Aiding Collaborative Reuse of Computational Notebooks
with Annotated Cell Folding

ADAM RULE, Design Lab, UC San Diego, USA

IAN DROSOQOS, Design Lab, UC San Diego, USA

AURELIEN TA BARD, LIRIS, Université de Lyon, CNRS, France
JAMES D. HOLLAN, Design Lab, UC San Diego, USA

Computational notebooks aim to support collaborative data analysis by combining code, visualizations, and
text in a single easily shared document. Yet, as notebooks evolve and grow they often become difficult to
navigate or understand, discouraging sharing and reuse. We present the design and evaluation of a Jupyter
Notebook extension providing facilities for annotated cell folding. Through a lab study and multi-week
deployment we find cell folding aids notebook navigation and comprehension, not only by the original author,
but also by collaborators viewing the notebook in a meeting or revising it on their own. However, in some
cases cell folding encouraged collaborators to overlook folded sections or spend longer reviewing a notebook
before editing it. These findings extend our understanding of code folding’s trade-offs to a new medium and
demonstrate its benefits for everyday collaboration. We conclude by discussing how dynamic reorganization
can support sharing and reuse of computational notebooks.

CCS Concepts: « Human-centered computing — Graphical user interfaces; Empirical studies in HCI,
Additional Key Words and Phrases: Computational notebook; Cell folding; Jupyter Notebook

ACM Reference Format:

Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018. Aiding Collaborative Reuse of Compu-
tational Notebooks with Annotated Cell Folding. Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article 150
(November 2018), 12 pages. https://doi.org/10.1145/3274419

1 INTRODUCTION

Exploratory data analysis is an iterative process of extracting insights from data [6, 13, 14, 26]. As the
scale and scope of data expand, this process has become increasingly collaborative [7, 13]. Consider
a journalist who enlists several colleagues to sort through a collection of leaked documents, or a
researcher who sends tissue samples across the country as part of a multi-site study; in both cases
collaborators need to discuss details of the analysis, not only to coordinate efforts, but also because
small changes to how data are collected, cleaned, or analyzed can lead to drastically different results.
But clearly communicating complex analyses is remarkably difficult, especially when the analysis
involves programming, which tends to produce large collections of scripts, comments, and results
that can be difficult to manage or understand [6, 24].

Authors’ addresses: Adam Rule, Design Lab, UC San Diego, 9500 Gilman Dr. La Jolla, CA, 92093, USA, acrule@ucsd.edu;
Ian Drosos, Design Lab, UC San Diego, 9500 Gilman Dr. La Jolla, CA, 92093, USA, idrosos@ucsd.edu; Aurélien Tabard,
LIRIS, Université de Lyon, CNRS, 25 avenue Pierre de Coubertin, 69622 Villeurbanne Cedex, Lyon, France, aurelien.tabard@
univ-lyon1.fr; James D. Hollan, Design Lab, UC San Diego, 9500 Gilman Dr. La Jolla, CA, 92093, USA, hollan@ucsd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2573-0142/2018/11-ART150 $15.00

https://doi.org/10.1145/3274419

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



https://doi.org/10.1145/3274419
https://doi.org/10.1145/3274419

150:2 A. Rule et al.

One increasingly popular means of addressing
these challenges is to conduct analyses in com-
putational notebooks which combine code, visu-
alizations, and text in a single interactive docu-
ment (Figure 1). Computational notebooks aim to
support collaborative data analysis by enabling
analysts to present their work as computational
narratives that can be easily shared and under-
stood [19]. However, prior work examining over
a million notebooks and interviewing dozens of
notebook users revealed that many notebooks are
loose collections of notes and scripts that even the
original analyst struggles to understand [15, 22]. : = Inline Plot
Rather than share their messy notebooks, most
analysts share simplified results through media
such as email, slide decks, or paper printouts that
lack a notebook’s interactivity, reproducibility, or ~ Fig. 1. Analysts can use computational notebooks
context. While computational notebooks help an- to combine code, visualizations, and text into rich
alysts perform iterative analyses they have yet to narratives for different audiences and contexts.
realize their anticipated collaborative potential.

This paper explores how to design computational notebooks to encourage clearer communication, freer
sharing, and deeper engagement with complex data analyses. It does so by asking how lightweight cell-
folding and annotation might enable analysts to more easily craft notebooks that can be understood
and reused in a variety of collaborative contexts. Through a lab study and multi-week deployment
we find evidence that cell-folding aids both the original analysis and later reuse of notebooks for
group presentations or continued analysis by a collaborator. However, as in prior work on code
folding and document overviews, we find that folding cells can encourage collaborators to overlook
folded sections or spend longer reviewing a notebook before editing it. These findings extend our
understanding of code folding’s benefits and trade-offs to a new medium while also demonstrating
its collaborative benefits in both laboratory and real-world settings.

‘Sampling from the generative model

o— Title and Introduction

*— Import Packages

o— Describe Parameters

«— Code Parameters

o— Describe Data
+— Code Plot

2 RELATED WORK
2.1 Data Analysis

In Exploratory Data Analysis, John Tukey described his subject as "looking at data to see what it
seems to say" [26]. While vague, this definition captures the exploratory nature of data analysis
which typically involves iterative cycles of obtaining, cleaning, profiling, analyzing, and interpreting
data [6, 13]. As analysts explore data they try different versions of the same model or graph and
routinely hit "dead ends" before generating an insight they feel "fits" the data.

As they iterate, analysts struggle to track which steps led to which results. Some tools help
analysts track this provenance automatically [4, 21], though often in GUI-based analysis software
rather than programming environments. Thankfully, research by Kery et al. is beginning to explore
ways to support the types of lightweight versioning unique to programming for data analysis
[14]. But much tracking remains manual and relatively few tools address how analysts organize
and communicate the many byproducts of their work so others, or even their future selves, can
audit, resume, or replicate it. As Guo [6] and Tabard [24] both note, complex analyses tend to
produce large collections of similarly named files that can be difficult to navigate or understand.
Many analysts don’t want to take time to organize or annotate their code and outputs since many

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



Aiding Collaborative Reuse of Computational Notebooks 150:3

explorations lead to dead ends and documenting each of these would break their train-of-thought.
For these reasons complex data analyses easily devolve into poorly documented collections of files.

2.2 Computational Notebooks

One increasingly popular means of managing the many byproducts of programmatic data analysis
is to perform analyses in computational notebooks. In the tradition of Knuth’s literate programming
[16], computational notebooks enable analysts to mix live code and visualizations with explanatory
text. While available for decades in proprietary software, the recent emergence of several open
source computational notebooks such as Jupyter Notebook and RNotebooks has enabled millions
of scientists, journalists, and students to adopt them for a wide range of analytical tasks [5].

As described by the creators of Jupyter Notebook, the central aim of computational notebooks is
to enable analysts to write rich computational narratives describing their analysis to a particular
audience and context [19]. Indeed, some notebooks elegantly explain complex analyses and the
paradigm of computational notebook is spreading. Distill uses a computational notebook format to
explain complex machine learning algorithms [18], Codestrates demonstrates how computational
notebooks can blur the lines between developing and using software [20], and ObservableHQ
recently released a computational notebook for analyzing data on the web using JavaScript [10].

However, as two recent studies note, clear notebooks are the exception [15, 22]. Many lack
explanatory text altogether, and even those that accompany academic publications rarely use text
to discuss the reasoning that guided the analysis or interpret results. While notebooks provide
tools for analysts to write rich computational narratives, analysts do not necessarily use them to
great effect as they face a tension between continuing to explore data or pausing to explain their
process. At the end of an analysis, many analysts are left with long and messy notebooks that even
they struggle to understand, much less want to share with a collaborator.

2.3 Multi-Scale Interfaces for Working with Long Documents

Several interaction paradigms have been developed to aid navigation and comprehension of long
documents by enabling users to simultaneously work at multiple levels of detail [3]. Two of the
most common are overview + detail interfaces that present separate views of the same document
at different levels of detail (e.g., slide navigators, mini-maps) and focus + context interfaces that
mix different levels of detail in the same view (e.g., code folding, fisheye views).

Prior work has explored how these paradigms support reading and writing code or text. Several
studies have shown that focus + context views help programmers perform some tasks more quickly,
though not all, by aiding navigation [3, 12]. Other research on academic writing directly compared
overview + detail, focus + context, and standard linear interfaces [8]. This work found that subjects
wrote better essays when using an overview + detail interface but were slower answering direct
questions, possibly because they spent additional time exploring the document overview even after
finding the relevant answer. By contrast users of the focus + context interface read documents
faster, but rarely viewed parts of the document that are not initially visible. Consequently they
demonstrated less learning from the document. Overall these studies show that multi-level interfaces
can aid completion of certain tasks, but may distract from the task at hand or discourage in-depth
reading. It remains to be seen how they might support use of computational notebooks that combine
executable code, explanatory text, and graphical results in a hybrid of previously studied media.

In the sections that follow we present the design and evaluation of a multi-scale interface for
working with computational notebooks. This interface leverages manual cell-folding and annotation
to aid and encourage notebook annotation and organization. In the studies that follow we seek to
understand not only if this paradigm helps analysts navigate their own notebooks, but if it also
encourages them to share notebooks and helps collaborators understand and reuse them.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



150:4 A. Rule et al.

3 DESIGN OF CELL-FOLDING FOR COMPUTATIONAL NOTEBOOKS

Prior work found that computational notebooks tend to become long, poorly formatted, and difficult
to understand, hindering sharing and reuse [15, 22]. With this challenge in mind, we conducted two
design workshops with seven graduate students (recruited in a convenience sample from a large
public university) to brainstorm how we might help analysts craft notebooks that are easier to share,
understand, and reuse. We recruited participants who had experience with both computational
notebooks and design thinking [1] to ground brainstorming in prior experience and avoid common
design pitfalls such as prematurely focusing on a single solution.

In an initial workshop we had participants brainstorm ways to make it easier for analysts to
annotate, organize, and reflect on analyses in their notebooks. In a second workshop we worked with
participants to paper prototype a subset of these ideas. In some cases, participants’ ideas reflected
features available in other writing and development environments (e.g., table of contents, file mini-
maps, commenting), but other ideas were more specific to notebooks (e.g., stable and sequential cell
numbering to aid navigation, parallel but linked presentation and scratch-pad notebooks). Based
on participant feedback and prior research suggesting the value of code folding and document
overviews, we chose to design and test a form of code-folding specific to computational notebooks
that would encourage simultaneous code organization and textual annotation.

Jupyter Notebooks are linear collections of cells, that is, independent blocks of code or text.
We developed Janus (Fig. 2), an extension to Jupyter Notebook, that enables analysts to fold cells
in named sections. When users fold a cell or several consecutive cells, Janus renders a section
header in their place. This header can be named and shows how many lines of code the folded

_ Jupyter fit_curve Last Checkpoint: 9 minutes ago (unsaved changes) A Logout
File  Edit View Inset  Cell  Kemel  Widgets Help  Janus Trusted | Python3 O
+ < @B 2 ¢ N B C Mrdowm ¢ @ @ x| m D @ @ Lastedtomnago

Fit a Curve

What model best fits the data? e

o Imports + Data 8 lines > < Imports + Data
In [13]: p = np.polyld(np.polyfit(x,y,7)) In (1] import numpy as np
¥ = np. Linspace(d, 13, 100) import matplotlib.pyplot as plt
plt.plot(x, y, '.', xp, P(xp), '-') e ginLine

Out[13]: [<matplotlib.lines.Line2D at 0x10eb30400>,

<matplotlib.lines.Line2D at 0x10eb30588>] In [2]¢|x = np.array([10.00, 8.00, 10.00, 9.00, 11.00,

14.00, 6.00, 4.00, 12.00, 7.00])
y = np.array([9.14, 8.34, 9.14, 8.07, 9.26,
8.40, 6.13, 3.30, 9.13, 7.56])

4 3 [ 10 2 1

Squared error is 0.254388539759 9 <>
In [14]: # get the accuracy by sum of squared error

Dangers of overfitting sum_squared = ((p(X) - y) * (P(X) - y)).sum()
print("Squared error is %s" % sum squared)

<<

In the graph above you can see that using a high degree polynomial can lead to
overfitting. The error may be less, but visually you can tell the model is not an elegant, or
likely accurate, explanation of the data.

Fig. 2. We developed Janus, an extension to Jupyter Notebook, to explore the implications of adding cell
folding to computational notebooks. Janus lets users fold groups of cells in named sections (A), or an individual
cell’s code or outputs (B). These hidden cells can be selectively shown in a sidebar (C).

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



Aiding Collaborative Reuse of Computational Notebooks 150:5

cells contain. Hovering over the section header shows a miniaturized view of the hidden cells,
making it easier to visually scan cells without unfolding them. When the section header is clicked,
it reveals a second notebook panel to the right of the main notebook containing the hidden cells.
We chose to unfold cells in a sidebar rather than inline so the main notebook could act as a stable
notebook overview while the sidebar provided focused details, mixing the overview + detail and
focus + context paradigms. Janus additionally lets notebook users fold just a code cell’s input code
or outputs so, for example, a graph can remain in the main notebook but the code used to generate
it can remain hidden until needed.

Prior work suggests this cell folding should help analysts navigate long notebook files and
complete certain analytical tasks more quickly [3, 8, 12]. We sought to understand if it would also
aid sharing and reuse of computational notebooks.

4 STUDY 1: LAB STUDY WITH NOVICE ANALYSTS

With this first study we wanted to see if folding cells helps novice analysts navigate, understand, and
extend a collaborator’s notebook. When analysts share their notebooks, they often share them with
less experienced programmers. A senior researcher may share a notebook with a junior colleague
to introduce them to a line of research, or to share results with a colleague whose expertise is in
biology, rather than computation. Due to this difference in experience, even when sharing within a
lab or collaboration analysts can spend substantial time cleaning their notebooks to make them
easier to understand [15]. To explore if cell folding might aid notebook navigation, comprehension,
and reuse we conducted a study with 32 undergraduate data science students under the scenario
that they were extending a lab-mate’s analysis.

4.1 Participants and Methods

We recruited 34 students from an introductory undergraduate data science course at a large public
university in the United States and gave each a $25 gift card for participating. Two participants
were unable to complete even the first study task in the allotted time and were excluded from our
analysis, leaving 32 participants who had completed one or more of the three study tasks.

In this between-subjects study, we asked participants to continue an analysis which a fictional
lab-mate had begun in a Jupyter Notebook. To start, we gave each participant a 13" laptop with a
notebook that compared housing and rental prices in five major cities on the United States’ west
coast. We then asked participants to perform three tasks that extended the analysis to include San
Jose, CA. The three tasks included 1) finding the unique ID that the dataset used to identify San
Jose, CA, 2) plotting rental and home prices in San Jose over time, and 3) correlating changes in
rental and homes prices in San Jose and the five original cities.

Sixteen participants used standard Jupyter Notebook in the control condition and sixteen used a
version of Jupyter Notebook extended with Janus in the experimental condition. Participants in the
experimental condition were first shown Janus’ cell-folding features in an example notebook, and
then worked with a folded version of the study notebook that was initially about 80% shorter than
the control notebook due to folding 35 cells into 12 sections with names such as "Select Variables to
Compare" and "Plot Rental Prices Over Time". The control notebook had the same sections marked
with markdown headers. To encourage extensive navigation and engagement with the notebook,
the study tasks were designed to be completed by reusing code already in the notebook.

We gave participants 30 minutes to complete as many of the tasks as they could. At the end of
the study we interviewed each participant about their experience using their version of Jupyter
Notebook, and had them fill out a post-study questionnaire testing their notebook comprehension.
All materials and data for this and the next study are online at https://github.com/activityhistory/
cscw2018.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.


https://github.com/activityhistory/cscw2018
https://github.com/activityhistory/cscw2018

150:6 A. Rule et al.

4.2 Measures

Proficiency: Before the study began, we asked participants to rate how proficient they were analyzing
data using Python and working with Jupyter Notebook on 7-point likert scales. We also asked
participants how many years programming experience they had and their current major. We divided
participants into computing majors (e.g., Computer Science, Computer Engineering, Electrical
and Computer Engineering), and non-computing majors (e.g., Cognitive Science, Bioengineering,
Chemical Engineering) and balanced major type across conditions.

Navigation and Comprehension: At the end of the study we asked participants to rate how easy
it was to navigate and understand the notebook on 7-point likert scales. We also tested their
comprehension of the notebook using a 7 question quiz which asked about methods and high-level
results. For example, one question asked: Which cities did your colleague originally compare?

Productivity: We measured how productive participants were by tracking how many of the three
tasks they completed and how long it took them to complete each task.

4.3 Results

We compare programming proficiency between computing and non-computing majors using t-tests.
For all other measures we use two-way ANOVAs to estimate differences associated with using Janus,
the participant’s major, or the interaction of these factors. We report 95% confidence intervals for
effects with a p-value less than 0.10, though we were more interested in how cell-folding changed
how participants used notebooks than statistical significance.

4.3.1  Proficiency: All participants had experience with Python and Jupyter Notebook from their
data analysis course, but there were significant differences between computing and non-computing
majors in self-reported proficiency using Python for data analysis (4.1 vs 3.1 out of 7, p < 0.01), self-
rated proficiency with Jupyter Notebooks (4.6 vs 3.6 out of 7, p < 0.05), and years of programming
experience (3.3 vs 2.3 years, p < 0.01). These differences were robust enough to suggest computing
and non-computing majors might use cell folding differently based on prior experience.

4.3.2  Navigation and Comprehension: There Ease Understanding Ease Navigating Comprehension
was no significant difference in self-rated ease ot roer e
of navigating the notebook, self-rated ease of
understanding the notebook, or scores on the
post-study comprehension quiz associated with
using Janus, pursuing a computing degree, or
the interaction of these factors (p > 0.1 in all
cases) (Figure 3).

3

~

w

N}

4.3.3  Productivity: There was no significant
difference in the number of tasks participants
completed associated with using Janus, pursu-
ing a computing degree, or the interaction of Fig. 3. There was no significant difference between
these factors (p > 0.1 in all cases). However, conditions in self-rated ease of understanding or navi-
there were differences in how long participants ~ gating the notebook, nor in notebook comprehension.
took to complete each task (Figure 4). A two-
way ANOVA revealed that non-computing majors using Janus tended to take longer to review their
notebook before starting the tasks than did other participants (p = 0.09, 95% CI [-69, 986] seconds
longer). Note in Figure 4a that this difference seems largely driven by three outliers.

However there was also a reverse trend for non-computing majors using Janus to surprisingly
take less time to complete the first two tasks (Figure 4b). We compare time on the first two tasks as

Jupyter Janus Jupyter Janus Jupyter Janus

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



Aiding Collaborative Reuse of Computational Notebooks 150:7

Time Before Starting First Task Time to Complete First and Second Task

by condition by condition and major

1500 by condition by condition and major
° 1500
L]
s °
° ®e °
3 1000 , 1000 .
§ e ° § % e °
& ° 3 o
500 o o Vi ® 500 <
° ° ajor . P oo Major
. e . - ® Other '’y  Other
A Jupyter Janus Jupyter Janus B Jupyter Janus Jupyter Janus

Fig. 4. (A) Non-computing majors using Janus tended to spend more time reviewing the notebook before
starting the first task, though this was mostly due to three outliers. (B) However, Janus users also tended to
take less time to complete Tasks 1 and 2, particularly if they were non-computing majors. Note how seven of
the eight fastest times completing Tasks 1 and 2 were from Janus users.

only 13 of 32 participants were able to complete the third task in time, limiting any comparison
across all tasks. A two-way ANOVA represented this difference as a combination of a weak main
effect for all Janus users to take less time to complete Tasks 1 and 2 (p = 0.09, 95% CI [92, 996] fewer
seconds), but also a weak interaction effect for computing majors using Janus to take longer on
Tasks 1 and 2 than non-computing majors using Janus ( p = 0.10, 95% CI [-102, 1126] more seconds).
This combination of effects nullified any time gain from using Janus for computing majors.

4.3.4 Qualitative Feedback: Ten of the sixteen Janus users spoke favorably of the extension:

I like the hide cells thing. I never really explored that. If that’s not already a thing
in Jupyter, I hope it’s a thing... When I'm trying to find a certain portion of the
notebook it would be easier to just hide the portions I don’t need currently. - P29

However, five Janus users felt the folding hindered navigation at times or took getting used to:

In a regular notebook you can just scroll up and down and see the code but here...
you have to actually click it, so it’s not as efficient as it used to be. - P11

In the baseline condition with Jupyter Notebook, seven of sixteen participants mentioned the
length of the notebook as a problem when asked about ease of navigation. Some even proposed
new ways of making the notebook easier to navigate:

I wish there was some type of compressing tool. I did not have to see all these
plots to be able to understand the next step. So if there is anything that hides the
plots and expands it only when I want to see it. I feel tools like that would make
it easier to navigate. - P32
Participants in the Janus condition also mentioned various ways to improve the extension.
Four wanted the sidebar to be less "cramped”, using a larger screen or showing folded cells inline
with the main notebook. Three wanted the sidebar to follow them as they scrolled so they could
simultanously view code from the top and bottom of the notebook. Finally, eight participants
wanted better support for code or browser search (e.g., CMD - F) to aid navigating the notebook.

4.4 Discussion

Most participants who used Janus liked being able to fold cells. Conversely, many who used
the standard notebook interface complained that the notebook was long and hard to navigate,

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



150:8 A. Rule et al.

suggesting there are clear benefits to cell folding. Still, there may be times when analysts want to
see the entire notebook or disparate sections side-by-side.

Remarkably, cell folding seemed to particularly help non-computing majors take less time to find
and reuse code in the notebook, though it may have also encouraged some of them to take longer
reviewing the notebook in the first place. As shown in Figure 4a, three non-computing majors
using Janus took substantially longer to review the notebook before editing. These participants
unfolded and re-ran each section of folded cells before they began their tasks. They may have
found the folding unhelpful or, by breaking long analyses into sections, cell folding may have made
the analysis seem more approachable and encouraged them to retrace each step. Either way, this
result accords with prior work which found that people may continue reviewing a document after
finding what they need if it has an overview pane, as the main notebook panel provided [8].

As for Janus enabling some users, particularly non-computing majors, to complete their tasks
more quickly, screen recordings revealed that this may be due to adopting the strategy of making
small edits to code in the middle of the notebook rather than copying it to the end of the notebook
before editing. Five of the eight fastest participants (seven of whom were in the Janus condition)
adopted this in-place editing strategy whereas only three of the remaining sixteen participants
who completed Tasks 1 and 2 did so. Viewing code in smaller chunks may have given participants
confidence that they understood the code and the effects of modifying it, so they were more likely
to edit code in place. Computing majors may not have benefited as much from using Janus’ code
folding because even without it they may have been able to fall back on well-established strategies
for navigating long files such as using CMD-F to search for specific function names.

The four Janus users at the top of Figure 4 who took more than 900 seconds to complete Tasks 1
and 2 all took a third approach: writing entirely new code to complete the tasks rather than reuse
code already in the notebook. This result accords with prior work that found that fisheye or folding
views can discourage readers from viewing parts of a document that are initially hidden [8].

Using Janus seemed to have a polarizing effect on programming style, either encouraging
participants to edit and re-run code in place or to ignore previous code and start their analysis
from scratch. While we found no significant increase in notebook comprehension or number of
tasks completed, cell folding did help some novice analysts navigate and extend a collaborators’
notebook more quickly, showing a benefit of cell folding for certain types of collaboration.

5 STUDY 2: TECHNOLOGY PROBE WITH EXPERT ANALYSTS

Our first study demonstrated that cell folding can help novice analysts navigate and extend a
collaborator’s computational notebook. However, extending an existing analysis is just one form
of collaboration, and analysts might use cell folding differently in their own notebooks. To better
understand how cell folding might support everyday collaboration we asked three expert analysts to
use Janus for 2-4 weeks during their normal analytical work. We had three goals for this technology
probe [9]: understanding analysts needs and desires in a real-world setting, field-testing Janus, and
inspiring analysts (and ourselves) to think about new ways of interacting with notebooks.

5.1 Participants and Method

We recruited three experienced analysts (2 PhD students and 1 undergraduate student) via email
from three different laboratories at a large public university in the United States. All three had
extensive experience with Jupyter Notebook and used it as their primary tool for data analysis.
We demonstrated Janus’ cell folding to each participant using an example notebook and then
asked each to organize the housing price comparison notebook from Study 1 as if they were going to
share it with a colleague. Afterwards we asked them how they might have organized the notebook
differently for themselves or a manager. Next, each participant installed Janus on their primary

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



Aiding Collaborative Reuse of Computational Notebooks 150:9

work computer and used it for 2-4 weeks during their everyday analyses. We interviewed each
participant about their experience with Janus after each week of use. Sample questions included:

- Can you open a notebook where you used Janus this week?
- How did you use, or try to use, Janus in this notebook?
— Did you show a notebook organized with Janus to anyone this week? How did they respond?

We transcribed each interview and iteratively extracted and grouped key quotes to find themes.

5.2 Results

5.2.1 Social: Communicating with Self and Others. Whether they were organizing our example
notebook or their own notebooks, our participants expressed the feeling that they were their own
closest collaborators, and that other analysts, especially their advisors (sometimes referred to as
Principle Investigators or Pls), were not interested in their code:

Oftentimes I am the colleague in the sense that 'm looking at [the notebook] a
week after and I have no idea what I was thinking at the time. - P1

From most of my conversations with people that’s pretty consistent across Pls.
They don’t want to see the code, they just want to see the high level idea. - P1

As a result, our participants primarily considered their own needs when organizing notebooks.
By the time they were ready to share results with their lab, their notebooks were often too detailed
and messy to present, so they would have to, reluctantly, create summary slide decks.

When I've presented versions of this notebook in our weekly meetings, I'm
always scrolling through and it takes a while to scroll through something and I
might think, "Oh I want to go back to this plot above", and I scroll scroll, scroll,
scroll and people are getting distracted by various plots. - P1

Its all slide decks now. We've tried... [ haven’t had much success using notebooks
as a presentation tool. I've just kind of given up on that. - P3

However, using Janus opened up new possibilities, aiding both the ongoing analysis and group
presentation. When working on an analysis, Janus helped our participants keep old code without it
getting in the way of the current task. Participant 1 mentioned that using Janus helped him make
sure he was editing the correct plot. Whereas before he would often mistake two similar plots, now
he could hide all but the current plot he was working on. Participant 2 noted:

What I would have normally have done was cut it out... and just think in my head,
"Oh that line was super easy to type, if I want to see that selection again, I'll just
type that same line again." But... I'll forget to do that later... [With Janus] instead
of having to retype it I could just kind of see "Oh, what section of the data-frame
was I looking at before?" That will kind of jog my memory as to what analysis I
was doing... so I can keep more of my thoughts, my own thoughts in there. - P2

Our participants also felt using Janus helped them reuse notebooks for group presentations,
reducing the time spent preparing their notebook for sharing, helping them remember what they
wanted to talk about, and giving them greater control over what was visible at any one time.

I can just kind of quickly scroll through [the notebook] and know that every cell
that is still left is a cell that I wanted to show for some reason - P2

I feel like when you have these notebooks with all these figures its really tempting
to just scroll down until the next figure and just look at it and scroll down... its a
nice experience [with folded outputs] for me or a collaborator to say, "Okay, what
is it that I'm looking for, what do I expect to see?". [And then unfold them] - P1

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



150:10 A. Rule et al.

5.2.2  Technology: Sidebar Unnecessary Technical Overhead. As in Study 1, one of our participants
mentioned that the sidebar felt small. He rarely viewed folded cells there, choosing instead to fold
and unfold them in the main flow of his notebooks. While we expected more experienced analysts
to use external monitors with more space for the sidebar, our participants still frequently edited
notebooks on smaller laptop screens as they moved around campus to attend different meetings.
While we intended for the main notebook to provide an overview of the analysis, and the sidebar
to provide details-on-demand, analysts’ repeated critique suggests that hiding and showing cells
in-line with the rest of the notebook may better match their mental models and be less distracting.

5.2.3 Design: Support for Navigation and Manipulation. Participants were generally happy with
Janus and mainly suggested minor tweaks rather than major changes to notebook software. However,
our interviews, as well as observations from Study 1, highlight several use cases that computational
notebooks could better support. Many of these echo issues explored in the active reading [17, 23, 25]
or collaborative visual analytics literatures [7, 11], though they reflect the unique needs of analysts
and their collaborators as they read and edit code and text in notebooks.

Richer Visualization of Folded Cells: Currently in Janus, folded cells are summarized by a user-
defined labels, the number of lines of code they contain, and a small preview of the hidden cells
when a user hovers over the section header. While analysts sometimes know the exact cell they are
looking for (e.g., where was that one with the plotting code?) at other times they are looking for all
cells where a particular data object was manipulated and trying to understand what happened to
that object as a result of the code. Section markers could provide information about the objects
created, modified, or deleted in them and provide compact visualizations of those operations.

Inline Search and Notebook Summarization: Analysts often looked for all instances of a variable
or method, or the history of how an object was created, used, and modified. This process could be
accelerated by letting notebook users search for a data object, and then hiding all cells or lines of
code except those pertaining to the searched object.

Showing Notebook Sections Next to Each Other: Analysts often compared disparate sections of
the same notebook, for example when copying code or comparing results of two different steps.
Currently this requires precise and repetitive scrolling. JupyterLab, the next version of Jupyter
Notebook addresses this issue by letting users place two views of the same notebook side by
side. Alternatively, notebooks could let users collapse intermediate sections of a notebook (as in
LiquidText [25]) to show two disparate sections one right after the other.

Saving Views: Analysts wanted to view different parts of their notebooks at different times, and
to save configurations to show collaborators. Similar to how some collaborative visual analytics
systems enable users to save configurations of the visualization, notebooks could enable users to
save configurations of hidden cells so they can prepare and easily revert to specific configurations.

5.3 Discussion: Richer Navigation and Manipulation of Computational Notebooks

These findings suggest that it would be fruitful to consider how computational notebooks can
support richer forms of navigation and manipulation. As opposed to the linear and often passive
process of reading a novel, analysts and their collaborators want to actively skim, cross-reference,
bookmark, and jump around computational notebooks as they do other physical and digital doc-
uments. However, in their current form, computational notebooks require extensive scrolling to
navigate and are difficult to skim, discouraging sharing and reuse. While participants had some
workarounds (e.g., using third-party extensions to render a table of contents at the top of their
notebook, or using an ALL-CAPS header to mark where they left-off), notebooks could do more to
support richer navigation and manipulation.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.



Aiding Collaborative Reuse of Computational Notebooks 150:11

So far Janus supports a limited form of navigation, mainly helping analysts and their collaborators
jump around long notebooks by folding sections they do not need at the moment. However, as
Tashman and Edwards note in related literature on active reading, richer forms of interaction can
also include annotation, content extraction, and dynamic layout of documents [25]. As with systems
such as XLibris [23] and Papiercraft [17] computational notebooks have potential to support these
activities in ways that paper cannot, for example automatically searching for all portions of the
notebook that depend on a highlighted block of code.

Support for navigation and manipulation can also extend beyond a single document. As Chen
et al. note, there are several levels of interaction to support beyond an individual document
including multi-document workspaces and support for multi-session reading [2]. In addition to
supporting interactions with a single notebook, computational notebook software could also
support multi-document sorting, layout, and information extraction as well as saving and restoring
multi-document workspaces to support reading across sessions and even between collaborators.

6 CONCLUSION

The rapid adoption of computational notebooks demonstrates their usefulness for analysis and their
potential to encourage open science with increased sharing of data and analyses. Key to fulfilling
this potential is enabling and encouraging clear communication about the goals, methods, and
results of analyses. Although computational notebooks are enticing vehicles for open science, much
work remains to enable them to realize their full potential as a medium for effective communication
and sharing interactive reproducible analyses.

In this paper we explore how computational notebooks might be designed to encourage clearer
communication by developing and testing Janus, an extension to Jupyter Notebook that adds cell
folding and annotation to the notebook. Through a lab study with 32 undergraduate data science
students and a multi-week field deployment with three more experienced analysts we find that cell
folding supports not only the original analysis but also later reuse of notebooks both for group
presentations and having a collaborator extend the analysis. However, there are tradeoffs involved
with cell folding as it can encourage collaborators to overlook folded cells or dwell on exploring the
document overview. These findings extend prior work on code-folding and document overviews
by replicating previously identified benefits and trade-offs in a new medium (i.e., computational
notebooks that mix code and text), demonstrating the collaborative benefits of cell-folding, and
observing how it is used by individuals and teams in a real-world setting outside the lab.

Future research should explore how computational notebooks and other forms of computa-
tional media can support richer forms of navigation and manipulation to help analysts and their
collaborators deeply engage with complex data analyses.

ACKNOWLEDGMENTS
This research was funded by NSF grants #1319829 and #1735234.

REFERENCES

[1] Richard Buchanan. 1992. Wicked Problems in Design Thinking. Design Issues 8, 2 (1992), 5. https://doi.org/10.2307/
1511637

[2] Nicholas Chen, Francois Guimbretiere, and Abigail Sellen. 2012. Designing a multi-slate reading environment
to support active reading activities. ACM Transactions on Computer-Human Interaction 19, 3 (Oct. 2012), 1-35.
https://doi.org/10.1145/2362364.2362366

[3] Andy Cockburn, Amy Karlson, and Benjamin Bederson. 2009. A review of overview+ detail, zooming, and focus+
context interfaces. ACM Computing Surveys (CSUR) 41, 1 (2009), 2. https://doi.org/10.1145/1456650.1456652

[4] Susan B. Davidson and Juliana Freire. 2008. Provenance and scientific workflows: challenges and opportunities.
In Proceedings of the 2008 ACM SIGMOD international conference on Management of data. ACM, 1345-1350. https:

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.


https://doi.org/10.2307/1511637
https://doi.org/10.2307/1511637
https://doi.org/10.1145/2362364.2362366
https://doi.org/10.1145/1456650.1456652
https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1145/1376616.1376772

150:12 A. Rule et al.

//doi.org/10.1145/1376616.1376772

[5] Brian Granger, Chris Colbert, and Ian Rose. 2017. JupyterLab: The next generation jupyter frontend. (2017).

[6] Philip Guo. 2012. Software tools to facilitate research programming. Ph.D. Dissertation. Stanford University.

[7] Jeffrey Heer and Maneesh Agrawala. 2008. Design Considerations for Collaborative Visual Analytics. Information

Visualization 7, 1 (March 2008), 49-62. https://doi.org/10.1057/palgrave.ivs.9500167

[8] Kasper Hornbeek and Erik Frekjeer. 2003. Reading patterns and usability in visualizations of electronic documents.

ACM Transactions on Computer-Human Interaction (TOCHI) 10, 2 (2003), 119-149.

Hilary Hutchinson, Wendy Mackay, Bo Westerlund, Benjamin B. Bederson, Allison Druin, Catherine Plaisant, Michel

Beaudouin-Lafon, Stéphane Conversy, Helen Evans, and Heiko Hansen. 2003. Technology probes: inspiring design

for and with families. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, 17-24.

https://doi.org/10.1145/642611.642616

[10] Observable Inc. 2018. Observable. (2018). https://beta.observablehq.com/

[11] Petra Isenberg, Niklas Elmqvist, Jean Scholtz, Daniel Cernea, Kwan-Liu Ma, and Hans Hagen. 2011. Collaborative
visualization: Definition, challenges, and research agenda. Information Visualization 10, 4 (Oct. 2011), 310-326.
https://doi.org/10.1177/1473871611412817

[12] Mikkel R Jakobsen and Kasper Hornbeek. 2006. Evaluating a fisheye view of source code. In Proceedings of the SIGCHI
conference on Human Factors in computing systems. ACM, 377-386. https://doi.org/10.1145/1124772.1124830

[13] SeanKandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2012. Enterprise Data Analysis and Visualization:
An Interview Study. IEEE Transactions on Visualization and Computer Graphics 18, 12 (Dec. 2012), 2917-2926. https:
//doi.org/10.1109/TVCG.2012.219

[14] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting Exploratory Programming by Data
Scientists. ACM Press, 1265-1276. https://doi.org/10.1145/3025453.3025626

[15] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A Myers. 2018. The Story in the Notebook:
Exploratory Data Science using a Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, 174. https://doi.org/10.1145/3173574.3173748

[16] Donald E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (Feb. 1984), 97-111. https://doi.org/10.1093/comjnl/27.
2.97

[17] Chunyuan Liao, FranAgois GuimbretiAlre, Ken Hinckley, and Jim Hollan. 2008. Papiercraft: A gesture-based command
system for interactive paper. ACM Transactions on Computer-Human Interaction 14, 4 (Jan. 2008), 1-27.  https:
//doi.org/10.1145/1314683.1314686

[18] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and Alexander Mordvintsev.
2018. The Building Blocks of Interpretability. Distill 3, 3 (March 2018). https://doi.org/10.23915/distill.00010

[19] Fernando Perez and Brian Granger. 2015. Project Jupyter: Computational Narratives
as the Engine of Collaborative Data Science. (July  2015). https://blog.jupyter.org/
project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58

[20] Roman Rédle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and Clemens N. Klokmose. 2017. Codestrates:
Literate Computing with Webstrates. ACM Press, 715-725. https://doi.org/10.1145/3126594.3126642

[21] Eric D. Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen. 2016. Characterizing provenance in visualization and
data analysis: an organizational framework of provenance types and purposes. IEEE transactions on visualization and
computer graphics 22, 1 (2016), 31-40. https://doi.org/10.1109/TVCG.2015.2467551

[22] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Explanation in Computational Notebooks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

[23] Bill Schilit, Gene Golovchinsky, and Morgan N. Price. 1998. Beyond paper: supporting active reading with free form
digital ink annotations. ACM Press, 249-256. https://doi.org/10.1145/274644.274680

[24] Aurélien Tabard, Wendy E. Mackay, and Evelyn Eastmond. 2008. From individual to collaborative: the evolution of
prism, a hybrid laboratory notebook. ACM Press, 569. https://doi.org/10.1145/1460563.1460653

[25] Craig Tashman. 2010. LiquidText: active reading through multitouch document manipulation. ACM Press, 2959.
https://doi.org/10.1145/1753846.1753895

[26] John Wilder Tukey. 1977. Exploratory data analysis. Addison-Wesley Pub. Co, Reading, Mass.

[

[

[t}

Received April 2018; revised July 2018; accepted September 2018

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 150, Publication date: November 2018.


https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1057/palgrave.ivs.9500167
https://doi.org/10.1145/642611.642616
https://beta.observablehq.com/
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1145/1124772.1124830
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/1314683.1314686
https://doi.org/10.1145/1314683.1314686
https://doi.org/10.23915/distill.00010
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1145/274644.274680
https://doi.org/10.1145/1460563.1460653
https://doi.org/10.1145/1753846.1753895

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Analysis
	2.2 Computational Notebooks
	2.3 Multi-Scale Interfaces for Working with Long Documents

	3 Design of Cell-Folding for Computational Notebooks
	4 Study 1: Lab Study with Novice Analysts
	4.1 Participants and Methods
	4.2 Measures
	4.3 Results
	4.4 Discussion

	5 Study 2: Technology Probe with Expert Analysts
	5.1 Participants and Method
	5.2 Results
	5.3 Discussion: Richer Navigation and Manipulation of Computational Notebooks

	6 Conclusion
	Acknowledgments
	References

