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Human-centered environments provide affordances for and require the use of
two-handed, or “bimanual,” manipulations. Robots that are designed to func-
tion in, and physically interact with, these environments have not been able to
meet these requirements, because standard bimanual control approaches have
not accommodated the diverse, dynamic, and intricate coordinations between
two arms in order to complete bimanual tasks. In this work, we enable robots
to more effectively perform bimanual tasks by introducing a bimanual shared-
control method. The control method moves the robot’s arms to mimic the op-
erator’s arm movements, but provides on-the-fly assistance to help the user
complete tasks more easily. Our method utilizes a bimanual action vocabulary,
constructed by analyzing how people perform two-hand manipulations, as the
core abstraction level for reasoning about how to assist in bimanual shared-
autonomy. The method infers which individual action from the bimanual ac-
tion vocabulary is occurring using a sequence-to-sequence recurrent neural
network architecture and turns on a corresponding assistance mode, signals

introduced into the shared-control loop designed to make the performance of
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a particular bimanual action easier or more efficient. We demonstrate the ef-
fectiveness of our method through two user studies that show that novice users
can control a robot to complete a range of complex manipulation tasks more
successfully using our method compared to alternative approaches. We discuss

the implications of our findings for real-world robot control scenarios.

1 Introduction

Human-centered environments are tailored for two-handed, or “bimanual,” manipulations. Ever
since neural structures in the brains of human ancestors started evolving to facilitate interactions
between the two hands, societies began adapting their settings around these abilities, affording
complex tool-use, manual labor, meal preparation, and communicative gestures (/—3). These
societal and evolutionary underpinnings of bimanual processes are clearly evident in day-to-
day environments and activities, such as when securing a jar with one hand while twisting its
lid with the other to open the jar; when securing a bowl in place with one hand while stirring
with the other; when lifting a laundry basket with both hands holding the handles on either side;
and when passing plates from one hand to another when setting the table for dinner. While
human-centered environments afford, and often require, bimanual manipulations, robots that
are designed to function in, and physically interact with, these environments have not been able

to meet these requirements.

1.1 How do robots currently approach bimanual tasks?

Robot platforms have historically been designed with single-arm abilities. Consequently, en-
abling such robots to perform bimanual tasks requires modifying either the task or the environ-
ment. For example, if a robot was tasked with unscrewing the cap off of a water bottle, the bottle

would need to be secured to a table ahead of time in order for the robot to execute the task with



a single arm. This single-arm limitation has been shown to make robot actions more difficult
to interpret and relate to (4, 5) and poses a significant barrier to realizing the full potential of
robots for functioning in human environments and assisting people in day-to-day tasks (6, 7).
When, alternatively, two robot arms are utilized in current manipulation and control meth-
ods, the bimanual problem is generally reduced to concurrent instances of single-arm ap-
proaches or single-function mechanisms (for a review, see Smith et al. (§). We also pro-
vide a Related Works section in Supplemental Materials). Whether it be for multi-arm grasp-
ing (9); multi-arm motion planning (/0—12); kinematic controllers (/3—16), impedance con-
trollers (/7-19), hybrid-mode controllers (20-22); teleoperation interfaces (23-26), or active
vision (27-29), the two robot arms in current methods either exhibit independent behavior with
only limited coordination, such as collision avoidance, or show only single-function biman-
ual abilities, such as only being able to grasp and stabilize an object with two hands without

accommodating other bimanual skills such as passing objects from one hand to the other.

1.2 How do people approach bimanual tasks?

While robots have not been able to realize the full breadth of bimanual manipulations in human-
centered environments, people instinctively perform many such manipulations in day-to-day
life. Understanding the differences between current bimanual robot control approaches and
the way that the human brain considers two-handed manipulations, might reveal factors that
contribute to the bimanual manipulation ability gap between people and robots.

Much prior work in neuroscience, neurophysiology, and rehabilitation suggests that current
robot control and manipulation paradigms, i.e., considering two-handed control as concurrent
instances of single-arm approaches or as single-function mechanisms, do not reflect how the
brain considers bimanual manipulations. For example, studies have indicated that the brain

does not command bimanual manipulations by simply superimposing two independent single-



arm representations (30, 37). Instead, dedicated regions of the brain, such as the supplementary
motor area (SMA) (32) and primary motor cortex (33) exhibit unique neural patterns specific to
bimanual manipulations (34). This effect is illustrated in a study by Ifft et al. where the authors
successfully controlled the bimanual arm motions of rhesus monkeys using a brain-machine
interface (BMI) by targeting the areas of the brain specific to bimanual movements as opposed to
separately targeting the brain regions associated with right- and left-arm unimanual movements
(34). A leading theory for describing the cognitive bases for bimanual actions, called internal
model theory, posits that the brain maintains a centralized symbolic representation for bimanual
movements arbitrated by specialized brain regions (35).

Prior work has also shown the remarkable dynamism and flexibility of brain activity when
performing bimanual tasks (36, 37). This dynamic nature of brain networks during biman-
ual activity facilitates switching functions to accommodate various environmental constraints,
task difficulty levels, and spatiotempoeral relationships between the two arms (3). All leading
theories for modeling bimanual behavior, including dynamical systems theory (38, 39), mus-
cle synergy theory (40), internal model theory (35), and optimal feedback control theory (41),
agree that the nature of coordination between the arms during bimanual movements dynami-
cally changes depending on current task constraints (42).

Swinnen et al. combine the concepts of a centralized action semantics in the brain dur-
ing bimanual movements and the dynamic function switching dependant on the bimanual task
to describe a “gestalt” phenomenon where the individual motions of each arm are promoted
to achieve more than the sum of their parts (3). This body of work suggests that any biman-
ual motion planning, control, or manipulation method that does not consider the centralized
action semantics or dynamic function switching involved in bimanual actions, such as the cur-
rent methods outlined above, will fail to achieve this proposed gestalt effect and be limited in

applicability and scope.



1.3 Our Solution

The goal of the current work is to extend the abilities of robots to effectively function in human-
centered environments by achieving the gestalt effect involved in human bimanual manipula-
tions. To illustrate, consider a bimanual robot platform that is installed in a home environment
to provide assistance for an older adult. The robot would need to perform a wide variety of bi-
manual tasks in this scenario, such as opening pill bottles, carrying a laundry basket, or stirring
a meal while keeping the pan stable on the stove. Each of these tasks is composed of vari-
ous “bimanual actions,” individual types of two-handed movements that would benefit from a
particular control strategy. Our goal is to capture these diverse, dynamic, and intricate actions
and interactions between the hands that commonly occur throughout bimanual manipulations
in such tasks and to enable control mechanisms that support these interactions. For example,
when carrying a laundry basket, the correspondence between the two hands, specifically the
fixed translation and rotation offset of the hands as dictated by the laundry basket between
them, is more critical than the individual motions of each independent hand. Thus, a central
premise throughout our work is that a successful bimanual control method will leverage the
higher-level actions and interactions between the two hands, which often take precedence over
the independent behavior of each hand.

To develop such control for robots that considers the higher-level actions and interactions

between the hands, we argue that three technical challenges must be addressed:

1. How should the robot organize the wide range of bimanual manipulations in a manner

that allows us to provide mechanisms to support them?

2. How should the robot identify which bimanual coordination is needed so that it can apply

the appropriate control strategy?

3. What control strategy should the robot implement for each bimanual coordination type?

5



Our current work explores bimanual manipulation in a real-time control scenario. Specit-
ically, we formulate the problem as a bimanual shared-control method, i.e., a control method
that aims to reduce the tedium or difficulty of direct-control by enabling the robot to handle
some aspects of the control process (43). Using such a method, the robot is able to arbitrate
between a user’s command inputs and its own underlying motion policies and understanding
of bimanual tasks. Our methods identify which action the user is performing and adapt the
control algorithm to provide assistance in executing the action by adapting the robot’s move-
ments. For example, in the laundry basket carrying example provided above, even if the user
does not exactly maintain the fixed-offset task constraint while specifying their motion inputs,
the robot could utilize its understanding of the underlying bimanual coordination to maintain
a fixed offset between its end-effectors such that it does not drop or break the laundry basket.
An overview of our work can be seen illustrated in Figure 1. While our current work frames
our proposed approach in real-time control, we expect our core ideas to apply more generally,
for example, to a system in which the inputs come from an autonomous robot’s perception and

planning algorithms instead of a human operator.
1.3.1 How should the robot organize the range of bimanual manipulations?

To address the first technical challenge, we explored the idea that there exists a small set of “bi-
manual action” classes that can abstractly represent a wide range of possible bimanual manipu-
lations. Supported by the theories discussed above, particularly the theory that the brain main-
tains a centralized action semantics in specialized brain regions (3, 35), our proposed method
represents bimanual actions as labeled elements in a bimanual action vocabulary that spans
possible forms of coordination that the two arms may try to achieve in a task.

Given the premise that a concise set of actions and interactions between the hands will often

take precedence over the independent actions of each hand during bimanual manipulations, as
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Figure 1: In this work, we present a shared-control method for effective bimanual robot ma-
nipulation. (a) We constructed a motion dataset of people performing two-handed tasks and
(b) extracted high-level kinematic patterns from the data to build a compact and lightweight
bimanual action vocabulary that sufficiently spans the space of two-handed actions. (c) While
the user is controlling the robot, (d) the method infers which action from the bimanual action
vocabulary is most likely being specified by the user and (e) engages an appropriate assistance
mode (f) to help during the respective bimanual action.

supported by prior work above, a natural question arises: what are these actions and interac-

tions between the two hands? Prior work has successfully isolated a set of control semantics in



the brains of rhesus monkeys using surgically implanted electrodes to activate their bimanual
actions (34). We argue that, if the brain has a representation of central bimanual actions that it
uses to organize the interactions, constraints, cooperative movements, and asymmetric move-
ments between the user’s hands, a theory supported by much prior work (3, 35, 40, 42), then we
should be able to isolate, recognize, and label such features as distinct patterns in the user’s
hand motions when performing bimanual tasks. To explore this premise, we first conducted a
formative study in which we recorded and analyzed the hand motions of human participants
through various bimanual tasks. Through a kinematic pattern analysis, we distilled this space
down to a bimanual action vocabulary designed to characterize the bimanual manipulation
space in a flexible and comprehensible manner. An evaluation of the vocabulary shows that it
can serve as an effective abstraction level to specify to the robot how bimanual tasks should be

accomplished.
1.3.2 How should the robot identify which action is needed?

Our solution to the second technical challenge involves classifying which bimanual action from
the bimanual action vocabulary is most likely being specified by the user at a given time. The
method observes the recent stream of the user’s motion inputs as a state model and uses a
sequence-to-sequence recurrent neural network to infer the most probable bimanual action be-
ing specified. This solution is analogous to how the brain considers bimanual neural processes,
according to the internal-model theory of bimanual action specification (35). The method rec-
ognizes from a centralized action semantics how the two hands are likely to be coordinating,
and is subsequently able to modulate the control processes based on the currently inferred task

constraints.



1.3.3 What control strategy should the robot implement for each bimanual action?

Our solution to the third technical challenge involves a control approach that enables the robot
to move its arms in a coordinated fashion following three phases. First, it captures the poses
(position and rotation) of the user’s hands at each update so that it can map the user’s hand mo-
tions onto the robot’s end-effectors in real-time. This step, called motion-retargeting, involves
mapping motion from one articulated figure (e.g., a teleoperator, motion-capture actor, etc.) to
a potentially vastly dissimilar articulated figure (e.g., a robot, animated character, etc.), such
that important motion or pose properties are maintained (44, 45). This process allows users
to specify what actions they want the robot to perform by simply and naturally providing de-
sired motions with their own arms, an approach that we have termed mimicry-control in prior
work (46, 47). Second, based on the recent stream of the user’s hand poses, the method utilizes
our solution to the second technical challenge in the control loop to infer which bimanual action
from the bimanual action vocabulary that the user is most likely trying to specify to the robot
using a sequence-to-sequence recurrent neural network. And third, given the inferred bimanual
action at the current time, the method dynamically engages an appropriate assistance mode,
signals introduced into the shared-control loop designed to make the performance of a partic-
ular bimanual action easier or more efficient. Thus, while the user feels as if they have direct
control over both of the robot’s arms, the robot subtly overrides their direct inputs in order to
meet task constraints between the two hands given the currently inferred bimanual action. Two
examples of assistance modes in our method (outlined in more detail below) are constraining
the two hands to maintain a fixed translation and rotation offset when lifting a rigid object with
two hands and ensuring that the robot’s end effectors are at the correct distance from each other
when performing a self-handover.

To establish the effectiveness of our proposed solutions, we have evaluated our bimanual

shared-control method through two laboratory studies involving naive human participants. The
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first study compared our method against alternative control approaches, including an unassisted
bimanual approach, as well as a state-of-the-art single-arm control interface. The second study
provides details on the relative contributions of each assistance mode used in our method. The
results of these studies provide insight into the potential impact of introducing bimanual robot
operation on real-world robot control scenarios and other related human-robot collaboration
domains, including fully autonomous bimanual manipulations and bimanual robot teaching.
The contributions of our overall work include (1) introducing an appropriate abstraction
level for how people instinctively perform tasks with two hands, (2) enabling robots to utilize
this abstraction to interpret and reason about bimanual manipulations in real-world environ-
ments, and (3) making robot control in real-world, human-centered environments easier and
more effective, even for novice users, by providing users with the ability to control the robot

analogously to how they would naturally perform tasks with two hands themselves.

2 Results

This section presents the technical solutions to the three challenges outlined above and the
findings from their evaluation. Further technical, implementation, and experimental details are

provided in Supplementary Materials.

2.1 Solution to Challenge 1: Bimanual Action Vocabulary

A central premise throughout our work is that a successful bimanual shared-control method
will tune the control behavior based on the higher-level actions and interactions between the
two hands. To realize this robot behavior, we must first discover and define these actions and
interactions between the two hands. Our strategy to discover these bimanual actions and interac-
tions in this work is: (1) Record a dataset consisting of participants’ hand poses over time while

executing various bimanual tasks; (2) Filter the dataset such that data signals are not conflated
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with extraneous noise; (3) Analyze the dataset to assess what high-level patterns emerge when
people perform bimanual tasks; (4) Organize the observed bimanual patterns into a bimanaul
action vocabulary, such that the elements in the action vocabulary are robust, interpretable, and
cover a wide breadth of common bimanual manipulations.

In this section, we describe the kinematic pattern analysis we conducted in order to distill

the space of bimanual manipulations down to a bimanual action vocabulary.
2.1.1 Formative Study

To form a bimanual action vocabulary, we first assessed how people perform bimanual tasks.
We ran a participant study where we collected a bimanual manipulation dataset by recording
the 6-degree of freedom (translation and rotation) pose information of each participants’ hands
while they perform a set of two-handed tasks. Details about how we collected and filtered our

dataset can be found in Supplemental Materials. Our whole dataset is structured as:

D = {(p!,p},a},d}), (P, Py, A%, db), -, (PE, P, A, dp) }

Here, pf, qf, p;, and q; are the positions and orientations of the dominant and non-

dominant hand at time step ¢, respectively, and 7" denotes the final time step.
2.1.2 Feature Construction

Given the collected and filtered dataset, our goal is to use the data to categorize actions and
interactions that occur between peoples’ hands during bimanual manipulations.

We transform the data to encode each pose in a manner that allows for analysis of the inter-
actions between hands. For each hand-pose (pair of 6-DOF hand configurations), we compute
six different scalar valued features that measure various relationships between the hands, inde-

pendent of their absolute position. The values use only relative coordinates such that models

11



learned through our analyses are not tied to the absolute coordinate frame of the motion cap-
ture setup. The six scalar values in a are (1) the distance between the hands (denoted as hand
offset); (2) the rate of change of the distance between the hands (denoted as hand offset veloc-
ity); (3) the dominant hand’s translational velocity; (4) the dominant hand’s rotational velocity;
(5) the non-dominant hand’s translational velocity; and (6) the non-dominant hand’s rotational

velocity. A feature at a single time-point, s, is structured as:

) lpf — pcflill
|pf — pﬁl\d— Hpj_l‘ ‘— Pl
P: — P
S, = ! (1)
! | disp(af, i ,)||
1P’ — pil
|disp(ay’, ai )]

Here, velocities are approximated using backwards finite differencing, and disp is the stan-
dard displacement operator for quaternions: disp(qi,qsz) = log(q~1; * q2) ( (48)). While we
show that these six features are sufficient for representing interactions between the two hands
in our kinematic pattern analysis, we note that this set of features is only one of many possible
sets. For example, one could supplement this set of features with force and moment information
in order to also characterize the dynamics of bimanual manipulation in an action vocabulary.

Because the features s; only encode a single, discrete hand pose event, we also window

many such events together in a long, concatenated vector to encode motion over time:

St—w/2
St—w/2+1

f, = St ()

St4w/2-1
| Sttw/2

In our analyses, a single feature encodes a second of motion (w = 80).
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2.1.3 Principal Components Analysis

Given the feature vectors f;, our goal is to analyze these vectors such that high-level patterns
characterizing the actions and interactions between the hands emerge. Our conjecture is that,
while our feature-vector space has many, high-dimensional data points, there is a set of just a few
component vectors that can effectively span this space. If such a small set of components exists,
this would indicate that only a few central kinematic actions arise when people do bimanual
tasks.

To search for such a set of bimanual actions, we use principal components analysis (PCA),
a common statistical technique for doing dimensionality reduction (49). The scree plot at the
top of Figure 2 indicates the explained variance with respect to each principal component. We
observe that most of the variance in the bimanual dataset can be explained with just the first
seven principal components, before hitting an inflection point on the scree plot and leveling out.
Figure 2b illustrates the resulting principal components from the PCA to give a sense of what
the dimensions of the bimanual action-vocabulary space represent. In the following section, we

overview how we utilize these principal components in our subsequent manual analysis.
2.1.4 Bimanual Actions from Analysis

In this section, we attach semantic meaning to each of our principal components using a manual,
post-hoc analysis in order to construct a bimanual action vocabulary. We manually organized
and labeled the top PCA components in order to clarify what these components actually mean
in the context of a bimanual manipulation task. Our analysis first involved finding points within
our motion dataset that correspond well with the particular principal components. For example,
when assessing the high-level semantic action corresponding to principal component 1 (the
blue curve in Figure 2b), we found points close to represented as [a, 0,0, 0,0, 0, 0]Z using the

principal components as a basis, for some real value a. Then, we reviewed the study videos to
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Figure 2: (a) Scree plot from our kinematic pattern analysis using PCA. The inflection point
indicates that seven principal components cover much of the variance in the bimanual action
space. (b) The first seven principal components (displayed as colored lines in the graphs) shown
over 80 time-steps per each of our six kinematic features (hand offset, hand offset velocity,
etc.). (c) Illustration of how the third principal component (the red lines in Figure 2b) connect
to the self-handover bimanual action. The dotted lines point to particular landmarks over the
different kinematic features that characterize the self-handover action. (d) The seven principal
components are grouped into four high-level “words” in our bimanual action vocabulary: fixed
offset, one hand fixed, self-handover, and one hand seeking.
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interpret and further organize how the participants’ hands were interacting with one another at
these representative points. This type of analysis would be infeasible to do in an automated way
due to the highly contextualized nature of the assessment. The resulting bimanual actions from

our analysis are explained here and can be seen summarized in Figure 2:

1. Fixed Offset — Principal components 1, 6, and 7 all correspond to a similar kinematic
pattern where the offset between the hands does not exhibit much change, and the trans-
lational and rotational velocities of both of the hands follow similar characteristics. Upon
further investigation, we found that these motions happened when participants were hold-
ing an object with two hands, such that the offset of the hands was dictated by the object
being moved. The hands had to follow similar translational and rotational velocity pro-
files since the rigid object between the hands constrained each hand from exhibiting its

own independent translation or rotation.

2. One hand fixed — Principal component 2 corresponds to the two hands working in close
proximity, where one hand is relatively stationary, while the other hand maintains a high
translational and/or rotational velocity. We found that these motions occurred when one
hand was holding an object in place while the other hand did some manipulation with
respect to this object. An example of such an action is holding a bowl in place with one

hand while stirring in the bowl with the other hand.

3. Self-handover — Principal component 3 corresponds to the hands coming together quickly,
before easing up at the end of the action. Principal component 5 consists of the hands
starting together and moving apart at a moderate speed. Upon further investigation, we
found that these two components occur sequentially when participants are initiating and

completing a self-handover, respectively.

4. One hand seeking — Principal component 4 correspond to the hands moving apart at a

15



fast rate, with one hand maintaining a high translational and rotational velocity, while
the other hand remains relatively still. When investigating further, we observed that this
action occurred when participants were reaching for an object in the workspace. We note
that the top principal components here do not exhibit any motions where the hands move
apart while both hands maintain a high velocity. We believe this indicates that people
rarely reach for separate objects simultaneously with both hands, instead only reaching

with one hand at a time. Thus, our bimanual action here is one hand seeking for an object.

2.2 Solution to Challenge 2: Bimanual Action Inference

In order to appropriately provide support mechanisms in the bimanual controller for the biman-
ual actions specified above, the method must have some way to discern which bimanual action
is currently happening. To do this, we introduce a bimanual action inference method using a
sequence-to-sequence recurrent neural network architecture. We chose to use a recurrent neu-
ral network architecture in this scenario because of its reported successes in inferring events in
time-series data in prior work (50, 57). Specifically, we take advantage of the temporal structure
in this data stream by using a recurrent neural network using a single long short-term mem-
ory (LSTM) layer (52). For full implementation and analysis details on our bimanual action

inference approach, refer to the Supplemental Materials.

2.3 Solution to Challenge 3: Shared-Control-Based Bimanual Telemanip-
ulation

Our next goal is to utilize the understanding of how people perform bimanual tasks in order to
afford an effective shared-control method for bimanual manipulators. A high-level overview of

our shared-control method is provided in the Introduction.

16



2.3.1 Real-time Motion Retargeting using RelaxedIK

We remap the motions of the user’s hands onto the robot’s hands on-the-fly through a process
called motion retargeting. At each update, our shared-control method calculates joint angles
during the retargeting step through a process called inverse kinematics (IK) (see Aristidou et
al. (53) for a review of common IK methods). Prior work shows that using a standard IK solver
for human-to-robot motion-retargeting is not effective, as the resulting sequence of joint angle
solutions exhibit infeasible motion qualities, such as self-collisions, kinematic singularities, and
joint-space discontinuities (46).

To address these problems, we use an optimization-based inverse kinematics solver, called
RelaxedIK, that is able to handle trade-offs between many objectives on-the-fly (54). The key
insight in this method is that exactly matching the end-effector pose goals does not have to
be a hard constraint, and instead other goals, such as smooth joint motion, kinematic singu-
larity avoidance, or self-collision avoidance, could be more important in certain situations.
Certain sub-goals are considered less important on-the-fly and are automatically relaxed or de-
emphasized. RelaxedIK has been shown to be successful for human-to-robot motion-retargeting
in prior work (28, 46, 47). An abbreviated description of the problem formulation, structure,
and notation behind RelaxedIK can be found in Supplemental Materials. While our current
implementation utilizes RelaxedIK to perform the on-the-fly motion retargeting, other motion
optimization frameworks that handle multiple kinematic chains or humanoid structures, such as

the Stack-of-Tasks (55), may also successfully support our presented methods.
2.3.2 Bimanual Assistance Modes

In this section, we overview how we assist in our shared-control method for each action in our
bimanual action vocabulary. All mathematical details for each assistance mode can be found in

Supplemental Materials.
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1. Fixed Offset: The fixed offset bimanual action occurs when a user has picked up and is
moving an object with both hands. In this situation, the translation and rotation of the
user’s hands are constrained to the object being manipulated. The high-level idea behind
the fixed offset assistance mode is to keep the robot’s end-effectors at the same distance
with the same relative translation and rotation offset throughout the whole bimanual ac-
tion such that the rigid object is successfully moved with the cooperating hands. Without
this fixed spatiotemporal offset between the hands, it would be difficult for users to pro-

vide sufficient independent inputs from both hands that meet the task constraints.

To provide assistance throughout this mode, we approximate a coordinate frame pose of
the object being manipulated throughout the fixed offset action, then add objectives of
high importance to both of the robot’s end-effectors to maintain the poses of the robot’s

hands with respect to the proxy object frame.

2. One Hand Fixed: The one hand fixed action typically occurs when one hand is holding
an item in place such that the other hand can finely perform manipulations with respect
to the static object. To assist during this action, we encourage the hand detected to be
stationary in the manipulation to remain fixed. For example, if the robot were pouring a
liquid into a cup, the end-effector holding the cup would remain static; even if the user
exhibited small motion perturbations in the input signal, the robot would ignore this noisy
behavior in favor of keeping the hand fixed, making the pouring action by the other hand

easier to execute.

3. Self-handover: A self-handover action occurs when an object is passed from one hand to
the other. To assist with this action, we make two adjustments to the control algorithm.
Our first adjustment is to gradually decelerate the robot’s end-effectors as they come

together when the action is first detected. This assistance is designed to mimic the velocity
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profile observed when people do self-handovers, as highlighted in our kinematic pattern

analysis.

Our second adjustment is to ensure that the robot’s end-effectors are close together when
the user’s hands are close together. Without this assistance, the user would need to cross
their arms or keep their arms far apart during a handover if the robot’s arms have a dif-
ferent scale and geometry from the operator’s arms. To correct for this, we shift more
importance in the control algorithm to the absolute distance between the robot’s end-
effectors when the user’s hands are close together. Thus, a self-handover action being
specified by the user will maintain a strong motion correspondence with the robot when

it executes the self-handover action.

. One Hand Seeking: The one hand seeking action occurs when one hand is reaching out
for an object while the other hand is not active in the manipulation. We assist during this
action by placing more relative importance on matching the position and rotation end-
effector goals on the seeking hand, meaning that small position and rotation errors are

considered more allowable on the non-seeking hand.

Because RelaxedIK is an optimization-based inverse kinematics solver that can make
trade-offs between many objectives, the goal of this assistance is to provide the solver with
a sense of importance of one hand versus the other. Through this process, more effective
joint-configurations can be solved at each update that exhibit better matching of the hand
that is important as opposed to matching the hand that is not currently contributing to the

task.
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2.4 Evaluation of the Proposed Approach

In this section, we outline the results of our two user studies conducted to evaluate our method
against alternative approaches for telemanipulation. All details about the design of the two
studies, including the hypotheses tested, tasks, procedure, measures, and data-analysis methods
can be found in the Materials and Methods section.

Study 1: Effects of Bimanual Assistance—In Study 1, we evaluated the performance of our
bimanual shared-control method against alternative approaches on a set of complex manipu-
lation tasks. We present results based on a repeated-measures ANOVA analysis. All pairwise
comparisons used Tukey’s HSD test to control for Type I error in multiple comparisons. Results
can be seen summarized in Figure 3.

Study 2: Relative Contributions of our Assistance Modes— In Study 2, we evaluated the
relative contribution of each of our bimanual assistance modes. We present results based on
a repeated-measures ANOVA analysis. All pairwise comparisons used Tukey’s HSD test to

control for Type I error in multiple comparisons. Results can be seen summarized in Figure 4.

3 Discussion

In this work, we extended robot manipulation abilities to include two arms by formalizing a
shared-control method designed to afford effective execution of bimanual tasks. Below, we
suggest the main takeaways from our work based on results from our two user studies, provide
more specific discussion of the results of our studies, and overview limitations and extensions

for our work.

3.1 Opverview of Takeaways

Based on results from our two user studies, we suggest four main takeways from our work

(below). A more thorough discussion of our study findings can be found in Supplemental
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Materials.

(1) The benefits observed by a bimanual robot control platform are elicited from reasoning
about and leveraging the actions and interactions between the two arms, rather than simply
having two arms involved in the manipulation. In other words, we observed no benefits in using
two robot arms over a single robot arm in our robot control scenario when task intuition and

corresponding assistance provided by our bimanual action vocabulary was removed. Thus, we

argue that the robot having this intuition about how two arms interact with each other in tasks
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is paramount when two arms are present.

(2) The use of “assistance modes” rooted in a bimanual action vocabulary provides task
success and user perception benefits across a wide range of manipulation tasks.

(3) A particular “assistance mode” may have individual bearing on a particular task when
used independently, though they appear to have a “gestalt effect”, where even more benefits are
present when multiple assistance modes are afforded to the user. Thus, the ability to dynami-
cally switch between assistance modes, such as when using our proposed sequence-to-sequence
recurrent neural network inference method, is an integral part of a successful bimanual shared-
control approach.

(4) A bimanual robot control platform is capable of affording task performance and user
perception benefits over a single-arm robot platform when used for complex manipulation tasks

in human-centered environments.

3.2 Limitations & Extensions

Our bimanual shared-control method has limitations that suggest many future extensions to our
work. First, our method currently only considers the kinematics of the bimanual platform, rather
than also considering the dynamics of manipulations. Extensions of our proposed solutions
could supplement our motion pattern analysis to include force and torque data, and extend
our bimanual action vocabulary to include these extra dimensions. Using the new dynamics-
infused bimanual action vocabulary, we could in turn extend our assistance modes to compliant
control laws that dictate how the arms should work in tandem when manipulating objects. Force
information could also be reflected back to the teleoperator using haptics.

Also, our method only considers motion at the level of the user’s hand poses, though we
speculate much of human-level dexterity when using two hands is at the level of the user’s

fingers. Including high fidelity finger motion and dynamics information at the users’ fingertips
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could provide rich data to bolster both our bimanual action vocabulary and resulting assistance
modes. We also note that the assistance modes in our current method are hand-designed and
based on heuristic choices. Extensions of our work could explore ways to automate the mapping
of the various control processes, such as identifying control laws directly from human motion
and force signals that could generalize to various robot platforms.

A key lesson from our work is that explicitly supporting bimanual actions through dual-arm
control algorithms provides value over controlling arms individually. While our experiments
only show the benefits relative to a specific single-arm controller, we believe that the control
methods we introduced, as well as the general principles of bimanual action selection, can be
used to extend other single-arm control approaches. Similarly, we believe that our action-based
control methods could be incorporated to enhance other bimanual control schemes.

Lastly, our current method does not consider the user’s view of the environment when con-
trolling the robot’s arms. Our current studies only considered cases where the user was co-
located with the robot such that the user had direct line-of-sight of the workspace; however, in
real-world use cases, it would be common for the robot to be deployed in a remote location,
making the visibility problem a pertinent consideration. Our recent work in remote telema-
nipulation has stressed the importance of situational awareness when controlling a robot arm
remotely (28). This prior work, however, does not consider the remote visibility problem when
controlling two arms simultaneously. Methods that autonomously provide an effective view of
a remote environment for a user controlling a bimanual robot platform would bolster our current

shared-control approach.
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4 Materials and Methods
4.1 Study Design

In this section, we describe the design of our two studies, including the hypotheses tested and
study design, tasks, procedure, measures, and data-analysis methods. Implementation details
for the prototype system used throughout our evaluations can be found in Supplemental Mate-
rials. The evaluations conducted in this work were approved by the Institutional Review Board
at the Naval Research Laboratory in Washington, D.C.

Procedure— Both of our studies followed a common procedure. Following informed con-
sent, participants were provided with information on the goals of the study and were invited to
ask any questions they had. The participants first put on a pair of velcro motion-capture gloves,
stood in a fixed location next to the robot, and waited in a comfortable initial pose with their
palms level to the floor and fingers facing forward. The standing spot was selected to provide
a sufficient vantage point for all sub-tasks and to ensure that participants would be out of the
robot’s range of motion at all times for safety. The experimenter guided the participants through
a practice phase on how to control the Hubo robot. The system was initialized by the exper-
imenter, then the experimenter counted down from five to signal when the participant would
have control. Once the system counted down, the participant could move his/her arms and
hands in free-space to practice using the control system by picking up an empty soda bottle for
up to four minutes. Note that the the participants could practice moving both arms during the
training phase, though the practice task just required a single arm. This training strategy was
used so that the user could get accustomed to initializing the system and moving the robot’s
arms without focusing on the more pertinent aspects of bimanual assistance.

After the participants felt sufficiently comfortable using the control system, they took a short

break while the experimenter set up the task (the task(s) for each study are outlined below). The
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participants alternated between performing the tasks under different conditions and completing
a questionnaire regarding their last robot control experience. This procedure was repeated until
all tasks per condition were completed. After finishing all tasks, the participants completed a
demographic questionnaire and were then debriefed on the details of the study.

Study 1 Experimental Design and Tasks— Study 1 followed a 3 x 1 within-subjects de-
sign. The participants used three control methods (single-arm control, bimanual control-non-
assisted, bimanual control-assisted) to complete a breakfast-making task. The single-arm con-
trol case was included as a state-of-the-art telemanipulation method comparison from prior
work by Rakita et al. (46), wherein the authors reported the success of this approach over other
interfaces such as a 6-DOF stylus device and touch screen interface. We included this compari-
son to assess how this previously reported on interface extends to more dexterous manipulations
and an experimental setup that is more reflective of standard human environments where two
hands are often helpful. The bimanual control-non-assisted condition applies the method seen
in the prior work by Rakita et al. (46) on two arms, essentially treating the bimanual problem
as just two independent instances of single arm mimicry-control simultaneously. We included
this condition to see how having two arms during robot control, even when the two arms do
not have a sense of each other or the actions and interactions involved in bimanual actions, will
affect task performance and user perceptions. Lastly, the bimanual control-assisted condition
implements all of our bimanual assistance modes as inspired by our bimanual action vocabu-
lary, presented throughout our work. The conditions were presented in a counterbalanced order
between participants. A participant can be seen executing various tasks from Study 1 in Figure
5.

To ensure the generalizability of our findings to a wide range of telemanipulation tasks
in a standard human-centered environment, we developed a breakfast-making task consisting

of an array of sub-tasks. We chose this task because one of the motivating research domains
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Figure 5: A novice user executing various sub-tasks from Study 1. The sub-tasks in Study 1
followed a breakfast-making theme, matching our motivated use-case of our bimanual shared-
control method being used in remote home-care or telenursing scenarios.

for our work is remote home-care; thus, showing benefits in a simulated domain may indicate
the potential of our methods to be used in such a scenario. The task as a whole consisted of
an array of subtasks, designed to test different manipulation abilities. Specifically, the task

involved cracking open two large prop eggs and releasing the contents of the eggs into a bowl,

removing the top of a “chopped peppers container” (a snack canister) and pouring the contents
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into a bowl, flipping the top off of a “salt container” (a bottle of disinfecting wipes) and pouring
the contents into a bowl, “mixing egg yolks” by pouring the contents of one cup into another
and forth three times, moving the bowl using two hands (if available) from one table to the
other table, unscrewing the top off of an “orange juice container” (a laundry detergent bottle)
and pouring the contents into a cup, and removing three plates from a drying rack and setting
the table to the left of the robot. Participants were asked to complete as many of the subtasks as
possible in 10 minutes given the current control condition.

Study 1 Measures & Analyses— To assess participant performance in study 1, we measured
binary success over the 15 subtasks involved in the breakfast-making task.

To measure participants’ perceptions about their robot control experience under various
assistance conditions, we administered a questionnaire including eight scales to measure pre-
dictability, robot intelligence, fluency, goal perception, trust, ease-of-use, satisfaction, and use-
fulness, as well as the NASA-TLX questionnaire. The items and Cronbach’s alpha value for
each scale are featured in Table 1.

Study 1 Hypotheses— Our central hypothesis in Study 1 was that bimanual control-assisted
would outperform bimanual control-non-assisted on all objective and subjective measures, and
bimanual control-non-assisted would outperform single-arm control on all objective and sub-
jective measures. We believed bimanual control-assisted would outperform bimanual control-
non-assisted because our assistance modes were designed to help with the intricate actions and
interactions that occur between the two hands, rather than just considering the bimanual con-
trol problem as two separate instances of single-arm control. Further, we believed bimanual
control-non-assisted would outperform single-arm control on all objective and subjective mea-
sures because we thought having two hands, even if they do not correspond with each other or
provide assistance, would still be beneficial for some of the complex manipulations incorporated

in the breakfast-making task.
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Study 1 Participants— We recruited 24 volunteers (16 male, 8 female) from the campus of
the Naval Research Laboratory in Washington, D.C. Participant ages ranged from 18-60 (M =
35.21, SD = 14.11). Participants reported a moderate familiarity with robots (M = 3.79, SD =
2.02 measured on a seven-point scale). Eight participants had participated in a prior robotics
study.

Study 2 Experimental Design and Tasks— Our Study 2 consisted of four separate 4 x 1
within-subjects experiments. Our goal in these experiments was to assess the relative contribu-
tion of each of our bimanual assistance modes (fixed offset, one hand fixed, self-handover, one
hand seeking) toward the performance benefits reported in Study 1. For example, we wanted
to assess whether our assistance mode designed to help with the self-handover action indepen-
dently affords performance benefits, only elicits performance gains when used in concert with
other assistance modes, or does not contribute to performance benefits at all.

To isolate the effect of each of the assistance types, each of the four experiments in Study 2
consisted of a single task designed to target one of our assistance modes (fixed offset, one hand

fixed, self-handover, and one hand seeking). The tasks for each assistance type are as follows:

1. Fixed offset: Participants moved a trash bin from a table in front of the robot to a table to
the left of the robot. The trash bin was to be moved just by resting the robot’s hands on

either side of the bin (the robot’s grippers were deactived for this task).

2. One Hand Fixed: Participants opened and closed the top of a disinfecting wipes bottle
three times. The bottle had a flip-up top, such that an effective strategy to open and close
it involved holding the bottle steadily in place with one hand and using the the robot’s

other hand to manipulate the bottle.

3. Self-handover: Participants retrieved three plates one at a time off of the table with the

robot’s right hand, passed the plate from right hand to left hand, and dropped the plate
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into a drying rack to the left of the robot.

4. One hand seeking: Participants stacked six cups into a single stack. The cups began
organized in two rows of three, placed close enough together such that both hands had to

be used throughout the task such that other cups in the grid were not knocked over.

Each of the tasks above were performed with four assistance variations: (1) All assistance
modes off; (2) Only the targeted assistance mode engaged; (3) All assistance modes engaged
except for the targeted assistance mode engaged (referred to as Only targeted assistance off);
and (4) All assistance modes engaged. Throughout Study 2, the presented order of the four
tasks was counterbalanced, and the order of the four assistance variations within those tasks
was randomized. Participants had a maximum time of two minutes for each of the sixteen task
trials.

Study 2 Measures & Analyses— To assess participant performance in Study 2, we used a

compound objective measure that captured both success and timeliness in performing a task.

This measure takes the general form —— + ( t’;ﬁz;t * ), where #,,q, is @ maximum time
allowed for a particular trial, ¢ is the time it took a participant to complete s subtasks in the trial,
and $,,,4; 1S the maximum number of subtasks to complete in a trial task. The possible range for
this metric is 0 — 2.

To measure participants’ perceptions about their robot control experience under various
assistance conditions, we administered a questionnaire including the fluency and trust scales by
Hoffman (56) found in Table 1.

Study 2 Hypotheses— Our central hypothesis in Study 2 is that All assistance modes en-
gaged and Only targeted assistance mode engaged would outperform both Only targeted assis-

tance off and All assistance modes off in all objective and subjective measures. We believed this

would be the case because each task was specifically designed to target a particular assistance
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Predictability (a =0.73)

(1) The robot consistently moved in a way that | expected.

(2) The robot’s motion was not surprising.

(3) The robot responded to my motion inputs in a
predictable way.

Fluency (a=0.64)

(1) The robot and | worked fluently together as a team.
(2) The robot contributed to the fluency of the interaction.

Trust (a=0.64)

(1) I trusted the robot to do the right thing at the right time.

(2) The robot was trustworthy.

Goal Perception (a=0.76)
(1) The robot perceives accurately what my goals are.
(2) The robot does not understand what | am
trying to accomplish.
(3) The robot and | are working towards mutually
agreed upon goals.

Usefulness (a=0.75)
(1) It helps me be more effective.
(2) It is useful.
(3) It makes the things | want to accomplish
easier to get done.

Robot Intelligence (a=0.74)
(1) The robot was intelligent.
(2) The robot was able to independently make decisions
through the task.
(3) The robot had an understanding of the task.
(4) The robot had an understanding of my goal during the task.

Satisfaction (a= 0. 86)
(1) I am satisfied with it.
(2)  would recommend it to a friend.
(3) Itis fun to use.
(4) It works the way | wanted it to work.
(5) It is wonderful.

Ease of Use (a=0.87)
(1) Itis easy to use.
(2) Itis simple to use.
(3) Itis user friendly.
(4) Itis flexible.
(5) It is effortless.
(6) | can use it without written instructions.
(7) I don't notice any inconsistencies as | use it.
(8) Both occasinal and regular users would like it.
(9) I can recover from mistakes quickly and easily.
(10) I can use it successfully every time.

mode; thus, the conditions where the target mode is present, even if the other assistance modes

are turned off, should outperform the alternatives without the assistance engaged.

Study 2 Participants— We recruited 24 volunteers (13 male, 11 female) from the campus of

the Naval Research Laboratory in Washington, D.C. Participant ages ranged 18-64 (M =31.92,

SD = 12.53). Participants reported a relatively high familiarity with robots (M =4.21, SD =1.89

measured on a seven-point scale). Six participants had participated in a prior robotics study.

Supplementary materials

Supplementary Text
Fig. S1 Motion Dataset Study

Fig. S2 Notation for Technical Details

Movie S1 Shared-Control-Based Bimanual Robot Manipulation
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5 Supplemental Materials

5.1 Related Works

Our bimanual shared-control methods draws on prior work, especially in controls, motion plan-
ning, and teleoperation interfaces. In this section, we discuss pertinent previous works and
highlight how our current work is related (for a comprehensive review of multi-arm robotics
work, see Smith et al. (8)). A review of this body of work indicates that there are two main
differences between our current work and the discussed prior works. First, the two robot arms
in some prior bimanual manipulation methods exhibit independent behavior with only limited
coordination. For example, these works may feature two robot arms working in close proximity,
but they do not plan complex actions together such as manipulating objects using both arms.
Second, other bimanual manipulation works mainly present single-function bimanual abilities,
such as only being able to grasp and stabilize an object with two hands without accommodating
other bimanual skills such as passing objects from one hand to the other. Thus, these prior
works only need to demonstrate the efficacy of their independent solution without showcasing
how it fits within to the wider context of bimanual manipulation abilities. In contrast, our work
is focused on robots performing dexterous coordinations between the two arms inspired by how
people perform bimanual manipulations, as well as endowing robots with a wide range of bi-
manual skills and the ability to fluently switch between these various control strategies based
on inferred task context.

Controls— Many previous control algorithms have been proposed for bimanual robot plat-
forms. These control algorithms fall into three main categories: kinematic controllers, where
the output is joint-angle positions, force controllers, where the outputs drive the joint torques
of the robot, and hybrid controllers, where the outputs may be joint-angle positions or joint

torques subject to the current situation.
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Mirrazavi et al. (/3) present a method that allows two arms to move on-the-fly in order
to intercept a large object being handed over by a human collaborator. Our current work is
inspired by the dexterous, on-the-fly coordination between two arms in order to manipulate ob-
jects, though our focus is on the shared-control aspects of switching between control strategies
based on inferred bimanual action contexts as opposed to the singular task of stabilizing and in-
tercepting large objects. The method from Mirrazavi et al. also features an optimization-based
inverse kinematics solver such that the two arms do not collide with each other. Our method
also uses an optimization-based inverse kinematics solver that is able to avoid self-collisions,
though instead of approximating the geometry of the robot with spheres and encouraging these
spheres to stay far apart, our method uses a data-driven approach that considers the full geome-
try of the robot a priori such that the robot can learn how close or far a given configuration is to
exhibiting a collision. Then, a feed-forward pass through the trained neural network that calcu-
lates a distance to a collision state is two orders of magnitude faster than the original distance
calculation function, making this sufficiently fast enough to serve as a single term in a real-time
motion optimization framework.

Work by Schneider et al. (/7) present an impedance controller for multi-arm systems that
considers the impedance of the object being carried by the multiple arms, as opposed to the
impedance experienced at each of the arms’ end-effector points. Considering how the carried
object’s forces should behave with respect to the environment would be important for tasks
such as assembly of large parts transported by multiple arms. Bonitz and Hsia (/8) present an
impedance controller for multi-arm systems that instead considers the internal forces of each
of the manipulators. Subsequent work by Caccavale et al. (/9) presents a controller that is
able to consider both the impedance of the carried objects as well as the internal forces of
each of the manipulators carrying the object. This combined approach has the advantage that

the internal forces exerted in each manipulator will not over-accumulate stress, while the risk
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of object slip occurring between the two end-effectors is also reduced. Gueaieb et al. (22)
introduce a hybrid control method that is able to switch control strategies between position and
force-based control based on model uncertainties and disturbances from the environment. Our
method does not consider object or internal dynamics when manipulating objects, as we only
drive joint-positions when controlling the bimanual platform. A main focus of our work is
to motivate the need to swifch bimanual control types based on the bimanual action currently
happening. We believe that potential extensions of our work would benefit from considering
object and internal dynamic when switching control types based on context. For example,
when our method recognizes that an object is being carried with both arms and our fixed-offset
assistance controller is activated, we only fix the kinematic (translation and rotation) offset
between the robot’s end-effectors. However, switching to an impedance-based controller such
as those mentioned above could reduce slip and adapt based on the forces exerted on the carried
object, and may be even more successful in conjunction with the rest of our proposed approach.

Motion Planning— The problem statement for motion planning is generally to find a feasi-
ble path from an initial state g;,;; to a goal state qg0q;, Subject to a set of constraints (for a full
review on motion planning, see Latombe (57)). Motion planning problems are often posed as
graph search problems, such that robot configurations serve as nodes in the graph and edges
define feasible, traversable motion in configuration-space (58, 59). While many bimanual mo-
tion planning problems can be subsumed by general motion planning problems by increasing
the state-space to include the degrees-of-freedom from both arms, specialized methods have
been developed that explicitly handle the coordination problems unique to multi-arm motion
planning.

Koga and Latombe present a motion planning solution that addresses the object transport
problem using two robot arms, i.e., the problem of moving an object from one location to

another in task space using two cooperating arms (/7). In this work, the robots are able to
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avoid collisions and can handle re-grasps of the objects to better serve the motion planning.
The authors extended this work to include more than two manipulators (/0). LaValle also
presents various strategies for multiple-robot motion planning in his comprehensive overview
of planning algorithms (/2). Our current work is inspired by the coordination between multiple
arms exhibited by these motion planners, though our focus is on real-time control without any
look-ahead information about a complete path. Thus, our work utilizes a real-time motion
optimization framework where the robot is able to adapt and react in a per-update fashion to
current needs.

Teleoperation Interfaces— Much prior work has investigated effective ways for users to
control robot manipulators. While a lot of these prior works have focused on single arm con-
trol, bimanual robot control presents its own set of challenges, and thus has facilitated its own
set of solutions in the literature. Many works in teleoperation draw on the influential mechan-
ical systems constructed by Raymond Goertz in the 1950’s (23). These systems often featured
two robot arms to manipulate radioactive material in an adjacent, secured room. While in-
terfaces were developed such that a single user could control both arms, these early systems
often involved two people controlling the arms separately. Our current work is inspired by
this early seminal work by Goertz. Our goal is to extend the dexterity exhibited by bimanual
robot platforms in this early work by using shared-control aspects as well as a more thorough
understanding of how people use two hands to complete tasks.

A recently proposed teleoperation interface from the company RE2 robotics features a bi-
manual setup where the robot’s arms are controlled by a specialized controller (24). The con-
troller is a mini replica of the controlled robot platform, and the motion of the controlled device
is determined through joint-to-joint remapping from the replica’s motion. The replica controller
is large enough such that the operator can rest his/her arms on them, thus giving the illusion that

the robot’s arms are imitating the motion of the operator’s arms. This system has been shown
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to be effective at allowing users to perform dexterous bimanual manipulations. While the joint-
to-joint mapping control strategy leads to reliable and predictable motion from the controlled
device, this type of control only works for the robot platform that the controllers were designed
for, making this method infeasible to generalize to any bimanual robot platform. While we
would have been interested to compare our current methods to this system in our evaluation, the
specialization of the hardware needed for this setup made such a comparison impractical. How-
ever, we believe that the methods presented throughout our work, especially the shared-control
aspects that are inspired by how people perform bimanual actions, would integrate well with
the promising system presented by RE2.

Recent work by Laghi et al. (26) present a shared-control strategy for bimanual robot plat-
forms. The method allows users to control both arms independently, and users are also able
to manually switch to a mode where the arms exhibit a fixed offset when carrying something
together. Our current work also proposes methods that add shared-control elements to a biman-
ual control system, but our approach seeks to automatically switch between bimanual control
modes based on the inferred action context. We also present more bimanual control strategies to
dynamically switch between, all of which are inspired by how people perform bimanual actions

through our kinematic pattern analysis.

5.2 Motion Dataset Collection Details

We recruited twelve participants (7 males, 5 females) from the University of Wisconsin—Madison
campus with ages 18-22 ( M = 20.67, SD = 1.23). Eleven participants were right-hand dom-
inant, and one participant was left-hand dominant. The study took 25 minutes, and each par-
ticipant received $5 USD. The motion dataset study was approved by the Institutional Review
Board at the University of Wisconsin—-Madison.

Participants completed a set of twenty tasks, designed to simulate a meal preparation sce-
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Captured hand poses: ,,
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Figure 6: (Top) We collected a dataset by recording participants performing various biman-
ual manipulations, (bottom) in order to capture the position and rotation of the participants’
hands throughout the tasks. Using this dataset, our goal was to distill the space of bimanual
manipulations down to just a few bimanual actions that still span the bimanual manipulation
space.
nario in a kitchen. In order to select a representative set of two-handed tasks that people would
typically execute in their day-to-day lives, we designed the tasks using the object and action
labels reported on in the Epic-Kitchens Dataset (60). The Epic-Kitchens Dataset consists of 55
hours of labeled, egocentric-view videos of people performing tasks around their own kitchens.
Our tasks were constructed by combining the top ten action reported on in the dataset (put,
take, wash, open, close, cut, mix, pour, remove, turn-on, turn-off) with common object labels
reported on in the dataset (breads, fruits, meats, vegetables, appliances, kitchenware, etc.), en-
suring that our dataset would consist of manipulation actions that commonly occur in peoples’
everyday lives.

We recorded participant hand data using an Optitrack motion capture system. Our data con-

sists of over 500,000 discrete hand poses from 111 minutes of bimanual manipulations sampled

at 80 Hz. Our whole dataset is structured as:
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5.3 Motion Datset Filtering Details

In this section, we provide more details on the filtering process used on our bimanual dataset. A
bilateral filter preserves the signal’s shape around extremal points, meaning rich motion infor-
mation found in higher derivatives such as velocities or accelerations will remain intact; only the
perturbations that do not match the motion signature in the signal’s surrounding neighborhood
are smoothed. In contrast, a more standard low-pass filter averages the whole curve based on a
constant kernel, which will constrict the whole signal and cause it to move away from extremal
points.

We pre-process the dataset using the following procedure:

P :={ (¢(p;). ¢(py), exp(d(log(ay)))), exp(¢(log(ay)))) }, Vt 3)

)= S el —al) wo 1) @)

Xy 8.LVE[t—O,t+0O)]

7 = > Yo (2o — 24| ]) vs(|lv —t]) (5)
Xy 8.LVE[t—O,t+0O)]
(1) = — (—0.5% [—2]) ®)
Vir,s3 (@) = ———== exp(—0.
trs} Ofrs}V 27 O{r,s}

Here, log and exp are the standard log-map and exponential-map operators for quaternions.
The log-map operator maps a quaternion q € S® to a rotation vector r € R3. The exponential-
map exponentiates a rotation vector back to a corresponding quaternion. For more details on
representing rotations and orientations, see work by Lee (48). The ~,(.) and ~,.(.) functions are
Gaussians that define the spatial and range falloff of the filter, respectively. Note that we do
not filter across the boundaries between separate participants. Each participant’s data is filtered

separately and concatenated together into the dataset.
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5.4 Bimanual Action Inference Implementation Details

The neural network in our inference step reasons about the same kinematic features seen in our
previously discussed kinematic pattern analysis. We decided not to use the PCA components
specified in our kinematic pattern analysis in our inference step, and instead just utilized the
same kinematic features that were used to perform the PCA. We made this decision because
the windowing method used in the PCA may present a temporal ambiguity. In other words,
the RNN could be confused if the same bimanual action appears shifted over in the window.
Using the core kinematic features instead of the PCA components allows the RNN to learn the
temporal characteristics of the data itself, instead of imposing this temporal structure as filtered

through the PCA process. A single input into the neural network is structured as:
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The labeled outputs are a tall matrix of stacked one hot vectors, where each row only con-
tains one value that is one and all other inputs are zero. When labeled over the whole window,
these outputs denote which bimanual action is happening at the time point corresponding to that
same row in the input kinematic features. The label matrix corresponding to each label instance
is of size w x 7, where columns correspond to one sub-action in the bimanual action vocabu-
lary. Specifically, the columns correspond to the actions of fixed offset, right hand fixed, left
hand fixed, self handover, right hand seeking, left hand seeking, and a null action that signifies
none of the aforementioned actions are present. Thus, for example, a row of [1,0,0,0, 0,0, 0] in
the output matrix would mean that a fixed offset bimanual action is happening, given the input

kinematic features ®; at time ¢.
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We take advantage of the temporal structure in this data stream by using a recurrent neural
network, specifically using a single long short-term memory (LSTM) layer (52), with an output
dimensionality of 30. We trained the neural network using the Adam optimizer with a mean
squared error loss. A data set of over 30,000 input and output pairs was used to train the model,
which was collected by having three volunteers (colleagues of the authors at the Naval Research
Laboratory) use the robot control system to complete a set of manipulations. Output bimanual
action classes were hand labeled by the authors.

The neural network outputs a sequence of probabilities that each action is the current one
over a certain window of time. To distill this sequence of predictions down to a single classi-
fication at the given time ¢, we take a plurality vote of the estimates for each class throughout
the whole window and classify based on the maximum sum value. Taking this plurality vote
over the window helps avoid the network being too reactive to small perturbations or noise in
the motion capture data; only when the network builds up enough consistent confidence over a
window of time will it decide that a new bimanual action is present. Using the overall learned
model and this voting strategy, the network achieves classification accuracy of 94.3% on 5,000
unseen test-set data.

Our overall system was designed such that the presence of some misclassifications of biman-
ual actions by the neural network generally do not hinder the control experience. The controllers
gracefully switch between one another such that an abrupt misclassification does not disrupt the
control process. Also, because our underlying optimization-based inverse kinematics solver
leads to differential motion increments and strongly enforces smooth velocities, acceleration,
and jerks, the control process remains smooth over time regardless of the underlying motion

strategy.
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5.5 System Implementation Details

We realized our method in a system designed to provide sufficient performance and safety in
order to demonstrate its benefits in a user study. The paragraphs below describe details of our
prototype system.

To capture the user’s hand configuration at each system update, we used a Vicon motion-
capture system involving eight cameras placed in a semi-circle around the workspace. The users
wore a velcro glove on their right hand with five passive markers secured to it. The marker
pattern was recognized as a rigid body, serving as a proxy for the user’s hand configuration.
The Vicon system provided hand-transform data at a rate of 100 Hz. We expect any motion
capture system that can track positions and rotations of the user’s hand to support our method.

The robot platform used in our prototype system was a DRC-Hubo+ humanoid robot from
Rainbow Robotics. We controlled the right and left arm of the robot, as well as the revolute
waist joint, resulting in 15-DOF total. The robot platform has an anthropomorphic design and
includes a three-finger gripper on both hands. The user opened and closed the grippers using a
remote held in each hand.

System Overview—Our prototype system was set up as a distributed system over a network
of computers that utilized ROS for communication. The motion-capture system sent transform
information to a computer that solved the 15-DOF RelaxedIK nonlinear optimization problem,
recurrent neural network pass for bimanual action inference, and end-effector goal location
optimization at each update. This control loop as a whole ran at approximately 30 Hz on a
computer with an Intel 17-8700k 3.7 GHz processor, 32GB RAM, and Nvidia GTX 1080Ti

graphics card.
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5.6 RelaxedIK Overview

In this section, we provide a brief overview of RelaxedIK, the optimization-based IK solver
used in our motion retargeting step. For full details, refer to our prior work (54).

The IK problem in RelaxedIK is formulated as a constrained optimization:

© = argmin f(0)s.t.¢;(©) > 0, ¢.(0) =0
© 8)
li <0; <wy, Vi

where © is the n—vector of robot joint values (n is the robot degrees of freedom); ¢;(O) is a set
of inequality constraints; ¢.(©) is a set of equality constraints; /; and u; values define the upper
and lower bounds for the robot’s joints; and f is a scalar objective function. Our challenge is to

encode our bimanual-motion assistance modes as goals within the constraints and objectives.
The objective function is expressed as a weighted sum of individual goals, such as end-

effector position matching, end-effector orientation matching, minimum jerk joint motion, and

distance to singularity. It is formalized it as follows:

k
f(0) = Z w; * hi(0,0(t)) * fi(©,Q) 9)

Here, w; is a static weight value for each term, which allows the programmer to incorporate
prior knowledge about what terms are most important for a given task. The h;(©, v(t)) repre-
sents a dynamic weighting function, that can depend on the current robot configuration, ©, or
other time-varying values in the function v(¢). Finally, f;(©, ;) is an objective-term function
that encodes a single sub-goal, with €2; being model parameters used to construct a particular
loss function.

To facilitate combining objectives, Rakita et al. normalize each term using a parametric
normalization function that is designed to scale each function to a uniform range (54). This

function places a narrow “groove” around the goal values, a more gradual falloff away from the
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groove in order to better integrate with other objectives, and exhibits a consistent gradient that
points towards the goal. The normalization function is encoded as a Gaussian surrounded by a

more gradual polynomial:

—(xi(©) — 5)°

5.2 ) 4+ 7 (xi(0) — s)* (10)

fi(©,Q;) = (—1) exp(

Here, the scalar values n, s, ¢, r form the set of model parameters ¢2. Together, they shape the
loss function to express the needs of a certain term. Here, n € {0, 1}, which dictates whether the
Gaussian is positive or negative. Negative Gaussian regions are areas of high “reward,” while the
optimization will push away from positive regions of high “cost.” The value s shifts the function
horizontally, and c adjusts the spread of the Gaussian region. The r value adjusts the transition
between the polynomial and Gaussian regions, higher values showing a steeper funneling into
the Gaussian region and lower values flattening out the boundaries beyond the Gaussian. The
scalar function x(O(t)) assigns a numerical value to the current robot configuration that will
serve as input to the loss function. In the sections below, we will tune existing objectives or add
new objectives x(O(t)) to tailor RelaxedIK for particular bimanual actions.

The groove loss function above has various parameters that need to be specified. A wide
range of parameters lead to successful performance using this solver. Parameter tuning is not
a key part of our bimanual control process as the normalization procedure through the custom
groove loss function encourages the optimization to exhibit expected motions for a large range
of reasonable parameter values. These values were determined empirically in our prototype
system and reported on below, and an extension to this work will automatically determine these
parameters based on higher-level motion properties.

The full optimization formulation is comprised of seven core objective terms and two con-
straints. The objective terms encode the following kinematic goals: (1) End-effector position

matching; (2) end-effector orientation matching; (3) minimized joint velocity; (4) minimized
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joint acceleration; (5) minimized joint jerk; (6) minimized end-effector translational velocity;
(7) and self-collision avoidance. The two constraints are designed to clamp joint velocities at
each update and avoid kinematic singularities, respectively. These objectives and constraints

are detailed in our prior work (54).

5.7 Bimanual Assistance Mode Mathematical Details

In this section, we provide mathematical details for all of our bimanual assistance modes, each
corresponding to an action in our bimanual action vocabulary. Our assistance modes all adjust
the RelaxedIK optimization-based inverse kinematics solver by adding objective terms or ad-
justing weighting parameters. Common notation used throughout this section can be found in

Figure 7.
5.7.1 Fixed Offset

A central aspect of our fixed offset assistance mode is inferring a coordinate frame serving as a
proxy for the object being manipulated between the two hands, denoted as F,;. We estimate this
pose at each update based on the poses of the robot’s end-effector pose goals at each update, as
dictated by the user’s hand motion. To illustrate, suppose that the fixed offset bimanual action
is detected to be occuring at time ¢ and the robot’s right and left end-effector goal positions
in world coordinates at time ¢ are p[G?] and p|G!], respectively. First, we assign the origin of
the coordinate frame serving as the object proxy, denoted as c;, as the center point between the
robot’s end-effectors: ¢; = 0.5 p[G¥]+ 0.5 p[G!). Next, we begin to construct the coordinate
frame serving as the object proxy by first calling the vector that points from the robot’s left
end-effector to right end-effector the local y-axis: §; = n(r(G.] — p[G?]). Here, n(.) denotes
vector normalization. The rest of the coordinate frame can be constructed using cross products:

T = 1 x (0,0, 1]T; Zy = & X 1. This procedure to construct the proxy object coordinate
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Notation Explanation
EE 00 Initial end-effector pose in
0 world coordinate system
EE End-effector pose at time
t tin world coordinate system
F(EE®7) End-effector pose at time
t t, relative to initial robot pose
H.on Initial user hand pose in
0 world coordinate system
i User hand pose at time
t tin world coordinate system
HH) User hand pose at time
t t, relative to user’s initial pose
FK(6) Pose of end-effectors given 6
t (forward kinematics model)
[ Extracts the position
pL. component of the input pose
Extracts the orientation
oLJ component of the input pose
d Distance between the user’s
t hands at time t
G End-effector pose goals at tim¢g
t tin world coordinate system
1(G 1) End-effector pose goals at tim¢g
t t, relative to user’s initial pose
Al Optimized pose goals at time
t tin world coordinate system
HAL) Optimized pose goals at time
¢ t, relative to user’s initial pose
c Position of the proxy object
pose at start of fixed offset
c Position of the proxy object
t pose at time t
Pose of the fixed offset proxy
F object at start of fixed offset
F Pose of the fixed offset proxy
t object at time t
?t , j//\,, 2{ X, y, and z components of the

F coordinate frame at time t

Initial Time (to)

Time t

PIr(EE))]

Time f+ t (with fixed offset
assistance engaged)

N \P [ h(f+J /,fcf+r

Figure 7: Common notation used throughout the technical details sections.

frame F; repeats for the all timesteps ¢ where the fixed offset bimanual action is still detected

to be active.

Throughout the fixed offset action, the pertinent aspects of the hand’s motions are that

they maintain a fixed position and rotation offset while jointly moving the object held be-

tween the hands. Thus, while the fixed offset assistance is engaged, we remove the standard

end-effector position matching and end-effector orientation matching objectives in RelaxedIK

because matching independent pose goals of the separate end-effectors is not paramount when

moving an object with two hands. Instead, we replace these objectives with three objective
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terms to the weighted-sum objective function that are specifically tailored for the fixed offset

action:

Xr1(0) = || pIFK(O);] — [ec — (0.5 dp)ie] ||*+

(11)
|Ip[F K (©)]] — [c: + (0.5 % dy)ge]||°

Xr2(0) = (| p[FK(©)]] — p[FK(O)] || — dy)* (12)

Xr3(0©) = || disp(o[F], o[ FK(©);]) — disp(o[Fy], 0o[G}]) ||+ )

| disp(o[F\], o[ FK(O);]) — disp(o[F ], o[G}]) |I*

Here, x1(©) places the end-effectors on either side of the object proxy, x r2(©) keeps the
end-effectors at the same distance as was seen when the fixed offset action was initialized, and
X73(©) keeps the end-effector orientations the same rotational displacement from the proxy
object as was seen when the fixed offset action was initialized. Also, as discussed above, disp
is the standard displacement operator for quaternions: disp(qi,q2) = log(q~ 11 * qz2) (48).
In our prototype implementation, we placed very high weights on our fixed offset objectives
(wp = 150.0, wpe = 1000.0, wyz = 200.0). With weights this high, the motion qualities

defined by these objectives resemble constraints in the RelaxedIK framework.
5.7.2 One Hand Fixed

To assist with the one hand fixed bimanual action, we tune the control optimization such that
the robot’s end-effector corresponding to the user’s static hand is discouraged from moving.
This leave the static hand in place as best as possible such that the other hand can perform
the manipulation with respect to that static hand deftly and precisely. To achieve this effect,
we adjust the weight on the objective in the RelaxedIK framework that encourages minimized

velocity in the robot’s end-effector position space when the one hand fixed action is detected to
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be happening:

Xe(©) = ||[FK(O)|]: (14)

Specifically, we change w. = 1.0 to be w. = 5.0 on the term associated with the static

end-effector.
5.7.3 Self-handover

To assist with the self-handover bimanual action, we make two adjustments to the RelaxedIK
optimization. First, we gradually ramp down the velocity in the robot’s end-effector position
space for both arms. This is similar to the process used for one hand fixed assistance, but the
weights are adjusted for both hands. The reasoning behind this adjustment is to match the hand
translation velocity profile highlighted in principal component 3 from our kinematic pattern
analysis. We gradually change w, = 1.0 to w, = 2.0 using a linear ramp once the self-handover
action is inferred. The linear ramp slides from w, = 1.0 to w. = 2.0 over the time-span of a
second, matching the time window used in our kinematic pattern analysis.

The second assistance we incorporate for the self-handover action involves making sure
that the correspondence between the user’s hands and the robot’s end-effectors match when the
user’s hands are in close proximity.

Prior work shows that control inputs relative to a user’s starting pose is effective for a
mimicry-control interface (46). However, because the robot may have a different scale and
geometry compared to the user, relative control with two separate arms may result in the self-
handover point for the robot not matching the self-handover point between the user’s hands.
To illustrate, the self-handover point for the robot may involve the user keeping their arms far
apart, or may even involve the user crossing their arms in order to get the robot’s hands close

enough.
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Our idea with this assistance is to use relative control when the arms are far apart, leading
to the natural benefits seen in prior work when the hands are not in close proximity, and dy-
namically adapting such that the absolute distance between the hands takes precedence when
the user’s hands are close together. However, because these are conflicting goals, we solve sep-
arate optimization problem at each update to calculate candidate right and left end-effector goal
poses that try to reconcile both of these objectives, denoted as A’ and A!, then calculate final
goal poses, G and G!, by arbitrating between the relative hand poses, r(H?) and r(H!) and
optimized goal poses depending on the distance between the user’s hands. This procedure is
framed as an unconstrained, non-linear programming problem with four objective terms, with
the objective function defined as follows:

4

pIA]]", p[Al]* = argmin Y w;  x;(p[A}], p[Al], Q) (15)
plATPIAY

x1(p[A7], p[AY], ) = (||p[A]] — p[A]]l] — d; )* (16)

x2(p[A7], p[AY], Q) = (plr(H])] — [(plr(A])] )*+

(17)

(plr(H)] = [(plr(AD)] )?
X3(p[AT], plAY), Q) = (lp[F]] — plAT][] — Ip[H] — plAd]I] ) (18)
xa(p[A}], p[AL], Q) = || p[A7] || + || p[AY] | (19)

Here, x; is encouraging the candidate positions to match the distance between the robot’s
end-effectors with the absolute distance between the user’s hands, s is encouraging the can-
didate positions to remain close to the user’s relative hand position goals such that the results

do not stray too far, x5 encourages the candidate positions to be equidistant from the respective
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relative hand positions, and x4 minimizes Cartesian space velocity on the optimized candidate
points such that the output positions move smoothly. In our prototype system, we used weight
values of w; = 12.0, wy = 1.0, w3 = 0.5, and w4 = 5.0.

Once optimized candidate goal positions p[A’]* and p[A!]* have been calculated at the
current update, the method must decide whether to use these candidate positions, or rather move
in favor of the relative hand position inputs from the user p[r(H?)] and p[r(H!)]. As discussed
above, our premise here is that the method should adhere to the relative hand inputs when the
user’s hands are far apart, and favor the optimized goal positions p[A’]* and p[A!l]* that match
the absolute distances between the user’s hands when the user’s hands are close together. To
achieve this goal, we use a falloff function to continuously slide between the goal points based

on the distance between the user’s hands:

PIGI™] = (1= A%) s p[AF] 4 2% pl ;™) (20)

Here, )\ is a value in the range [0, 1], such that A = 0 when the user’s hands are touching,

and A\ = 1 when the user’s hands are at (or exceeding) some maximum calibrated distance.
5.7.4 One Hand Seeking

When it is detected that one hand is seeking out an object, we assist by lowering the importance
of precisely matching the position and rotation pose goal on the other end-effector. This allows
the optimization to put more attention in precisely matching the position and rotation pose goals
on the end-effector that is seeking, providing more fine and dexterous manipulations to be done
with this hand.

The optimization has objectives x,,(©) and x,;(©), which encourages the position of the
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robot’s end-effectors to match given position goals. These both take the form of:

Xp(0) = [[FK(©) — pyll2 21

Here, p, is the provided position goal, and F'/X(O) signifies the end-effector position given
joint angles ©, calculated by the robots forward kinematics model. Our method lowers either
weight w,, if the left hand is seeking or w,, if the right hand is seeking. The weight is lowered
such that the weight of the seeking hand’s position matching is double the weight of the hand

that is currently not pertinent.

5.8 Discussion of Study Findings

Our results in Study 1 show that our bimanual shared-control method significantly outperforms
the alternative approaches in terms of task success. Our method was also perceived as less men-
tally demanding, more integrated with task performance, more intelligent, more fluent, more
able to perceive the users’ goals, more satisfying, more useful, and more predictable. These
results suggest the promise of using our bimanual shared-control control system to complete
various tasks.

We believe our bimanual shared-control method outperformed the alternative control ap-
proaches because our method aligns better with how people perform actions in human-centered
environments. For example, we would expect our method to perform more favorably than a
single-arm control approach because many tasks in human-centered environments benefit from
having two arms. To illustrate, in our study, it was difficult for participants to unscrew the
cap off of the orange juice container with only a single-arm, whereas there was a clear strat-
egy of holding the container with one hand and unscrewing the cap with the other hand when
two arms were available. Further, our bimanual shared-control method is able to dynamically

switch between centralized bimanual actions as specificed in our bimanual action vocabulary,
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aligning well with leading theories that describe how the brain interprets and executes bimanual
actions (3, 34, 35, 41). Our results suggest that the more biologically supported way of arbi-
trating between different, predefined bimanual actions in robot control elicits performance and
user perception benefits compared to a method where the two arms are simply two concurrent
instances of single-arm control with minimal coordination, as is often done in prior bimanual
manipulation and control approaches. Our results in Study 1 indicate that our method achieves
more of the bimanual “gestalt” phenomenon described by Swinnen et al. (3), where the individ-
ual motions of each arm are promoted to achieve more than the sum of their parts, compared to
alternative approaches.

Our results in Study 2 indicate that our assistance modes do have an effect on performance
in each sub-task. We see that “all assistance on” significantly outperforms “all assistance off”
in terms of task success across all tasks, which often elicited a feeling of more fluency and trust
in the robot. However, the results for the effectiveness of each individual assistance mode differ
across the various tasks.

In the plates task, we see that only “target assistance on” and “all assistance on” outperform
“all assistance off” and “only target assistance off” in both task success, perceived fluency, and
perceived trust. This suggests that the self-handover assistance mode, which was the assistance
mode designed to be most pertinent in the plates task, is able to independently lead to improved
performance and perceptions, even without the other modes being activated.

The other assistance modes do not appear to have the same independent effect on perfor-
mance and perceptions. For instance, the one hand seeking assistance mode (the target assis-
tance mode in the cups task) only outperformed “‘all assistance off”” when it was used indepen-
dently; the fixed offset assistance mode (the target assistance mode in the trashbin task) elicited
benefits in perceived fluency and trust, but did not lead to significant advantages in performance

over the baselines; and the one hand fixed assistance mode (the target assistance mode in the
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open bottle task) did not outperform either baseline when it was the only assistance activated,
while “all assistance on” did elicit performance and perception benefits over all alternatives in
this task.

Our results in Study 2 suggest that, while all assistance modes appear to help across our
various tasks, the task success and perception benefits are sometimes only present when the
assistance modes are used fogether. Even when tasks were designed to be targeted for only a
single assistance mode, other assistance modes still provided unexpected benefits. For example,
while the open bottle task was designed to target the one hand fixed assistance mode, the other
assistance modes helped throughout the task when activated, such as the one-hand-seeking as-
sistance helping when reaching for the bottle and the self-handover assistance helping when the
hands were brought close together to work in close proximity. Prior work by Swinnen et al. (3)
provides some insight into why this effect could be present in our shared-control method. Re-
ferring to bimanual manipulation, the authors suggest that the more constraints act in coalition,
the more stable a bimanual coordination pattern will be, while conversely, when constraints
are in conflict with each other, performance will degrade. Thus, this suggests that because
our method affords dynamic switching between a coalition of various assistance modes, act-
ing as constraints in control patterns, bimanual performance will improve when more of these

constraints are available.

58



	Introduction
	How do robots currently approach bimanual tasks?
	How do people approach bimanual tasks?
	Our Solution
	How should the robot organize the range of bimanual manipulations?
	How should the robot identify which action is needed?
	What control strategy should the robot implement for each bimanual action?


	Results
	Solution to Challenge 1: Bimanual Action Vocabulary
	Formative Study
	Feature Construction
	Principal Components Analysis
	Bimanual Actions from Analysis

	Solution to Challenge 2: Bimanual Action Inference
	Solution to Challenge 3: Shared-Control-Based Bimanual Telemanipulation
	Real-time Motion Retargeting using RelaxedIK
	Bimanual Assistance Modes

	Evaluation of the Proposed Approach

	Discussion
	Overview of Takeaways
	Limitations & Extensions

	Materials and Methods
	Study Design

	Supplemental Materials
	Related Works
	Motion Dataset Collection Details
	Motion Datset Filtering Details
	Bimanual Action Inference Implementation Details
	System Implementation Details
	RelaxedIK Overview
	Bimanual Assistance Mode Mathematical Details
	Fixed Offset
	One Hand Fixed
	Self-handover
	One Hand Seeking

	Discussion of Study Findings




