graphene bi-crystals under
uniaxial tension [20]. Ruiz-Vargas et al. [52] speculated that there might be other defects (e.g.,
voids) in addition to grain boundaries to aceount for the discrepancy between the theoretical
and experimental results, a conclusion that was supported by MD simulations of a
bi-crystalline graphene including voids [52].

Rassol et al. [61] found that the relationship between fracture strength of a grain
boundary (oy) and is ftilt angle (&) obtained from FSI tests is consistent with the
corresponding theoretical result [20], e.g., oyincreases with increasing & (o= 80-83 GPa for a
high-angle grain boundary, whereas oy = 53-77 GPa for a low-angle grain boundary [61]).
However, Lee et al. [40] reached a different conclusion by directly indenting a grain boundary
via| AFM, with the results showing that the o of polycrystalline graphene is relatively
msensitive to £ and is only approximately 20-40% lower than that of single-crystalline
graphene [40]. In addition, the authors found that oy for polyerystalline graphene is also
relatively insensitive to grain size, with gy = 98.5 GPa for some selected small grains and oy =
103 GPa for large grains (the difference is less than 5%) [40].

Lee et al. [40] speculated that a real grain boundary in polycrystalline graphene might be
more complex than its theoretical model used in numerical simulations and consequently that

the pre-stress created by a grain boundary could be released through its complex structure
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(e.g., the out-of-plane deformation associated with a grain boundary can release some of the
pre-stress created by 7-5 rings [119]). Thus, a grain boundary could have higher fracture
strength and lower sensitivity to its tilt angle in experiments.

The indentation stress due to an AFM indenter is highly concentrated and rapidly
diminishes with distance from the indenting position, and a grain boundary (or another defect)
can also cause a stress concentration in polycrystalline graphene. These two effects might be
coupled when indenting close to a grain boundary, which might account for the highly
scattered fracture strength of polycrystalline graphene measured in FSI tests. For example. a
grain boundary may not affect the o when indenting far from it, 1.e.; polycrystalline graphene
could have a similar oras its single-crystalline counterpart; in contrast, a substantially reduced
orcould occur when indenting close to a grain boundary.

3.8.2 Numerical investigations
(1) Single-crystalline graphene
In MD simulations, the stress components for atom i in graphene can be calculated using

the following expression [19, 110, 120,121]:
N et
O-ab = mzvz'avz'b +_Z(?;a ib +rjaf;'b) a, b =X, y (30)
A e

where subscript i denotes atom 7 under observation, # is the number of atoms bonded to atom
i (e.g., n= 3 for graphene), m is the atomic mass, v is the velocity of the atom, A4yt 1s the initial
computational cell volume with in-plane area Ay and thickness 7 = 0.335 nm, N is the total
number of atoms in the computational cell, 7 and j are the atomic indices of two interacting
atoms, and r and f are the coordinate and interaction force of the atom, respectively. There are
three stress components, 1.€., Gy, 6, and o, for graphene.

Using MD simulations, Han et al. [19] and Song et al. [119] calculated the fracture load
of a clamped pristine graphene in FSI with a spherical tip. The fracture load Prwas found to
increase with increasing tip radius R, e.g., Pr= 280 nN with R = 5 nm [19], and P;= 60.4 nN
with R = 1 nm [119]. In their simulations, the indentation stress of graphene was regarded as

the maximum of the average in-plane stress of the atoms (6.4 = (Gt 65,)/2 at the indentation
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position, as shown m Fig. 23), and the fracture strength oy was regarded as the value of &4 at
the maximum indentation load. The authors also showed that the calculated fracture strength
of graphene slightly increases with decreasing R, e.g., oy = 105 GPa with R = 5 nm and oy =
120 GPa with R = 2 nm. For small R, the MD simulation prediction of oy is actually close to
its theoretical value calculated using Eq. (10) (under the linear elastic assumption), e.g., or =
118 GPa with R = 5 nm [19] and oy = 122 GPa with R = 1 nm [119]. From the MD
simulations of in-plane stretching, the intrinsic strengths of graphene along the zigzag and
armchair directions were reported as o,(ac) = 100 GPa and &;,(zz) = 117 GPa, respectively
[20]. Thus, for small R, the fracture strength of single-crystal graphene is slightly
overestimated in the MD simulations of FSI, in which or= (Gudac)+ ci(z2))/2 1s assumed.
(2) Bi-crystalline graphene

In the MD simulations, the bi-crystalline model has been widely used to investigate the
grain boundary effect on the indentation response of graphene [20, 118, 119, 122]. A grain
boundary of bi-crystalline graphene consists of 5, 7 and 6 rings and is typically defined
through the tilt angle 8 [20]. Song et al. [119] reported that the facture loads of an armchair
grain boundary with #= 28.7° and a zigzag grain boundary with &= 21.7° are 14% and 27%
lower than that of the pristine graphene, respectively. Using the Ppgor relationship of
single-crystal graphene determined from MD simulations, the of of bi-crystalline graphene
can be further estimated from the value of Py calculated using MD [19, 110].

Usmg MD simulations, Han et al. [19] calculated the op & relationship of bi-crystalline
graphene in spherical mdentation and found that oy does not increase strongly with increasing
£, which is highly different from the corresponding result obtained from in-plane stretching
[20]. Their simulation results also showed that when indenting close to a grain boundary, oy is
sensitive to the position of indentation, as shown in Fig. 24 [19]. When the distance from the
indenting position to a grain boundary is larger than the tip radius R, the grain boundary has
little influence on or [19]. The above results indicate that it is challenging to measure the
fracture strength of polycrystalline graphene via spherical indentation when the AFM tip

radius is far less than the grain size. For example, for grain radius ¢ = 2 um and AFM tip
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radius R = 20 nm, the probability for the indentation position to fall within the distance of 20
nm from a grain boundary is quite low (< 2%).

Relative to tensile tests, FSI with a spherical tip overestimates the fracture strength of
bi-crystalline graphene, which can be attributed to differences in the fracture mode [19]. In
FSI tests, bi-crystalline graphene with a nucleated crack can still support the load without
failure, and failure occurs only when the crack length reaches the level of indenter tip size, as
shown in Fig. 25 [19], whereas in tensile tests, the sample fails soon after crack nucleation.
This discrepancy can be attributed to the local stress concentration effect caused by both the
indenter tip and grain boundary in FSI tests, resulting in lower ¢rack nucleation energy in FSI
than that in tensile tests. A lower strain energy in the sample results in a shorter crack as the
strain energy is transferred into the crack surface energy, and thus, the nucleated crack is less
likely to propagate in FSI than that in tensile tests, resulting a higher fracture strength.

These numerical investigations suggest a possible explanation for the highly scattered
results of oy measured in the FSI tests. Han et al. concluded, for example, that the fracture
strength of 2D materials cannot be accurately determined from FSI with a spherical tip [19].
(¢) Polverystalline graphene

In MD simulations, polycrystalline graphene is often built from four randomly oriented
graphene grains with various shapes using the Voronoi tessellation method, and the low- or
high-density regions near a grain boundary or junction are then e¢liminated via annealing [123,
124). Sha et al. [125] showed that the calculated fracture indentation load Py of polycrystalline
graphene is lower than that of pristine graphene and is sensitive to the indenting position with
respect to defects (grain boundaries, triple junctions and voids). Pris significantly reduced if
the indentation position is directly located on these defects, among which the triple junction is
the weakest [125]. However, the grain boundaries or triple junctions in polycrystalline
graphene created in their work consisted of not only 5, 7 and 6 rings but also 4 and 8 rings
[125], which are unusual for grain boundaries in graphene [61, 115-117]. Thus, the MD
simulations based on these unrealistic defects might not provide accurate estimates of the

intrinsic fracture strength of polycrystalline graphene.
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In summary, the MD simulation results show that the fracture strength of
polverystalline 2D materials cannot be effectively determined using FSI with a spherical tip.
However, we note that all of these simulation results are obtained from a significantly smaller
tip radius than that used in the experiments (e.g., R £ 5 nm in simulations, in contrast to R =
16.5, 27.5 nm [33] and R = 115 nm [61] in experiments), which results in unrealistically high
stress concentrations (which scale with R™) relative to the experiments. Consequently, o 15
overestimated since the crack nucleation energy is underestimated. The affected arca of the
grain boundary is also significantly underestimated due to the small tip radius used in MD
simulations (e.g., R £ 5 nm). Therefore, the grain boundary strength might be more effectively
determined by selecting a large tip. In addition, changing the tip geometry from a spherical
shape to a cylindrical shape can significantly reduce the stress concentration near the tip and
create a relatively uniform stress over the membrane [16, 85, 110], making the calculated
fracture strength of the polycrystalline membrane less sensitive to the indenting position and
closer to its intrinsic strength from in-plane stretching.

3.9 Effect of interlayer vdW interaction in I'SI
Using FSI, Liu et al [43] measured the elastic moduli (&) of two-layer hybrid
structures fabricated by graphene, MoS, and WS, monolayers and proposed that £}, can be

phenomenologically expressed as follows [43]:

E t =E t +aF, t (31)

tot Mot fot"bot top”top

where s, fpor and tp, are the thicknesses of the whole structure, bottom layer and top layer,
respectively; Epor and £y, are the elastic moduli of the bottom layer and top layer, respectively;
and « 1s the interaction coeflicient describing the top layer contribution to Ey (0 < o < 1).
They also showed that « depends on the interlayer vdW interaction but is not related to the
indentation depth (or the n-plane strain). Therefore, FSI might actually provide a relatively
simple approach to quantitatively predict the interlayer vdW interaction strength, and a higher
o represents a larger strength. Liu et al. [43] indicated that slight interlayer sliding probably
occurred in the test if a < 0.8, e.g., a = 0.8, 0.75, 0.69 for MoS+/WS,, MoS,/MoS, and

MoS,/graphene structures, respectively [43]. They also suggested that interlayer sliding might
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be the main reason for the higher elastic moduli of the monolayer MoS, and WS, relative to
their bulk values.

Using MD simulation, Neek-Amal et al. [101] and Zhou et al. [86] found that the elastic
modulus of a bilayer graphene is actually lower than that of a monolayer graphene but that no
interlayer sliding occurs in the bilayer graphene. Zhou et al. [86] proposed the following

system strain energy of a multilayer graphene in FSI using a cylindrical tip:

7 n— 2
U= ZUgi * Zl: Uy +U, gy =Uy + e I:ngz +E,_, +EvdW] (32)
=1

AL (1-v)

where 7 1s the number of layers in a multilayer graphene, Uy is the system potential energy at
the initial contact point, Uy; 1s the strain energy of the ith layer, Uj; is the interlayer interaction
energy between the ith and jth layers, and U,z» 1s the vdW interaction energy between the tip
and the 1% layer. The elastic modulus of a multilayer graphene £ = Ey, + Ei; + Eya,, where Ey,,
Eij and Eyg, are due to intralayer stretching, iterlayer interaction and vdW interaction
between the 1% layer and the tip, respectively. The effect of the tip-sample vdW interaction on
the FSI response decreases with increasing 7, as shown in Fig. 26, e.g., the effect 1s negligible
on the topography of multilayer graphene when » = 4 [86]. Similar to monolayer graphene,
the theoretical solution (Eq. (24)) is consistent with the £ relationship of a multilayer
graphene instead of its & & relationship (see Fig. 27). For a multilayer graphene, & is
determined by the deflection of its bottom layer; thus, the discrepancy between ¢ and & is
caused by the interlayer vdW interaction.

Using Eq. (25), the elastic moduli of a multilayer graphene can be obtained either from
the calculated P-&; or P-¢ relationship, displayed as £ and £ (see Fig. 28), respectively
[86]. Due to the interlayer vdW interaction, the elastic modulus of the multilayer graphene

determined from I'SI increases with » (with n < 4), e.g.. E] increases by ~10% when »n

increases from 1 to 4, whereas the corresponding value determined from the tensile tests (£." )

1s not sensitive to xn. Although the tip-sample vdW effect decreases with increasing #, the

elastic moduli of multilayer graphene are still overestimated from the P-4 relationship (ie.,
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EM/EP =1), which is also attributed to the interlayer vdW interaction. Due to the coupling

effect between the tip-sample and interlayer vdW interactions, bilayer graphene has the lowest
elastic modulus from the P-¢& relationship, in agreement with the experimental observations
[43]. Note that the above simulation results are based on the assumption that the multilayer
graphene thickness scales linearly with 7.

From the aforementioned analysis, the lower elastic moduli of the bilayer 2D materials
measured in FSI from the existing indentation model are caused by the coupling effect
between the tip-sample and interlayer vdW interactions. Instead of interlayer sliding, the
deviation of & from & might be the primary reason for the lower elastic moduli of bilayer
structures, which can be corrected using the P-é relationship instead of the P-4 relationship.

4. Indentation of 2D materials with a substrate

2D materials are almost always attached to a substrate via a vdW interaction in their
important applications, ¢.g., nanoelectromechanical devices or graphene-reinforced polymers
[126-133], and the vdW interaction might affect their mechanical behavior. Thus, studying the
mechanical behavior of 2D materials directly mounted on a substrate is strongly relevant to
their applications.

4.1 Existing indentation model

The mechanical properties of 2D materials can be measured via classic indentation tests
by idealizing them as continuous thin films on a substrate with known elastic properties (e.g.,
Si0,) [54, 57, 134]. The overall indentation load-displacement relationship of a thin-film on a
substrate is measured via instrumented nanoindentation, and the overall indentation modulus
i then determined using the existing indentation model as follows [135-140]:

ptip
3 R

where E, = E/(1-v?) is the overall indentation modulus and p is the contact radius (the contact

(33)

area 4 = ﬂpz). The relationship between the contact radius and the corresponding indentation

displacement is typically estimated using the Hertz theory or the Oliver-Pharr method [140],

¢.g., the contact radius is approximated as p=p, =+/RS using the Hertz theory (where pj, is
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the Hertz contact radius). The overall indentation modulus of the composite structure is then
regarded as a weighted average of the elastic moduli of both the film and substrate as follows

[54, 134, 141];

2 2
iy 1—v
_ £ -era s L FA
== (1 e )+—E e (34)

where {is a constant related to the tip geometry; £y veand £, v, are the elastic moduli and the
Poisson ratio of the film and substrate, respectively.

Zhang and Pan [54] measured the indentation responses of graphene with different
numbers of layers (7 = 1-5) mounted on Si0; (£, = 70 GPa), and obtained E, = 0.305, 0.12,
0.7 TPa for n = 1, 2 and 3, respectively. After decoupling their substrate contribution, the
elastic moduh of graphene can be determined using Eq. (34), e.g., £y = 0.89, 0.39, 0.05 TPa
for mono-, bi- and tri-layer graphene, respectively. They speculated that the slip between
graphene layers might occur in their tests, leading to apparently different elastic moduli with
different numbers of layers of graphene.

Chen et al. [57] measured the indentation response of monolayer graphene mounted on
polvethyvlene terephthalate (PET) (E; = 3.7 GPa) and obtained an overall elastic modulus of £,
= 4.3 GPa, suggesting that graphene provides a weak enhancement to the PET substrate (E,/E
= 1.16). In comparison, graphene has been reported to provide a strong enhancement to a
Si0; substrate, with. E,/E; = 4.35 [54]. These results are at odds with our intuition that
graphene should provide a larger enhancement to a compliant substrate (PET) than a stiff one
(S1037). This result suggests that the existing indentation model (Eq. (34)) might not properly
describe the indentation response of graphene with a substrate.

Niu et al. [56] proposed a possible explanation for the above paradox in that the
contribution of a 2D material to the overall indentation response of a 2D material/substrate is
too small to accurately determine its elastic modulus from the measured overall indentation
modulus E.. For example, for graphene/Si0,, after substituting the modulus ratio £/E, = 14,
thickness t = 1 nm and contact radius p = 20 nm into Eq. (34), the first term on the right hand
side of Eq. (34) (the 2D material contribution) accounts for less than 1% of the overall value,

and the remaining contribution comes from its second term (the substrate contribution).
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4.2 2D materials mounted on a very compliant substrate

To significantly increase the contribution of a 2D material to the overall indentation
stiffness of the 2D material/substrate, Niu et al. [56] selected polydimethylsiloxane (PDMS),
one of the most compliant materials, as the substrate to measure the elastic modulus of
graphene via AFM indentation (see Figs. 29(a)). The elastic modulus ratio E/E; = 10° for
graphene/PDMS, and the graphene membrane provides a significant contribution to the
overall indentation response, ¢.g., the indentation load increases by up to 14 times relative to

that of PDMS, see Figs. 29(b) and 28(c) [56]. The indentation response of PDMS measured

via AFM agrees closely with the existing indentation model, i.¢., P=¢ 8", where the fitting

parameter ¢; = £/(1-1/)tand and @ is the equivalent half-conic angle of a pyramidal tip [140,
142, 143]. However, the indentation response of graphene/PDMS does not follow the existing
model; rather, it follows the expression [56]
P=A46" + Bo6* (35)

where 4 and B are the fitting parameters depending upon the overall indentation stiffness of
graphene/PDMS. The experimental values of 4 and B are relatively consistent and are
insensitive to the tip radius: 4 = 0:1202 + 0.0035 nN/nm'* and B = (1.85 + 0.3) x 10~ nN/nm’
[56].

From the measured indentation response of graphene/PDMS, the ¢lastic modulus of
graphene Epcan be determined via an inverse analysis |36, 144, 145]. Using the FEM, Niu et
al. calculated the indentation responses of graphene/PDMS with a series of assumed elastic
moduli of graphene £y (in the range of 0.1 < £ < 1.5 TPa at an increment of 0.1 TPa) and a
known Ej, using the least square fitting procedure, an empirical relationship was then

established between the fitting parameters 4 and B in Eq. (35) and the mput value of £yin the
FEM [56], i, A=a(E. ) +b(E )+c, and B=ay(E,)' +b,(E,)+c,, where a;, b; and ¢; (i
= 1, 2) are the fitting parameters. Erwas then determined by substituting the parameters 4 and
B obtained from the measured P-& relationship in experiments into the above empirical

relationship: E¢t = 329 + 28 N/m, (see Fig. 29(d)), consistent with the corresponding value

measured in FSI (~340 N/m [33]).
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A 2D material can tightly adhere to an extremely compliant and highly stretchable
substrate via vdW interactions, and consequently, the 2D material can be broken in an
indentation test performed via AFM. Recently, Niu et al. [55] proposed a new approach for
determining the fracture strength of a 2D material from its indentation response on PDMS.
With P = Pr (6 = 0p, P sharply decreases to the corresponding P of pure PDMS at & as
shown in Fig. 30, indicative of graphene fracture [55]. Similar to the analysis of the fracture
strength of a 2D material used in FSI [33, 60], the graphene membrane on PDMS can also be
modeled using a two-parameter nonlinear elastic model described by Eq. (1), where Ef 1s
known (determined from the P-¢; relationship of graphene/PDMS with a small &), but the
nonlinear elastic parameter 0 needs to be assumed; with a known £, the corresponding
indentation P-¢ relationships of graphene/PDMS are caleulated using the FEM, and the input
value of D 1s considered to be its true value if the calculated values of Prand dr are consistent
with the experimental results; the fracture strength of graphene can then be estimated using
Eq. (2) after the D is obtained. Accerding to this procedure, Niu et al. [55] obtained the
fracture strength of monolayer graphene as o= 38.9 N/m (corresponding to 112 GPa with ¢ =
0.335 nm) and the corresponding fracture strain as g = 0.23, which are shghtly lower than the
corresponding values reported from FSI (or= 42 + 4 Nm™ and gr=0.25 [33]). This measured
value of oy is still higher than its theoretical value calculated from DIFT (&, = 31 Nm! [21,
22]), which can be attributed to the simplification of the stress-strain relationship of graphene
with a two-parameter model (Eq. (1)).

4.3 Effect of the modulus ratio £y L, in indentation tests

Niu et al. [56] proposed that the existing indentation model might be inappropriate for
describing the indentation response of graphene/substrate with a large modulus ratio of E¢F,
which might explain why the enhancement of graphene on a PET substrate is lower than that
on a S10; substrate (E/E; = 14 and 230 for graphene/Si10; and graphene/PET, respectively).
These results mdicate that the modulus of graphene Ef determined from the indentation
response of graphene/substrate may be highly sensitive to EfE.

Using the FEM, Cao et al. [58, 59] recently investigated the indentation response of 2D
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materials mounted on various substrates (E/E; = 10-10°, which covers all possible
combinations of the 2D materials and their substrates used in the experiments). It was found
that the indentation response of the 2D material/substrate depends strongly on E¢FE: For a
small E4/E (E/E < 10%), the overall indentation response of the 2D material/substrate follows
the existing indentation model (Eq. (33)) closely, and an overall indentation modulus £, can
be effectively determined using the Hertz solution; however, for a large E/E; (e.g., EfE, =
10%), the indentation response of the 2D material/substrate is inconsistent with the existing
indentation model (Eq. (33)), and the £ determined using the Hertz solution is not a constant
but increases with &, as shown in Fig. 31 [58].

The discrepancy between the calculated P-§ relationship from the FEM and the
predictions from the theoretical models is typically attributed to an incorrect estimation of the
contact radiug in the model [137, 138, 146, 147]. Using the FEM, Cao et al. calculated the
true contact radius of a 2D material/substrate and found that its contact radius is not only

related to &but also depends on E/E, as follows [38]:

ﬁz{l—klﬁ A<100 o
P, |ko° B=B(E [E.) 4z10"
For a moderate A = E¢E; (e.g., 500 < A < 5000), the p-& relationship undergoes a transition
from a linear to a power-law relationship. When A increases to 10°, p reduces by ~72% (the
contact area decreases by ~93%). While p is essentially not related to the material properties
on the basis of the continuum contact theory, it is found to be a function of A for the 2D
material/substrate, suggesting that the existing indentation model built from the continuum
contact theory is indeed inappropriate to describe the indentation response of the 2D
material/substrate.

According to the value of A, the existing indentation model (Eq. (33)) is appropriate for
graphene/Si10; but not for graphene/PET. In addition, it is extremely challenging to accurately
determine Er from the measured E; of graphene/Si10; using Eq. (34) since the E; determined

using Eq. (33) is almost equal to E, as shown in Fig. 31 [58], i.e., the contribution of the

graphene to the overall indentation response is almost negligible.
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To accurately determine the mechanical property of a 2D material from the overall
indentation response of the 2D material/substrate, the 2D material must have a detectable
contribution to the overall indentation stiffness, which can be clearly shown using the stain
energy ratio of the 2D material to the whole composite structure Uy (Us+Uy), e.g., Ud(UAU) =
0.02 and 0.1 for graphene/SiO; and graphene/PET, respectively. When A = 10*-10°, Ug(Us+Up)
increases to (.28-0.33 and becomes insensitive to the indentation displacement, as shown in
Fig. 32(a) [58]. Therefore, although the existing indentation model might not be appropriate
for describing the P-¢ relationship of a 2D material/substrate with a large A, the eclastic
modulus of a 2D material might be effectively determined from an inverse analysis using the
FEM [59]. Considering some of the most compliant substrate materials (e.g., PDMS), it can
be estimated that A = 10*-10° for all the reported 2D materials (e.g.. graphene, layered MoS;

and BP). Using the FEM, the fitting parameters 4 and B in Eq. (35) can be empirically
expressed as A=a () +b(A)+c, and' B=a,(1) +b,(A)+c,, as shown in Fig. 32(b).

Following Niu et al. [56], the elastic modulus of a 2D material can be determined from its P-&
relationship on PDMS.
4.4 Effect of material nonlinearity in indentation tests

Using the FEM, N et al. [56] further studied the effect of material nonlinearity on the
indentation response of graphene/PDMS. Their results showed that with a small indentation
depth, the nonlinearity of graphene has a negligible effect on the indentation response of
graphene/PDMS, suggesting that the nonlinearity of a 2D material does not affect its elastic
modulus estimated from the P-& relationship of the 2D materiall PDMS; with a large
indentation depth, the indentation response of graphene/PDMS becomes sensitive to the
nonlinearity of graphene, which is appropriately simulated using a nonlinear elastic model
(e.g., Eq. (1)), suggesting that nonlinearity should be considered for estimating the fracture
stress of graphene from the indentation response of graphene/PDMS [56].

The experimental results showed that a small discrepancy exists between the indentation
loading and unloading curves of graphene/PDMS (i.c., a small hysteresis loop arises, see Fig.

29), suggesting that the viscous feature of PDMS has a weak effect on the indentation
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response of graphene/PDMS [55]. It is widely accepted that for small deformations, PDMS
behaves more like a linear elastic material than a viscoelastic material [148-150]. Using the
FEM, N et al. [55] compared the indentation responses of graphene/PDMS based on
different material models of PDMS, including the linear elastic, neo-Hookean and standard
linear solid models; they found that the nonlinear behavior of PDMS (e.g., the viscoelastic
and hyperelastic features) has a negligible effect on the indentation response of
graphene/PDMS, as shown in Fig. 33. In addition, the authors found that the indentation
deformation of pure PDMS (with & = &) can be fully recovered after unloading. These results
indicate that PDMS can be idealized as a linear elastic material m the indentation tests of
graphene/PDMS.

4.5 Interfacial effect in indentation tests

From the indentation testing, Niu et al. [55] found that there is no interfacial debonding
or slippage of the graphene/PDMS interface, even at the failure strain of graphene (g = 0.23
for graphene), which is at odds with its interfacial behavior measured in the uniaxial tensile
testing (e.g., the interfacial sliding starts at £ = ~0.3% [151, 152]). In addition, the load
transfer mechanism across the graphene/PDMS interface in the indentation testing is different
from that in the tensile testing.

The graphene/substrate interfacial strength has been widely investigated through tensile
testing [130,. 131, 151]. Under uniaxial tension, the tensile strain is uniformly transferred from
the substrate to graphene across the entire interface from the edge to the center. The vdW
bond energy density between graphene and its substrate was reported as 0.1-0.4 Jm™ based on
the MD simulations [74, 99, 153]; an adhesion energy density of approximately 0.1 Jm™ can
theoretically transfer a tensile strain of ~2.5% (with Egf = 340 N/m and ¢ = 0.335 nm) based
on the balance between the vdW adhesion energy and the strain energy. Jiang et al. [151]
found that the strain for the onset of interfacial sliding is actually very small (~0.3%) (starting
from the edge of graphene), whereas the maximum strain transferred across the interface (at
the center of graphene) can reach 1.2-1.6%. The small interfacial sliding strain observed in

the experiments can be attributed to the interface edge effect, which might be caused by a
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higher chemical activity of the edge atoms of graphene due to their lower coordination
number (dangling bonds).

In the indentation testing of graphene/PDMS, the in-plane strain (&) of graphene is
highly nonuniform; it is maximized at the indenting point, rapidly decreases with the radial
distance r (g = grat r = 0 and diminishes at a lower rate when r > 2 um; see Fig. 33),
suggesting that there is no edge debonding or slippage since the sample size is typically much
larger than 2 pum (i.e., the graphene membrane is under a clamped boundary condition) [55].
Niu et al. [55] also found that the in-plane stretching of graphene is directly created by the
indentation load but is not transferred from the substrate acrossthe graphene/PDMS interface;
on the other hand, the substrate is also directly deformed by the indentation load. The portion
of the substrate close to the indenter tip is vertically compressed and laterally extended due to
the Poisson effect of this compression. Consequently, the graphene/PDMS interface needs
only to transfer the load difference between graphene and its substrate to maintain
deformation compatibility across the interface. The above analysis provides an explanation as
to why there is no interface sliding/debonding even though the graphene membrane is
subjected to a relatively high in-plane strain.

4.6 Advantages and disadvantages of indentation testing of 2D materials with a substrate

Relative to the mechanical properties of graphene measured in FSI [33], a similar value
of E¢ and a shghtly lower value of of (~10% lower) are obtained from the indentation testing
of graphene/PDMS [55, 56]. The indentation test of 2D materials with a PDMS substrate
shows some advantages/disadvantages over the FSI testing of 2D materials, as follows:

(I) For a given deflection of graphene &, the indentation displacement (o) is much higher
in the former test than in the latter test, e.g., & = 200-300 nm when measuring the elastic
modulus of graphene in the former test, whereas ¢, = 20-100 nm in the latter test; the sample
size is actually much larger in the former test than in the latter test, e.g., @ > 100 um in the
former test [55, 56], whereas @ < 1 pum in the latter test [33, 40, 44]. Therefore, the former test
is expected to provide a higher measuring accuracy than the latter test.

(II) Due to the substrate constraint effect (e.g., graphene can be strongly bonded with
PDMS), the sample stiffness is much higher in the former test than in the latter test.

Consequently, the tip-graphene vdW interaction has a negligible effect on sample deformation;

40



therefore, the initial contact point can be more accurately determined in the former test.

(III) In the former test, the boundary conditions of the 2D materials are relatively simple
and easily described (i.e., with a clamped boundary condition), whereas in the latter test, the
2D material is actually under an adhesive boundary condition, which is much more complex
and challenging to accurately describe.

(IV) In the former test, the elastic modulus of graphene (Ej) characterization not only is
related to the indentation test of the 2D material/PDMS but also requires the mechanical
properties of the PDMS substrate (£); in addition, an empirical P-¢& relationship needs to be
established for graphene/PDMS using the FEM since its analytical solution is not available. In
the latter test, there is an analytical solution for the P-¢ relationship (Eq.(8)), reducing the
complexity of determining £y However, this analytical solution was originally intended for
continuous films, with assumptions that might not be appropriate for 2D materials.

In summary, the indentation response of 2D material/PDMS can be more accurately
measured than the FSI response of a 2D material; i contrast, it is simpler to determine the
clastic modulus of a 2D material from FSI testing than from instrumented indentation of the

2D material/PDMS.

5. Summary and selected topics for further investigation

Indentation testing has often been adopted as the preferred method for mechanical
property characterization of 2D materials, with significant progress made over the past decade,
both theoretically -and experimentally. Based on the issues in the existing indentation
characterization of 2D materials, selected topics of interest as an outlook for future studies are
summarized as follows:

(I) Establishing a more effective FSI model

In the present work, we reviewed the effects of the following issues on the FSI testing of
2D materials, including the effects of sample geometry, boundary conditions, pre-stress,
material nonlinearity, defects (e.g., grain boundaries), and vdW interactions with an AFM tip
and with a substrate near the boundary of the FS region. Due to these issues, the mechanical
properties of 2D materials may not be properly characterized using the existing indentation
models, including the clamped beam/drum model. Therefore, more appropriate indentation
models for FSI should be established to address these issues.

(II) Designing a more appropriate FSI experimental configuration
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In addition to correcting the existing indentation model, new FSI experimental
configurations for 2D materials should also be developed to reduce the effects of the
aforementioned issues on FSI testing. For example, fabricating a clamped, pre-stretched FS
2D material can effectively increase the accuracy when determining its elastic modulus via
FSI testing. Recently, Yang et al. [53] developed a new fabrication method of FS 2D materials
on the basis of substrate self-cracking, in which a clamped, pre-stretched, FS film of GO is
fabricated, as shown in Fig. 34. A pre-tension can be induced into the FS GO film via
substrate self-cracking created during a precipitation process. No portion vertically adhered to
the substrate sidewall was observed in their experiments, suggesting that the FS GO film is
truly under a clamped boundary condition; thus, the elastic modulus of GO film can be more
accurately determined using the existing indentation model. However, wrinkles were
observed in their samples, which can be attributed to the Poisson effect of pre-tension induced
by substrate self-cracking, as is commonly observed in stretched continuous elastic sheets
[154, 155] and whose effect on the indentation response of a pre-stretched FS sample is not
yet clear. Another solution to eliminate the effect of the aforementioned issues might be
applying a pressure difference across FS 2D materials over a microchember, and the FSI
testing is then performed on the pressurized membranes [80]. This applied pressure difference
not only delaminates the adhesive boundary of FS 2D materials but also introduces a true
tensile pre-strain in these samples tested in FSI [80, 97], as shown in Fig. 35, However, the
new indentation model for this bulged membrane has been not available, which should be
developed in the near future.

(TIT) Developing a more effective analytical model predicting fracture strength

Although the fracture load of an FS 2D material can be easily measured using the
indentation technique, an effective relationship between its fracture strength and fracture load
is still not available. Simulation results show that existing linear and nonlinear elastic models
overestimate the fracture strength of 2D materials, which can be attributed to the discrepancy
between their true stress-strain curve (calculated by DFT) and the curve described by the

existing theorctical models. Defects make the fracture behavior of polyerystalline 2D
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materials much more complex due to the coupling effect of the stress concentrations caused
by both the indenter tip and defects. From both the numerical and experimental results, the
reported fracture strength of polycrystalline 21D materials is highly scattered; thus, the fracture
strength characterization of polycrystalline 2D materials is currently one of the most
challenging issues in indentation testing of 2D materials. Instead of using a spherical tip, a
cylindrical tip can effectively improve the accuracy in determining the fracture strength of
polverystalline 2D materials, which might be considered in the future.

(IV) Developing an analytical indentation model for 2D material/PDMS

With a very large modulus ratio A (10 < A < 10°), the ratio Ufd U converges to a
constant, suggesting that it is possible to determine the mechanieal properties of 2D materials
from the overall indentation testing of the 2D material/substrate. Due to the substrate
constraint effect in indentation testing, the issues associated with FSI (mentioned previously)
do not arise; thus, the indentation response of the 2D material/substrate can be more
accurately measured. However, an analytical relationship between the overall indentation load
of the 2D material/substrate and the elastic modulus of the 2D material is still lacking; such a
relationship would provide a useful guideline for the characterization of the mechanical

properties of 2D materials.
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Table 1. Mechanical properties of 2D materials obtained from FSI

2D materials Approach E (TPa) or (GPa) Reference
Bi-layer Graphene MD 0.8 [101]
Monolayer graphene MD 0.501-1 [16, 82, 156]
Monolayer graphene FEM 108.5 [60]
Monolayer graphene MD 105 [19]
Monolayer graphene | Experiment 1.00.1 130£10 [33]
Graphene (17<5) Experiment 0.5 [34]
Monolayer graphene | Experiment 1.12 [47]
Polycrystalline _
Experiment 0.967-1.01 98.5-118 [40]
graphene
Monolayer MoS; MD 0.149-0.159 13-38 [102]
Monolayer MoS, | Experiment 0.2710.1 23 [41]
Monolayer MoS, | Experiment 0.26410.018 [43]
MoS, (n=5-25) Experiment 0.21-0.37 [42]
. . 0.058610.0117 4.7911.43
Multiple-layer BP | Experiment p2z) (22 [27]
0.0272£0.0041(ac) [ 2.3110.71(ac)
Multiple-layer BP | Experiment 0.27610.0324 25 [46]
Multiple-layer WSe, | Experiment | 0.167310.0067 12.4 [45]
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Table II. Geometrical parameters selected in FSI

2D materials Sample size (um) t (nm) & (nm) s(nm) | R (nm) Ref
20-100 16.5,
Graphene (n=1) a=0.5,075 0.335 2-10 - [33]
Graphene (n > 1) a=1 2-8 12 [34]
Graphene (n < 5) a=1.9 0.335-1.675 50-130 8+2 [47]
Graphene (n £ 2) L=1.2W=2 0.34-0.68 10 [36]
Graphene (n < 5) L=5W=3 1-5 90 [39]
GO (n=1) L=081,1W=1-2 0.335 10 [38]
MoS; (n=1) a=0.5510.01 0.65 40 5 122 [41]
MoS; (n=1) a=10.55 (.65 70 10 [43]
MoS; (n = 5-25) a=10.55 3-15 5-15 [42]
L=0.8-192
BP(n=>1) 14.8-28 5 28 [27]
W=10.48-1.47
BP(n=>1) a=1-1.5 14.3-34 70 20 [46]
WSey (1> 1) a=0.75,13 3.5-9.8 80-130 &1 [45]
Mica (n = 2-14) a=0.5-0.55 2-8 5 15-20 [49]
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Figure Captions:

Figure 1. Images of selected 2D materials measured with FSI. (a) AFM image of a MoS;
monolayer [43]. (b) AFM image of a SeW, [45]. (¢) (d) Scanning electron microscopy (SEM)
images of a graphene [33, 34]. (e)(f) AFM and SEM images of a Layered BP [27, 46].

Figure 2. Doubly-clamped beam structure of a selected 2D material [27]. (a) SEM. image of a
beam structure of a Lavered BP. (b)(c) Schematics of the beam structure before and after
applying the indentation load.

Figure 3. FSI responses of selected 2D materials over a trench in the substrate. (a) The linear
P-4 relationship [34]. (b) The relationship between the slope & of the P-& curve and the ratio
of #/I. [34]. (¢) The P-& relationship of a doubly-clamped beam structure of a selected 2D
material with a large indentation displacement [39] .

Figure 4. FSI responses of a clamped circular structure of a selected 2D material with a small
indentation displacement [42]. (a) Schematies of a clamped circular structure. (b) The linear
P-& relationship. (¢) The relationship between the slope & of the P-¢ curve and the ratio of
Pl

Figure 5. FSI responses of a clamped circular structure of a selected 2D material with a large
indentation displacement [33]. (a) The indentation P-& relationship and the fitting function
(Eq. (9)). (b) The fracture behavior measured via FSI testing, and the fracture load is marked
as x in the figure.

Figure 6. FSI testing for the elastic modulus of clay tactoids [37]. (a) FSI testing setup. (b)
Determination of the elastic modulus of clay tactoids using Eq. (11).

Figure 7. (a) AFM image of a monolayer graphene mounted on a cylindrical well in S10,
substrate. (b) Line cut through the center of the graphene membrane in (a). (¢) Schematics of
a FS graphene cover on a substrate well before and after applying an indentation load (7, is
the adhesive length to the substrate sidewall) [74].

Figure 8. AFM image of a deformed graphene mounted on a cylindrical well (top), the height
profile of the topology of the deformed graphene (middle), and the relationship between the

G-band frequency and the applied pressure difference across the graphene (bottom) [97]. (a) a

55



multiple-layer graphene (# = 3) sealed microchamber (¢ = 5 um); (b) a monolayer graphene
sealed microchamber (¢ = 3 um). There is a portion of FS graphene adhered on the sidewall
of the substrate due to a vdW interaction.

Figure 9. The G-band frequency @, of the graphene sealed a cylindrical hole varying with the
radial distance ( @, decreases with the increase of the in-plane tension of graphene) [97].
Figure 10. The geometry of the FS region of CVD grown graphene before and after loading
(the top figures show the AFM images; the bottom figures show the height profile of the
cutting line) [44]. (a) Initial structure. (b) Deformed structure by a small indentation load.
Figure 11. MD simulation model of a FS graphene with an adhesive boundary condition under
a concentrated load (including a horizontal portion and a vertical portion adhered with the
substrate sidewall of Si105) [83]. (a) Initial structure. (b) The adhered portion is pecled off the
substrate sidewall by an indentation load.

Figure 12. (a) Schematic of the FEM model of FST testing of a 2D material with an adhesive
boundary. (b) The cohesive zone model of the vdW interaction between the FS 2D material
and the substrate sidewall [98].

Figure 13. FEM results of the P-g relationship obtained from the FSI of a 2D material with an
adhesive boundary condition. (a) With the different adhesive strength. (b) With the different
adhesive length [98].

Figure 14. Schematic illustrations of the adhesive boundary condition and pre-tension of a 2D
material in FSI [98]. (a) Initial structure of a FS 2D material transferred on a substrate with a
cylindrical hole. (b) A FS 2D material with an adhesive boundary condition over the portion
of the FS material larger than the substrate hole. (¢) An extra adhered portion s; created by
vdW adhesion from the substrate sidewall, and meanwhile a pretension is induced in the FS
2D material. (d) Pre-tension in the FS 2D material induced by vdW adhesion. &, and &£g
denotes tensile prestrains along radial and circumferential directions, respectively. &, = ggp =
g=s/atorr<a g,=g=s/aand cgp=0fora <r<a+ s,

Figure 15. (a) The measured P-¢& curve in FSI testing of CVD grown graphene. The inset

figure shows the zoom-in structure of the initial stage of the curve enclosed by the dashed line,
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among which the red color points show the initial linear P-& relationship. (b) The elastic
moduli of graphene determined from the measured P-¢ curve vary with the different initial
contact position. When the indentation model based on Eq. (8) is used, the determined £
increases with the increase of the initial contact position (displayed as black squared symbols);
when Eq. (22) is used, the determined E is not sensitive to the selection of the initial contact
position (displayed as red circular symbols), and the average value £ = 540GPa [44].

Figure 16. MD simulation models of graphene in FSI testing. (a) With a spherical tip. (b) With
a cylindrical tip [84, 85].

Figure 17. The effect of the vdW interaction between the indenter<tip and graphene on the
topology of the graphene at the initial contact position [84]. (a) Without the vdW interaction.
(b) With the vdW interaction (g = 0). (¢) With the vdW nteraction and & = -0.01
(representing the sample with a larger size than the sealed microchamber). (d) With the vdW
interaction and & = 0.01 (the graphene is prestretched.)

Figure 18. MD simulation results of the normalized strain energy Us/A of monolayer
graphene in I'SI testing and its components {/,/4 (the normalized stramn energy of graphene)
and Uys/A (the normalized vdW interaction energy between indenter tip and graphene),
varving with in-plane strain, where 4 is the in-plane area of sample. The right side is for the
ratio of Uya,/ Uy [84].

Figure 19. (a) Relationship between indentation displacements (displayed as &/ and &L,
respectively) and in-plane strain of the monolayer graphene in FSI testing calculated through
MM simulations. & and ¢ are the displacements of indenter tip and graphene, respectively.
The solid lines are the fitting curves of Eq. (24). (b) The divergence between ¢ and o varying
with the ratio of /R, displayed as the fitting parameters k; and k; [85].

Figure 20. The elastic moduli and pre-strains determined from the simulated FSI responses of
the graphene under a cylindrical tip based on the P-4 relationship and the P-6 relationship,
respectively [83].

Figure 21. FEM results of the P-& relationships of graphene based on the linear/nonlinear

clastic models [33]. (a) The P-4 relationship with a small &, and for reference purposes, the
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theoretical value determined from Eq. (9) is also displayed in the figure. (b) The P-&
relationship with a large value of &, and for reference purposes, the theoretical value
determined from Eq. (22) is also displayed in the figure.

Figure 22. The oy value determined from Eq. (2) varies with the fitting range of the
indentation strain. The values of K and 0 used to calculate gy are determined through fitting
the calculated o-¢ relationship via DFT with Eq. (1) [24].

Figure 23. The indentation stress in graphene calculated by MD simulations [19]. (a) In-plane
stress components Gy, 6. (b) The relationship between the indentation stress (o + G,)/2
and the indentation load P.

Figure 24. Various fracture strengths of the bi-crystalline graphene determined from FSI
testing [19]. (a) Indenting from the position moving along grain boundary. (b) Indenting from
the position moving perpendicular to grain boundary. (¢) Indenting the grain with different tilt
angle &

Figure 25. The simulated fracture behavior of a bi-crystalline graphene through FSI [19]. (a)
The P-4 relationship; (b) the crack evolution with the indentation displacement.

Figure 26. The effect of the tip-graphene vdW interaction on the topology of the graphene
with the different number of layers at the initial contact position [86]. (a) # = 1; (b) n = 2; and
(cyn=4

Figure 27. (a) Relationship between indentation displacement and in-plane strain of a few
layer graphene in FSI calculated through MD simulations. (a) The relationship between &/L
and ¢, (b) the relationship between &L and £ ¢ and ¢ are the displacements of indenter tip
and graphene, respectively [86]. The dashed line is the fitting curve of Equation (16).

Figure 28. MD simulation results of the elastic moduli of the graphene with the different

number of layers, normalized by the corresponding value determined from in-plane stretching

(E7), or by the elastic moduli of monolayer graphene (£, £3). For reference purposes, the

value of £}* normalized by the product of nE) is also displayed in the figure [86].

Figure 29. The indentation response of a graphene mounted on a PDMS substrate [56]. (a)
Schematic of the indentation test. (b) The measured P-¢ relationship of pure PDMS substrate.
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(¢) The measured P-4 relationship of graphene/PDMS. (d) The histogram of ¢lastic modulus
determined from the indentation response of graphene/PDMS.

Figure 30. The fracture behavior of graphene measured through the indentation response of
graphene/PDMS [55]. (a) The P-¢ relationships. For reference purposes, the indentation
response of pure PDMS is displayed as the dashed line in the figure. (b) The relationship
between the indentation stress and indentation load calculated by FEM. The fracture load is
marked as a star.

Figure 31. The overall indentation modulus (E,) of a 2D material mounted on various
substrate varying with the normalized indentation displacement o/R. where R is tip radius
[58]. In the figure, K, is normalized by the indentation modulus of substrate £, = EJ/(1-v),
and A 1s the elastic modulus ratio of the 2D material to the substrate A = E/F. (a) Using the
Hertz solution, &/R £ 0.5. (b) Using the true contact radius calculated from FEM, &/R < 0.5.
(¢) Using the Hertz solution, &/R > 0.5. (d) Using the true contact radius calculated from FEM,
&/R > 0.5.

Figure 32. (a) The strain energy ratio of the 2D material to the overall 2D material/substrate
Ud(UrtUs) varying with the normalized indentation depth &/R [55]. (b) The fitting
coefficients 4 and B determined from the P- ¢ relationships calculated by FEM using Eq. (39).
The dashed lines are fitting functions.

Figure 33. FEM results of the radial distribution of the in-plane strains of the graphene in
graphene/PDMS just before the failure of graphene [55]. (a) Radial strain. (b) Circumferential
strain. The inset figures show the strains of the sample close to the indenter tip. In FEM, the
PDMS substrate is modeled using the different material models including the linear elastic,
neo-Hookean and Standard Linear Solid models. For reference purposes, the FSI result of
graphene is also shown in the figure.

Figure 34. A new developed fabrication method of FS 2D materials on the basis of substrate
self-cracking, in which a clamped, pre-stretched, FS film of GO is fabricated [53]. (a)(b) SEM
images on a typical area consisting of a FS GO film (55 nm in thickness) covering cracked

TiO,. (¢) Enlarged view of suspended GO films between islands. (d) The measured P-o;
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relationships of suspended GO films between islands.

Figure 35. Morphology of FS membranes over a microchamber with an applied pressure
difference across them [80]. (a)(b)(c) AFM images of a FS graphene over a circular chamber
of 1.5 mm diameter subjected to various AP. (d)(e)(f) Schematic profiles of the pressurized

membrane. (g) Height profiles along the midline in the AFM images shown in Figs. (a)(b)(c).
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