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Abstract
Climate change and human pressures are changing the global distribution and the ex‐
tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the 
global river network area. IRES are characterized by periods of flow cessation, during 
which channel substrates accumulate and undergo physico‐chemical changes (precon‐
ditioning), and periods of flow resumption, when these substrates are rewetted and 
release pulses of dissolved nutrients and organic matter (OM). However, there are no 
estimates of the amounts and quality of leached substances, nor is there information 
on the underlying environmental constraints operating at the global scale. We experi‐
mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐
bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES 
from five major climate zones. We determined the amounts and qualitative character‐
istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. 
In addition, we evaluated the variance in leachate characteristics in relation to selected 
environmental variables and substrate characteristics. We found that sediments, due 
to their large quantities within riverbeds, contribute most to the overall flux of dis‐
solved substances during rewetting events (56%–98%), and that flux rates distinctly 
differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐
uted most to the areal fluxes. The largest amounts of leached substances were found 
in the continental climate zone, coinciding with the lowest potential bioavailability of 
the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐
ables expected to be modified under climate change (i.e. potential evapotranspiration, 
aridity, dry period duration, land use) were correlated with the amount of leached sub‐
stances, with the strongest relationship found for sediments. These results show that 
the role of IRES should be accounted for in global biogeochemical cycles, especially 
because prevalence of IRES will increase due to increasing severity of drying events.

K E Y W O R D S

biofilms, leaching, leaf litter, rewetting, sediments, temporary rivers

1  | INTRODUC TION

Human activities and climate change cause global‐scale alterations 
in the flow regimes of rivers, which in turn are tightly linked to bio‐
geochemical processes such as carbon processing (Arnell & Gosling, 

2013; Bernhardt et al., 2018; Tonkin, Merritt, Olden, Reynolds, & 
Lytle, 2018). Currently, more than half of the global river network 
length is represented by intermittent rivers and ephemeral streams 
(IRES) – systems that cease to flow at some point in time and space 
(Acuña et al., 2014; Datry, Larned, & Tockner, 2014). Anthropogenic 
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pressures alter the hydrological regime of perennial rivers toward 
intermittency, although the opposite can also happen at some lo‐
cations. On the one hand, flow regulation, water diversion, ground‐
water extraction, and land‐use alteration promote the prevalence 
of river flow intermittence both spatially and temporally (Datry, 
Bonada, & Boulton, 2017; Pekel, Cottam, Gorelick, & Belward, 2016). 
On the other hand, naturally intermittent rivers turn permanent due 
to effluents from wastewater treatment plants or artificially en‐
hanced discharge required for livestock and irrigation (Chiu, Leigh, 
Mazor, Cid, & Resh, 2017).

From a biogeochemical perspective, IRES function as punctuated 
biogeochemical reactors (Larned, Datry, Arscott, & Tockner, 2010; 
von Schiller, Bernal, Dahm, & Martí, 2017). During the dry phase, 
a diversity of substrates (leaf litter, epilithic biofilms, wood, animal 
carcasses, sediments) accumulate on the dry riverbed (Datry et al., 
2018) . Absence of water reduces decomposition rates of substrates 
(for particulate organic matter, OM), while sunlight and intense des‐
iccation alter their physico‐chemical properties, a process known as 
preconditioning (Abril, Muñoz, & Menéndez, 2016; Bruder, Chauvet, 
& Gessner, 2011; del Campo & Gómez, 2016; Dieter et al., 2011; 
Taylor & Bärlocher, 1996). When surface water returns after dry‐
ing events, accumulated organic and inorganic substrates are re‐
wetted and can be transported downstream (Corti & Datry, 2012; 
Obermann, Froebrich, Perrin, & Tournoud, 2007; Rosado, Morais, & 
Tockner, 2015). Rewetting during the so‐called “first flush events” 
also leads to massive pulsed releases of dissolved nutrients and dis‐
solved organic matter (DOM; Arce, Sánchez‐Montoya, & Gómez, 
2015; Gessner, 1991; von Schiller et al., 2011). Importantly, con‐
centrations of the released substances may exceed baseflow values 
in perennial watercourses by several orders of magnitude and can 
thus substantially contribute to annual fluxes (Bernal, von Schiller, 
Sabater, & Marti, 2013; Corti & Datry, 2012; Skoulikidis & Amaxidis, 
2009). Released nutrients and DOM fuel primary producers and het‐
erotrophic organisms, alter nutrient and carbon cycling, and thus in‐
fluence stream ecosystem metabolism (Austin et al., 2004; Baldwin 
& Mitchell, 2000; Fellman, Petrone, & Grierson, 2013; Jacobson & 
Jacobson, 2013; Skoulikidis, Vardakas, Amaxidis, & Michalopoulos, 
2017). Furthermore, eutrophication and hypoxia can be a conse‐
quence of excess nutrient transport to downstream lakes, reservoirs, 
and coastal areas, where the mortality of fish and other aquatic 
organisms can increase (Bunn, Thoms, Hamilton, & Capon, 2006; 
Datry, Corti, Foulquier, Schiller, & Tockner, 2016; Hladyz, Watkins, 
Whitworth, & Baldwin, 2011; Whitworth, Baldwin, & Kerr, 2012).

Despite their widespread distribution and distinct role in bio‐
geochemical cycling, IRES are notably missing in current analy‐
ses of global carbon budgets and other biogeochemical processes 
such as cycling of nutrients and DOM (Datry et al., 2018). Still, re‐
search on IRES is based primarily on studies spanning fine spatial 
extents (Leigh et al., 2016), which limits our understanding of their 
roles in ecosystem processes at the global scale (Datry et al., 2014; 
Skoulikidis, Sabater et al., 2017; von Schiller et al., 2017; but see 
Datry et al., 2018; Soria, Leigh, Datry, Bini, & Bonada, 2017). The 
contribution of IRES particularly to biogeochemical processes must 

be understood and quantified to correctly estimate carbon and nu‐
trient fluxes. Studies indicating altered distribution of IRES in the 
future due to climate change (e.g. Milly, Dunne, & Vecchia, 2005) 
also emphasizes the need to adjust future river monitoring and con‐
servation strategies.

The amounts and quality of dissolved compounds released from 
IRES upon rewetting, a process referred to as leaching (e.g. Gessner, 
1991; Nykvist, 1963), depends primarily on the physico‐chemical 
characteristics and amounts of substrates accumulated on river‐
beds. Leachates from leaf litter, the most abundant form of coarse 
particulate organic matter (CPOM) accumulated in dry riverbeds 
(Datry et al., 2018), are rich in dissolved organic carbon (DOC; up to 
39% of the leaf bulk carbon content) including soluble sugars, car‐
bonic and amino acids, phenolic substances, proteins, and inorganic 
nutrients (e.g., phosphorus, nitrogen, potassium; Bärlocher, 2005; 
Gessner, 1991; Harris, Silvester, Rees, Pengelly, & Puskar, 2016; 
Nykvist, 1963). Likewise, leaching from rewetted sediments of IRES 
releases large amounts of inorganic nitrogen (e.g. Arce, Sánchez‐
Montoya, Vidal‐Abarca, Suárez, & Gómez, 2014; Merbt, Proia, 
Prosser, Casamayor, & von Schiller, 2016; Ostojic, Rosado, Miliša, 
Morais, & Tockner, 2013; Tzoraki, Nikolaidis, Amaxidis, & Skoulikidis, 
2007). Furthermore, riverbeds can be covered by biofilm mats (here‐
after referred to as “biofilm”), composed of microorganisms (algae, 
bacteria, fungi) embedded in a matrix of extracellular polymeric 
substances (Sabater, Timoner, Borrego, & Acuña, 2016), whose rem‐
nants can often be seen even during the dry phase. Biofilm's leach‐
ate may contain highly bioavailable organic carbon and nitrogen due 
to the accumulation of exudates and products of cell lysis (Romaní 
et al., 2017; Schimel, Balser, & Wallenstein, 2007). Physico‐chemical 
characteristics of substrates accumulated within IRES during the dry 
phase as well as the amounts of leached substances depend on envi‐
ronmental variables that act at both regional (climate influenced) and 
local scales (e.g. influenced by river geomorphology, land use, ripar‐
ian canopy cover) (Aerts, 1997; Catalan, Obrador, Alomar, & Pretus, 
2013; Datry et al., 2018; von Schiller et al., 2017).

The quantity and quality of dissolved substances leached from 
the channel beds of IRES during the rewetting process, and the 
environmental variables associated with variation in differences in 
leached amounts, has been little studied. However, such knowledge 
is essential for disentangling the role of IRES in biogeochemical pro‐
cesses under different scenarios of climate change. In the present 
study, we experimentally simulated pulsed rewetting events under 
controlled standardized laboratory conditions using substrates 
collected from 205 IRES located in 27 countries in five continents 
and covering five major climate zones. We aimed (a) to compare the 
amounts of nutrients and DOM, and the quality of DOM leached 
from leaf litter, biofilms, and bed sediments accumulated on dry 
IRES beds at the global scale as well as in different climate zones, 
(b) to explore and identify the environmental variables related to the 
variability in leached amounts, and (c) to estimate the potential area‐
specific fluxes (per m2 of bed surface) of nutrients and OM leached 
during pulsed rewetting events. We focused on common nutrient 
and DOM species, which control essential ecosystem processes 
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such as primary production and microbial respiration (Conley et al., 
2009; Elser et al., 2007). Furthermore, we estimated the size catego‐
ries and optical properties of released DOM as proxies of its quality.

Our first hypothesis was that in comparison with mineral sub‐
strates (sediments), leachates from organic substrates (biofilms and 
leaves) contain higher amounts of nutrients and DOM relative to the 
content of the respective element (carbon or nitrogen) in the sub‐
strate. In addition, substrates of organic origin also have a higher 
variability in the composition of leachates due to a higher species 
richness and compositional heterogeneity. Within our second hy‐
pothesis we expected that significant differences in the amounts of 
leached substances are observed among substrates sampled across 
different climate zones, with the highest amounts of nutrients and 
OM leached in the continental climate zone compared to others due 
to high litter quality (Boyero et al., 2017). In combination with the 
highest mass of litter observed (Datry et al., 2018) we expect this to 
result in the highest nutrient and OM fluxes from a representative 
area of dry river bed in the continental zone. Finally, we hypothe‐
sized that quantitative and qualitative composition of leachates will 
depend on substrate characteristics, which in turn are expected to 
correlate with environmental variables sampled at the study sites.

2  | MATERIAL S AND METHODS

2.1 | Sampling sites, substrate collection, and 
environmental variables

A total of 205 IRES, located in 27 countries and spanning five major 
Köppen–Geiger climate classes, were sampled during dry phases, 
following the standardized protocol of the 1,000 Intermittent Rivers 
Project (Datry et al., 2016, http://1000_intermittent_rivers_project.
irstea.fr, Figure 1). Five major climate zones were assigned to sites 
based on their location: arid (merging Köppen–Geiger classes BSh, 

BSk, BWh and BWk, n = 29), continental (Dfb, Dfc, n = 13), temper‐
ate (Cfa, Cfb, Csa, Csb, Cwa, n = 142), tropical (As, Aw, n = 19), and 
polar (ET, n = 1). Differences in sample size resulted from the occur‐
rence of IRES and accessibility of sampling sites by researchers in‐
volved in the sampling campaign. A larger sample size increases the 
variability of the results while increasing the precision of the mean/
median values, that is, reducing the variability of the sample mean/
median. This needs to be considered in data evaluation and inter‐
pretation. For each river, one reach was selected and sampled for 
leaf litter (further referred as leaves), epilithic biofilms (biofilms), and 
sediments (details on material collection are provided in Supporting 
Information). After collection, field samples were further processed 
in the laboratory. Leaves and biofilms were oven‐dried (60°C, 12 hr) 
to achieve constant mass, reduce variability from fluctuations in 
water content (Boulton & Boon, 1991), and ensure cellular death of 
the leaf tissue. Oven‐drying mainly affects volatile and oxidizable 
compounds, which were not in the focus of our study. However, 
oven‐drying may increase the amount of leached substances from 
leaves and biofilms (e.g. Gessner & Schwoerbel, 1989). Bed sedi‐
ments were sieved (2 mm) and air‐dried for 1 week. The dry material 
was placed in transparent plastic bags, shipped to laboratories re‐
sponsible for further analyses (see Acknowledgements), and stored 
in a dry and dark room until processing and analysis.

Nine environmental variables were selected to analyze their 
association with leachate characteristics (Table 1). The variables 
were selected based on a conceptual understanding of the leach‐
ing process. As proxies of a regional‐scale influence, we used the 
aridity index and potential evapotranspiration (PET) extracted from 
the Global Aridity and PET database (for details see Datry et al., 
2018). River width, riparian cover (%, visually estimated as the pro‐
portion of river reach covered by vegetation), dry period duration 
(estimated either with water loggers or repeated observations, pre‐
cision: 2 weeks), altitude, and land cover (%) of pasture, forest, and 

F I G U R E  1  Location of the sampling sites (N = 205) across five climate zones. Climate zones according to Köppen–Geiger classes are 
marked with different colors [Colour figure can be viewed at wileyonlinelibrary.com]

http://1000_intermittent_rivers_project.irstea.fr
http://1000_intermittent_rivers_project.irstea.fr
www.wileyonlinelibrary.com
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urban areas within the catchment were selected as proxies of local 
influence. These local‐scale parameters (apart from land cover) were 
recorded in situ by participants of the 1,000 Intermittent Rivers 

Project. Land cover was derived using GIS maps. For details on the 
environmental variables sampled and substrate characteristics, see 
Table S1.

TA B L E  1  Overview of the variables included in the partial least squares (PLS) regression models and transformations applied to meet 
assumptions of analysis

Variable Description Measurement units Transformation
Variable in the 
PLS model

Environmental variables

PET Mean potential evapotranspiration for 
1950–2000

mm/month log(x) X

Aridity Mean annual aridity index for years 
1950–2000

– log(x) X

Altitude Altitude of the sampled reach m above sea level log(x) X

Riparian cover Percentage of the sampled reach covered 
by vegetation

% log(x + 1) X

Width of the 
sampled reach

Active channel width m log(x) X

Dry period Duration of the drying period days log(x) X

Pasture cover Percentage of pasture area within the 
river catchment

% log(x + 1) X

Forest cover Percentage of forested area within the 
river catchment

% log(x + 1) X

Urban cover Percentage of urban area within the river 
catchment

% log(x + 1) X

Chemical substrates characteristics

% C Carbon content % log(x) X, Y

% N Nitrogen content % log(x) X, Y

C:N Molar C:N ratio – log(x) X, Y

Specific sediment characteristics

Silt Silt fraction % log(x) X, Y

Sand Sand fraction % log(x) X, Y

Clay Clay fraction % log(x) X, Y

Mean size Mean particle size mm log(x) X, Y

Quantitative chemical characteristics of leachates

DOC Dissolved organic carbon mg/g dry mass log(x) Y

DON Dissolved organic nitrogen mg/g dry mass log(x) Y

SRP Soluble reactive phosphorous mg/g dry mass log(x) Y

N‐NH4
+ Ammonium mg/g dry mass log(x) Y

N‐NO3
− Nitrate mg/g dry mass log(x) Y

Qualitative chemical characteristics of leachates

SUVA254 Specific ultraviolet absorbance mg C/L – Y

FI Fluorescence index – log(x + 1) Y

HIX Humification index – log(x + 1) Y

β:α Ratio of autochthonous to allochtonous 
dissolved organic matter

– log(x + 1) Y

DOC:DON Ratio of DOC to DON concentration – Y

Phenolics:DOC Ratio of phenolics to DOC concentration – log(x + 1) Y

LMWS Low molecular weight substances % Y

BP Biopolymers % Y

HS Humic substances % Y
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2.2 | Leaching experiments

Rewetting was simulated in the laboratory by exposing dried sub‐
strates to leaching solutions as a proxy for their exposure in situ to 
river water during first flush events. Leaves were cut into approxi‐
mately 0.5 cm × 0.5 cm pieces and homogenized in glass beakers 
using a spoon. If the sample contained conifer‐needles (approxi‐
mately 30% of samples), these were cut into fragments of approxi‐
mately 4 ± 0.5 cm length. From each sample, 0.5 ± 0.01 g were 
weighed, put into 250 ml dark glass bottles and filled with 200 ml 
of a 200 mg/L NaCl leaching solution to mimic ionic strength of the 
stream water and thus to avoid extreme osmotic stress on micro‐
organisms’ cells upon rewetting (e.g. McNamara & Leff, 2004). For 
biofilms, sub‐samples homogenized as previously described were 
weighed to 1 ± 0.01 g, and placed in dark glass bottles filled with 
100 ml of the leaching solution. Sediment samples (20–60 g) were 
homogenized in the same way, weighed to 10 ± 0.1 g, transferred 
into 250 ml dark glass bottles, and filled with 100 ml of the leaching 
solution. The selected mass of each substrate in relation to the vol‐
ume of leaching solution aimed on maximizing the leaching yield by 
avoiding high concentrations of dissolved substances that could lead 
to saturation so that substances cannot dissolve further.

Preliminary investigations of the effect of temperature and time 
on leaching (tested at temperatures of 4 and 20°C and leaching du‐
rations of 4 and 24 hr, corresponding to temperatures and durations 
most commonly applied in leaching studies due to the rapid nature 
of the leaching process, data not shown), indicated selection of a 
constant temperature of 20°C and leaching duration of 4 hr. The 
selected duration reflects the time when most of the dissolved sub‐
stances are leached and minimizes microbial modification of leach‐
ates upon rewetting. Bottles containing substrates and the leaching 
solution were capped and placed on shaking tables (100 rpm) in a 
climate chamber in darkness. Two subsamples (technical replicates) 
of each substrate type from each sampling site were leached when‐
ever enough material was available (70% of the samples). Otherwise 
a single technical replicate was used.

After 4 hr, the leachate from the bottle was filtered through 
8.0 µm cellulose acetate and 0.45 µm cellulose nitrate membrane fil‐
ters (both Sartorius, AG Göttingen, Germany) which were prerinsed 
with 1 L of de‐ionized water per filter, using a vacuum pump. Filtered 
leachates were collected in 200 ml glass flasks prerinsed with 50 ml 
of the filtered leachate. If sufficient substrate was available, two 
subsamples were leached to cover possible heterogeneity of sub‐
strate composition, but combined later in one glass flask to have 
one representative composite sample for further analysis. Leachates 
were then transferred into HCl prewashed 25 ml plastic bottles prior 
to further chemical analyses (see details in Supporting Information).

2.3 | Physical and chemical characterization of 
substrates and leachates

Organic carbon (C) and total nitrogen (N) content of substrates (%C 
and %N, respectively) were determined using elemental analyzers 

(for details see Supporting Information). Sediment texture descrip‐
tors (fractions [%] of sand, silt, clay, and their mean and median par‐
ticle size) were determined with a laser‐light diffraction instrument 
(see Supporting Information).

Using standard analytical methods (for details see Supporting 
Information) we analyzed the following substances in leachates: 
DOC, soluble reactive phosphorus (SRP), ammonium (N‐NH4

+), ni‐
trate (N‐NO3

−), and phenolics.
The concentration of nutrients and OM in leachates was used to 

calculate leached amounts per gram of dry substrate (total leached 
amounts) and per gram of the respective element, C or N, in the sub‐
strate (relative leached amounts). Areal fluxes upon rewetting were 
calculated from total leached amounts and mass of substrate accu‐
mulated in the field.

2.4 | Characterization of DOM quality

To determine concentrations of dissolved organic nitrogen (DON) 
and the composition of DOM based on size categories, we used size‐
exclusion chromatography with organic carbon and organic nitrogen 
detection (LC‐OCD‐OND analyzer, DOC‐Labor Huber, Karlsruhe, 
Germany) (details are provided in Supporting Information). A sub‐
set of leaves, biofilms, and sediments sampled from 77 rivers was 
selected randomly to cover all climate zones. We selected limited 
samples due to the time‐consuming nature of this analysis (2.5 hr per 
sample). Leachates produced from these substrates (as described 
previously) were selected for further analysis, in cases where con‐
centrations of DOC in leachates did not exceed the measuring limits 
of the chromatograph (the final set included leachates from 52 leaf, 
11 biofilm, and 77 sediment samples). We classified DOM into three 
major sub‐categories: (a) biopolymers (BP), (b) humic or humic‐like 
substances (HS) including building blocks (HS‐like material of lower 
molecular weight), and (c) low molecular‐weight substances (LMWS). 
The concentration of each category was normalized to the total DOC 
concentration, and is thus given as the fraction (%) of the total DOC.

To obtain indices of DOM quality (for details see Fellman, Hood, 
& Spencer, 2010; Hansen et al., 2016), we simultaneously determined 
absorbance spectra of DOM and fluorescence excitation‐emission 
matrices (EEM) using a spectrofluorometer (Horiba Jobin Yvon 
Aqualog; Horiba Scientific Ltd, Kyoto, Japan). Specific UV absor‐
bance values were calculated at a wavelength of 254 nm (SUVA254), 
which are correlated with aromatic carbon content (Weishaar et al., 
2003), by dividing decadal absorbance by DOC concentration (mg 
C/L) and cuvette length (m). The fluorescence index (FI), humifi‐
cation index (HIX), and freshness index (β:α) were calculated from 
fluorescence EEM for all DOM samples (for details see Supporting 
Information). The FI indicates whether DOM is derived from terres‐
trial sources (e.g. plant or soil, FI value ~1.4) or microbial sources (e.g. 
extracellular release, leachates from bacterial and algal cells lysis, 
FI value ~1.9) (McKnight et al., 2001). The HIX indicates the extent 
of DOM humification (degradation) (Ohno, 2002; Zsolnay, Baigar, 
Jimenez, Steinweg, & Saccomandi, 1999), with HIX <0.9 indicating 
DOM derived from relatively recent (plant and algae) inputs (Hansen 
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et al., 2016). The freshness index, that is, the ratio of autochtho‐
nous (β) vs. allochthonous (α) DOM, indicates dominance by recently 
produced or decomposed DOM (values ~0.6–0.7 indicate more de‐
composed allochtonous DOM; Parlanti, Worz, Geoffroy, & Lamotte, 
2000; Wilson & Xenopoulos, 2008). EEM were corrected for Raman 
scatter, Rayleigh, and inner filter effects before calculation of the 
fluorescence indices (Mcknight et al., 2001; Parlanti et al., 2000).

2.5 | Calculation of the total areal flux of 
nutrients and OM

Total areal flux of nutrients and OM per square meter of the riverbed 
was calculated based on information about the mass of leaves and 
biofilm accumulated on the dry riverbeds (Datry et al., 2018), as well 
as on average mass of sediment per square meter of surface area. For 
the latter, we assumed an average density of sediments of 1.6 g/cm3 
(Hillel, 1980) and the depth of the sediments potentially affected by 
a rewetting event to be 10 cm (see Merbt et al., 2016), which also 
corresponds to the depth of the sampled sediment layer according to 
the sampling protocol. We acknowledge that this assumption should 
be considered with caution as high variability in sediment densities 
can be found in nature (e.g. Boix‐Fayos et al., 2015) and contribution 
of sediment layers within 10 cm depth to leaching also may differ 
(e.g. Merbt et al., 2016).

Overall, the total areal flux is the sum of nutrients and OM 
leached from all substrates found within the dry riverbed. To ex‐
ecute a global comparison of total areal fluxes, samples from 157 
reaches were selected for which a complete set of nutrients and OM 
concentrations (except DON) were available. Reaches for which one 
or more chemical measurements were identified as technical outliers 
after exploration with boxplots and Cleveland dotplots (Zuur, Ieno, & 
Elphick, 2010) were excluded. We assume these calculations reflect 
spatial differences in surface fluxes of nutrients and OM across a 
range of sampled IRES.

2.6 | Statistical analyses

Differences in the total and relative leached amounts of nutrients 
and DOM from different substrates (Hypothesis 1), as well as be‐
tween substrates collected in different climate zones and estimated 
fluxes from different climate zones (Hypothesis 2), were assessed 
using Kruskal–Wallis nonparametric tests followed by Dunn's tests 
with Bonferroni correction for post‐hoc comparisons. The level of 
significance was set to 0.0167 to account for multiple comparisons 
among the three substrates and to 0.0083 to account for com‐
parisons among the four main climate zones (calculated as 0.05/
[k(k−1)/2], where k is the number of groups) (Dunn, 1964). The polar 
climate zone was excluded from the comparison as there was only 
one sampling location in this category. Biofilm leachates were ex‐
cluded from the cross‐climate comparison as the majority of samples 
were taken in the temperate zone (35 out of 41 samples). Variability 
in leached amounts (Hypothesis 1) was assessed based on interquar‐
tile difference (quartile three of data distribution minus quartile one) TA
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expressed in percentages. This measure of variability accounts for 
differences in data distributions of nutrients and DOM amounts 
leached from different substrates and facilitates comparison.

In order to identify the environmental variables and substrate 
characteristics driving the quantitative (amounts of nutrients and 
OM) and qualitative (DOM quality) characteristics of the leachates 
partial least squares (PLS) regression models were applied (Wold, 
Sjöstrom, & Eriksson, 2001). This approach allows exploration of the 
relationship between collinear data in matrices X (independent vari‐
able) and Y (dependent variable). An overview of the components 
to be included in the models is given in Table 1. Performance of the 
model is expressed by R2Y (explained variance). The influence of 
every X variable on the Y variable across the extracted PLS com‐
ponents (latent vectors that explain as much as possible of the co‐
variance between X and Y) is summarized by the variable influence 
on projection (VIP) score (Table 3). The VIP scores of every model 
term (X‐variables) are cumulative across components and weighted 
according to the amount of Y‐variance explained in each component 
(Eriksson, Johansson, Kettaneh‐Wold, & Wold, 2006). X‐variables 
with VIP > 1 are most influential on the Y‐variable, while variables 
with 1 > VIP > 0.8 are moderately influential. Values negatively  
correlated with the Y‐variable were multiplied by a coefficient of 
negative one to facilitate interpretation. Data were transformed 
prior to analyses to meet the assumptions of normal distribution and 
homoscedasticity (Table 1).

In order to partition the variance in quantitative and qualitative 
characteristics of nutrients and DOM explained by different groups 
of variables (environmental variables, substrate characteristics, and 
the effect of environmental variables through their effect on mea‐
sured substrate characteristics), we used the approach suggested 
in Borcard, Legendre, and Drapeau (1992) (Figure 2). The follow‐
ing PLS‐regression models were run to distinguish fractions of ex‐
plained variance in the quantitative/qualitative characteristics of the 
leachates:

‐ Fraction [a + b] – explained by substrate characteristics;
‐ Fraction [b + c] – explained by environmental variables;
‐ Fraction [a + b + c] – explained by environmental variables and  
measured substrate characteristics.

From each PLS‐regression model, the explained variance R2Y was 
calculated and used to calculate the fraction of variance explained 
by each set of predictors separately (Borcard et al., 1992). For the 
PLS regression analysis, we selected the complete set of variables 
for which the required data (all predictors and response variables, 
Table 1) were available. We ran partitioning of variance for the set 
of samples on the global scale and individually for each climate zone. 
For biofilms, the analysis was done for samples of the temperate 
zone only because of the limited number of samples from other cli‐
mate zones.

All statistical analyses were performed in r 3.2.2 (R Core Team, 
2017), except for the PLS analysis which was conducted using xLStAt 
software (XLSTAT, 2017, Addinsoft, Germany).Pr

ed
ic

to
rs

Se
di

m
en

ts
Le

av
es

Bi
of

ilm
s

G
lo

ba
l (

17
0)

A
rid

 (2
0)

Co
nt

.(1
0)

Te
m

p.
 (1

25
)

Tr
op

. (
15

)
G

lo
ba

l (
18

3)
A

rid
 (2

1)
Co

nt
. (

13
)

Te
m

p.
 (1

31
)

Tr
op

. (
18

)
Te

m
p.

 (2
3)

%
 N

0.
68

8
1.

05
9

0.
57

5
0.

72
9

0.
87

8
0.

82
2

0.
84
6

1.
31
1

1.
03
6

1.
13
0

1.
16

5

C
:N

0.
79

2
0.

81
2

1.
10

8
0.
93
9

1.
38
1

0.
60

0
0.

92
1

1.
58

7
0.

82
0

0.
90

5
0.
93
7

%
 s
an
d

1.
37
9

1.
60

9
1.

08
0

1.
30
9

0.
93
5

%
 s
ilt

1.
44
3

1.
20

1
1.

22
2

1.
56
4

1.
11

9

%
 c
la
y

1.
40
3

0.
96

7
1.
16
4

1.
49
2

1.
16

1

M
ea
n  
si
ze

1.
38
9

1.
24
7

0.
97

9
1.
45
5

0.
95

2

Va
r e

xp
la

in
ed

 %
6.

4
28

.2
52

.9
6.

2
58

.9
7.

5
41

.1
38

.7
11

.9
42

.2
26

.9

TA
B

LE
 3
 
(C
on
tin
ue
d)



     |  1601SHUMILOVA et al.

3  | RESULTS

3.1 | Leached amounts of nutrients and DOM 
species

3.1.1 | Total and relative leaching rates

The total leached amounts (mg/g dry mass) of nutrients (except N‐
NO3

−) and DOM were highest for leaves, followed by biofilms, and 
sediments (Figure 3; Table S2). The leached amounts of N‐NO3

− 
were highest for biofilms (Kruskal–Wallis test, χ2 = 15.8, df = 2, 
p < 0.0001; Dunn's test for multiple comparison, p < 0.0001), and 
no significant difference was found between leaves and sediments 
(Dunn's test, p = 0.3). Leached amounts of DON from leaves and bio‐
films were not significantly different (Kruskal–Wallis test, χ2 = 105.7, 
df = 2, p < 0.0001; Dunn's test, p = 0.2).

The total leached amounts of nutrients and DOM from leaves 
and biofilms decreased in a similar sequence: DOC > phenolics > 
DON > SRP > N‐NH4

+ > N‐NO3
− (based on median values). The total 

leached amounts from sediments decreased in the following order: 
DOC > phenolics > N‐NO3

− > N‐NH4
+ ≈ DON > SRP (Table S2).

The relative leached amounts of DOC and phenolics (mg/g C) 
and DON (mg/g N) were highest for leaves, followed by biofilms and 
sediments (Figure 3; Table S2). However, there were no significant 
differences for the amounts of DON between leaves and biofilm 
leachates (Kruskal–Wallis test, χ2 = 51.6, df = 2, p < 0.0001; Dunn's 

test, p = 0.8), nor for phenolics between biofilms and sediments 
(Kruskal–Wallis test, χ2 = 265.4, df = 2, p < 0.0001; Dunn's test, 
p = 0.2). Relative leached amounts of N‐NH4

+ were highest for bio‐
films, followed by leaves and bed sediments, with a significant differ‐
ence between leaves and sediments (Kruskal–Wallis test, χ2 = 265.4, 
df = 2, p < 0.0001; Dunn's test, p < 0.001). For N‐NO3

−, relative 
leached amounts decreased significantly from sediments to bio‐
films and leaves (Kruskal–Wallis test, χ2 = 204.4, df = 2, p < 0.0001; 
Dunn's test, p < 0.001; Figure 3; Table S2).

For all substrates, we observed large variations in the total and 
relative leached amounts of nutrients and DOM (Figure 3, Table 
S2). The highest variability in total and relative leached amounts 
of DOC, N‐NO3

−, and SRP was observed for biofilms, which was 
up to 10 times higher than for sediments and leaves. Sediments 
had the highest variability in the total leached amounts of DON 
and relative leached amounts of N‐NH4

+ and phenolics. For leaves, 
the highest variability was found in the relative leached amounts 
of DON.

3.2 | Qualitative DOM characterization

Values of SUVA254, a proxy for aromatic carbon content, decreased 
from sediments and leaves to biofilms, with no significant differ‐
ence between sediments and leaves (Kruskal–Wallis test, χ2 = 55.8, 
df = 2, p < 0.0001; Dunn's test, p = 0.4) (Figure 4; Table S3).

F I G U R E  2  Variance partitioning 
among variables that influence leaching 
of nutrients and organic matter from 
substrates accumulated in intermittent 
rivers and ephemeral streams.
* Fraction a – variance explained by the sub‐
strate characteristics; fraction b – variance 
explained by the effect of environmen‐
tal variables on substrate characteristics 
measured in the study; fraction c – variance 
explained by the environmental variables; 
[d] – unexplained variance.
** [a + b] – effect of the substrate character‐
istics on leachate characteristics; [b + c] –  
effect of the environmental variables on 
leachate characteristics; [a + b + c] – effect 
of the environmental variables on leachate 
characteristics through their impact on 
substrate characteristics. [Colour figure 
can be viewed at wileyonlinelibrary.com]
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Ratios of DOC:DON and phenolics:DOC were highest in leach‐
ates from leaves, while differences between sediments and biofilms 
were not statistically significant (Dunn's test following a Kruskal–
Wallis test, p = 0.8 and p = 0.06 respectively; Table S3).

The β:α ratio indicated a prevalence of allochthonous DOM in 
leachates from all substrates. The proportion of allochthonous DOM 
was highest in leachates from biofilms, followed by sediments, then 

leaves, but there was no significant difference between biofilms and 
sediments (Kruskal–Wallis test, χ2 = 197.4, df = 2, p < 0.0001; Dunn's 
test, p = 0.4). The degree of DOM humification based on HIX values 
was highest for sediments followed by biofilms and leaves, with sta‐
tistically significant differences among all substrates (Kruskal–Wallis 
test, χ2 = 96.94, df = 2, p < 0.0001; Dunn's tests <0.0001). Values 
of FI indicated the presence of OM derived from terrestrial sources 
in all leachates, with no significant differences among substrates 
(Kruskal–Wallis test, χ2 = 6.3, df = 2, p = 0.043).

In all leachates, HS was the dominant fraction of DOM followed 
by BP and LMWS (Figure 5; Table S3). The highest proportion of 
HS in DOM was in sediment leachates, while between leachates 
of leaves and biofilms the percentage of HS did not significantly 
differ (Kruskal–Wallis test, χ2 = 29.9, df = 2, p < 0.0001; Dunn's 
test, p = 0.9). The highest percentage of LMWS was present in leaf 
leachates with the median twice as high as in sediments and bio‐
films. The highest percentage of BP was found in leachates from 
biofilms with the median values two and six times higher than in 
sediments and leaves, respectively. For LMWS and BP, the dif‐
ference between biofilms and sediments was not statistically sig‐
nificant (Dunn's test following a Kruskal–Wallis test, p = 0.7 and 
p = 0.06 respectively).

3.3 | Differences in amounts of leached 
substances and DOM quality across climate zones

Cross‐climate differences in amounts of leached substances and 
qualitative characteristics of DOM depended on the type of sub‐
strate (Table 2; Table S4). For leaves, a significant difference in the 
total leached amounts was observed only for N‐NH4

+ between 
continental and arid zones, as well as between continental and 
temperate zones (Dunn post‐hoc tests following a Kruskal–Wallis 
test, p < 0.0001, Table S4). All variables measured in leaves showed 
highest concentration in the continental zone, except for N‐NO3

− 
(highest in the tropical zone) and DON (highest in the arid zone). For 
sediments, significant differences in leached amounts were found 
for all variables except phenolics (Kruskal–Wallis test, χ2 = 5.43, 
df = 3, p = 0.143). In all cases, the highest total leached amounts 
were found in samples from the continental zone and the lowest in 
leachates from the arid zone (Table 2; Table S4). Leached amounts 
of nutrients and DOM from leaves and sediments from the temper‐
ate zone, the most commonly sampled zone in the study, followed 
leached amounts found in the tropical zone, however, with no sig‐
nificant difference (Table 2; Table S4). The relative leached amounts 
did not differ significantly among climate zones for leaves or sedi‐
ments (Table S4).

Aromatic carbon content (a proxy used to access cross‐climate 
differences in bioavailability) leached from leaves was not signifi‐
cantly different among climate zones (Kruskal–Wallis test, χ2 = 3.82, 
df = 3, p = 0.28). For sediments, a statistically significant difference 
was found between samples from the arid and the continental zone 
(Dunn's test, p = 0.003; Table S4), with leachates from the arid zone 
having lower aromaticity.

F I G U R E  3  Total (left) and relative (right) leached amounts of 
nutrients and dissolved organic matter from leaves (L), biofilms (B), and 
sediments (S) of IRES globally. Box: median, interquartile range (25%–
75%), and outliers (i.e. values that exceed 1.5 interquartile range). 
DM – dry mass; GAE – gallic acid equivalent. Note: Relative leached 
amounts of SRP were not estimated. For parameter acronyms see 
Table 1. Letters in parentheses on the x‐axis indicate nonsignificant 
difference between leachates from specified substrates (p > 0.0167, 
Dunn test for post‐hoc comparison; see Section 2)
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3.4 | Effects of environmental variables and 
substrate characteristics

3.4.1 | Effects on the amounts of leached 
nutrients and DOM

On a global scale, 25% of the variance in the amounts of nutrients 
and DOM leached from sediments could be explained by selected 
variables (fraction [a + b + c]), which was more than twice that for 
leaves (11%) (Figure 6a,b). For sediments, around 23% of the variance 
could be explained by the effect of substrate characteristics (frac‐
tion [a + b]), around 15% by the effect of environmental variables 
(fraction [b + c]), and 13% by the effect of environmental variables 
on substrate characteristics (fraction [b]) (Figure 6a). For leaves, the 
substrate characteristics and the environmental variables explained 
approximately an equal percentage of variance, 8% and 6% respec‐
tively, which was much lower than that explained for sediments. 
Environmental variables and substrate characteristics accounted for 
3% of variance in the quantitative composition of leaf leachates. For 
both substrates, the most influential variables (VIP >1) were C frac‐
tion, N fraction, PET, and in the case of leaves, C:N and pasture cover 
within the river catchment (Table 3).

For both sediments and leaves, the highest percentage of vari‐
ance in amounts of leached nutrients and DOM was explained for 
the continental and tropical zones (59% and 46% for sediments, 39% 
and 40% for leaves respectively, Figure 6a). Substances leached from 
sediments from these regions were explained mostly by the environ‐
mental variables and their effect on substrate characteristics. High 
VIP was found for the dry period duration, N fraction and textural 
classes (both zones), river width and forest cover (continental), PET, 
urban cover, and fraction of C (tropical). In contrast, for leaves in these 
zones, most of the variance was explained by environmental vari‐
ables alone and not by their effect on the substrates. Environmental 
variables with high VIP in these zones were PET and aridity (in both), 
river width and altitude (in the continental zone), as well as pasture 
cover and dry period duration (in the tropical zone) (Table 3).

For the temperate zone, the results of variance partitioning 
were available for all analyzed substrates. Here, the total variance 
in leachates was best explained for biofilms (48%) followed by sed‐
iments (30%) and leaves (15%). In contrast to sediments and leaves, 
the variance in biofilm leachates was better explained by environ‐
mental variables (VIP >1 for aridity and altitude) than by substrate 
characteristics.

3.5 | Effects on qualitative characteristics of DOM

For sediments and leaves, the percentage of variance that was ex‐
plained for qualitative characteristics of DOM on the global‐scale 
was much lower (around 7% for each of the substrates) than that 
for the amounts of leached substances (Figure 6b). The contribu‐
tion of environmental variables, substrate characteristics, and ef‐
fect of environmental variables on substrate characteristics to the 
total variance was approximately equal (Figure 6). Influential vari‐
ables with VIP >1 were altitude and C fraction (for both substrates), 
PET and texture (for sediments), and river width and urban cover 
(for leaves).

F I G U R E  4  Qualitative characteristics of dissolved organic 
matter leached from leaves (L), biofilms (B), and sediments (S) 
of IRES globally. Box: median, interquartile range (25%–75%), 
and outliers (i.e. values that exceed 1.5 interquartile range). For 
parameter acronyms see Table 1. Letters in parentheses on the x‐
axis indicate that the difference between leachates from specified 
substrates was nonsignificant (p > 0.0167, Dunn test for post‐hoc 
comparison; see Section 2)

F I G U R E  5  Size fractions of dissolved organic matter (DOM) 
leached from leaves (L), biofilms (B), and sediments (S) of IRES 
globally. BP, biopolymers; HS, humic substances; LMWS, low 
molecular weight substances. Box: median, interquartile range 
(25%–75%), and outliers (i.e. values that exceed 1.5 interquartile 
range). Letters in parentheses on the x‐axis indicate that the 
difference between leachates from specified substrates was 
nonsignificant (p > 0.0167, Dunn test for post‐hoc comparison; see 
Section 2)
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For sediments, as in the case of amounts of leached substances, 
the variance across sampling sites was explained best in the tropical 
(58%) and continental (53%) zones, and was driven mainly by the en‐
vironmental variables and their effect on substrate characteristics. 
Variables with VIP >1 in both zones were sediment texture (fraction 
of silt and clay) and, additionally PET, aridity, and urban cover in sam‐
ples from the tropical zone, and pasture and forest cover, riparian 
cover, aridity, and dry period duration in samples from the conti‐
nental zone (Table 3). For sediments in the arid zone, the explained 
variance was around 28% and the share of groups of variables that 
explained the observed variance was different. In particular, almost 
all variance explained by environmental variables was due to the ef‐
fect of environmental variables on substrates (VIP >1 for texture, 
%C, %N, and forest cover). This was the opposite for leaf leachates, 
where the variance was explained mainly by the effect of environ‐
mental variables alone (PET, aridity, and dry period duration).

In samples from the temperate zone, variance of leachate quality 
was best explained for biofilms (27%) followed by leaves (13%) and 
sediments (6%) (Table 3). The same was found for the amounts of 
leached substances, where the explained variance for biofilms was 
due to the effect of environmental variables (PET and fraction of 
different land use types), and for leaves due to the effect of sub‐
strate characteristics (%C, %N). For sediments, the share of variance 
explained by the effect of substrate characteristics and the effect of 
environmental variables was approximately equal (VIP >1 for sedi‐
ment texture classes, river width, altitude).

3.6 | Estimated areal fluxes of nutrients and OM 
across IRES riverbeds

Area‐specific fluxes differed by two to four orders‐of‐magnitude 
among the sampled riverbeds, depending on the nutrient and OM 
species (Figure S1, Table 4). Fluxes of DOC and SRP differed by 
two orders‐of‐magnitude and ranged for DOC from 3 to 163 g/m2 
riverbed surface (median: 15.2) and for SRP from 0.015 to 2.63 g/
m2 (median: 0.12). Fluxes of N‐NH4

+ and phenolics spanned three 
orders‐of‐magnitude (N‐NH4

+: 0.009–6.67 g/m2, median: 0.27; phe‐
nolics: 0.012–35 g/m2, median: 1.39). N‐NO3

− fluxes spanned the 
largest range, from 0.008 to 18.88 g/m2 (median: 0.59 g/m2). Overall, 
the released fluxes decreased in the following order: DOC > pheno‐
lics > N‐NO3

− > N‐NH4
+ > SRP.

Major contributions to the areal fluxes from riverbeds were made 
by sediments: 98 ± 7% (mean ± SD) for N‐NO3

−, 97 ± 6% for N‐NH4
+, 

86 ± 19% for SRP, 85 ± 20% for DOC, and 56 ± 33% for phenolics. 
Leaves provided the second highest contribution to the total areal 
flux. In contrast to sediments and leaves, the relative contribution 
of biofilms to area‐specific flux rates was very low for all substances 
(in average: <0.1%), but slightly higher for N‐NO3

− (1.5 ± 7%) (val‐
ues above 100% or lower than 0% reflect deviation and not the real 
data).

The highest fluxes were estimated from riverbeds in the conti‐
nental zone (Table 4), whose areal flux of N‐NH4

+ and phenolics was 
three times higher than that of the arid zone, four times higher for 

N‐NO3
−, and five times higher for SRP and DOC. For all nutrients 

and OM species, except phenolics (Kruskal–Wallis test, χ2 = 4.68, 
df = 3, p = 0.2), the differences between continental and arid zones 
were statistically significant (Dunn's test, p < 0.001 for all pairwise 
comparisons). Compared to the continental zone, a lower flux was 
found for DOC in temperate and tropical zones (Kruskal–Wallis test, 
χ2 =  24.8, df = 3, p = 0.003; Dunn's tests p = 0.001 and p = 0.005 
respectively) and SRP (Kruskal–Wallis test, χ2 = 20.02, df = 3, 
p < 0.001; Dunn's tests p = 0.001 and p = 0.004 respectively). The 
flux of N‐NH4

+ was lower in the temperate zone than in the conti‐
nental zone (Kruskal–Wallis test, χ2 = 16.5, df = 3, p < 0.001; Dunn's 
test p = 0.006).

4  | DISCUSSION

4.1 | Rewetting events in IRES in the context of 
global biogeochemical cycles

Our globally comparable assessment of nutrient and DOM leach‐
ing in rewetted IRES shows that the quantity and quality of leached 
nutrients and DOM are substrate‐ and climate‐specific, with the 
highest amounts leached in continental climate and with sediments 
contributing most to the total areal flux from dry river beds. These 
data provide a basis on which to develop models of biogeochemical 
cycling in river networks including IRES.

According to our first hypothesis, we found a high variability in 
the amount of leached substances and the quality of leachates from 
organic, but also from inorganic substrates, mainly as a consequence 
of inherent substrate properties and their modification during the 
drying period. Leaching from organic materials (leaves and biofilms) 
was relatively enriched in P vs N in contrast to sediments. Due to 
their higher mass within the riverbeds, sediments were the main 
contributors to the areal fluxes. Sediments leached high amounts of 
N‐NO3

‐, the accumulation of which in dry riverbeds is promoted by 
aerobic conditions (Amalfitano et al., 2008; Arce et al., 2014; Borken 
& Matzner, 2009; Merbt et al., 2016). Considering quality of leached 
DOM, we found that depending on the proportion of each substrate 
within the riverbed, different ecosystem processes can be affected. 
For example, leachates from biofilms with a high proportion of bio‐
polymers may play a key role as sources of bioavailable DOM in IRES 
and are more likely to be retained within the riverbed upon rewet‐
ting (Romani, Vazquez, & Butturini, 2006; von Schiller et al., 2015). 
A high proportion of LMWS leached from leaves suggests that such 
leachates can trigger ecosystem processes in downstream surface 
waters and groundwaters, as molecules of this size fraction can eas‐
ily be transported through the hyporheic zone with limited immo‐
bilization (Romani et al., 2006). DOM leached from sediments was 
mainly of microbial origin, suggesting its high potential bioavailability 
(Marxsen, Zoppini, & Wilczek, 2010; Schimel et al., 2007). Overall, 
we suggest that rewetting of sediments is key for understanding 
biogeochemical cycles in fluvial networks with IRES, and that leaves 
and biofilms can introduce regional variabilities in the global scale 
patterns depending on the accumulated amount of these substrates 
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in the channel during the dry phase. Indeed, accumulation of plant 
litter on the dry riverbed ranges from 0 to 963 g/m2 depending on 
aridity, river width, catchment area, riparian cover, and drying dura‐
tion (Datry et al., 2018 and Table S1). In our study, accumulations of 
biofilms were very common in the temperate zone and ranged from 
0.3 to 327 g/m2 (Table S1).

We also found differences in the amounts of leached substances 
among climate zones, in accordance with our second hypothesis, but 
only for sediments. Initially, we expected cross‐climate differences 
to be more pronounced for leaves due to climatic effects on vegeta‐
tion composition and leaf litter quality (e.g. Aerts, 1997; Boyero et 
al., 2017), rather than for sediments whose composition is controlled 
mainly by geology and geomorphology. The absence of significant 
differences among climate zones for leaves could be explained by 
the considerable variability we observed among leaf material col‐
lected within climate zones, both in terms of species composition 
and drying history. Although we did not assess the site‐specific 
composition of riparian vegetation, previous studies indicated that 
up to 40% of variation in leaf traits at a given site can be explained 
by small‐scale spatial and temporal environmental heterogenity in 
environmental factors such as hydrology and disturbance regime 
(Cornwell et al., 2008).

High concentrations leached in the continental climate zone 
suggest that nutrient loads to freshwaters will increase with the 
projected increase in the extent of IRES in such regions. In the arid 

zone where terrestrial primary production is severely constrained by 
water availability (Austin et al., 2004), rewetting events are expected 
to stimulate stream ecosystem productivity not only due to water 
availability, but also because the potential bioavailability of leach‐
ates is particularly high in this climate zone. However, despite a high 
potential bioavailability of DOM, leachates from the arid zone were 
characterized by low amounts of nutrients, probably resulting from 
leaf traits that reflect adaptation to dry conditions (Cornwell et al., 
2008).

Comparison of fluxes from 1 m2 of IRES within the 4 hr dura‐
tion of the experiment with the annual flux from 1 m2 of watersheds 
(Table S5) showed that rewetting events in IRES represent a signif‐
icant pulse of dissolved substances in ecosystems, including some 
estimates exceeding known annual fluxes from watersheds with 
perennial rivers (although differences in the size of watersheds and 
stream area of IRES should be accounted). While there can be some 
confounding factors between laboratory conditions and those that 
occur in a natural setting (i.e. intensity and duration of rewetting 
events, ambient temperature, increased leaching caused by oven‐
drying (Gessner & Schwoerbel, 1989), presence of terrestrial plants 
in dry riverbeds (Gómez, Arce, Sánchez, & del Mar Sánchez‐Montoya, 
2012)), the results of our experiment across various climate regions 
indicate that rewetting of IRES produces a pulsed release of dis‐
solved substances. Decomposition of substrates accumulated in 
IRES, and thus carbon turnover, are affected by drying‐rewetting 

F I G U R E  6  Partitioning of variance in quantitative composition (a) and qualitative characteristics (b) of leachates on global and regional 
scales (values indicate percentage of variance (R2Y) explained). Note: For biofilms, the analysis was done on data from the temperate zone 
only because of the limited amount of samples from other climate zones
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cycles (Fierer & Schimel, 2002). Given the predicted increase in the 
duration of droughts, the exacerbation of extreme low‐flow con‐
ditions, and the intensity of storm events (De Girolamo, Bouraoui, 
Buffagni, Pappagallo, & Lo Porto, 2017; Huntington, 2006; IPCC, 
2014), the results of this study emphasize the need to integrate IRES 
in global carbon cycles and budgets, from which they are currently 
excluded (Raymond et al., 2013; although see Datry et al., 2018).

4.2 | Environmental variables correlated with 
release of nutrients and OM

Environmental variables that are prone to be affected by climate 
change (namely PET, aridity, dry period duration, land‐use) correlated 
with amounts and quality of leachates, particularly for sediments. 
For leaves, these correlations were less pronounced, suggesting that 
leaching may be affected by substrate characteristics other than 
those examined here. Characteristics such as toughness and content 
of secondary metabolites in substrates could have affected leaching 
through the effect on their mass loss during the dry phase and simu‐
lated rewetting, and on activity of microbial community in leachates 
(e.g. Pérez‐Harguindeguy et al., 2000; Ristock et al., 2017). Latitude, 
although not considered in the study, may also be responsible for 
the unexplained variance given that litter quality generally increases 
with latitude (Boyero et al., 2017).

The amounts of leached substances from both leaves and sedi‐
ments were correlated with PET. This variable is expected to be in‐
tensified in the future (Milly & Dunne, 2016) and will most likely lead 
to fluctuations in moisture conditions in dry riverbeds. Low moisture 
level reduces litter decomposition and C consumption, thereby pro‐
moting the release of DOM upon rewetting (Abril et al., 2016; Aerts, 
1997; Bruder et al., 2011; Gessner, 1991) and hence increasing the 
probability of negative consequences for stream ecosystems such as 
blackwater events leading to hypoxia (Hladyz et al., 2011).

Differences among climate zones in terms of correlations of en‐
vironmental variables with amounts of leached substances indicate 
that climate change can have different effects on IRES in different 
geographical regions. For example, in the arid zone, where IRES are 
usually characterized by open canopy (Steward, Schiller, Tockner, 
Marshall, & Bunn, 2012), aridity and percentage of riparian vegetation 
best explained the variance in sediment leachates. Inputs of riparian 
vegetation litter onto the dry riverbeds and its subsequent decompo‐
sition, can represent an additional input of nutrients to sediments in 
the arid zone areas (Abril et al., 2016), where soils generally contain 
less carbon and nitrogen compared to the continental zone (Table S1 
and Delgado‐Baquerizo et al., 2013). Changes in land‐use (particularly, 
in the percentage of pasture cover at the global scale as well as within 
individual climate zones except continental) were correlated with the 
amount of leached substances from leaves, potentially through mod‐
ifying the composition of plant material accumulated in beds of IRES. 
This suggests that modification of land use in the catchments with 
IRES can also affect their contribution to nutrient load due to changes 
in the composition of CPOM accumulating in dry riverbeds.
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Although dry period duration is an important factor affecting the 
amounts and quality of litter accumulations in IRES (del Campo & 
Gómez, 2016; von Schiller et al.,2017), we found its influence on the 
variance in leachates only in continental and tropical zones. This indi‐
cates that during the dry phase materials with different drying history 
(as affected by different climates) and potential to leach nutrients and 
OM can accumulate in IRES. This also suggests that dry period dura‐
tion cannot invariably be used as a master proxy to assess potential 
impacts of nutrient loading from IRES upon rewetting. Under field con‐
ditions, other factors such as severity and timing of a rewetting event 
as well as presence/absence of plant material growing in dry channels 
can affect nutrient fluxes from riverbeds, and the fate of nutrients in 
ecosystems, as well as potential ecosystem impacts (e.g. eutrophica‐
tion, mass mortality of aquatic organisms) in downstrean receiving wa‐
ters and groundwater (Baldwin & Mitchell, 2000; Bernal et al., 2013; 
Cavanaugh, Richardson, Strauss, & Bartsch, 2006; Hladyz et al., 2011; 
Ocampo, Oldham, Sivapalan, & Turner, 2006). Substrate moisture con‐
tent and variability in associated microbial communities can potentially 
be responsible for the unexplained part of the variance in the leachates, 
due to their effect on decomposition rates of accumulated CPOM, nu‐
trient processing in sediments, release of DOM upon rewetting, and its 
modification by microbial communities (Abril et al., 2016; Arce et al., 
2015; Dieter, Frindte, Krüger, & Wurzbacher, 2013; McIntyre, Adams, 
Ford, & Grierson, 2009; Meisner, Leizeaga, Rousk, & Bååth, 2017).

4.3 | Implications for freshwater ecosystems and 
future research

We identified IRES to function as pulsed biogeochemical reactors 
(sensu Larned et al., 2010) at a global scale even though the experi‐
ments were conducted under laboratory conditions and magnitudes 
of leached substances may differ in the natural environment. Our 
data serve also as a basis for further upscaling and modeling of the 
processes observed in the laboratory to address ecological implica‐
tions of rewetting events at catchment scales. Potential implications 
for the functioning of rivers could be determined by the effect of 
leached substances on the degree of nutrient limitation of micro‐
organisms downstream, and therefore community composition 
(Demi, Benstead, Rosemond, & Maerz, 2018) as well as on the fate 
of refractory substances and intensification of their decomposition 
through the so‐called “priming effect” (Guenet, Danger, Abbadie, & 
Lacroix, 2010). The results of our study support the recent call for 
developing effective strategies for the management of IRES to avoid 
negative consequences for downstream ecosystems caused by ex‐
cessive nutrient and OM load.
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