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Abstract—In this paper, we introduce a novel method to
support remote telemanipulation tasks in complex environments
by providing operators with an enhanced view of the task
environment. Our method features a novel viewpoint adjustment
algorithm designed to automatically mitigate occlusions caused
by workspace geometry, supports visual exploration to provide
operators with situation awareness in the remote environment,
and mediates context-specific visual challenges by making view-
point adjustments based on sparse input from the user. Our
method builds on the dynamic camera telemanipulation viewing
paradigm, where a user controls a manipulation robot, and a
camera-in-hand robot alongside the manipulation robot servos to
provide a sufficient view of the remote environment. We discuss
the real-time motion optimization formulation used to arbitrate
the various objectives in our shared-control-based method, partic-
ularly highlighting how our occlusion avoidance and viewpoint
adaptation approaches fit within this framework. We present
results from an empirical evaluation of our proposed occlusion
avoidance approach as well as a user study that compares
our telemanipulation shared-control method against alternative
telemanipulation approaches. We discuss the implications of our
work for future shared-control research and robotics applications.

I. INTRODUCTION

From an early age, people develop an innate ability to adapt
their viewpoints to plan and coordinate manipulations within
their environments [40]. People shift how they look at an object
throughout a grasping action [34], scan their environments to
plan future actions [17], and naturally adjust their viewpoints
to look over and around occlusions when handling items in
visually cluttered settings [23]. The tight coupling between
manipulation and viewpoint contributes to people’s adeptness
in executing tasks in complex day-to-day environments, such
as when crouching to look in a cabinet below a sink to adjust
a valve, moving the head to look around in a cluttered cabinet,
or looking up to secure a light bulb into a ceiling fixture.

While much work in remote telemanipulation has focused
on the control aspects of the problem [27], such as studying
effects of time delays [26], impedance [11], and stability [19],
little is known about how the operator’s viewpoint should
adapt given environmental and task considerations. In fact,
many telemanipulation systems utilize static cameras, where
viewpoints are immutable, or use an end-effector camera on
the manipulator itself, where the viewpoint and manipulation
points are locked together and cannot adapt separately given the
task at hand. Recent work has shown the efficacy of moving
the camera to continuously adjust the viewpoint on-the-fly
for a remote operator [1, 25, 30], leading to telemanipulation

Fig. 1. Building on a dynamic camera telemanipulation viewing paradigm, our
work supports several viewpoint-related tasks, including (a) visual exploration,
(b) geometric viewpoint adjustment, and (c) semantic viewpoint adjustment.

performance and perceptual benefits over an array of static
cameras and an end-effector camera [30]. However, it still
remains unclear how the viewpoint should be adapted to afford
effective manipulations in visually complex environments, i.e.,
environments where occlusions are likely to occur, where
operators may need to look around to obtain situation awareness
and plan future actions, or when specific viewpoints may be
necessary given the semantics of the task.

In this paper, we introduce a telemanipulation method where
the viewpoint continuously adapts over time to better serve
manipulations in response to current environment or task
conditions. Consider the scenario of a teleoperator remotely
preparing a meal for a family member where our method
effectively coordinates the operator’s manipulations with their
viewpoints, such as allowing the user to visually explore the
environment to look for cooking oil, automatically providing
a sufficient view to reach into a drawer to get a measuring
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cup, and accepting viewpoint modifications by the operator to
check if the oil has been filled up to the measurement line.

To adapt viewpoints in real-time, our method builds on the
dynamic camera telemanipulation viewing paradigm, where a
user controls a manipulation robot, and a camera robot servos
with a camera-in-hand to provide a view of the manipulation
to the operator [30] (Figure I). We adopt the control interface
presented in this prior work, where the user fluidly controls
the translations and rotations of the manipulation robot’s end-
effector using a motion controller, and the system automatically
adjusts the control frame on-the-fly such that inputs can be
made with respect to what is currently seen on screen. In
contrast to Rakita et al. [30], our work considers how the
two robots should coordinate together given environmental
and task considerations, both in mathematical formulation by
considering the two robots within a single motion optimization
and in interface design by simultaneously updating both robots.

To determine how the viewpoint should be adapted given
environment and task considerations, we draw inspiration
from how people adjust their viewpoints in complex, human-
centered environments. We analyzed a video dataset consisting
of people completing tasks in their own kitchens, recorded
through head-mounted cameras and identified three distinct
viewpoint adaptation behaviors during manipulation (explained
in §III). The real-time camera and manipulation-arm control
problem is structured as a shared-control method to reduce
the user’s cognitive load while allowing sparse manual input
for user-directed viewpoint shifts, and the shared-control is
formulated as a real-time optimization problem to allow fast
and real-time coordination between the arms (outlined in §V).

In §VI, we present two evaluations that show the efficacy
of our proposed methods. Our first evaluation assesses the
performance of our automatic occlusion avoidance method,
outlined in §IV, and shows that our occlusion avoidance
algorithm is robust in finding effective viewpoints in the
presence of visual obfuscations. Our second evaluation features
a user study that compares our methods against alternative
telemanipulation approaches.

Our contributions in this work include (1) a model of how
viewpoints should adapt in complex environments to support
effective telemanipulation, influenced by how people adapt
their viewpoints in such environments; (2) a set of motion
optimization methods and a control interface that support
these classes of viewpoint adaptation types; and (3) empirical
evaluations that provide insight into the performance and
efficacy of the proposed methods.1

II. RELATED WORKS

Our approach build on ideas from active vision and visual
servoing, and is influenced by work in computer graphics.

Active Vision—The control of viewpoint for robotics applica-
tions is often termed active vision, see Chen et al. [7] or Bajcsy
et al. [4] for surveys. Methods reason about posing cameras

1Open-source code for the proposed methods are available at
https://github.com/uwgraphics/relaxed ik.

for numerous applications, such as object search [35], object
modeling [5, 8], robot grasp planning [24], object tracking
[6], and surveillance [36]. Our work shares similar goals with
active-vision surveillance methods, such as maximizing visual
coverage and avoiding occlusions [2, 36]. However, this body
of work uses mobile-robot platforms and static cameras to
survey a wide search area, while our work is focused on
viewing a workspace for teleoperation using a camera-in-hand
robot. Work in laparoscopic robotic surgery allows surgeons
to control a flexible robot camera to obtain a sufficient view
of the procedure area [21]. Our work similarly seeks to stream
back a sufficient view of a workspace. However, because
manually controlling both the camera and manipulation tool
may require an expert user, such as a surgeon, we explore
automated movement of the camera to support novice users.

Another relevant aspect of active vision considers how to
move the viewpoint to gain more information about the scene,
termed the “next view” problem. The problem has a long
history (see Connolly [12]) for an early example or Zhang
et al. [41] for a recent example that considers occlusion. Our
work considers how to find improved views for human viewers,
rather than views that add information for 3D reconstruction.

Recent work considers how to choose viewpoints for robots
to perform tasks. For example, Saran et al. [33] describe meth-
ods for determining the most useful viewpoint for performing
actions by observing the differences between successes and
failures, while Rosman et al. [32] plan sensor locations based
on simulations. In contrast, our work chooses viewpoints for
human viewers based on real-time information of the scene.

Visual Servoing—Visual servoing is a robot-control paradigm
in which a robot moves based on visual feedback (see the
work by Corke [13] for a full introduction). In our work, the
camera moves based on both what it sees and a geometric
understanding of the manipulation robot. Similar to eye-in-hand
visual servoing systems (e.g., Wilson et al. [39]), the camera
robot provides a view using an end-effector-mounted camera.

Animation & Graphics—Computer Graphics and Animation
applications consider the problems of automatic camera control,
see Christie et al. [10] for a survey. Gleicher and Witkin
[18] introduced the idea of adjusting viewpoint position and
orientation based on controls in the image plane. Our work uses
this idea of mapping visual goals to camera movements. Virtual
camera methods have been developed to avoid visual occlusions
with objects in the scene [9]. Our visual-occlusion-avoidance
method differs from such approaches as these methods have
the benefit of a full geometric understanding of the whole
environment and a camera that is free to move anywhere in the
scene rather than being constrained by the motion of a robot.
In data visualization, many works have considered how to
choose viewpoints to best enable viewers to see a data set [e.g.,
22, 37, 38], but again, these methods require complete geometry.
Galvane [16] reviews many approaches that automatically move
a camera around in a virtual scene to achieve various goals.
Our work draws on this work on automatic camera control, as
we dynamically move a camera in our environment to improve
the visibility of remote telemanipulation.

https://github.com/uwgraphics/relaxed_ik


III. VIEWPOINT ADAPTATION TYPES

Our work aims to support effective remote telemanipulation
performance, even in visually complex environments, by
adapting viewpoints to task and environment considerations,
which raises a key question: how should the viewpoint be able
to adapt when considering the environment or task?

To explore this question, we drew inspiration from how
people adjust their viewpoints in complex, human-centered
environments. We analyzed the Epic Kitchens video dataset
[14] consisting of people completing tasks in their own kitchens,
recorded through head-mounted cameras. Our goal was to
assess the primary ways in which people adjust their viewpoints
in day-to-day life to perform effective manipulations and to
support these viewpoint adaptation types in telemanipulation.

The video dataset was independently coded by a trained
coder through a two pass process. On the first pass, the coder
watched the videos and took notes on any patterns that connect
viewpoint changes, manipulations, and the environment. The
notes were reviewed after viewing, and related concepts were
clustered together into higher-level categories. On the second
pass, the coder watched the dataset videos again, particularly
watching for viewpoint change patterns that further defined or
separated the categories referenced in the notes from pass one.

Upon completion of pass two, three central viewpoint adap-
tation types were identified as high level categories that cover
most ways that viewpoints change to support manipulations
given the environment. These viewpoint adaptation types are:

(1) Geometrically dictated viewpoint adaptations. These
adaptations describe any viewpoint change that is influenced
by the workspace geometry. Examples from the dataset included
shifting the viewpoint up to retrieve a spice on the top shelf
in the cabinet, shifting the viewpoint to the side to see around
a cereal box to grasp a coffee mug on the other side of the
table, or looking down into a drawer to grasp a fork.

(2) Semantically dictated viewpoint adaptations. These
adaptations describe any viewpoint change that is associated
with the semantics of a given task. An example was viewing a
toaster from above when making toast in order to see the slots
to place the bread. This viewpoint selection involved more than
just geometric reasoning; while there are many geometrically
un-occluded views around the sides of the toaster, these views
would be insufficient given the semantics of the particular task.

(3) Visual explorations. These adaptations describe any
viewpoint changes that involve looking around the environment
to plan future actions. Examples from the dataset included
looking around to find the lid for a pan and searching the
counter-top to find the next ingredient when making dinner.

IV. TECHNICAL OVERVIEW

In this section, we provide a high-level description for how
we support the three visual adaptation types into our remote
telemanipulation method. §V provides detailed mathematical
treatments of these descriptions, including how these concepts
fit within an overall real-time motion optimization framework.

A. Geometrically Dictated Viewpoint Adaptations

As explained in section §III, geometrically dictated view-
point adaptations occur whenever the workspace geometry
somehow influences the set of viewpoints that would support
an effective manipulation. For example, when reaching into an
open drawer, the concave geometry of the drawer limits the
set of appropriate viewpoints to those from above the drawer,
as opposed to around the side or beneath the drawer.

A key technical problem we address in this work is how to
determine an effective viewpoint that is robust in the presence
of potentially complex environment geometry. Our premise is,
given that the camera is able to be moved by the camera-in-
hand robot arm, the camera should be able to recognize if the
visual target point cannot be seen at the moment, such that the
camera robot can dynamically react and adapt to move the
camera to a pose where the visual target can be seen again. We
construct a differential adjustment algorithm to seek out a new
viewpoint at each update that is estimated to get incrementally
closer to mitigating such visual occlusions or obfuscations.

Our solution is based on the observation that, regardless of
how complex the environment geometry is, we always know
of one occlusion-free path: the free-space path the manipulator
took to get to its current configuration. Thus, if the end-
effector cannot be seen, the main strategy of our algorithm is
to incrementally servo the camera robot to align the camera
with the manipulation arm’s approach direction until the end-
effector can be seen again. We note that there may be more
occlusion-free paths for a given environment geometry that
would elicit clear views of the end-effector. In our current
work, we allow the user to manually nudge the camera toward
those alternate viewpoints given their understanding of the
task and personal preference. In future work, we will explore
more real-time mapping, geometric processing, and data-driven
approaches to finding such alternate viewpoints automatically.

Using the observation presented above, our viewpoint search
algorithm is structured as follows (as illustrated in Figure IV):

(1) Consider the robot’s “manipulation vector,” i.e., the vector
that points forward along the robot’s final wrist joint. Suppose
there is an upper allowable bound on the angle between the
viewpoint vector and the manipulation vector. This can be
thought of as the radius ro of an outer cone emanating out
from behind the end-effector where the camera must be placed
within. If the end-effector can be seen at update t, increase ro
by some increment, capping this value at some maximum.

(2) If the end-effector cannot be seen at update t, decrease
ro some increment, placing a minimum value of ri (an inner
cone radius). We place a minimum because the end-effector
itself is opaque, so views too aligned with the manipulation
vector will elicit views occluded by the end-effector.

(3) If the end-effector still cannot be seen when ro = ri,
move the camera closer to the end-effector.

This adjustment process discussed above repeats at each
update, either providing more slack on the outer visibility cone
radius ro when the end-effector can be seen, or squeezing
the viewpoint angle in and bringing the camera closer to the



Fig. 2. Illustration of our geometric viewpoint adaptation algorithm. (a) The robot’s manipulation vector is used as a proxy for an approach direction. (b) If the
end-effector cannot be seen from the camera, (c) the radius of the outer-visibility cone is decreased so that the view aligns more with the manipulation vector.

end-effector until it can be seen. We provide an evaluation of
this viewpoint search algorithm in §VI.

B. Semantically Dictated Viewpoint Adaptations

Semantically dictated viewpoint adaptations describe any
context-specific viewpoint changes. We handle these adaptations
by allowing the user to provide sparse manual inputs into
the system to specify how they want the viewpoint to be
adapted. Specifically, the user can provide a directional input,
represented in camera-space, of how they want to adjust the
camera position. Because the camera will automatically point at
the end-effector visual target, camera-space directional inputs
will result in orbital rotations about the visual target point. The
directional input can also be made toward or away from the
visual target point; thus, these manual modifications can also
move the camera in to provide more detail or move the camera
out to provide more context given the context of the task.

When the user provides manual directional inputs to the
system, we automatically override the geometric search process
discussed above and increase the radius ro. This approach
ensures that the user has adequate flexibility when they want to
control the viewpoint. When the user stops providing manual
inputs, the geometric visual search automatically resumes.

C. Visual Explorations

Visual explorations describe any viewpoint changes that
involve looking around and surveying the environment to
plan future actions. We handle visual explorations in our
telemanipulation method by allowing the user to manually
switch to a visual exploration mode, wherein they can naturally
adjust the camera’s look-at point around the environment.
Various automatic aspects of the method are maintained while
in visual exploration mode, such as keeping the camera upright
and avoiding collisions. When the user decides to exit visual
exploration mode, the camera robot smoothly transitions back to
automatically looking at the manipulation robot’s end-effector.

V. TECHNICAL DETAILS

This section provides technical details for the optimization
and shared-control solutions outlined above.

A. Motion Optimization Framework

In order to sufficiently realize the manipulation arm and cam-
era arm shared-control method described throughout this work,
there are many motion qualities that need to be consistently
maintained in the control loop. For example, the manipulation

robot should follow end-effector pose goals specified by the
user, the camera should look at the visual target point, the
manipulation robot and camera robot should not collide, etc.

To accommodate all of these sub-goals in real-time, we use
an optimization-based inverse kinematics solver that handles
trade-offs between different objectives on the fly. At each
update, the method calculates joint angles for each robot that
will exhibit these desired features through a process called
inverse kinematics (IK) (see Aristidou et al. [3] for a review of
IK methods. We note that this is a generalized IK formulation,
because we reason over kinematic goals other than just end
effector position and orientation goals.

Our method utilizes the RelaxedIK solver to achieve real-time
optimization performance [29]. The solver utilizes a flexible
non-linear optimization framework to handle IK problems that
dynamically trade-off between multiple objectives, and is able
to produce per-update motions that accurately follow end-
effector pose goals without sacrificing motion feasibility.

The IK problem is formulated as a constrained optimization:

Θ = argmin
Θ

f(Θ) s.t. ci(Θ) ≥ 0, ce(Θ) = 0

li ≤ Θi ≤ ui, ∀i
(1)

Here, Θ is the n–vector of robot joint values (n is the number
of degrees of freedom); ci(Θ) is a set of inequality constraints;
ce(Θ) is a set of equality constraints; li and ui values define
the upper and lower bounds for the robot’s joints; and f is a
scalar objective function.

Throughout this work, we consider both robot arms together
within a single optimization, i.e., the state vector Θ concatenates
the joint value degrees of freedom from both arms such that
the objectives and constraints can consider both arms together.
In prior automatic dynamic camera method by Rakita et al.
[30], the manipulation arm and camera arm ran under two
separate optimization instances, resulting in behaviors where the
camera arm would only react to the actions of the manipulation
arm, and the manipulation arm had no sense of the camera
arm. Because our current work optimizes over both arms in a
single procedure, both arms are aware of each others motion
priorities and can plan together. This formulation results in
more sophisticated behavior such as the manipulation arm
moving its elbow down to clear visual space for the camera.

Our optimization formulation involves twelve objective terms
and two constraints. The objective terms encode the following
kinematic goals: (1) match end-effector position goal on the



manipulation arm; (2) match end-effector orientation goal on
the manipulation arm; (3) minimize joint velocity of the full
state vector; (4) minimize joint acceleration of the full state
vector; (5) minimize joint jerk of the full state vector; (6) avoid
collisions between the arms and modeled environment features;
(7) keep camera upright; (8) avoid occlusions caused by the
manipulation robot; (9) point camera towards visual target
(“look-at” objective); (10) keep camera position between inner
and outer visibility cones (outlined in §IV); (11) match desired
goal distance between camera and visual target; (12) follow
user’s manual camera translation inputs (if provided). The two
constraints are designed to clamp joint velocities at each update
and avoid kinematic singularities for each arm, respectively.
Our implementations of objectives 1–8 and both constraints
follow prior work [29, 30]; the next section details how we
incorporate our viewpoint adaptation types as objectives 9–12.

B. Incorporating Viewpoint Adaptations into RelaxedIK
In this section, we highlight how we incorporate our

viewpoint adaptation types, outlined in §IV, into the RelaxedIK
optimization framework. We use the same Groove loss function
introduced in previous work [29, 30] and specify the loss
function parameters for each additional term. Because these
terms are incorporated within a larger optimization framework
with other objectives built in, other features, such as avoiding
occlusions incurred by the manipulation robot, will automati-
cally be exhibited alongside these viewpoint adaptations.

Geometrically Dictated Viewpoint Adaptations. We incor-
porate geometrically dictated viewpoint adaptations into the
RelaxedIK optimization framework using three objective terms,
two to encourage the camera position to be between the inner
and outer visibility cones outlined in §IV, and one to bring
the camera closer if deemed necessary by the search method.

The outer and inner visibility cone terms are:
χouter(Θ) = arccos( Λ(F̂K(Θm)) · Λ(F̂K(Θc)) ) – ro

χinner(Θ) = ri – arccos( Λ(F̂K(Θm)) · Λ(F̂K(Θc)) )
(2)

Here, Θm and Θc refer to the degrees-of-freedom of Θ
corresponding to the manipulation robot and camera robot,
respectively; F̂K(.) refers to a function that returns the rotation
frame of the end-effector provided a given joint configuration
and the forward kinematics model of the arm; and Λ(.) refers
to a function that returns the “forward” vector of the input
rotation frame. These terms use Groove loss parameters of
t = –3.0, d = 60.0, c = 1e14, f = 0.00001, g = 10.0, which
encourages both terms to be less than zero.

The camera distance objective is:
χdistance(Θ) = ( || FK(Θm)) – FK(Θc)) ||2 – d )2 (3)

Here, FK(.) is a function that returns the position of the end-
effector given a joint configuration and the forward kinematics
model of the arm and d refers to a goal distance. This term
uses loss function parameters t = 0.0, d = 2.0, c = 0.5, f = 35.0,
g = 2.0, which pulls the objective term output to zero.

Semantically Dictated Viewpoint Adaptations. Semanti-
cally dictated viewpoint adaptations are handled in our method

by allowing the user to provide a sparse directional input to
dictate where the camera should move. As an objective term,
this is supported by having the camera pulled toward a new
location per update using the following term:

χsemantic(Θ) = || ( c + λg ) – FK(Θc)) ||2 (4)

Here, c is the camera location at the previous update and
g is the directional input specified by the user (represented in
the camera’s local frame). The magnitude of the directional
input vector g and a scalar λ can adjust the sensitivity of the
manual inputs. When no manual inputs are being provided
from the user, g is considered to be [0, 0, 0]T . This term uses
loss function parameters t = 0.0, d = 2.0, c = 0.5, f = 35.0,
g = 2.0, which pulls the objective term output to zero.

Visual Exploration. Visual exploration is supported in our
shared-control method by allowing the user to manually move
the visual target and is formulated as the objective term:

χlookat(Θ) = dis(t, v),

v = FK(Θc) + γ Λ(F̂K(Θc))
(5)

Here, t denotes the visual target point, v denotes the
viewpoint vector pointing out of the front of the camera’s focal
point, dis(., .) is a function that returns the orthogonal distance
between a point and line segment arguments, respectively, and
γ is some large scalar value used to cast out the line segment.
By default, the visual target point t is set as the end-effector
point on the manipulation robot. However, when users enter
visual exploration mode, they are able to move the visual target
point t around by rotating a motion controller. This term uses
loss function parameters t = 0.0, d = 2.0, c = 0.1, f = 10.0,
g = 2.0, which pulls the objective term output to zero.

VI. EVALUATIONS

We carried out two forms of evaluation to demonstrate the
effectiveness of our dynamic camera shared-control method
for remote telemanipulation. Below, we outline our prototype
system and discuss the designs and findings of our evaluations.

A. Prototype Details

We instantiated our shared-control camera method in a
system, described below, designed to provide sufficient perfor-
mance and safety to demonstrate its benefits in a user study.

Teleoperation Interface—In our system, we used the mimicry-
control interface, presented by Rakita et al. [28], to control the
manipulation robot for remote teleoperation. This method was
shown to be more effective for novice users to control a robot
arm using full 6-DOF Cartesian control than other interfaces.
We used HTC Vive motion controllers as the motion input
devices to capture user input at 80 Hz. One controller moved
the manipulation robot while the other allowed for camera
translation adjustments using sparse motion controls.

Robots—Our system used a 6-DOF Universal Robots UR5
robot as the manipulation robot and a 7-DOF Rethink Robotics
Sawyer robot as the camera robot to match the system used in
prior work [30], which served as one of our comparison cases.



TABLE I
ASSESSMENT OF OUR VIEWPOINT ADJUSTMENT ALGORITHM

Scenario UR5 + Sawyer Jaco7 Pair

Refrigerator 491/500 500/500
Light bulb 500/500 500/500

Box 494/500 500/500

System Architecture—We set up a distributed system over
two computers that utilized the Robot Operating System
(ROS) for communication. A Vive motion capture device sent
transformation information to the ROS environment through a
dedicated Windows computer via UDP messages. A separate
computer ran the open-sourced version of the RelaxedIK
solver,2 where we incorporated our additional camera objectives
and viewpoint adaptation types. In order to achieve sufficient
real-time performance to include both the manipulation arm and
camera arm degrees of freedom within a single optimization
structure, we used a version of RelaxedIK implemented in
the Julia programming language, which is substantially faster
than its Python alternative. Solutions are returned in 8 ms (125
Hz) in our system running on an HP Pavilion laptop with an
Intel Core 2.6 GHz i7-6700HQ CPU with 32 GB RAM. The
optimization used the SLSQP solver provided by NLopt, and
gradients were sent to the solver using forward-mode automatic
differentiation using the ForwardDiff Julia package [31].

Our system used two Logitech 930e webcams attached to the
camera arm end-effector; one streamed high-definition video
over USB that was then displayed on a large-screen monitor,
while the other looked for Aruco markers to assess whether
the manipulation arm’s end-effector could be seen.

B. Assessing Geometrically-dictated Viewpoint Adjustments

In our first evaluation, we designed a testbed of tasks to
assess the performance of our proposed viewpoint adjustment
algorithm in the presence of occlusions or obfuscations, as
outlined in §IV-A. We conducted a procedure in simulation
where the camera-in-hand robot would start in a random
configuration with the goal of finding a clear view of the
manipulation robot’s end-effector as quickly as possible,
following the procedure outlined in §IV-A.

Tasks—We designed three tasks for our testbed: (1) finding
the robot’s end-effector as it took something out of a refrigerator
on the bottom shelf, requiring a forward view at the level of
the bottom of the refrigerator to sufficiently see; (2) finding
the robot’s end-effector as it screwed a light bulb into a ceiling
fixture, requiring a view from below to see adequately; and
(3) finding the robot’s end-effector as it reached into a box,
requiring a view from above to sufficiently see.

Procedure—Our evaluation involved starting the camera
robot in 500 random initial configurations for each task.
Any initial configuration where the robots did not start in
collision states with each other or the environment were
deemed acceptable. The manipulation robot started in the same
configuration for each of the 500 trials per task, maintaining the
same end-effector pose throughout each trial and moving other

2RelaxedIK: https://github.com/uwgraphics/relaxed ik

joints only if redundancy was present and deemed necessary
by the optimization as outlined in §V. A trial was deemed
successful only if (a) a viewpoint that is not blocked by objects
in the environment or by the manipulation arm itself is found
in less than ten seconds, determined through ray-casting in the
simulated scene; and (b) no collisions occurred between the
two robots or with statically modeled environment objects.

Robots— We used two separate robot pairs for this evaluation:
the UR5 robot as the manipulation arm and the Sawyer robot
as the camera robot as well as two 7-DOF Jaco arms.

Results— Our results, summarized in Table I, show that
our geometric viewpoint adaptation algorithm found a clear
viewpoint on all tasks for both robot pairs in almost all cases.
The failures occurred when the random start placed the robots
very close to a collision state.

C. User Study

In this section, we present a user study that we compared our
telemanipulation shared-control method to other alternatives.

Hypotheses—Our hypotheses predicted that (H.1.) our tele-
manipulation system that considers geometric, semantic, and
exploration aspects of viewpoint-manipulation coordination
would significantly improve performance and perceptual results
over a remote telemanipulation alternative that uses a moving
camera without these considerations; and (H.2.) a state-of-the-
art co-located telemanipulation system would outperform our
remote telemanipulation method on performance and user expe-
rience, because participants could utilize depth perception when
looking at the environment and more effectively coordinate
viewpoint and manipulation by moving their own heads.

Experimental Design—To test our hypotheses, we designed
a 3 × 1 within-participants experiment in which participants
completed in-home tasks outlined below using three control
paradigms, in a counterbalanced order: mimicry-control (MC),
autonomous dynamic camera (ADC), and viewpoint shared-
control manipulation system (VSMS).

(1) Mimicry-control. The user stood behind the robot
and guided the robot through motions with their own hand
motion [28], and the robot used an optimization-based motion
retargeting solution to mimic the user’s hand pose motion in
real-time. Because the user is co-located with the robot in its
workspace, this condition serves as a comparison against how
people perform our experimental tasks when they can use their
own stereo vision (including depth perception) and control
their own viewpoints with their heads.

(2) Autonomous dynamic camera. This paradigm followed
prior work Rakita et al. [30] that showed the importance of
using a moving camera, which outperformed other viewing
alternatives for remote manipulations, such as an array of static
cameras and an end-effector camera. However, this system did
not consider environment geometry, handle manual viewpoint
shifts given task context, or afford visual explorations.

(3) Viewpoint shared-control telemanipulation system. This
paradigm used the methods discussed throughout this work.

Study Setup—To simulate a remote teleoperation setting,
the camera robot was placed next to the manipulation robot,

https://github.com/uwgraphics/relaxed_ik


and physical dividers separated the participants and robot
workspace. Users controlled the robots based on what they saw
on the screen. The experimenter sat next to the participants.

Study Tasks—To ensure the generalizability of our findings
to a wide range of telemanipulation tasks, we developed three
tasks that followed a home-care scenario in which participants
would log in to a telemanipulation system to care for a friend
or family member by completing the following tasks:

(1) Sock Sorting. Users picked two pairs of white socks
from a bin, surrounded by other black socks, and placed them
into another bin. This task involved both geometric viewpoint
reasoning, i.e., maintaining a viewpoint from above with a
clear view into the bin, as well semantic viewpoint reasoning,
i.e., viewing the correct part of the bin to locate white socks.

(2) Table Preparation. Users set the table by retrieving
dinner items from a four-cube (2 × 2) organizer that involved
shelves measured 12′′ × 12′′ × 12′′. Participants retrieved
a plate from the top left compartment, a fork from the
upper right compartment, and a spoon from the lower left
compartment. The forks and spoons were placed upright in
a cup on their respective shelves. This task also involved
geometric viewpoint reasoning, i.e. maintaining a viewpoint
of the end-effector reaching into the compartments, visual
exploration, i.e., surveying items on shelves, and semantic
viewpoint reasoning, i.e., refining the viewpoint within the
compartments to specify a proper grasp.

(3) Pill Organization. Users picked up a pill bottle and
poured a small pill into three containers: a bowl, a cup, and
a real pill tray. The containers were chosen to make the task
more difficult over time and to show skill level over a single
task given a gradient of difficulty. This task involved semantic
viewpoint reasoning to get a sufficient view of the pouring
motion. A variant of this task was also used in prior work [30],
allowing us to compare our results to prior work.

Study Procedure—A male experimenter obtained informed
consent and provided detail on the study. Participants then
viewed a training video on the robot-control approach and the
motion controller. Participants then (1) received ten minutes
of training on a particular telemanipulation condition using
videos and an interactive training session, (2) performed the
three tasks outlined in §VI-C using the current condition, and
(3) filled out a questionnaire pertaining to the current condition.
This process repeated until all conditions were completed, with
short breaks between each task as the experimenter reset the
robot to its initial configuration and set up the workspace for
the new task. Upon completion, participants responded to a
demographics survey and received compensation.

Measures—To assess performance, we measured task com-
pletion time over the five tasks (sock sorting, table preparation,
and pill organization × 3). For each task, the participants
had a maximum time of five minutes. To measure participant
perceptions, we administered a questionnaire based on prior
research on measuring user preferences and teamwork with
a robot [15, 20], including scales on goal understanding,
trust,ease of use, robot intelligence, fluency, and predictability
(Table II), using a seven-point rating scale.

TABLE II
MEASUREMENTS OF PERCEIVED CONTROL EXPERIENCE

Goal understanding (Cronbach’s α = 0.87)
The robot perceives accurately what my goals are
The robot does not understand what I am trying to accomplish
The robot and I are working towards mutually agreed upon goals

Trust (Cronbach’s α = 0.86)
I trusted the robot to do the right thing at the right time
The robot was trustworthy

Ease of use (Cronbach’s α = 0.93)
The control method made it easy to accomplish the task
I felt confident controlling the robot
I could accurately control the robot

Robot intelligence (Cronbach’s α = 0.93)
The robot was intelligent
The robot was able to independently make decisions through the task
The robot had an understanding of the task
The robot had an understanding of my goal during the task

Fluency (Cronbach’s α = 0.91)
The robot and I worked fluently together as a team
The robot contributed to the effectiveness of our team

Predictability (Cronbach’s α = 0.92)
The robot consistently moved in a way that I expected
The robot’s motion was not surprising
The robot responded to my motion inputs in a predictable way

Participants—We recruited 12 participants (5 male, 7 female),
aged 19–25 (M = 20.42, SD = 1.67), from a university campus.
A post-hoc power analysis with (1–β) = .80 and α = .05 found
an observed power of 0.96 (d = 3.15) with this sample size.
Participants reported low familiarity with robots (M = 2.14,
SD = 1.46, measured on a seven-point scale). No participants
reported participating in prior robotics research studies. The
study took 90 minutes, and each participant received $15 USD.

Results—We analyzed data from all measures using one-way
repeated-measures analyses of variance (ANOVA) using control
method as the within-participants variable. Figure VI-C shows
data and test results from all objective and subjective measures.
Our analyses provided full support for both hypotheses.

Discussion—Our results support our hypotheses that our
telemanipulation system significantly improves results over
the autonomous dynamic camera method on all tasks and
many perceptual measures. We observed wide variance in the
ADC condition results across all tasks. Because the camera in
the ADC condition just moved in response to the motion of
the manipulation robot, without any consideration of the task
or environment, the resulting motion behavior and resulting
viewpoints from the camera could substantially differ across
participants, even for the same task. Because our VSMS
condition considered the task and environment geometry, the
quality of the viewpoint was not dictated by this level of chance,
contributing to improved results with lower variance.

We expected mimicry-control to perform better than our
method on all tasks and perceptual measures, though we only
observe significantly better results on the table preparation task
and a marginal effect on the tray pill organization task. We
believe that incorporating depth perception into our method
will further close the performance gap between the remote and
co-located telemanipulation methods on these tasks.
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Fig. 3. Results for our user study. Thick, thin, and dotted lines indicate p < .001, p < .05, and p < .10, respectively, in pairwise comparisons.

VII. GENERAL DISCUSSION

In this paper, we presented a remote telemanipulation shared-
control method where the viewpoint is able to adapt to
afford effective task execution in complex environments. We
introduced a novel viewpoint adjustment algorithm designed
to automatically mitigate occlusions caused by the workspace
geometry, and showed how we address visual exploration and
context-specific visual challenges. In this section, we outline
limitations of our current methods, and discuss how our results
could be applied to a wide area of robotics applications.

Limitations—Our method has limitations that suggest future
extensions. First, our method does not afford depth perception
to users using the on-screen interface. We will explore tech-
niques to elicit depth effects, such as using motion parallax or
stereo vision, and compare them against mimicry-control where
users utilize their own depth perception while manipulating.

Our shared-control camera method benefits the remote user’s
view without easing the manipulation based on said awareness.
We plan to explore ways to use the rich un-occluded data stream
to supplement the control algorithm on the manipulation robot.
For instance, while our motion optimization framework affords
collision avoidance between the two arms and static objects
modeled ahead of time in the environment, both robots can
collide with dynamic objects. We will explore ways of providing
dynamic collision avoidance given the clear external view of
the manipulation point and other parts of the environment.

Our geometric occlusion avoidance algorithm also has known
limitations. For instance, the forward “manipulation” vector
may not be an accurate proxy for the robot’s approach direction

in all cases, especially with robots that have a flexible wrist.
This limitation could be mitigated by using the actual approach
direction of the end-effector position over some window of time
points. We will investigate such alternatives, as well as explore
ways of incorporating mapping, more geometric sensing, and
data driven techniques, for finding effective viewpoints.

Conclusion—Our work highlights the potential of using
a moving camera that considers the task and environment
as part of a robot manipulation system. Our results indicate
that an external viewpoint that is able to coordinate with the
manipulation point, subject to the environment and task, plays
an integral role in manipulation performance. This phenomenon
could not only apply to telemanipulation systems but also to
fully autonomous systems, where adaptable viewpoints could
influence the quality of learned grasp or manipulation policies.
We plan to investigate the possible benefits of this viewing
paradigm in real-time telemanipulation, shared-control, and
supervisory-control settings for applications such as remote
home-care, telenursing, or nuclear materials handling, and also
explore the methods discussed in this work to inform fully
autonomous motion and task policies.
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