

An eddifying Stommel model: Fast eddy effects in a two-box ocean

William Barham and Ian Grooms

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309

(March 27, 2018)

A system of stochastic differential equations is formulated describing the heat and salt content of a two-box ocean. Variability in the heat and salt content and in the thermohaline circulation between the boxes is driven by fast Gaussian atmospheric forcing and by ocean-intrinsic eddy-driven variability. The eddy forcing of the slow dynamics takes the form of a colored, non-Gaussian noise. The qualitative effects of this non-Gaussianity are investigated by comparing to two approximate models: one that includes only the mean eddy effects (the 'averaged model') and one that includes an additional Gaussian white-noise approximation of the eddy effects (the 'Gaussian model'). Both of these approximate models are derived using the methods of fast averaging and homogenization.

In the parameter regime where the dynamics has a single stable equilibrium the averaged model has too little variability. The Gaussian model has accurate second-order statistics, but incorrect skew and rare-event probabilities. In the parameter regime where the dynamics has two stable equilibria the eddy noise is much smaller than the atmospheric noise. The averaged, Gaussian, and non-Gaussian models all have similar stationary distributions, but the jump rates between equilibria are too small for the averaged and Gaussian models.

Keywords: Slow-fast systems; averaging; homogenization; stochastic differential equations; ocean modeling

1. Introduction

1 H. Stommel (1961) developed a conceptual model of the global ocean thermohaline circulation
2 that consists of a system of ordinary differential equations modeling the heat and salt content
3 of two containers ('boxes'). The box models the equatorial ocean and the other models the
4 extra-tropical ocean. The boxes exchange heat and freshwater with each other and with the
5 atmosphere. The rate of flow between the boxes is proportional to the density difference
6 between the boxes, and a major result of Stommel's investigation was that in some parameter
7 regimes the system exhibits two equilibria: one analogous to the current climate, with dense
8 cold water sinking at high latitudes and one corresponding to a very different regime with
9 dense salty water sinking in the equatorial ocean. In general, the goal of studies using extremely
10 simplified models like Stommel's is to observe and understand qualitative features that might
11 inform and guide subsequent studies using more complete and more complex models.
12 The qualitative predictions of Stommel's model have since been verified using more complete ocean
13 models, e.g. Rahmstorf (1995) and Deshayes *et al.* (2013).

14 The present investigation develops a model closely related to Stommel's where the slow,
15 density-driven exchange of heat and salt between the boxes is augmented by fast, non-Gaussian
16 stochastic processes representing eddy-driven heat and salt transport. Eddies smaller than the
17 grid scale of comprehensive ocean (and atmosphere) models can have significant
18 impacts on the global circulation and modeling the impacts of these unresolved eddies is a
19 topic of continuing research; Berner *et al.* (2017) and Leutbecher *et al.* (2017) contain reviews

21 of stochastic models of eddy effects from an operational modeling perspective.
 22 The second author recently proposed a non-Gaussian model of the heat and salt transport
 23 associated with unresolved ocean eddies (Grooms 2016). In this model, the eddy velocity and
 24 density fields (the latter linearly related to temperature and salinity) are modeled as cen-
 25 tered Gaussian random fields, and the transports are modeled as the product of eddy velocity
 26 and density. The product of centered jointly Gaussian random variables has a distinctive,
 27 non-Gaussian probability density with a logarithmic singularity at the origin and skewed,
 28 algebraically-modulated exponential decay in the tails. This non-Gaussian model is signifi-
 29 cantly different from recent Gaussian stochastic models of transport, e.g. Andrejczuk
 30 *et al.* (2016), Williams *et al.* (2016) and Juricke *et al.* (2017). The present investigation is mo-
 31 tivated by the desire to observe the qualitative effects of the kind of non-Gaussian transport
 32 from Grooms (2016) in an extremely simple model, in particular by comparison to Gaussian
 33 stochastic models, with the expectation of informing future investigations using more complex
 34 models.

35 A very wide range of stochastic parameterizations for ocean models of various resolutions
 36 with various kinds of Gaussian and non-Gaussian noise are currently under development,
 37 e.g. Porta Mana and Zanna (2014), Zanna *et al.* (2017), M'emin (2014), Resseguier *et al.*
 38 (2017), Grooms *et al.* (2015), Holm (2015), Cotter *et al.* (2017), Cooper (2017), and Brankart
 39 *et al.* (2015), in addition to those cited previously and many more too numerous to cite. The
 40 present study is intended to investigate the qualitative differences between a stochastic pa-
 41 rameterization with a specific kind of non-Gaussian noise from Grooms (2016), a deterministic
 42 parameterization, and a Gaussian stochastic parameterization in a highly idealized model. As
 43 noted by Held (2005), the relationship of highly idealized models like the Stommel model to
 44 more complex and comprehensive climate models is analogous to the relationship between the
 45 fruit fly *Drosophila melanogaster* and *Homo sapiens*. A few specific conclusions about the
 46 latter can be drawn from the former, but the study of the former is nevertheless invaluable in
 47 developing a broader understanding of generic features of biology.

48 Several authors have developed stochastic versions of Stommel's model to investigate the
 49 slow response of the ocean thermohaline circulation to fast atmospheric forcing. Gessi
 50 (1994), V'elez-Belchi *et al.* (2001), Monahan (2002), Monahan *et al.* (2002) and Monahan and
 51 Culina (2011). In these stochastic Stommel models the atmospheric heat and freshwater fluxes
 52 in Stommel's model are replaced by Gaussian stochastic noise terms, resulting in a system of
 53 stochastic differential equations (SDEs). The model developed here attempts to understand
 54 a qualitatively different physical process: fast eddy transport. Since the eddies are typically
 55 faster than the global thermohaline circulation, the new model has the form of a slow-fast sys-
 56 tem, where eddy variables evolve on a fast time scale and converge towards a jointly Gaussian
 57 distribution conditioned on the slow variables. The slow variables (the heat and salt difference
 58 between the boxes) are impacted by quadratic products of variables modeling the fast
 59 eddy transport. The formal theory of fast averaging (Papanicolaou and Kohler 1974, Pavliotis
 60 and Stuart 2008, Freidlin and Wentzell 2012), is used to generate approximate slow systems
 61 for comparison: one with a drift correction and one with both drift and diffusion corrections
 62 derived from the eddy dynamics. These approximate systems qualitatively represent more
 63 complete ocean models with respect to deterministic and Gaussian stochastic models of
 64 the eddy transport.

65 A new stochastic Stommel model including fast eddy transport is developed in §2. The two
 66 approximate models of the slow system are derived in §3. The numerical methods and exper-
 67 imental configuration are described in §4 and the results of these simulations are described
 68 in §5. A slightly different model with two stable equilibria is formulated and simulated in §6.
 69 The results and their implications are discussed in §7.

70 2. Formulating a Slow-Fast Two-Box Stochastic Ocean Model

71 This section recalls the derivation of the original Stommel model by considering the conser-
 72 vation of heat and salt in an ocean basin divided into two subdomains that exchange heat
 73 and salt with each other, and are forced by heat and freshwater fluxes from the atmosphere.
 74 The novel component of the derivation is to add stochastic eddy-driven fluxes between
 75 the subdomains. Consistent with the goal of this investigation the eddy-driven exchange is
 76 constructed as the product of centered Gaussian eddy velocity, heat, and salt anomalies; the
 77 flux distribution is thus qualitatively similar to the flux distributions recently observed by
 78 Grooms (2016). Naturally, other eddy flux models are possible; a Gaussian white noise model
 79 is, for example, derived in §3.

80 Consider a domain $[0, \lambda] \times [0, H]$ representing an ocean basin, and let this domain
 81 be partitioned into two subdomains $[0, \lambda] \times [0, H]$ and $[\lambda, \lambda + \lambda] \times [0, H]$ with
 82 volumes $V = L_x H$ and $V = L_x (\lambda - \lambda) H$. The first box (index 1) will represent the equatorial
 83 side of the ocean basin, and the second (index 2) will represent the poleward side. The domain
 84 is filled with a fluid whose density is related to its temperature and salinity via
 85

$$\rho = \rho_0 [1 + \alpha(S - S_0) - \alpha_f(T - T_0)]$$

86 where $\rho = 1029 \text{ kg/m}^3$ is a constant reference density, $T_0 = 5 \text{ C}$ and $S_0 = 35 \text{ psu}$ are a
 87 constant reference temperature and salinity (psu are practical units for the present
 88 purposes it is reasonable to use the simplification $1 \text{ psu} = 1 \text{ g/kg}$, $1.5 \times 10^6 \text{ psu}^{-1}$
 89 and $\alpha_f = 1.7 \times 10^4 \text{ C}^{-1}$ are coefficients of haline and thermal expansion. The conservation
 90 equations for heat are in the form of a system of two differential equations

$$\frac{dT_1}{dt} = -\frac{1}{\tau_T}(T_1 - T_1^*) - \frac{F_T}{\rho_0 c_p V_1}, \quad \frac{dT_2}{dt} = -\frac{1}{\tau_T}(T_2 - T_2^*) + \frac{F_T}{\rho_0 c_p V_2}$$

91 where T_1 and T_2 are the mean temperature in each box, τ_T is the timescale of relaxation
 92 towards an externally-specified atmospheric temperature $T^* = 4000 \text{ J/kg}$ is the heat
 93 capacity of seawater (e.g. $c_p V_1$ is the heat content of the equatorial box), and the
 94 heat flux from the equatorial box to the poleward box. The total heat content $T_1 + T_2$
 95 thus depends only on the external forcing.

96 Similarly, the conservation equations for salt are

$$\frac{dS_1}{dt} = \frac{1}{2}F(t) - \xi, \quad \frac{dS_2}{dt} = -\frac{1}{2}F(t) + \xi$$

97 where $F(t)/2$ is the external freshwater forcing in the equatorial box (e.g. rain, runoff, evap-
 98 oration) and ξ is the salt flux from the equatorial box to the poleward box. The external
 99 freshwater forcing is assumed not to change the net salt content $S_1 + S_2$ remains
 100 constant in time.

101 Following Stommel (1961), the heat and salt fluxes between the boxes are assumed to
 102 depend only on the temperature and salinity differences between the boxes. As a result, the
 103 temperature and salinity differences between the boxes decouple from the net heat and salt
 104 content. Defining $\Delta T = T_1 - T_2$ and $\Delta S = S_1 - S_2$,

$$\frac{d\Delta T}{dt} = -\frac{1}{\tau_T}(\Delta T - \Delta T^*) - \frac{1}{\rho_0 c_p V_1} + \frac{1}{\rho_0 c_p V_2} F_T$$

105

$$\frac{d\Delta S}{dt} = F(t) - 2\xi.$$

106 Similar to Cessi (1994) and Vélez-Belchí *et al.* (2001), the atmospheric temperature difference
 107 ΔT^* and external freshwater forcing $F(t)$ are here modeled as constant mean terms plus

108 Gaussian white noise, leading to

$$d\Delta T = -\frac{1}{\tau_T}(\Delta T - \bar{\Delta T}^*) - \frac{1}{\rho_0 c_p V_1} + \frac{1}{\rho_0 c_p V_2} F_T dt + \sqrt{\frac{\sigma_{\Delta T}}{\tau_T}} dW_{\Delta T}$$

109

$$d\Delta S = \bar{F} - 2F_S dt + \sqrt{\frac{\sigma_{\Delta S}}{\tau_d}} dW_{\Delta S}.$$

110 The amplitude of the atmospheric heat flux noise forcing is here scaled by $\sqrt{\tau_T}$ so that it
 111 generates temperature perturbations of amplitude $\sigma_{\Delta T}$ over a time period of length τ_T ; the
 112 atmospheric freshwater flux noise is similarly scaled to generate perturbations of amplitude
 113 $\sigma_{\Delta S}$ over a diffusive time τ_d defined below.

114 In Stommel's original model the fluxes between the boxes consist of diffusive fluxes pro-
 115 portional to the temperature and salinity differences, advective fluxes associated with
 116 the large-scale ocean circulation whose rate is proportional to the magnitude of the density
 117 difference between the boxes

$$\frac{1}{\rho_0 c_p V_1} + \frac{1}{\rho_0 c_p V_2} F_T = \frac{1}{\tau_d} + \frac{1}{\tau_a \rho_0 \alpha_T \bar{\Delta T}^*} |\Delta \rho| \Delta T$$

118

$$2F_S = \frac{1}{\tau_d} + \frac{1}{\tau_a \rho_0 \alpha_T \bar{\Delta T}^*} |\Delta \rho| \Delta S$$

119 where τ_d is the time scale of diffusive transport, τ_a is the time scale of advective transport,
 120 and

$$\Delta \rho = \rho_0 [\alpha_S \Delta S - \alpha_T \Delta T]$$

121 is the density difference between the boxes. Cessi (1994) used a smoother formulation, which
 122 does not qualitatively change the results

$$\frac{1}{\rho_0 c_p V_1} + \frac{1}{\rho_0 c_p V_2} F_T = \frac{1}{\tau_d} + \frac{1}{\tau_a (\rho_0 \alpha_T \bar{\Delta T}^*)^2} \Delta \rho^2 \Delta T$$

123

$$2F_S = \frac{1}{\tau_d} + \frac{1}{\tau_a (\rho_0 \alpha_T \bar{\Delta T}^*)^2} \Delta \rho^2 \Delta S.$$

124 The novel contribution to the model made here consists of the addition of fast variables
 125 crudely representing eddy velocity v_e , temperature T_e and salinity S_e anomalies at the in-
 126 terface between the boxes. The eddy-induced fluxes between the boxes will be modeled as an
 127 addition to the slow diffusive and advective fluxes

$$\frac{1}{\rho_0 c_p V_1} + \frac{1}{\rho_0 c_p V_2} F_T = \frac{1}{\tau_d} + \frac{1}{\tau_a (\rho_0 \alpha_T \bar{\Delta T}^*)^2} \Delta \rho^2 \Delta T + \frac{1}{L_y} + \frac{1}{L_y} v_e T_e$$

128

$$2F_S = \frac{1}{\tau_d} + \frac{1}{\tau_a (\rho_0 \alpha_T \bar{\Delta T}^*)^2} \Delta \rho^2 \Delta S + \frac{1}{L_y} + \frac{1}{L_y} v_e S_e.$$

129 The prefactors of $\frac{1}{L_y} + \frac{1}{L_y}$ account for the fact that the boxes need not have equal
 130 volume and that total heat and salt need to be conserved. For simplicity only $\bar{\Delta T} = L_y/2$ is
 131 considered from here on.

132 In general the flux between the boxes should be described by $\frac{R_L}{v} \frac{R_H}{T} dz dx$ where v and T
 133 are evaluated at $y = \frac{1}{2}L$. Our formulation amounts to a severe simplification that ignores
 134 the spatial structure of the eddy velocity and temperature perturbations between the boxes,
 135 and considers them only as zero-mean jointly-Gaussian variables. This level of simplification is
 136 consistent with the simplification of the ocean to two well-mixed boxes in the original Stommel

137 model, and is guided by the desire to investigate the qualitative effects of Gaussian-product
 138 noise, since eddy noise with this structure was recently observed by Grooms (2016).

139 The fast eddy velocity will be modeled as an Ornstein-Uhlenbeck process

$$dv_e = -\frac{1}{\tau_e} v_e dt + \frac{\sqrt{2}}{\tau_e} \sigma_v dW_v$$

140 where τ_e is the eddy time scale and σ_v is the eddy velocity scatter, chosen to be 15 days and
 141 10 cm/s, respectively (Stammer 1997). The eddy velocity can here be thought of as being set
 142 by wind-driven processes independent of the density difference between ~~this box~~.
 143 simplification of the more complex reality where eddy kinetic energy and time scale depend
 144 also on the large-scale density gradient. The following model of the eddy dynamics is perhaps
 145 more qualitatively appropriate

$$dv_e = -\frac{v_e}{\tau_e} dt + \frac{s}{\tau_e} \frac{2(1 + \mu \Delta \rho)}{L_y} dW_v$$

146 where $\mu > 0$ is a parameter representing the sensitivity of the eddy variance to the large-scale
 147 density gradient. This model is not pursued further here, in part because of the difficulties in
 148 guaranteeing its ergodicity and in finding a robust numerical method for its solution.

149 The eddy temperature and salinity anomalies will be modeled as resulting from eddy trans-
 150 port across the large-scale gradients

$$\frac{dT_e}{dt} = -\frac{T_e}{\tau_e} - v_e \frac{2\Delta T}{L_y},$$

151

$$\frac{dS_e}{dt} = -\frac{S_e}{\tau_e} - v_e \frac{2\Delta S}{L_y}.$$

152 The relaxation towards zero on a time scale τ_e qualitatively represents the ~~fringe~~ of
 153 dissipative processes acting on temperature and salinity anomalies towards small
 154 scales and eventual diffusion, and atmospheric damping of thermal anomalies, etc. The time
 155 scale τ_e should not be associated with any particular physical process, but instead guarantees
 156 decorrelation of eddy anomalies on the time scale τ_e . Note that the lack of white noise forcing
 157 in the equations for T_e and S_e implies that the amplitude of the eddy terms is governed by
 158 σ_v ; if $\sigma_v = 0$ then the eddy terms disappear, leaving the usual Stommel model.

159 The governing equations are nondimensionalized using the diffusive time scale for t , the ex-
 160 ternal constant atmospheric temperature difference 20°C for large-scale temperature,
 161 and the convenient salinity scale $10^\circ\text{C}/\alpha_s \approx 4.5$ psu for large-scale salinity. The mean atmo-
 162 spheric forcing is assumed to be 4.5 psu per diffusion time so that its nondimensional value
 163 is 1, following Cessi (1994) and V'elez-Belch'í *et al.* (2001). The eddy ~~velocity~~ *variables* are
 164 nondimensionalized using the eddy velocity scale τ_e . It will be convenient to scale the eddy temperature
 165 and salinity variables differently. Specifically, T_e will have dimensions $\Delta T_y/(\sigma_v \tau_e)$ and S_e
 166 will have dimensions $\Delta S_y/(\alpha_s \sigma_v \tau_e)$. The reason for this unexpected scaling will be com-
 167 mented on shortly.

168 Following traditional notation, the nondimensional temperature difference will be denoted x
 169 and the nondimensional salt difference will be denoted y . The nondimensional eddy variables
 170 will drop their subscripts e so that, e.g., the nondimensional eddy velocity is simply v . Risking
 171 confusion the nondimensional time will still be denoted t . The complete nondimensional
 172 system is therefore

$$dx = -\frac{1}{T}(x - 1) - [1 + \alpha x - y^2]x + 4vT dt + \frac{1}{T}\sigma_x dW_x \quad (1a)$$

$$dy = 1 - [1 + \alpha x - y^2]y + 4vS dt + \eta dW_y \quad (1b)$$

$$dv = \frac{v}{T} dt + \frac{2}{L_y} dW_v \quad (1c)$$

$$dT = -\frac{1}{T} T + 2P^2 v x dt \quad (1d)$$

$$dS = -\frac{1}{T} S + 2P^2 v y dt \quad (1e)$$

173 where

$$\tau = \frac{\tau_T}{\tau_d}, \quad = \frac{\tau_e}{\tau_d}, \quad P_a = \frac{\tau_d}{\tau_a}, \quad P_e = \frac{\sigma_v \tau_d}{L_y}, \quad P = \sqrt{P_e}.$$

174 P_a and P_e are Peclét numbers comparing the time scale of large-scale advective transport
 175 and fast eddy transport to the time scale of diffusion, respectively. The nondimensional noise
 176 amplitudes are $\sigma_x = \sigma_{\Delta T}/\Delta T^*$ and $\eta = \alpha_S \sigma_{\Delta S}/(\alpha_T \Delta T^*)$.

177 The following parameter estimates are drawn from Cessi (1994) and Vélez-Belchert *et al.*
 178 (2001), and are consistent with the more recent observational analysis of Schmitt (2008).
 179 The diffusive time scale τ_d is approximately 220 years, and the time scale of large scale
 180 advection τ_a is approximately 35 years. Cessi (1994) estimates τ_T to be 25 days, but Vélez-
 181 Belchert *et al.* (2001) argue convincingly that large-scale temperature anomalies are damped
 182 on a slower time scale of approximately 220 days. Vélez-Belchert *et al.* (2001) used salinity
 183 noise whose nondimensional amplitude is $\sigma_v = 0.15$, and assuming that fast atmospheric
 184 temperature fluctuations lead to perturbations on the order of 0.07 C implies nondimensional
 185 thermal noise has amplitude $\sigma_\eta = 0.005$. Finally, using a length scale appropriate to the
 186 global oceans, $L \approx 8,250$ km leads to the following set of parameters which are adopted for
 187 the remainder of the investigation

$$\tau = \frac{1}{400} = \frac{1}{5000} \quad P_a = 6, \quad P_e = 80, \quad \sigma_x = 0.005, \sigma_\eta = 0.15. \quad (2)$$

188 The reason for scaling S and T differently from ΔS and ΔT should now be clear. The
 189 same order of magnitude as ΔS , implying that both terms in the evolution equations for S
 190 and T are of comparable magnitude.

191 For the parameters (2) the system (1) has three equilibria of which are stable. The
 192 equilibria all have $v, T, S = 0$, and the stable equilibria occur at $(x, y) \approx (0.989, 0.22)$ and
 193 $(x, y) \approx (0.998, 1.00)$. In the absence of eddy dynamics, one would expect small atmospheric
 194 noise to lead to jumping between the two stable equilibria of the system, the focus
 195 of Cessi (1994), Monahan (2002), Monahan *et al.* (2002) and Monahan and Culina (2011).

196 The existence of multiple equilibria is intrinsically tied to the nonlinear terms that model
 197 slow advective exchange between the boxes. As the exchange between the boxes becomes
 198 dominated by diffusion instead of advection, one of the stable equilibria disappears
 199 in a reverse saddle-node bifurcation leaving a single stable equilibrium.

200 Equations (1d) and (1e) lack noise terms, implying that the classical conditions for ergodicity
 201 (Khasminski 2012) do not apply. Conditions for ergodicity of this type of system of SDEs
 202 can be found in Mattingly *et al.* (2002). The first condition is that there is an inner-product
 203 norm $k \cdot k$ such that $h \mathbf{u}, \mathbf{F}(\mathbf{u}) i \leq \alpha - \beta k \mathbf{u} k$ for some $\alpha, \beta > 0$ where \mathbf{u} is a vector containing

205 the dependent variables and $\mathbf{F}(\mathbf{u})$ is the drifts straightforward to verify that k^2
 206 $x^2+y^2+v^2+(2/P^2)(T^2+S^2)$ satisfies this condition. The second condition is that the vectors
 207 $\{\mathbf{p}, [[\mathbf{F}, \mathbf{p}], \mathbf{p}]\}$ span \mathbb{R}^5 where \mathbf{p} $i = 1, 2, 3$ are the columns of the diffusion matrix, which
 208 are here proportional to the first three standard basis vectors, and $[\cdot, \cdot]$ is a Lie bracket. Since
 209 $[[\mathbf{F}, \mathbf{p}], \mathbf{p}]$ and $[[\mathbf{F}, \mathbf{p}], \mathbf{p}]$ are proportional to the fourth and fifth standard basis vectors,
 210 respectively, the system satisfies the conditions of Mattingly *et al.* (2002) for ergodicity.

211 3. Two Approximate Slow Models

212 In this section two systems SDEs are derived approximating the evolution of slow
 213 variables x and y in (1). The system of SDEs (1) with parameters (2) has three time scales since
 214 $\tau < \tau_1$: x evolves significantly more quickly than y is slower than the eddy variables
 215 v , T , and S . Many previous investigations (which lacked the eddy variables) accounted for
 216 the scale separation somewhat crudely by setting $x = 1$, and focused on the dynamics of the
 217 slowest variable y , e.g. Cessi (1994), Monahan (2002), Monahan *et al.* (2002), and Monahan
 218 *et al.* (2008). The analysis of Monahan and Culina (2011) is more careful, employing the same
 219 methods used here but for the system without eddy variables and in the limit. This
 220 section considers the limit $\tau \rightarrow 0$ while holding σ fixed.

221 The two approximate models are derived using standard approximations for slow-fast sys-
 222 tems (Papanicolaou and Kohler 1974, Pavliotis and Stuart 2008, Freidlin and Wentzell 2012).
 223 The presentation here follows the convenient review found in Bouchet *et al.* (2016);
 224 the formulas are derived in a straightforward manner using asymptotic methods applied to
 225 the backwards Kolmogorov equation for the system (for details, see the appendices of Bouchet
 226 *et al.* (2016)).

227 The first approximation is derived via simple averaging. In the limit $\tau \rightarrow 0$ the eddy variables
 228 are well approximated as solutions to (1c)–(1e) with x and y considered constant. Curiously,
 229 although the full system (1) has a smooth invariant measure the system (1c)–(1e) does not:
 230 the long-time limiting distribution of v , T , and S is jointly Gaussian with a singular covariance
 231 matrix. In light of this, the following noise-augmented system is considered instead

$$dv = -\frac{v}{dt} + \frac{1}{2} dW_v \quad (3a)$$

$$dT = -\frac{1}{dt} T + 2P^2 vx \, dt + \frac{1}{2} \sigma dW_T \quad (3b)$$

$$dS = -\frac{1}{dt} S + 2P^2 vy \, dt + \frac{1}{2} \sigma dW_S \quad (3c)$$

232 and the limit $\sigma \rightarrow 0$ is taken after the fact.

233 The invariant measure of (3) is Gaussian with zero mean and covariance

$$\begin{bmatrix} 1 & -P^2 x & -P^2 y \\ -P^2 x & 2P^4 x^2 + \sigma^2 & 2P^4 xy \\ -P^2 y & 2P^4 xy & 2P^4 y^2 + \sigma^2 \end{bmatrix}. \quad (4)$$

234 The averages of the terms vT and vS in the slow equations with respect to the invariant
 235 measure of the fast system are simply x and $-P^2 y$, respectively. It is worth noting that
 236 these values are independent of the auxiliary noise amplitude σ . Inserting these into the slow
 237 equations leads to the following approximate model

239

Deterministic Approximation

$$dx = -\frac{1}{T}(x - 1) - [1 + \bar{P}x - y^2]x - 4\bar{P}x \ dt + \sqrt{\frac{1}{T}}\sigma_x dW_x \quad (5a)$$

$$dy = 1 - [1 + \bar{P}x - y^2]y - 4\bar{P}y \ dt + \sigma_y dW_y. \quad (5b)$$

240 The model (5) is referred to as the 'deterministic' or 'averaged' approximation since it models
 241 the eddy terms vT and vS as deterministic functions of x and y . It is straightforward to
 242 verify that this model is ergodic under the classical conditions of Khasminskii (2012).

243 As described in Bouchet *et al.* (2016), one can derive equations that approximate the variations
 244 of the true solution to (1) around the solution of the approximate model (5). Combining
 245 the equations for the variations with the deterministic approximation leads to further cor-
 246 rections in both the drift and diffusion terms and σ_y , respectively. The drift correction
 247 is significantly smaller than the leading-order ~~but~~ terms in the leading-order diffusion terms in
 248 the x and y equations are of order ≈ 0.1 , and corrections of ~~order~~ σ_y are of comparable
 249 magnitude.

250 In order to compute the diffusion correction, it is convenient to define some notation.

251 Let $\mathbf{Y} = (v, T, S)^T$ denote the solution to the noise-augmented system. Define constant
 252 matrices

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -\frac{1}{2} & 2\bar{P}^2x & 1 & 0 \\ 2\bar{P}^2y & 0 & 1 \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} \sqrt{\frac{1}{T}} & 1 & 0 & 0 \\ 0 & \sigma & 0 & 0 \\ 0 & 0 & \sigma & 0 \end{bmatrix}$$

253 such that the fast system (3) may be written $d\mathbf{Y} = \mathbf{M}\mathbf{Y} + \mathbf{G}d\mathbf{W}$, where $d\mathbf{W}$ is a vector of
 254 independent Gaussian white noises. The solution is thus

$$\mathbf{Y}(\tau) = e^{\mathbf{M}\tau} \mathbf{Y}_0 + \int_0^\tau e^{\mathbf{M}(\tau-s)} \mathbf{G} d\mathbf{W}. \quad (6)$$

255 The deviations of the eddy terms vT and vS from their conditional means are denoted

$$\mathbf{f}(x, y, \mathbf{Y}) = \begin{bmatrix} vT + 4\bar{P}x \\ vS + 4\bar{P}y \end{bmatrix}.$$

256 According to Bouchet *et al.* (2016), the diffusion-corrected model for the slow variables has
 257 the form

$$\begin{aligned} dx &= -\frac{1}{T}(x - 1) - [1 + \bar{P}x - y^2]x - 4\bar{P}x \ dt \\ &\quad + \sqrt{\bar{a}_{xx}(x, y)} d\hat{W}_x + \sqrt{\bar{a}_{xy}(x, y)} d\hat{W}_y + \sqrt{\frac{1}{T}}\sigma_x dW_x \\ dy &= 1 - [1 + \bar{P}x - y^2]y - 4\bar{P}y \ dt \\ &\quad + \sqrt{\bar{a}_{yx}(x, y)} d\hat{W}_x + \sqrt{\bar{a}_{yy}(x, y)} d\hat{W}_y + \sigma_y dW_y. \end{aligned}$$

258 where the matrix

$$\mathbf{A} = \begin{bmatrix} \bar{a}_{xx} & \bar{a}_{xy} \\ \bar{a}_{yx} & \bar{a}_{yy} \end{bmatrix}$$

259 is any square root of the following symmetric positive definite matrix

$$\mathbf{C} = \int_0^{\infty} E^{\mathbf{Y}_0} E^{\mathbf{Y}(\tau)} \mathbf{f}(x, y, \mathbf{Y}(\tau))^T \mathbf{f}(x, y, \mathbf{Y}_0) + \mathbf{f}(x, y, \mathbf{Y}) \mathbf{f}^T(x, y, \mathbf{Y}(\tau)) d\tau.$$

261 The matrix \mathbf{C} is the integral of the time-lagged auto-covariance of \mathbf{f} with x and y considered
 262 constant. In the above expression $E^{\mathbf{Y}(\tau)}$ denotes the expectation on $\mathbf{Y}(\tau)$ conditioned on the
 263 initial condition \mathbf{Y}_0 ; the distribution is Gaussian with mean and covariance implied by (6).
 264 $E^{\mathbf{Y}_0}$ denotes expectation on \mathbf{Y}_0 whose distribution is the stationary distribution of the fast
 265 process, in this case a zero-mean Gaussian with covariance (4). The calculation for the system
 266 under consideration here is particularly straightforward since it requires only higher moments
 267 of jointly-Gaussian variables. The matrix \mathbf{C} is found to have the form

$$\mathbf{C} = \begin{matrix} 16(5P^4x^2 + \sigma^2) & 80P^4xy \\ 80P^4xy & 16(5P^4y^2 + \sigma^2) \end{matrix}.$$

268 In this case (unlike the leading-order drift term) the limit is singular in the sense that
 269 the matrix \mathbf{C} becomes positive semi-definite. Nevertheless, a square root matrix \mathbf{A} exists; in
 270 the limit $\sigma \rightarrow 0$ it has the form

$$\mathbf{A} = \begin{matrix} \sqrt{5P^2} & x 0 \\ y 0 & \end{matrix}.$$

271 The model for the slow variables with leading-order drift and diffusion correction (but
 272 ignoring the order- drift correction) is thus
 273

274 Gaussian Stochastic Approximation

$$dx = \frac{1}{T}(1 - x) - [1 + \bar{P}x - y^2]x - 4\bar{P}x dt + \sqrt{\frac{1}{5P}} x d\hat{W}_x \quad (7a)$$

$$dy = 1 - [1 + \bar{P}x - y^2]y - 4\bar{P}y dt + \sqrt{\frac{1}{5P}} y d\hat{W}_y. \quad (7b)$$

275 For $x \approx 1$ the noise amplitude associated with the eddies is $\sqrt{5P}$, which is slightly larger
 276 than the 'atmospheric' noise $\sigma/\sqrt{T} = 0.1$. The order- drift corrections have also been
 277 calculated, but they are small in comparison with the leading-order terms, and have been left
 278 out of the model for simplicity. This system of SDEs is interpreted in the Ito sense, while
 279 the drift corrections in slow-fast systems with one slow degree of freedom can be interpreted
 280 as a correction from Stratonovich to Ito. This is no longer generally true in systems with
 281 multiple slow degrees of freedom (Pavliotis and Stuart 2008; Kondratenko and Wentzel 2012).
 282 It is straightforward to verify that this model is ergodic under the classical conditions of
 283 Khasminskii (2012).

284 It is interesting to note that the Gaussian stochastic model replaces the eddy terms $4vT$
 285 and $4vS$ by $-4\bar{P}x(dt + \sqrt{5P}d\hat{W}_x)$ and $-4\bar{P}y(dt + \sqrt{5P}d\hat{W}_y)$. This form of subgrid-scale pa-
 286 rameterization is qualitatively the same as that proposed in Buizza *et al.* (1999), where it was
 287 proposed to multiply a deterministic parameterization (here by $4P$) by a stochastic process
 288 (here $1 + \sqrt{5P}W$). This style of stochastic parameterization has been widely used in atmo-
 289 spheric models (Berner *et al.* (2017) provides a review), and much has been made of the role
 290 of multiplicative noise by, e.g. Sura *et al.* (2005). The above derivation gives an example where
 291 this style of *ad hoc* parameterization is rigorously justified, though multiplicative noise with a
 292 linear coefficient is certainly not the universal form of eddy-induced noise (see e.g. Monahan
 293 and Culina 2011, for a counterexample).

294 Recall that for the parameters (2) the system (1) has only three equilibria which
 295 are stable. The equilibria all have $v, T, S = 0$ and the stable equilibria occur at $(x, y) \approx$
 296 $(0.989, 0.22)$ and $(x, y) \approx (0.998, 1.00)$. deterministic and Gaussian stochastic models
 297 have the same drift which has only one equilibrium at $(x, y) \approx (0.974, 0.093)$. will be
 298 verified by the results in §5. The inclusion of nonlinear eddy effects completely changes the
 299 regime of the ocean model from a regime of multiple equilibria to a regime with a single stable
 300 equilibrium.

301 The averaged drift has a single stable equilibrium for P greater than approximately
 302 0.117; below this value the drift undergoes a saddle-node bifurcation that creates a pair of
 303 equilibria near $x = 1$ and $y = 1$. To achieve such small values of P would require reducing the
 304 eddy velocity scale from 10 cm/s to 1 cm/s, which is unrealistically small. The approximate
 305 models derived in this section show that the mean effect of eddies is linear and diffusive. Since
 306 a linear diffusive effect is already present in the equations (the terms $-x$ and $-y$ in (1a) and
 307 (1b)), the mean eddy effect could be viewed as a double-counting of eddy-induced diffusive
 308 exchange between the boxes. This can be rectified by eliminating the mean diffusion terms,
 309 and such a model is formulated and studied in §6. By avoiding a double-counting of diffusive
 310 exchange, the model in §6 allows multiple equilibria with small, yet realistic eddy amplitudes.

311 4. Numerical Methods

312 Numerical methods are needed to compare the qualitative behavior of the three models (1),
 313 (5), and (7). Many methods are derived based on the assumption that the drift is globally-
 314 Lipschitz (Kloeden and Platen 1992), which is not the case here. Several more recent investi-
 315 gations have analyzed numerical methods for SDEs whose drift satisfies a one-sided Lipschitz
 316 condition (e.g. Higham *et al.* (2002) and Mao and Szpruch (2013)), but none of the models in
 317 consideration here satisfy such a condition. A method appropriate to polynomial drifts is de-
 318 rived by Lamba *et al.* (2007), but their analysis requires an invertible diffusion matrix, which
 319 the model (1) does not have. The Euler-Maruyama method may be appropriate, but is known
 320 to behave poorly in problems with polynomial drift (Mattingly *et al.* 2002, Hutzenthaler *et al.*
 321 2011). In light of this, the 'backward Euler (BE) method is used here for all three models.
 322 For a general system of SDEs of the form

$$d\mathbf{X} = \mathbf{b}(\mathbf{X})dt + \boldsymbol{\Sigma}(\mathbf{X})d\mathbf{W}$$

323 the BE method takes the following form

$$\mathbf{X}_{n+1} - \Delta t \mathbf{b}(\mathbf{X}_{n+1}) = \mathbf{X}_n + \boldsymbol{\Sigma}(\mathbf{X}_n) \Delta \mathbf{W}_n \quad (8)$$

324 where Δt is the time step. In every simulation presented here $\Delta t = 2 \times 10^{-6}$, which is
 325 significantly smaller than the smallest time scale of the system ≈ 4 . Mattingly *et al.*
 326 (2002) prove that the method is ergodic (for sufficiently small Δt) and that the invariant
 327 measure of the numerical method converges to that of the SDE as $\Delta t \rightarrow 0$. Though the
 328 analysis of Mattingly *et al.* (2002) focuses on models with additive noise, the BE method is
 329 nevertheless applied here to the model (7) with multiplicative noise.

330 For the model (1), a two-step process is used to generate solutions of the nonlinear system
 331 of equations (8). First, an asymptotic approximation in the limit $\Delta t \rightarrow 0$ is computed that
 332 has the form $\mathbf{X} = \mathbf{X}_n + \boldsymbol{\Sigma}(\mathbf{X}_n) \Delta \mathbf{W}_n + O(\Delta t)$; this approximation is followed by a single
 333 Newton step. For the systems (5) and (7), approximate solutions to the nonlinear systems
 334 were generated using 10 fixed-point iterations started at \mathbf{X}_0 on the small step size. The
 335 resulting approximations solve their respective nonlinear systems with high accuracy;

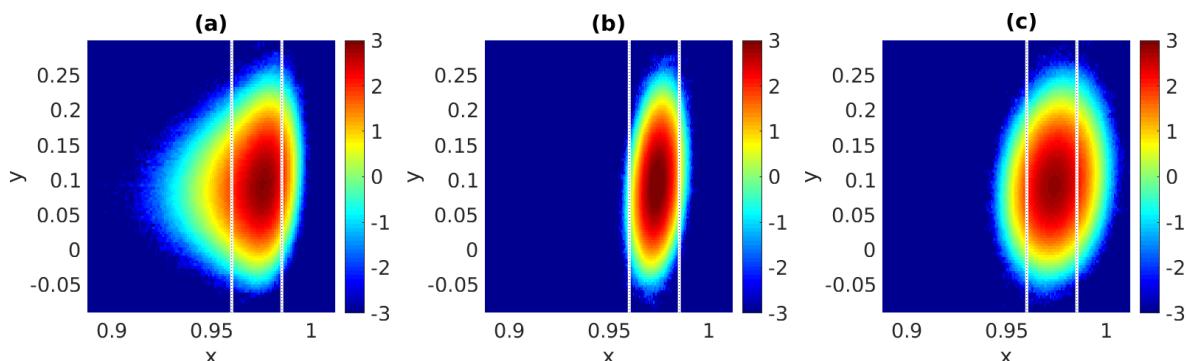


Figure 1. Base-10 logarithm of the climatological joint probability density functions of x and y for (a) Full model (1), (b) Deterministic approximation (5), and (c) Gaussian-stochastic approximation (7). The vertical lines are placed at $x = 0.96$ and $x = 0.985$.

336 residuals are typically on the order of ± 10

337

338 5. Results

339 5.1. Climatology

340 A suite of 10,000 independent simulations was run starting from $x, y, v, T, S = 0$ at $t = 0$.
 341 Data were saved for the time interval $t \in [4, 10]$, saving ~~every 100~~ $\Delta t = 0.01$ for a spacing of
 342 2×10^4 . The mean and covariance appeared to have stabilized by $t = 4$, suggesting that the
 343 data in $t \in [4, 10]$ represents the stationary climatological distribution of the system. Recalling
 344 that the dimensional time unit is 220 years, this amounts to 1,320 years of data saved approx-
 345 imately twice per month. The three models all have the same mean of $(x, y) \approx (0.974, 0.094)$,
 346 which is very close to the equilibrium of the deterministic and Gaussian stochastic models at
 347 $(0.974, 0.093)$. All three models have the same marginal standard deviation of y approximately
 348 equal to 0.034. This can be explained by the fact that the amplitude of the eddy noise in the y
 349 equation is estimated in the Gaussian stochastic model ~~to be 4~~ 0.015 for $y = 0.093$,
 350 which is much less than the atmospheric noise with amplitude ~~0.15~~. The parameter
 351 values (2) derived from the literature are necessarily ~~implied~~ on the order of magnitude
 352 difference between the eddy noise and the atmospheric noise in the y equation suggests that
 353 the effects of eddy noise (Gaussian or otherwise) on the salinity dynamics ~~of the~~ real
 354 may be small in comparison with atmospheric forcing.

355 The climatological distributions of the models differ in other respects. For example, the
 356 marginal standard deviation of x is 0.0063, 0.0035, and 0.0065 in the full, deterministic, and
 357 Gaussian stochastic models, respectively. The eddy noise in the x equation is of comparable
 358 size to the atmospheric noise, and has a significant impact on the variability; the deterministic
 359 model lacks this eddy noise, and has too little variability. The lack of eddy noise in the x equa-
 360 tion of the deterministic model also leads to an overestimate of the correlation between x and
 361 y : the full and Gaussian stochastic models have correlations 0.15 and 0.14, respectively, while
 362 the deterministic model has correlation 0.23. The most-probable values of the distributions
 363 are $(x, y) \approx (0.976, 0.092)$ for the full model, $(0.974, 0.091)$ for the deterministic model,
 364 $(0.973, 0.093)$ for the Gaussian stochastic model; the differences in the y value are negligible,
 365 but the differences in the x value are up to half of a standard deviation.

366 Time-lagged correlation functions were computed, for example $\text{Corr}[x(t), x(t + \tau)] = C(\tau)$
 367 (stationarity is assumed). The correlation functions are all very similar across the models (not
 368 shown). The correlation functions ~~all~~ decay monotonically to zero, it is natural to define
 369 a decorrelation time by $\int_0^\infty C(\tau) d\tau$. The correlation functions for y in all three models are

370 very similar with decorrelation time approximately 22 years. The correlation function for
 371 x exhibits similar rapid initial decay in all three models. The correlation function for x in
 372 the deterministic model has a long tail with larger long-lag correlations than the other two
 373 models, leading to a decorrelation time of 16 years which is longer than the decorrelation
 374 times of the full model and Gaussian stochastic model, both of which are approximately 1
 375 year.

376 A simple binning procedure was used to generate approximations to the climatological prob-
 377 ability density function (pdf) for each model; results are shown in Fig. 1, with panels (a)-(c)
 378 presenting the full model, deterministic model and Gaussian stochastic model, respectively.
 379 It has already been noted that the three models have the same marginal variance for y , and
 380 indeed the range of y in the three models is quite similar. The deterministic model is clearly
 381 under-dispersed with respect to x . The climatological distribution of the Gaussian stochastic
 382 model has a more-accurate core, but is not skewed in the same way as the full model.

383 It is possible that minor deficiencies near the core of the distribution could be corrected
 384 by adding order- corrections to the drift of the Gaussian stochastic model. The results
 385 of Bouchet *et al.* (2016) indicate that such corrections will generate correct rare-event
 386 probabilities even in the limit $\epsilon \rightarrow 0$. To emphasize differences in the rare event probabilities,
 387 the probabilities of $x \leq 0.96$ and $x \geq 0.985$ were calculated for the three models (these
 388 x values are indicated by vertical lines in Fig. 1). The small-event probabilities are 0.039
 389 for the full model, less than 10^{-4} for the deterministic model and 0.022 for the Gaussian
 390 stochastic model. The large-event probabilities are 0.016 for the full model, less than 10
 391 for the deterministic model and 0.048 for the Gaussian stochastic model. Not surprisingly, the
 392 deterministic approximation has too-small event probabilities. The Gaussian-stochastic
 393 model is more accurate, but is still incorrect by nearly a factor of 2 for small-event probabilities,
 394 and a factor of 3 for large-event probabilities.

395 The system (1) has two stable equilibria, near $(x, y) \approx (1, 1)$ and $(1, 0.22)$. The simulations
 396 described above had no trajectories near the stable equilibrium at $(1, 1)$; to verify that
 397 the system does not remain near the stable equilibrium at $(1, 1)$, a set of
 398 1,000 simulations (41) was run with initial condition $(x, y, v, T, S) = (1, 1, 0, 0, 0)$.
 399 Simulations were again run for the interval $t \in [0, 10]$, saving the output from $t \in [4, 10]$. The
 400 stationary distribution did not display a secondary peak near $(1, 1)$, indicating that the two
 401 stable equilibria of the full model are largely irrelevant to the dynamics of the system.

402

403 **5.2. Rare event forecasting**

404 The previous section examined only the stationary climatological distributions of the three
 405 models. Within a climate prediction scenario, short-term behavior is also important. Given
 406 that the climatological distributions differ mainly in their rare event probabilities, a separate
 407 set of experiments was used to investigate the ability of models to predict rare events
 408 over a shorter time interval. The goal was to test how accurately the approximate models
 409 forecast the probability of the unusually large and small x values over a range of forecast lead
 410 times. Two trajectories of the system (1) were selected out of the 10,000 discussed above: one
 411 reaching a value of $x \leq 0.96$ and one reaching a value of $x \geq 0.985$. These trajectories are
 412 shown in Fig 2 panels (a) and (b). Note that the large- x trajectory passes the threshold of
 413 0.985 approximately half a year before the final time, whereas the small- x trajectory crosses
 414 the 0.96 threshold only at the last time step. Ensembles of 10,000 independent forecasts for
 415 all three models were initialized from the true trajectory for a range of lead times out to 2
 416 years. Thus, for each of the three models a 10,000 member ensemble forecast was initialized
 417 at $t = -2$ years and run until $t = 0$, and another 10,000 member ensemble forecast was
 418 initialized at $t = -1$ year and run until $t = 0$, etc. These ensembles were used to estimate

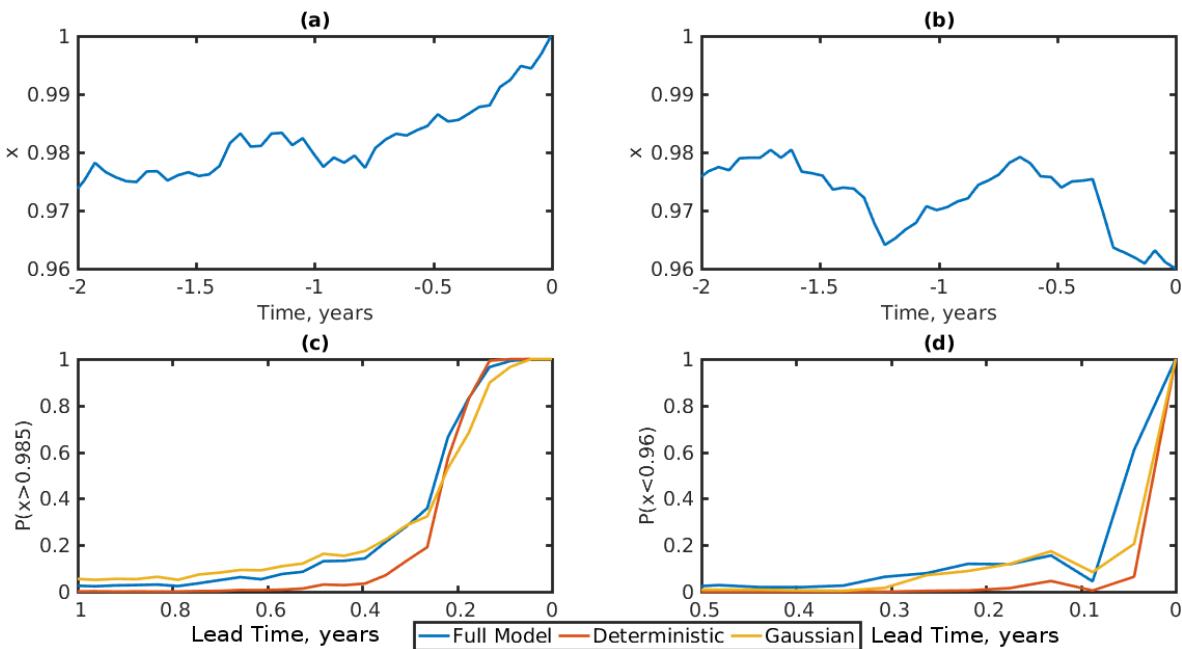


Figure 2. (a) and (b): x trajectories of the full model (1). (c) probability that $x > 0.985$ at $t = 0$, and (d) probability that $x < 0.96$ at $t = 0$ for forecasts initialized from the trajectories in (a) and (b), respectively. Note that the time axes in (c) and (b) are different from each other and from those in (a) and (b).

419 the probabilities $P(x(t = 0) \leq 0.96)$ for the small-event case and $P(x(t = 0) \geq 0.985)$ for
 420 the large-event case. The probabilities shown in Fig. 2c correspond to the large- x trajectory,
 421 and those in Fig. 2d correspond to the small- x trajectory. Since the large- x trajectory crosses
 422 the threshold nearly half a year before the final time, all 10,000 of the forecasts initialized
 423 at any lead time less than half a year in advance are already above threshold, while
 424 the probability at the final time is less than one because many of the trajectories cross the
 425 threshold back towards smaller values of x .

426 In both cases the forecast by the deterministic model is significantly worse than the other two
 427 models at all but the shortest lead times. The rare-event probability forecast by the Gaussian
 428 stochastic model, in contrast, begins to increase from its climatological value at approximately
 429 the same time that the true forecast probability begins to increase, between 0.8 and 0.6 years in
 430 advance for the large- x event and around 0.3 years in advance for the small- x event. Although
 431 the actual probability assigned by the Gaussian stochastic model at relatively long lead times
 432 is incorrect, the fact that it begins to increase at the right time could still be used qualitatively
 433 to predict whether the model is getting close to a rare event. Once the probability of a rare
 434 event increases past about 20%, the Gaussian stochastic model uniformly under-predicts the
 435 correct probability, despite having over-predicted the climatological probability for $x > 0.985$.
 436 For example, with a lead time of about 2.5 months the Gaussian stochastic model predicts the
 437 large- x event with probability only 53% while the true probability is in fact 67%; with a lead
 438 time of half a month the Gaussian stochastic model predicts the small- x event with probability
 439 only 21% while the true probability is 61%. Differences in the small-event and large-event
 440 predictability for these two cases are probably less related to intrinsic predictability than to
 441 the fact that the true trajectory remains above threshold for half a year before the forecast
 442 verification time $t = 0$ in the large-event case, while in the small-event case the true trajectory
 443 reaches threshold only at $t = 0$.

444 In summary, the deterministic model is essentially useless for rare-event forecasting, while
 445 the Gaussian stochastic model is only qualitatively useful, predicting whether a rare event is
 446 more likely but not with a robust uncertainty estimate.

447

448 **6. A model without mean diffusion**

449 As noted at the end of 3, the averaged effect of the eddies is linear and diffusive. Linear
 450 diffusive terms are already included in the budget of heat and salt, with the result that
 451 the averaged models have only one stable equilibrium unless the eddies are assumed to be
 452 extremely weak, with velocities on the order of 1 cm/s. One assumes that linear diffusive
 453 exchange between the boxes is entirely eddy-driven then one can drop the mean diffusion
 454 terms from the governing equations of the full model, i.e. equations (1a) and (1b) are changed
 455 to

$$dx = -\frac{1}{T}(x - 1) - P_a(x - y)^2 x + 4vT dt + \frac{1}{T}\sigma_x dW_x \quad (9)$$

456 and

$$dy = 1 - P_a(x - y)^2 y + 4vS dt + \sigma_y dW_y \quad (10)$$

457 respectively. The eddy reductions proceed as before, so that the $-x$ and $-y$ terms are similarly
 458 dropped from the deterministic (5) and Gaussian (7) models. The resulting model is much
 459 more amenable to multiple equilibria. For P greater than about 0.514 there is a single stable
 460 equilibrium with $x \approx 1$ and $y \approx 0.25$. Below this value of P the system undergoes a saddle-
 461 node bifurcation that creates a pair of equilibria near $(x, y) = (0.99, 0.24)$. The saddle then moves
 462 down towards the original equilibrium, which it joins in a reverse saddle-node bifurcation at
 463 P approximately 0.301, below which there remains only a single equilibrium. We investigate
 464 the system at a value of $P \approx 0.32$, i.e. $P \approx 0.45$, where there are three equilibria: a stable one
 465 at $(0.99, 0.24)$, a saddle at $(1.00, 0.65)$, and another stable one at $(1.00, 1.11)$.

466 **6.1. Ergodicity**

467 Recall that there are two conditions for ergodicity of elliptic SDEs in Mattingly *et al.*
 468 (2002). The first condition is that there is an inner-product norm $k \cdot k$ such that $h\mathbf{u}, \mathbf{F}(\mathbf{u})i \leq$
 469 $\alpha - \beta k\mathbf{u}k$ for some $\alpha, \beta > 0$ where \mathbf{u} is a vector containing the dependent variables and $\mathbf{F}(\mathbf{u})$
 470 is the drift. The second condition is that the vectors $\{\mathbf{F}(\mathbf{p}_1), \mathbf{F}(\mathbf{p}_2), \mathbf{F}(\mathbf{p}_3)\}$ span \mathbb{R}^5 where $\mathbf{p}_i =$
 471 $1, 2, 3$ are the columns of the diffusion matrix, and $[\cdot, \cdot]$ is a Lie bracket. It is straightforward
 472 to verify that the second condition is met in this model in the same way that it is met in the
 473 original model (1).

474 The first condition is more difficult. We will use the inner product $h\mathbf{u}_1, \mathbf{u}_2i = u_1v_1 +$
 475 $u_2v_2 + (2/P^2)(u_3v_4 + u_5v_5)$, so we must show that there are $\alpha, \beta > 0$ such that

$$h\mathbf{u}, \mathbf{F}(\mathbf{u})i - \alpha + \beta k\mathbf{u}k \leq 0$$

476 i.e.

$$\begin{aligned} -\alpha + y - x(x - 1) - P_a(x - y)^2(x^2 + y^2) - v^2 - (2/P^2)(T^2 + S^2) \\ + \beta(x^2 + y^2 + v^2 + (2/P^2)(T^2 + S^2)) \leq 0. \end{aligned}$$

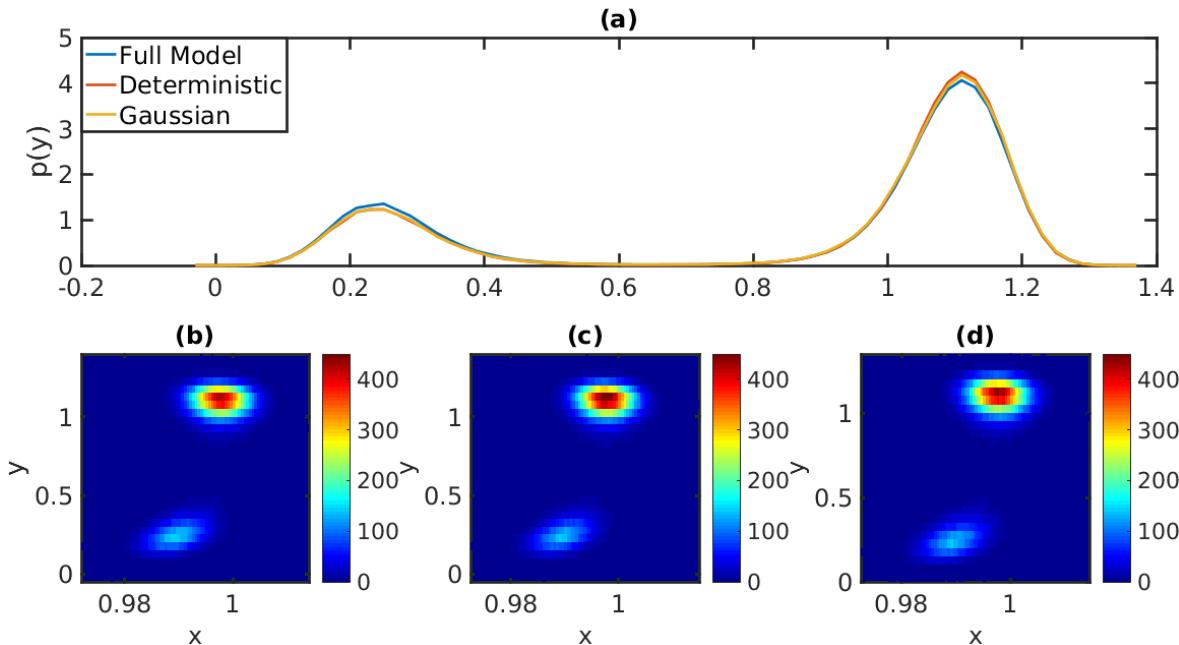


Figure 3. (a) Climatological marginal probability density functions $p(y)$ for the three models without mean diffusion. Climatological joint probability density functions $p(x, y)$ for (b) Full model, (c) Deterministic approximation and (d) Gaussian-stochastic approximation.

477 The terms involving the eddy variables T and S will clearly pose no problem provided
 478 that $\beta < -1$. It therefore remains to see whether one can choose α, β such that

$$-\alpha + y - x(x - 1) \gamma - P_a(x - y)^2(x^2 + y^2) + \beta(x^2 + y^2) \leq 0.$$

479 Consider the behavior along a line through the origin in the (x, y) plane: along any line except
 480 $y = x$ the function is a quartic polynomial that can be made negative by choosing α sufficiently
 481 large. Along the line $y = x$ the condition reduces to

$$-\alpha + x - x(x - 1) \gamma + 2\beta x^2 \leq 0.$$

482 As long as $\beta < 1/(2\gamma)$ it will be possible to choose α sufficiently large that this condition is
 483 met. The model without mean diffusion terms is therefore still ergodic. Ergodicity is important
 484 because it implies that there is a single climatological distribution independent of the initial
 485 condition. The conditions of Mattingly et al. (2002) further guarantee that the distribution
 486 collapses exponentially quickly towards the climatological distribution.

487 6.2. Numerical experiments

488 Ensemble simulations for the three models without mean diffusion were run with 1000 ensem-
 489 ble members each; all parameters are the same as in §5 except the deterministic and
 490 Gaussian approximate models were initialized with $x = 1$, $y = 0.6$, while the full model was
 491 initialized with $x = 1$, $y = 0.65$, and $v, T, S = 0$. After a burn-in of 4 nondimensional
 492 units, the simulations were run for 500 more time units, i.e. about 110,000 years. Although the
 493 models are geometrically ergodic, with distributions collapsing exponentially quickly towards
 494 the invariant distribution, this was not enough time for the approximate models to reach the
 495 invariant distribution. These models were then extended for a further 500 time units, during
 496 which time their distributions converged. The full model was initialized closer to the saddle
 497 point, so its distribution converged within the first 504 time units.

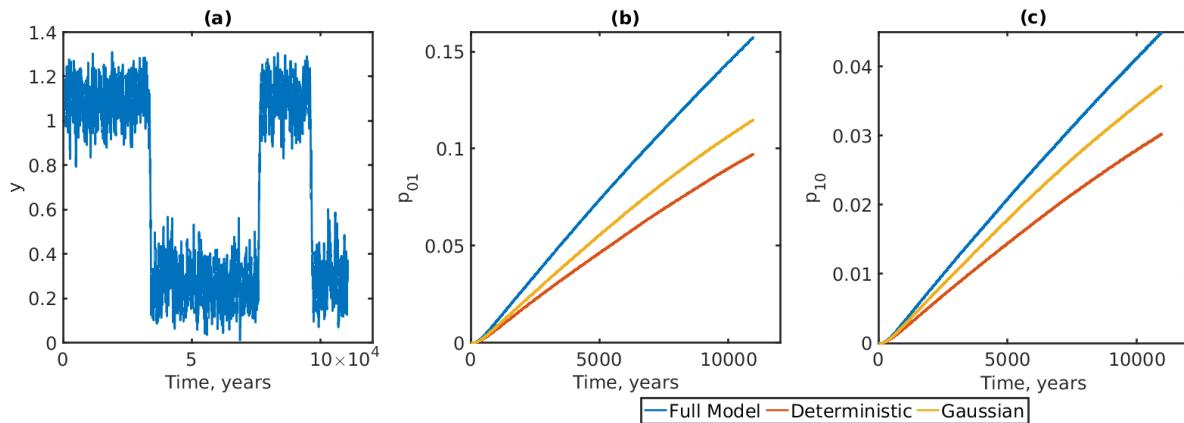


Figure 4. Regime transitions for the three models without mean diffusion. (a) A single $y(t)$ trajectory from the full system showing jumps between regimes. (b) The probability p_{01} of a transition from $y(t) < 0.5$ to $y(t + \tau) > 0.8$. (c) The probability p_{10} of a transition from $y(t) > 0.8$ to $y(t + \tau) < 0.5$.

498 The climatological distributions of the slow variables are shown in Fig. 3. Panel (a) shows
 499 the marginal distributions of the three models while panels (b)–(d) show the joint (x, y)
 500 distributions. The three models are remarkably similar. Though σ is the same as in the previ-
 501 ous case, P is smaller. The diffusion correction in the x equation of the Gaussian-stochastic
 502 approximation has amplitude $\sigma^2 x \approx 0.026$ which is smaller than the atmospheric noise
 503 amplitude $\sigma \sqrt{\tau} = 0.1$; the atmospheric noise similarly dominates the y equation.
 504 result, the effects of eddy noise are not seen in the equilibrium distributions of the three models.
 505

506 The noise levels are low enough that the system trajectories make rare transitions between
 507 the neighborhoods of the two stable equilibria. Figure 4 panel (a) shows a system trajectory y
 508 from the full model that jumps between regimes. The rates and paths of these transitions are
 509 the subject of large deviation theory (Freidlin and Wentzell 2012). The methods of Bouchet
 510 *et al.* (2016) to analyze the transitions do not seem to apply directly here because of
 511 inclusion of noise forcing in the slow dynamics. In any case, it is not difficult to estimate the
 512 transition probabilities from simulations. For practical purposes it was convenient to estimate
 513 the following probabilities, $p(\tau) = P(y(t + \tau) > 0.8 | y(t) < 0.5)$ and $p = P(y(t + \tau) <$
 514 $0.5 | y(t) > 0.8)$. These transition probabilities are plotted for the three models in Fig.
 515 panels (b) and (c) respectively. The effects of differences in the eddy noise are clear:
 516 the deterministic model has the lowest transition probabilities; the Gaussian stochastic model has
 517 higher transition probabilities; the full model has the highest transition probabilities.

518 7. Conclusions

519 This paper formulates a stochastic two-box ocean model modeled after Stommel's (1961); the
 520 model consists of a system of SDEs (1). Previous stochastic Stommel models (e.g. Cessi
 521 1994, Vélez-Belchert *et al.* 2001, Monahan *et al.* 2002, Monahan 2002, Monahan and Culina
 522 2011), modeled the atmospheric heat and freshwater forcing as Gaussian stochastic processes,
 523 and the exchange of heat and salt between the boxes as a nonlinear drift term corresponding
 524 to the large-scale overturning thermohaline circulation. The novelty of the formulation here
 525 is that a fast eddy-driven component is added to the exchange between the boxes.
 526 terms modeling the eddy-driven exchange are quadratic products of approximately Gaussian
 527 random variables. Products of jointly-Gaussian random fields were recently found to be an
 528 accurate model of eddy-driven exchanges in Grooms (2016).
 529 In more complete and complex ocean models, eddy effects are frequently modeled

530 deterministically. Stochastic parameterizations have recently been developed that multiply
 531 these deterministic eddy parameterizations by Gaussian random fields (Andrejczuk *et al.* 2016,
 532 Juricke *et al.* 2017), which is a popular approach for atmospheric models based on the work
 533 of Buizza *et al.* (1999) and Sura *et al.* (2005). The key benefit of stochastic parameterizations
 534 in comparison to deterministic ones is the former's ability to induce realistic variability in the
 535 resolved scales. Models with realistic variability are needed for making forecasts with robust
 536 uncertainty estimates, which explains the wide adoption of stochastic parameterizations in
 537 weather forecasting (Buizza *et al.* 1999, Bell *et al.* 2001, Palmer *et al.* 2005, Berner *et al.*
 538 2017, Leutbecher *et al.* 2017).

539 Using methods of averaging and homogenization for slow-fast systems (Pavliotis and Stuart
 540 2008, Freidlin and Wentzell 2012, Bouchet *et al.* 2016), two models were derived approximating
 541 the evolution of the slow components (the difference in heat and salt content of the two boxes).
 542 The first model (5) replaces the fast eddy-driven exchange terms by a fixed 'deterministic' drift
 543 term, analogous to the standard approach of deterministic parameterization in more complex
 544 ocean models. The second model (7) adds an additional multiplicative noise term accounting
 545 for fast variations in the eddy-driven flux. A suite of simulations of each of the three models
 546 was used to compare their qualitative behavior in a parameter regime with a single stable
 547 equilibrium. All three models were then altered by removing an explicit representation of
 548 diffusion and allowing all diffusive effects to be achieved completely by the eddies. Numerical
 549 simulations of these models were used to compare their qualitative behavior in a parameter
 550 regime with two stable equilibria.

551 The main results are as follows. There is little qualitative difference in the core behavior
 552 stationary distributions of the full, non-Gaussian model and the Gaussian multiplicative ap-
 553 proximation. In the regime with a single equilibrium the deterministic model has little
 554 variability but the Gaussian model gives an accurate climatological mean and covariance.
 555 In the regime with two stable equilibria the climatological distribution of the three models
 556 is nearly the same. In the regime with two stable equilibria the amplitude of the eddies is
 557 smaller than in the regime with a single equilibrium, which could perhaps account for the fact
 558 that the deterministic model is more accurate in the former regime. Observational estimates
 559 suggest that up to 30% of the variability of the Atlantic Meridional Overturning Circulation
 560 (AMOC) is driven by ocean eddies, with the rest driven by atmospheric noise (Hirschi *et al.*
 561 2013, Sonnewald *et al.* 2013).

562 Though the Gaussian stochastic model gives a good approximation of the core of the cli-
 563 matological distribution, the rare event probabilities are inaccurate. In the single-equilibrium
 564 regime there is no clear trend in the behavior. The Gaussian model overestimates rare event
 565 probabilities on one side of the mean, and underestimates on the other side. This inaccuracy
 566 manifests for short time transient behavior to even with a short lead time. The Gaussian
 567 model gives inaccurate predictions for the probability of a rare event. Surprisingly, despite
 568 overestimating the climatological rare event probability for one kind of event, in a rare event
 569 forecasting configuration the Gaussian model systematically underestimates the rare event
 570 probability for both kinds of events (i.e. events above and below the climatological mean).

571 In the regime with two stable equilibria the rare events of interest are the transitions between
 572 the two. Despite the fact that the amplitude of the eddy noise in this regime is smaller than the
 573 amplitude of the atmospheric noise, clear differences were observed in the rates of transition
 574 from the neighborhood of one equilibrium to another: the deterministic model had the rarest
 575 transitions, and the Gaussian model still made transitions less frequently than the full model.

576 In the single-equilibrium regime, significant differences in the rare-event dynamics of
 577 three models were only found in the x variable, which describes the temperature difference
 578 between the poleward and equatorial boxes. The amplitude of the eddy noise in the salinity
 579 equation was an order of magnitude smaller than the amplitude of the atmospheric noise, and
 580 the latter dominated despite the long-tailed non-Gaussian statistics of the noise in the full

581 model. In contrast, the amplitude of the eddy noise in the temperature equation was closer to
 582 the amplitude of the atmospheric noise, and the effects of non-Gaussianity in the noise were
 583 evident in the rare-event statistic. In the regime with two stable equilibria the rare events
 584 are transitions between neighborhoods of the two equilibria, and they are most prominent in
 585 the salinity rather than the temperature. The amplitude of the eddy noise in this regime is
 586 smaller than the amplitude of the atmospheric noise by a factor of about 6, but the long-tailed
 587 non-Gaussianity of the eddy noise is still able to have an impact on the rare event probability.

588 The goal of the investigation was to investigate the qualitative impacts of non-Gaussian eddy
 589 noise of the type observed by Grooms (2016) in a simple model, compare to models
 590 with Gaussian noise and without eddy noise. The extreme simplicity of the model precludes
 591 confident extrapolation to more complex and comprehensive ocean models. Nevertheless, the
 592 results suggest that Gaussian stochastic parameterizations in ocean general circulation models
 593 may be able to successfully produce the day-to-day variability associated with the core of the
 594 climatological distribution but that more accurate non-Gaussian models may be needed to
 595 correctly model rare events. Such rare events include extreme behavior like droughts and
 596 heat waves, as well as abrupt transitions between climate regimes. The impact of stochastic
 597 parameterizations on rare event distributions in climate models has only recently begun to be
 598 investigated (Tagle *et al.* 2016).

599 The qualitative impact of non-Gaussian eddy noise seems to depend on the relative ampli-
 600 tude of that noise in comparison with atmospheric noise. If the eddy noise is signifi-
 601 cantly smaller than the atmospheric noise, then it will presumably have little impact on the
 602 variability of the system. The parameters used here (2) to describe the amplitude of atmo-
 603 spheric and eddy noise are drawn from the literature. There are necessarily imprecisions
 604 *et al.* (2013) and Sonnewald *et al.* (2013) argue on the basis of observations that up to 30%
 605 of the variability of the Atlantic Meridional Overturning Circulation (AMOC) is driven by
 606 ocean eddies, with the rest driven by atmospheric noise. Our results suggest that there should
 607 be qualitative differences between the rare event probabilities of systems with Gaussian and
 608 non-Gaussian eddy models even for noise as small as 30%.

609 Acknowledgments

610 IG is grateful to F. Bouchet for a discussion of the methods from Bouchet *et al.* (2016) that
 611 are applied here. G is supported by NSF OCE grant 1736708. WB is supported by NSF
 612 EXTREEMS grant 1407340.

613 References

614 Andrejczuk, M., Cooper, F., Juricke, S., Palmer, T., Weisheimer, A. and Zanna, L., Oceanic stochastic param-
 615 eterizations in a seasonal forecast system. *Mon. Weather Rev.*, 2016, **144**, 1867–1875.

616 Berner, J., Achatz, U., Batt, L., Bengtsson, L., de la Cmara, A., Christensen, H.M., Colangeli, M., Coleman,
 617 D.R.B., Crommelin, D., Dolaptchiev, S.I., Franzke, C.L.E., Friederichs, P., Imkeller, P., Jirvinen, H., Juricke,
 618 S., Kitsios, V., Lott, F., Lucarini, V., Mahajan, S., Palmer, T.N., Penland, C., Sakradzija, M., von Storch,
 619 J.S., Weisheimer, A., Weniger, M., Williams, P.D. and Yano, J.I., Stochastic Parameterization: Toward a
 620 New View of Weather and Climate Models. *Bull. Amer. Meteorol. Soc.*, 2017, **98**, 565–588.

621 Bouchet, F., Grafke, T., Tangarife, T. and Vanden-Eijnden, E., Large deviations in fast-slow systems. *J. Stat.
 622 Phys.*, 2016, **162**, 793–812.

623 Brankart, J.M., Candille, G., Garnier, F., Calone, C., Melet, A., Bouttier, P.A., Brasseur, P. and Verron, J.,
 624 A generic approach to explicit simulation of uncertainty in the NEMO ocean model. *Model Dev.*,
 625 2015, **8**, 1285.

626 Buzzi, R., Miller, M. and Palmer, T., Stochastic Simulation of Model Uncertainties in the ECWMF Ensemble
 627 Prediction System. *QJR Meteorol. Soc.*, 1999, **125**, 28887–2908.

628 Cessi, P., A simple box model of stochastically forced thermohaline flow. *J. Phys. Ocean.*, 1994, **24**, 1911–1920.

629 Cooper, F.C., Optimisation of an idealised primitive equation ocean model using stochastic parameterization.
 630 *Ocean Model.*, 2017, **113**, 187-200.

631 Cotter, C.J., Gottwald, G.A. and Holm, D.D., Stochastic partial differential fluid equations as a diffusive limit
 632 of deterministic Lagrangian multi-time dynamics. *P. R. Soc. A*, 2017, **473**.

633 Deshayes, J., Tréguier, A.M., Barnier, B., Lecointre, A., Sommer, J.L., Molines, J.M., Penduff, T., Bourdallé-
 634 Badie, R., Drillet, Y., Garric, G. et al., Oceanic hindcast simulations at high resolution suggest that the
 635 Atlantic MOC is bistable. *Geo. Res. Lett.*, 2013, **40**, 3069-3073.

636 Freidlin, M. and Wentzell, A., *Random perturbations of dynamical systems*, Third revised and enlarged edition
 637 edn, 2012 (Springer).

638 Grooms, I., A Gaussian-product stochastic Gent-McWilliams parameterization. *Ocean Modelling* 2016, **106**,
 639 27-43.

640 Grooms, I., Lee, Y. and Majda, A.J., Numerical schemes for stochastic backscatter in the inverse cascade of
 641 quasigeostrophic turbulence. *Multiscale Model. Sim.*, 2015, **13**, 1001-1021.

642 Held, I.M., The gap between simulation and understanding in climate modeling. *B. Am. Meteorol. Soc.*, 2005,
 643 **86**, 1609-1614.

644 Higham, D.J., Mao, X. and Stuart, A.M., Strong convergence of Euler-type methods for nonlinear stochastic
 645 differential equations. *SIAM J. Numerical Analysis*, 2002, **40**, 1041-1063.

646 Hirschi, J., Blaker, A., Sinha, B., Coward, A., de Cuevas, B., Alderson, S. and Madec, G., Chaotic variability
 647 of the meridional overturning circulation on subannual interannual timescales. *Ocean Science* 2013, **9**,
 648 805-823.

649 Holm, D.D., Variational principles for stochastic fluid dynamics. *P. R. Soc. A*, 2015, **471**, 20140963.

650 Hutzenthaler, M., Jentzen, A. and Kloeden, P.E., Strong and weak divergence in finite time of Euler's method
 651 for stochastic differential equations with non-globally Lipschitz continuous coefficients. *Proc. R. Soc. Lond.
 652 Ser. A Math. Phys. Eng. Sci.*, 2011, **467**, 1563-1576.

653 Juricke, S., Palmer, T.N. and Zanna, L., Stochastic Subgrid-Scale Ocean Mixing Impacts on Low-Frequency
 654 Variability. *J. Climate*, 2017, **30**, 4997-5019.

655 Khasminskii, R., *Stochastic stability of differential equations*, Second edition edn, 2012 (Springer).

656 Kloeden, P.E. and Platen, E., *Numerical Solution of Stochastic Differential Equations*, 1992 (Springer).

657 Lamba, H., Mattingly, J.C. and Stuart, A.M., An adaptive Euler-Maruyama scheme for SDEs: convergence
 658 and stability. *IMA Journal of Numerical Analysis*, 2007, **27**, 479-506.

659 Leutbecher, M., Lock, S.J., Ollinaho, P., Lang, S.T., Balsamo, G., Bechtold, P., Bonavita, M., Christensen,
 660 H.M., Diamantakis, M., Dutra, E., English, S., Fisher, M., Forbes, R.M., Goddard, J., Haiden, T., Hogan,
 661 R.J., Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S., Massart, S., Sandu, I., Smolarkiewicz, P.K., Subramanian, A., Vitart, F., Wedi, N. and Weisheimer, A., Stochastic representations of
 662 model uncertainties at ECMWF: State of the art and future vision. *QJR Meteorol. Soc.*, 2017.

663 Mao, X. and Szpruch, L., Strong convergence and stability of implicit numerical methods for stochastic differ-
 664 ential equations with non-globally Lipschitz continuous coefficients. *Journal of Computational and Applied
 665 Mathematics*, 2013, **238**, 14-28.

666 Mattingly, J.C., Stuart, A.M. and Higham, D.J., Ergodicity for SDEs and approximations: locally Lipschitz
 667 vector fields and degenerate noise. *Stochastic processes and their applications*, 2002, **101**, 185-232.

668 M'emin, E., Fluid flow dynamics under location uncertainty. *Geophysical & Astrophysical Fluid Dynamics*, 2014,
 669 **108**, 119-146.

670 Monahan, A.H., Alexander, J. and Weaver, A.J., Stochastic models of the meridional overturning circulation:
 671 time scales and patterns of variability. *Philosophical Transactions of the Royal Society of London A:
 672 Mathematical, Physical and Engineering Sciences*, 2008, **366**, 2525-2542.

673 Monahan, A.H. and Culina, J., Stochastic averaging of idealized climate models. *J. Climate*, 2011, **24**, 3068-
 675 3088.

676 Monahan, A.H., Correlation effects in a simple stochastic model of the thermohaline circulation. *Stochastics
 677 and Dynamics*, 2002, **2**, 437-462.

678 Monahan, A.H., Timmermann, A. and Lohmann, G., Comments on Noise-induced transitions in a simplified
 679 model of the thermohaline circulation. *J. Phys. Ocean.*, 2002, **32**, 1112-1116.

680 Orrell, D., Smith, L., Barkmeijer, J. and Palmer, T., Model error in weather forecasting. *Nonlinear Proc.
 681 Geophys.*, 2001, **8**, 357-371.

682 Palmer, T., Shutts, G., Hagedorn, R., Doblas-Reyes, F., Jung, T. and Leutbecher, M., Representing model
 683 uncertainty in weather and climate prediction. *Annu. Rev. Earth Planet. Sci.*, 2005, **33**, 163-193.

684 Papanicolaou, G. and Kohler, W., Asymptotic theory of mixing stochastic ordinary differential equations.
 685 *Communications on Pure and Applied Mathematics*, 1974, **27**, 641-668.

686 Pavliotis, G. and Stuart, A., *Multiscale Methods: Averaging and Homogenization*, 2008 (Springer).

687 Porta Mana, P. and Zanna, L., Toward a stochastic parameterization of ocean mesoscale eddies. *Ocean Model.*,
 688 2014, **79**, 1-20.

689 Rahmstorf, S., Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological
 690 cycle. *Nature*, 1995, **378**, 145.

691 Resseguier, Y., M'emin, E. and Chapron, B., Geophysical flows under location uncertainty, Part I: Random
 692 transport and general models. *Geophys. Astro. Fluid*, 2017, **111**, 149-176.

693 Schmitt, R.W., Salinity and the Global Water Cycle. *Oceanography*, 2008, **21**, 12.

694 Sonnewald, M., Hirschi, J.J.M., Marsh, R., McDonagh, E.L. and King, B.A., Atlantic meridional ocean heat

695 transport at 26N: impact on subtropical ocean heat content variability. *Ocean Science*, 2013, **9**, 1057-1069.

696 Stammer, D., Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter
697 measurements. *J. Phys. Ocean.*, 1997, **27**, 1743-1769.

698 Stommel, H., Thermohaline convection with two stable regimes of flow. *Tellus*, 1961, **13**, 224-230.

699 Sura, P., Newman, M., Penland, C. and Sardeshmukh, P., Multiplicative noise and non-Gaussianity: A paradigm
700 for atmospheric regimes?. *J. Atmos. Sci.*, 2005, **62**, 1391-1409.

701 Tagle, F., Berner, J., Grigoriu, M.D., Mahowald, N.M. and Samorodnitsky, G., Temperature Extremes in the
702 Community Atmosphere Model with Stochastic Parameterizations. *J. Climate*, 2016, **29**, 241-258.

703 V'elez-Belchí, P., Alvarez, A., Colet, P., Tintoré, J. and Haney, R., Stochastic resonance in the thermohaline
704 circulation. *Geo. Res. Lett.*, 2001, **28**, 2053-2056.

705 Williams, P.D., Howe, N.J., Gregory, J.M., Smith, R.S. and Joshi, M.M., Improved Climate Simulations through
706 a Stochastic Parameterization of Ocean Eddies. *J. Climate*, 2016, **29**, 8763-8781.

707 Zanna, L., Mana, P.P., Anstey, J., David, T. and Bolton, T., Scale-aware deterministic and stochastic
708 parametrizations of eddy-mean flow interaction. *Ocean Model.*, 2017, **111**, 66-80.