DOI: 10.21105/joss.00925

Software
= Review @@
= Repository 7
= Archive &

Submitted: 17 August 2018
Published: 13 September 2018

License

Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

The Journal of Open Source Software

Ripser.py: A Lean Persistent Homology Library for
Python

Christopher Tralie!, Nathaniel Saul?>, and Rann Bar-On!

1 Department of Mathematics, Duke University 2 Department of Mathematics and Statistics,
Washington State University

Summary

Topological data analysis (TDA) (Edelsbrunner & Harer, 2010), (Carlsson, 2009) is a
field focused on understanding the shape and structure of data by computing topological
descriptors that summarize features as connected components, loops, and voids. TDA has
found wide applications across nonlinear time series analysis (Perea & Harer, 2015), com-
puter vision (Perea & Carlsson, 2014), computational neuroscience (Giusti, Pastalkova,
Curto, & Itskov, 2015), (Bendich, Marron, Miller, Pieloch, & Skwerer, 2016), compu-
tational biology (Iyer-Pascuzzi et al., 2010), (Wu et al., 2017), and materials science
(Kramar, Goullet, Kondic, & Mischaikow, 2013), to name a few of the many areas of
impact in recent years.

Persistent homology (Edelsbrunner & Harer, 2010) is the main workhorse of TDA, and it
computes a data structure known as the persistence diagram to summarize the space of
stable topological features. The most commonly used scheme for generating persistence
diagrams is the Vietoris Rips filtration (VR) since it is easily defined for any point cloud.
In its naive implementation, VR is prohibitively slow, but recently a C++ library known
as Ripser (Bauer, 2017) has been devised to aggregate all known computational speedups
of the VR filtration into one concise implementation. Because of the unprecedented speed
of Ripser, it has created a large user base for both research and applications. However,
the library as it stands is only a command line tool and as a result, multiple efforts have
been made to wrap the C++ library for use in other languages, often via clunky system
calls to the command line.

In this work, we develop an intuitive interface for VR filtrations with Ripser at its core via
Cython. We have gone through extensive testing via continuous integration frameworks to
ensure it works across all platforms and as a result, Ripser.py is currently as easy to setup
as pip install ripser. We see this package as particularly useful for mathematicians
with little programming experience who would like to use TDA as an entry point into data
science, or conversely for researchers with little understanding of Algebraic Topology who
would like to apply TDA to their problem domain. To aid this, we have created a large
set of Jupyter notebooks to showcase some of the many applications that are possible
with this library.

Library Details

Ripser.py supplies two interfaces: one lightweight and functional interface, as well as an
object-oriented interface designed to fit within the Scikit-Learn transformer paradigm
(Pedregosa et al., 2011). We have merged together multiple branches of the original
Ripser library (“sparse-distance-matrix,” “representative-cocycles”) to expose some lesser

Tralie et al., (2018). Ripser.py: A Lean Persistent Homology Library for Python. Journal of Open Source Software, 3(29), 925. 1
https://doi.org/10.21105/joss.00925


https://doi.org/10.21105/joss.00925
https://github.com/openjournals/joss-reviews/issues/925
https://github.com/scikit-tda/ripser.py
https://doi.org/10.5281/zenodo.1412867
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00925

The Journal of Open Source Software

known but incredibly useful features hidden in Ripser. Below we detail some of the special
features made easy with our library.

Sparse filtrations

Ripser.py can accomodate sparse distance matrices using the scipy.sparse library. In
an accompanying notebooks, we demonstrate how Ripser.py can be used in conjunction
with “sparse filtration” approximation algorithms (Cavanna, Jahanseir, & Sheehy, 2015)
to add further computational speedups to Ripser. Additionally, sparse matrices allow us
to easily define a “sublevelset filtration,” or the “watershed algorithm,” for quantifying
critical points in grid data such as time series and images, and Ripser.py includes a helper
function to make this easy for image data. One of the notebooks demonstrates how this
can be used to identify cells in an image, for instance.

Coefficient Fields

Ripser.py naturally allows the specification of arbitrary field coefficients. Most applica-
tions that use TDA use binary coefficients in the VR filtration, and as a result, most
existing TDA software can only handle binary coefficients. Using other coefficient fields
Z/pZ for any prime p, makes it possible to detect “twists” in point cloud data. We have
included an example notebook that shows how this can differentiate a point cloud sam-
pled from the boundary of a Moebius strip from a point cloud sampled from an ordinary,
untwisted loop.

Applications of this surprisingly appears in some important real world scenarios such as
periodic time series analysis (Perea & Harer, 2015) and image analysis (Perea & Carlsson,
2014). This feature of Ripser.py has been used in a pipeline to synthesize slow motion
videos (Christopher J Tralie & Berger, 2018) and is currently being used to quantify peri-
odicities in repetitive motions with children with autism spectrum disorder (Christopher
J. Tralie, Matthew, & Sapiro, 2018).

Representative Cocycles

TDA is generally used to quantify topological features, but there has been some research
on localizing topological features back in the point cloud. Ripser.py can return “represen-
tative cocycles” associated to different homology classes (topological features), for sparse
and dense filtrations over any field. Use of this feature can be viewed as topological non-
linear dimension reduction (NLDR). Examples of this can be seen in mapping the point
cloud to a circle (Silva, Morozov, & Vejdemo-Johansson, 2011), which is useful for pa-
rameterizing periodic data, or in mapping the point cloud to the projective plane (Perea,
2018), which shows up in analysis of image patches.

Higher Order Homology

Because of long standing speed concerns with TDA, most applications have focused on 0-
dimensional (connected components) and 1-dimensional (loops) homology features from
VR filtrations. However, Ripser.py is fast enough to compute 2-dimensional homology
(voids e.g. empty space in a basketball) for modest point clouds. This feature has been
used to quantify quasiperiodic phenomena in videos of patients with vocal fold disorders
(Christopher J. Tralie & Perea, 2018), and we anticipate more researchers will use the
feature for other problems now that it is computationally accessible.

Tralie et al., (2018). Ripser.py: A Lean Persistent Homology Library for Python. Journal of Open Source Software, 3(29), 925. 2
https://doi.org/10.21105/joss.00925


https://doi.org/10.21105/joss.00925

SS

The Journal of Open Source Software

Source Code

The source code for Ripser.py is available on Github through the Scikit-TDA organization
https://github.com/scikit-tda/Ripser.py. The original Ripser library can be found at
https://github.com/Ripser/Ripser/

Acknowledgements

Christoher Tralie and Rann Bar-On were supported by an NSF big data grant DKA-
1447491. Nathaniel Saul was partially supported by NSF DBI-1661348 and by Washington
NASA Space Grant Consortium, NASA Grant #NNX15AJ98H. We thank Ulrich Bauer
for the original Ripser library and for valuable feedback during development of Ripser.py.
We also thank Jose Perea, William Guss, and Matija Cufar for helpful feedback and bug
fixes. Finally, we thank the students of the “Topological Data Analysis and Persistent
Homology” workshop in Levico, Italy for beta testing the code.

References

Bauer, U. (2017). Ripser: A lean c++ code for the computation of vietoris-rips persistence
barcodes. Software available at https://github.com/Ripser/ripser.

Bendich, P., Marron, J., Miller, E., Pieloch, A., & Skwerer, S. (2016). Persistent homology
analysis of brain artery trees. Annals of Applied Statistics, 10(1), 198-218. doi:10.1214/15-
AOAS886

Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society,
46(2), 255-308.

Cavanna, N. J., Jahanseir, M., & Sheehy, D. R. (2015). A geometric perspective on sparse
filtrations. Proceedings of the Canadian Conference in Computational Geometry.

Edelsbrunner, H., & Harer, J. (2010). Computational topology: An introduction. Ameri-
can Mathematical Soc.

Giusti, C., Pastalkova, E., Curto, C., & Itskov, V. (2015). Clique topology reveals intrin-
sic geometric structure in neural correlations. Proceedings of the National Academy of
Sciences, 112(44), 13455-13460. doi:10.1073/pnas.1506407112

Iyer-Pascuzzi, A. S., Symonova, O., Mileyko, Y., Hao, Y., Belcher, H., Harer, J.,
Weitz, J. S., et al. (2010). Imaging and analysis platform for automatic phenotyp-
ing and trait ranking of plant root systems. Plant Physiology, 152(3), 1148-1157.
doi:10.1104/pp.109.150748

Kramar, M., Goullet, A., Kondic, L., & Mischaikow, K. (2013). Persistence of
force networks in compressed granular media. Phys. Rev. E, 87(4), 042207.
doi:10.1103 /PhysRevE.87.042207

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825-2830.

Perea, J. A. (2018). Multiscale projective coordinates via persistent cohomology of sparse
filtrations. Discrete & Computational Geometry, 59(1), 175-225. doi:10.1007/s00454-017-
9927-2

Tralie et al., (2018). Ripser.py: A Lean Persistent Homology Library for Python. Journal of Open Source Software, 3(29), 925. 3
https://doi.org/10.21105/joss.00925


https://github.com/scikit-tda/Ripser.py
https://github.com/Ripser/Ripser/
https://doi.org/10.1214/15-AOAS886
https://doi.org/10.1214/15-AOAS886
https://doi.org/10.1073/pnas.1506407112
https://doi.org/10.1104/pp.109.150748
https://doi.org/10.1103/PhysRevE.87.042207
https://doi.org/10.1007/s00454-017-9927-2
https://doi.org/10.1007/s00454-017-9927-2
https://doi.org/10.21105/joss.00925

SS

The Journal of Open Source Software

Perea, J. A., & Carlsson, G. (2014). A klein-bottle-based dictionary for texture repre-
sentation. International Journal of Computer Vision, 107(1), 75-97. doi:10.1007/s11263-
013-0676-2

Perea, J. A., & Harer, J. (2015). Sliding windows and persistence: An application of
topological methods to signal analysis. Foundations of Computational Mathematics, 15(3),
799-838. doi:10.1007/s10208-014-9206-2

Silva, V. de, Morozov, D., & Vejdemo-Johansson, M. (2011). Persistent cohomol-
ogy and circular coordinates. Discrete & Computational Geometry, 45(4), 737-759.
doi:10.1007/s00454-011-9344-x

Tralie, C. J., & Berger, M. (2018). Topological eulerian synthesis of slow motion periodic
videos. In IEFEE international conference on image processing.

Tralie, C. J., & Perea, J. A. (2018). (Quasi)Periodicity quantification in video
data, using topology. SIAM Journal on Imaging Sciences, 11(2), 1049-1077.
doi:10.1137/17M 1150736

Tralie, C. J., Matthew, G. S., & Sapiro, G. (2018). Automated detection of stereotypical
motor movements in children with autism spectrum disorder using geometric feature
fusion. International Society for Autism Research (INSAR).

Wu, P., Chen, C., Wang, Y., Zhang, S., Yuan, C., Qian, Z., Metaxas, D., et al. (2017).
Optimal topological cycles and their application in cardiac trabeculae restoration. In
M. Niethammer, M. Styner, S. Aylward, H. Zhu, I. Oguz, P.-T. Yap, & D. Shen (Eds.),
Information processing in medical imaging (pp. 80-92). Cham: Springer International
Publishing.

Tralie et al., (2018). Ripser.py: A Lean Persistent Homology Library for Python. Journal of Open Source Software, 3(29), 925. 4
https://doi.org/10.21105/joss.00925


https://doi.org/10.1007/s11263-013-0676-2
https://doi.org/10.1007/s11263-013-0676-2
https://doi.org/10.1007/s10208-014-9206-z
https://doi.org/10.1007/s00454-011-9344-x
https://doi.org/10.1137/17M1150736
https://doi.org/10.21105/joss.00925

	Summary
	Library Details
	Sparse filtrations
	Coefficient Fields
	Representative Cocycles
	Higher Order Homology

	Source Code
	Acknowledgements
	References

