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Summary

Topological data analysis (TDA) (Edelsbrunner & Harer, 2010), (Carlsson, 2009) is a
field focused on understanding the shape and structure of data by computing topological
descriptors that summarize features as connected components, loops, and voids. TDA has
found wide applications across nonlinear time series analysis (Perea & Harer, 2015), com-
puter vision (Perea & Carlsson, 2014), computational neuroscience (Giusti, Pastalkova,
Curto, & Itskov, 2015), (Bendich, Marron, Miller, Pieloch, & Skwerer, 2016), compu-
tational biology (Iyer-Pascuzzi et al., 2010), (Wu et al., 2017), and materials science
(Kramar, Goullet, Kondic, & Mischaikow, 2013), to name a few of the many areas of
impact in recent years.

Persistent homology (Edelsbrunner & Harer, 2010) is the main workhorse of TDA, and it
computes a data structure known as the persistence diagram to summarize the space of
stable topological features. The most commonly used scheme for generating persistence
diagrams is the Vietoris Rips filtration (VR) since it is easily defined for any point cloud.
In its naive implementation, VR is prohibitively slow, but recently a C++ library known
as Ripser (Bauer, 2017) has been devised to aggregate all known computational speedups
of the VR filtration into one concise implementation. Because of the unprecedented speed
of Ripser, it has created a large user base for both research and applications. However,
the library as it stands is only a command line tool and as a result, multiple efforts have
been made to wrap the C++ library for use in other languages, often via clunky system
calls to the command line.

In this work, we develop an intuitive interface for VR filtrations with Ripser at its core via
Cython. We have gone through extensive testing via continuous integration frameworks to
ensure it works across all platforms and as a result, Ripser.py is currently as easy to setup
as pip install ripser. We see this package as particularly useful for mathematicians
with little programming experience who would like to use TDA as an entry point into data
science, or conversely for researchers with little understanding of Algebraic Topology who
would like to apply TDA to their problem domain. To aid this, we have created a large
set of Jupyter notebooks to showcase some of the many applications that are possible
with this library.

Library Details

Ripser.py supplies two interfaces: one lightweight and functional interface, as well as an
object-oriented interface designed to fit within the Scikit-Learn transformer paradigm
(Pedregosa et al., 2011). We have merged together multiple branches of the original
Ripser library (“sparse-distance-matrix,” “representative-cocycles”) to expose some lesser
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known but incredibly useful features hidden in Ripser. Below we detail some of the special
features made easy with our library.

Sparse filtrations

Ripser.py can accomodate sparse distance matrices using the scipy.sparse library. In
an accompanying notebooks, we demonstrate how Ripser.py can be used in conjunction
with “sparse filtration” approximation algorithms (Cavanna, Jahanseir, & Sheehy, 2015)
to add further computational speedups to Ripser. Additionally, sparse matrices allow us
to easily define a “sublevelset filtration,” or the “watershed algorithm,” for quantifying
critical points in grid data such as time series and images, and Ripser.py includes a helper
function to make this easy for image data. One of the notebooks demonstrates how this
can be used to identify cells in an image, for instance.

Coefficient Fields

Ripser.py naturally allows the specification of arbitrary field coefficients. Most applica-
tions that use TDA use binary coefficients in the VR filtration, and as a result, most
existing TDA software can only handle binary coefficients. Using other coefficient fields
Z/pZ for any prime p, makes it possible to detect “twists” in point cloud data. We have
included an example notebook that shows how this can differentiate a point cloud sam-
pled from the boundary of a Moebius strip from a point cloud sampled from an ordinary,
untwisted loop.

Applications of this surprisingly appears in some important real world scenarios such as
periodic time series analysis (Perea & Harer, 2015) and image analysis (Perea & Carlsson,
2014). This feature of Ripser.py has been used in a pipeline to synthesize slow motion
videos (Christopher J Tralie & Berger, 2018) and is currently being used to quantify peri-
odicities in repetitive motions with children with autism spectrum disorder (Christopher
J. Tralie, Matthew, & Sapiro, 2018).

Representative Cocycles

TDA is generally used to quantify topological features, but there has been some research
on localizing topological features back in the point cloud. Ripser.py can return “represen-
tative cocycles” associated to different homology classes (topological features), for sparse
and dense filtrations over any field. Use of this feature can be viewed as topological non-
linear dimension reduction (NLDR). Examples of this can be seen in mapping the point
cloud to a circle (Silva, Morozov, & Vejdemo-Johansson, 2011), which is useful for pa-
rameterizing periodic data, or in mapping the point cloud to the projective plane (Perea,
2018), which shows up in analysis of image patches.

Higher Order Homology

Because of long standing speed concerns with TDA, most applications have focused on 0-
dimensional (connected components) and 1-dimensional (loops) homology features from
VR filtrations. However, Ripser.py is fast enough to compute 2-dimensional homology
(voids e.g. empty space in a basketball) for modest point clouds. This feature has been
used to quantify quasiperiodic phenomena in videos of patients with vocal fold disorders
(Christopher J. Tralie & Perea, 2018), and we anticipate more researchers will use the
feature for other problems now that it is computationally accessible.
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Source Code

The source code for Ripser.py is available on Github through the Scikit-TDA organization
https://github.com/scikit-tda/Ripser.py. The original Ripser library can be found at
https://github.com/Ripser/Ripser/
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