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A system of stochastic differentiaéquations is formulated describing the heat and salt content of a two-
box ocean. Variability in the heat and salt content and in the thermohaline circulation between the boxes
is driven by fast Gaussian atmospheric forcing and by ocean-intrinsieddy-driven variabilityThe eddy
forcing of the slow dynamics takes the form ofa colored, non-Gaussian noiseThe qualitative effects of

this non-Gaussianity are investigated by comparing to two approximate modetme that includes only

the mean eddy effects (the ‘averaged modeland one that includes an additionalGaussian white-noise
approximation of the eddy effects (the ‘Gaussian modelBoth of these approximate models are derived
using the methods of fast averaging and homogenization.

In the parameter regime where the dynamics has a single stable equilibrium the averaged model has too
little variability. The Gaussian model has accurate second-order statistics, but incorrect skew and rare-event
probabilities. In the parameter regime where the dynamics has two stable equilibria the eddy noise is much
smaller than the atmospheric noiseThe averaged,Gaussian, and non-Gaussian models allhave similar
stationary distributions, but the jump rates between equilibria are too small for the averaged and Gaussian
models.

Keywords: Slow-fast systems; averaging; homogenization; stochastic differential equations; ocean
modeling

1. Introduction

H. Stommel (1961) developed a conceptual model of the global ocean thermohaline circulation
that consists of a system of ordinary differential equations modeling the heat and salt content
of two containers (‘boxe®©he box models the equatooeéanand the other models the
extra-tropicabceanThe boxes exchange heat and freshwater with each other and with the
atmospherelhe rate of flow between the boxes is proportiobalthe density difference

between the boxes, and a major result of Stommel’s investigation was that in some parameter
regimes the system exhibits two equilibria: one analogous to the current climate, with dense
cold water sinking at high latitudesd one corresponding to a very different regime with

dense salty water sinking in the equatorial ocean. In general, the goal of studies using extremely
simplified models like Stommel’s is to observe and understand qualitative features that might
inform and guide subsequent studies using more complete and more compleXmaodels.
qualitative predictions of Stommel’s model have since been verified using more complete ocean
models, e.g. Rahmstorf (1995) and Deshayes et al. (2013).

The present investigation develops a modetly related to Stommel’s where the slow,
density-driven exchange of heat and salt between the boxes is augmented by fast, non-Gaussian
stochastic processes representing eddy-driven heat and salt transport. Eddies smaller than the
grid scale otomprehensive numerigaéan (and atmosphere) models can have significant
impacts on the globairculationand modeling the impacts of these unresolved eddies is a
topic of continuing research; Berner et al. (2017) and Leutbecher et al. (2017) contain reviews
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of stochastic models of eddy effects from an operational modeling perspective.

The second author recently proposed a non-Gaussian model of the heat and salt transport
associated with unresolved ocean eddies (Grooms 2016). In this model, the eddy velocity and
density fields (the latter linearly related to temperature and salinity) are modeled as cen-
tered Gaussian random fields, and the transports are modeled as the product of eddy velocity
and densityThe product ofcenteredjointly Gaussian random variables has a distinctive,
non-Gaussian probability densiwth a logarithmic singularity at the origin and skewed,
algebraically-modulated exponemteaby in the tailsThis non-Gaussian mod# signifi-
cantly different from recent Gaussian stochastic modsldpfransporte.g.Andrejczuk
et al. (2016), Williams et al. (2016) and Juricke et al. (2017). The present investigation is mo-
tivated by the desire to observe the qualitative effects of the kind of non-Gaussian transport
from Grooms (2016) in an extremely simple model, in particular by comparison to Gaussian
stochastic models, with the expectation of informing future investigations using more complex
models.

A very wide range of stochastic parameterizations for ocean models of various resolutions
with various kinds ofsaussian and non-Gaussian noise are currently under development,
e.g.Porta Mana and Zanna (2014Y%anna etal. (2017) M emin (2014Resseguier edl.

(2017), Grooms et al. (2015), Holm (2015), Cotter et al. (2017), Cooper (2017), and Brankart
et al. (2015), in addition to those cited previously and many more too numerous to cite. The
present study is intended to investigate the qualitative differences between a stochastic pa-
rameterization with a specific kind of non-Gaussian noise from Grooms (2016), a deterministic
parameterization, and a Gaussian stochastic parameterization in a highly idealized model. As
noted by Held (2005), the relationship of highly idealized models like the Stommel model to
more complex and comprehensive climate models is analogous to the relationship between the
fruit fly Drosphila melanogaster and Homo sapleng.few specific conclusions about the

latter can be drawn from the former, but the study of the former is nevertheless invaluable in
developing a broader understanding of generic features of biology.

Severabuthors have developed stochastic versions of Stommel’sonmogedtigate the
slow response dhe ocean thermohaline circulation to fast atmospheric for@n@essi
(1994), V' elez-Belchi et al. (2001), Monahan (2002), Monahan et al. (2002) and Monahan and
Culina (2011). In these stochastic Stommel models the atmospheric heat and freshwater fluxes
in Stommel’s model are replaced by Gaussian stochastic noise terms, resulting in a system of
stochastic differentieduations (SDEs)The modeldeveloped here attempts to understand
a qualitatively different physipedcessfast eddy transporfince the eddies are typically
faster than the global thermohaline circulation, the new model has the form of a slow-fast sys-
tem, where eddy variables evolve on a fast time scale and converge towards a jointly Gaussian
distribution conditioned on the slow variables. The slow variables (the heat and salt difference
between the boxes) are impacted by quadratic proddeist efariables modeling the fast
eddy transport. The formal theory of fast averaging (Papanicolaou and Kohler 1974, Pavliotis
and Stuart 2008, Freidlin and Wentzell 2012), is used to generate approximate slow systems
for comparison: one with a drift correction and one with both drift and diffusion corrections
derived from the eddy dynami@hese approximate systems qualitatively represent more
complete ocean models witbspectivelydeterministic and Gaussian stochastic models of
the eddy transport.

A new stochastic Stommel model including fast eddy transport is developed in §2. The two
approximate models of the slow system are derived in §3. The numerical methods and exper-
imentalconfiguration are described in §4 and the results of these simulations are described
in §5. A slightly different model with two stable equilibria is formulated and simulated in §6.
The results and their implications are discussed in §7.
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2. Formulating a Slow-Fast Two-Box Stochastic Ocean Model

This section recalls the derivation of the ori§mehmemodelby considering the conser-

vation ofheat and salt in an ocean basin divided into two subdomains that exchange heat
and salt with each other, and are forced by heat and freshwater fluxes from the atmosphere.
The novel componenbf the derivation isto add stochastic eddy-driven fluxegtween

the subdomain€onsistent with the goafF this investigation the eddy-driven exchange is
constructed as the product of centered Gaussian eddy velocity, heat, and salt anomalies; the
flux distribution is thus qualitatively similar to the flux distributions recently observed by
Grooms (2016). Naturally, other eddy flux models are possible; a Gaussian white noise model
is, for example, derived in §3.

Consider a domain [@] x [0, x [0, H] representing an ocean basin, and let this domain
be partitioned into two subdomains,{0xL[0, '] x [0, H] and L [(", ] x [0, H] with
volumes= Ly 'H and ¥ = Lx(L,—")H. The first box (index 1) will represent the equatorial
side of the ocean basin, and the second (index 2) will represent the poleward side. The domain
is filled with a fluid whose density is related to its temperature and salinity via

p=pll+eglS—-%)—all—-T)l

where g = 1029 kg/m is a constant reference densfiy,= 5 C and Sp = 35 psu are a
constant reference temperature and salinity (psu are psadindal unitsfor the present
purposes it is reasonable to use the simplification 1 psu = 1 g/kg3, And>xaI0 psul

and or = 1.7 x I C~! are coefficients of haline and thermal expansion. The conservation
equations for heat are in the form of a system of two differential equations

ar; 1 Fr d, 1, Fr
dt T GV dt E(Tz 7-2>|()_'_,<3()c:ﬁ,vz

where T and T; are the mean temperature in each boxjs the timescale afelaxation
towards an externally-specified atmospheric temperatuce F 4000 J/kg is the heat
capacity of seawater (e.gp¥hT1 is the heat content of the equatorial box), anid the
heat flux from the equatorial box to the poleward box. The total hegh@4itentbp,)
thus depends only on the external forcing.

Similarly, the conservation equations for salt are

ds; 1 ds; 1

gt ~ 2 O=6 G=—5FO+k
where F (t)/2 is the external freshwater forcing in the equatorial box (e.g. rain, runoff, evap-
oration) and § is the salt flux from the equatormx to the poleward boXhe external
freshwater forcing is assumed not to change the net salt cautéhat S + S, remains
constant in time.

Following Stomm€[1961),the heat and salt fluxes between the boxes are assumed to
depend only on the temperature and salinity differences between the boxes. As a result, the
temperature and salinity differences between the boxes decouple from the net heat and salt
content. Defining AT =F T, and AS = § — S,

daT 1 . 1 1
ur = ?T(AT AT %) pocpv1+pocpv2 Fr
dAS

Similar to Cessi (1994) and V elez-Belchi et al. (2001), the atmospheric temperature difference
AT * and externafreshwater forcing F (t) are here modeled as constant mean terms plus
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Gaussian white noise, leading to

1 —_— 1 1 OAT
dAT = —— (AT — AT *) — + Fr dt +¥=—dW,
TT( ) V1 PGV T Tr AT

dAS = F— 2F dt +g%dWA5.
d

The amplitude ofhe atmospheric heat flux noise forcing is here scalé/dﬁbyso that it
generates temperature perturbations of amplitpdever a time period of length; the
atmospheric freshwater flux noise is similarly scaled to generate perturbations of amplitude
ops over a diffusive timg defined below.

In Stommel’s originahodelthe fluxes between the boxes consistifbfisive fluxes pro-
portionalto the temperature and salinity differenaas, advective fluxes associated with
the large-scale ocean circulation whose rate is propomidhalmagnitude of the density
difference between the boxes

LI B S S N
PGVl PGV T4 TaarAT *

W TooarAT *

where gis the time scale of diffusive transpuris the time scale of advective transport,
and

Ap = plasAS — arAT ]

is the density difference between the boxes. Cessi (1994) used a smoother formulation, which
does not qualitatively change the results

LI Fr = 1, ;Apz AT
PoGV1 PGV T Ta(poar AT %)2

W T(oparAT¥)

The novelcontribution to the modetade here consists dfe addition ofast variables
crudely representing eddy velodifytemperatureo and salinity § anomalies at the in-
terface between the boxes. The eddy-induced fluxes between the boxes will be modeled as an
addition to the slow diffusive and advective fluxes

1 1 1 1 1 1

+ Fr= —4+——=_ _Ap?2 AT+ <+ Ve,
Vi | Vs T T lpoarAT H2F Ly—""°°
_ 1 , 1.1

The prefactors of * + (L, — "J! account for the fact that the boxes need not have equal
volumeand that totaheat and salt need to be conserFed.simplicityonly " = L,/2 is
considered from here on.

In general the flux between the boxes should be desc(frbqﬁ b dzdx where vand T
are evaluated at y = " #2L Our formulation amounts to a severe simplification that ignores
the spatial structure of the eddy velocity and temperature perturbations between the boxes,
and considers them only as zero-mean jointly-Gaussian variables. This level of simplification is
consistent with the simplification of the ocean to two well-mixed boxes in the original Stommel
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modeland is guided by the desire to investigate the qualitative effects of Gaussian-product
noise, since eddy noise with this structure was recently observed by Grooms (2016).
The fast eddy velocity will be modeled as an Ornstein-Uhlenbeck process

r_
1 2
dVe - _?eVedt + ?eo'vdWV

where gis the eddy time scale angig the eddy velocity scatdosen to be 15 days and

10 cm/s, respectively (Stammer 1997). The eddy velocity can here be thought of as being set
by wind-driven processes independent of the density difference betweenThis xoaes.
simplification of the more complex reality where eddy kinetic energy and time scale depend
also on the large-scale density gradient. The following model of the eddy dynamics is perhaps
more qualitatively appropriate

s
dw. = —%dt + 2(1 + pte) HAP)

e Te

aw,

where u > 0 is a parameter representing the sensitivity of the eddy variance to the large-scale
density gradient. This model is not pursued further here, in part because of the difficulties in
guaranteeing its ergodicity and in finding a robust numerical method for its solution.

The eddy temperature and salinity anomalies will be modeled as resulting from eddy trans-
port across the large-scale gradients

dTe Te 2AT

dt T ¢ Ly’

dSe  Se 2AS

dat = w L,
The relaxation towards zero on a time scaleafualitatively represents the falhge of
dissipative processes acting on temperature and salinity anonesitestie towards small
scales and eventual diffusion, and atmospheric damping of thermal anomalies, etc. The time
scale gshould not be associated with any particular physical process, but instead guarantees
decorrelation of eddy anomalies on the time.shimiee that the lack of white noise forcing
in the equations fo,and & implies that the amplitude of the eddy terms is governed by
oy; if o, = 0 then the eddy terms disappear, leaving the usual Stommel model.

The governing equations are nondimensionalized using the diffusive time scale for t, the ex-
ternal constant atmospheric temperature differehee20rC for large-scale temperature,
and the convenient salinity sgal@ #a s = 4.5 psu for large-scale salinity. The mean atmo-
spheric forcingis assumed to be 4.5 psu per diffusion time so that its nondimensional value
is 1, following Cessi (1994) and V elez-Belchi et al. (2001). The eddy V= loaityimen-
sionalized using the eddy velocity scdtendll be convenient to scale the eddy temperature
and salinity variables differensfyecificallyl. will have dimensions AT ,/(0,1y) and &
will have dimensionsX *L ,/(as0,Ty). The reason for this unexpected scaling will be com-
mented on shortly.

Following traditional notation, the nondimensional temperature difference will be denoted x
and the nondimensional salt difference will be denoted y. The nondimensional eddy variables
will drop their subscripts e so that, e.g., the nondimensional eddy velocity is simply v. Risking
confusionthe nondimensionéime will still be denoted tThe complete nondimensional
system is therefore
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1 T
dx = ——(x — 1) = [1 46 — y¥Ix + 4vTdt + —odWy (1a)
T T
dy = 1 —[1 +Rx — yFly + 4vSdt + gdW, (1b)
r _
dv = Ydt+ Zdw, (1c)
dT = =1 T+ 2Pvx dt (1d)
ds= -t s+ 2Pvy dt (le)
173 where
_E % op, =l p %W p_Vp
T_Td’ - Td, a_Tar e — Ly’ - e-

172 P and P. are P eclet numbers comparing the time scdéeg@fscale advective transport

175 and fast eddy transport to the time scale of diffusion, respectively. The nondimensional noise
176 amplitudes are.e= onr /AT *and g = asops /(A TAT ¥).

177 The following parameter estimates are drawn from C&99i4) and Velez-Beldtial.

178 (2001),and are consistent with the more recent observatamalysis ofSchmitt (2008).

179 The diffusive time scaleytis approximately 220 yeamsnd the time scale ofarge scale

180 advectiongTis approximately 35 yeat®ssi(1994) estimates to be 25 daydut V' elez-

181 Belchietal. (2001) argue convincingly that large-scale temperature anomalies are damped
182 0N a slower time scale @pproximately 220 days.elez-Belclet al. (2001) used salinity

183 Noise whose nondimensional amplitude is her@® 15, and assuming that fast atmospheric

184 temperature fluctuations lead to perturbations on the order of 0.07 C implies nondimensional
185 thermalnoise has amplitude,o= 0.005.Finally, using a length scale appropriate to the

186 global oceans,[~ 8, 250 km leads to the following set of parameters which are adopted for
187 the remainder of the investigation

1 1 p
"7 400 ~ 5000 °
188 The reason for scaling S and T differently from AS and AT should now be cfeirtie®
189 same order of magnitude a$, implying that both terms in the evolution equations for S
190 and T are of comparable magnitude.
191 For the parameters (2) the system (1) has three equilitmdaofwhich are stablélhe
192 equilibria alhave v, T, S = Oand the stable equilibria occur at (x, y) = (0.989, 0.22) and
103 (X, y) = (0.998, 1.00). In the absence of eddy dynamics, one would expect small atmospheric
194 hoise to lead to jumping between the two stable equilibria of the yisteas the focus
105 Of Cessi (1994), Monahan (2002), Monahan et al. (2002) and Monahan and Culina (2011).
196  The existence of multiple equilibria is intrinsically tied to the nonlinear terms that model
197 Slow advective exchange between the bésdfhe exchange between the boxes becomes
108 dominated by diffusion instead of advectior (B one of the stable equilibria disappears
199 in a reverse saddle-node bifurcation leaving a single stable equilibrium.

=6, P = 80, ox = 0.005,0, = 0.15. (2)

200 Equations (1d) and (1e) lack noise terms, implying that the classical conditions for ergodicity
202 (Khasminskiiz012) do not apply¥onditions for ergodicity this type ofsystem o6DEs

203 can be found in Mattingly et al. (2002). The first condition is that there is an inner-product

204 Norm k-k such that hu, F (u)i = a — BKaksome a, B > 0 where u is a vector containing
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the dependent variables and F (u) is the dHifis straightforward to verify that ktik

xX2+y?+v 2+(2/P 2)(T?+S5?) satisfies this condition. The second condition is that the vectors
{p, [[F ;@ pl} spaR> where pi =1, 2, 3 are the columns of the diffusion matrix, which

are here proportional to the first three standard basis vectors, and [, -] is a Lie bracket. Since
[[F, g, pl and [[F , A p] are proportiondlo the fourth and fifth standard basis vectors,
respectively, the system satisfies the conditions of Mattingly et al. (2002) for ergodicity.

3. Two Approximate Slow Models

In this section two systems &DEs are derived approximating the evolutiomihaf slow

variables x and y in (1). The system of SDEs (1) with parameters (2) has three time scales since
< 71 1: xevolves significantly more quickly thayeyslower than the eddy variables

v, T ,and S. Many previous investigations (which lacked the eddy variables) accounted for

the scale separation somewhat crudely by setting x = 1, and focused on the dynamics of the
slowest variable y, e.g. Cessi (1994), Monahan (2002), Monahan et al. (2002), and Monahan

et al. (2008). The analysis of Monahan and Culina (2011) is more careful, employing the same
methods used here but for the system without eddy variables and in theditiThis

section considers the limit - 0 while holdindixed.

The two approximate models are derived using standard approximations for slow-fast sys-
tems (Papanicolaou and Kohler 1974, Pavliotis and Stuart 2008, Freidlin and Wentzell 2012).
The presentation here follows the convenient review found in Bouchet et dhdZ6i-6);
mulas are derived in a straightforward manner using tmyngbtotic methods applied to
the backwards Kolmogorov equation for the system (for details, see the appendices of Bouchet
et al. (2016)).

The first approximation is derived via simple averaging. In the limit — 0 the eddy variables
are well approximated as solutions to (1c)-(1e) with x and y considered constant. Curiously,
although the fullystem (1) has a smooth invariant measure the system (1c)-(1e) does not:
the long-time limiting distribution of v, T, and S is jointly Gaussian with a singular covariance
matrix. In light of this, the following noise-augmented system is considered instead

r_

dv = Yt + 2dw, (3a)
r _

dT = -1 T+ 2Pvx dt+ 20 dWr (3b)
r _

ds= -1 s+ 2Pvy dt + %5 dWs (3¢)

and the limit o- 0 is taken after the fact.
The invariant measure of (3) is Gaussian with zero mean and covariance

| 1 —P2x —P2%y 3

5 _P2% 2P+ ? 2Py . (4)
—P2y 2P%y 2P%° + &

The averages dhe terms vT and vS in the slow equations with respect to the invariant
measure of the fast system are simpRx aRd —P%y, respectively. It is worth noting that
these values are independent of the auxiliary noise amplitseeiog these into the slow
equations leads to the following approximate model
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239 Deterministic Approximation
1 "1
dx = ——(x — 1) = [1 4.6 — y¥Ix — 4Bx dt + —odWy (5a)
T T
dy = 1 - [1 +Rx — yfly — 4Py dt + gdW,. (5b)

220 The model (5) is referred to as the ‘deterministic’ or ‘averaged’ approximation since it models
221 the eddy terms vT and vS as deterministic functionx aid y. It is straightforward to

242 verify that this model is ergodic under the classical conditions of Khasminskii (2012).

243

244 As described in Bouchet et al. (2016), one can derive equations that approximate the varia-
245 tions of the true solution to (1) around the solution of the approximate model (5). Combining
26 the equations for the variations with the determ'u/wistic approximation leads to further cor-

247 rections in both the drift and diffusiohprder and , respectivelyhe drift correction

28 is significantly smaller than the leading-order Bluiftthe Ieadi\pg—order diffusion terms in

249 the x and y equations are of order = 0.1, and corrections of ondgrbe of comparable

250 Magnitude.

251 In order to compute the diffusion correctioitds convenient to define some notation.

252 Let Y = (v, T, SY denote the solution to the noise-augmented systebefiBe constant

253 matrices [

[
1. 1 oo51 rf 10 051
M=--52P2x10, G= Z%%00 0/
2P2y 0 1 000

254 such that the fast system (3) may be written dY = MY + GdW , where dW is a vector of
255 independent Gaussian white noises. The_solution is thus

Y(T)="8"Y+ Te""(f—s)de. (6)
0

256 The deviations of the eddy terms vT and vS from their conditional means are denoted

vT + 4Px
fFix.y. ¥Y)= vS + 4Py

257 According to Bouchet et al. (201 diffusion-corrected mofbelthe slow variables has
258 the form

dx = —i(x — 1) = [1 +,6& — y¥1x — 4Px dt
T
V. NS T
+  ax(x, Y)Wy + a x(x, y)d, + —TonWX

dy = 1 —[1 +fx — y¥ly — 4Py dt

V_ N v_ A
+ a yx(X, y)dy+ a yy(X, }/)d/Vy + q,dWy
259 where the matrix

axx @
A= SHxKy
dyx dyy

260 1S @any square root of the following symmetric positive definite matrix
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Z, h i
C= EYETDFfxy YTy ¥+ Fx,y, ¥F (x, y, Y (T))dT.
0
The matrix C is the integral of the time-lagged auto-covariance of f with x and y considered
constant. In the above expres&¥f,)denotes the expectation on Y (T ) conditioned on the
initial condition ¥; the distribution is Gaussian with mean and covariance implied by (6).
EY. denotes expectation o Whose distribution is the stationary distribution of the fast
process, in this case a zero-mean Gaussian with covariance (4). The calculation for the system
under consideration here is particularly straightforward since it requires only higher moments
of jointly-Gaussian variables. The matrix C is found to have the form

16(5Px%+ ¢#)  80P*xy
80Py  16(5Py? + @)

In this case (unlike the leading-order drift term) the linfX ig singular in the sense that
the matrix C becomes positive semi-definite. Nevertheless, a square root matrix A exists; in
the limit o—- 0 it has the form

C =

2XO
yo-

The modelfor the slow variablesvith leading-ordedrift and diffusion correctiondut
ignoring the order- drift correction) is thus

V_
A=4 5P

Gaussian Stochastic Approximation

r__

vV 1
(1 = x) = [1 4.6 — y¥1x — 4Px dt + 4 5P xdW + —o,dWy  (7a)
T

dx=i
T

vV_ n
dy = 1 —[1 +4Rx — yfly — 4Py dt + 4 5P 2ydW + g,dW,. (7b)

For x = 1 the noise amplitude\/associated with the eddies is awBithb,is slightly larger
than the ‘atmospheridoise o/ "+ = 0.1. The order- drift corrections have also been
calculated, but they are small in comparison with the leading-order terms, and have been left
out ofthe modefor simplicityThis system oSDEs is interpreted in the Ito sensghile
the drift corrections in slow-fast systems with one slow degree of freedom can be interpreted
as a correction from Stratonovich to Itidyis is no longer generally true in systems with
multiple slow degrees tetedom (Pavliotis and Stuart 2008eidlin and Wentzel2012).
It is straightforward to verify that this modislergodic under the classicabnditions of
Khasminskii (2012).

It is interesting to nofe that the Gaussian stgchastic nmedkces the eddy terms 4vT
and 4vS by —4Px(dt + 5d W ) and —4Py(dt + 5d W ).This form of subgrid-scale pa-
rameterization is qualitatively the same as that proposed in Buizza et al. (1999), where it was
proposedto multiply a deterministic parameterization (hérg bylB stochastic process
(here 1 + 5 W ). This style ofstochastic parameterization has been widely used in atmo-
spheric models (Berner et al. (2017) provides a review), and much has been made of the role
of multiplicative noise by, e.g. Sura et al. (2005). The above derivation gives an example where
this style of ad hoc parameterization is rigorously justified, though multiplicative noise with a
linear coefficient is certainly not the universal form of eddy-induced noise (see e.g. Monahan
and Culina 2011, for a counterexample).
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Recallthat for the parameters (2) the system (1) has only three equilmriafwhich
are stableThe equilibria allhave v, T, S = 0and the stable equilibria occur at (x, y) =
(0.989, 0.22) and (x, y) = (0.998, 1.00¢. deterministic and Gaussian stochastic models
have the same driftwvhich has only one equilibrium at (x, y) = (0.974, 0.@&3\ill be
verified by the results in §8e inclusion ohonlinear eddy effects completely changes the
regime of the ocean model from a regime of multiple equilibria to a regime with a single stable
equilibrium.

The averaged drift has a single stable equilibrium foP gifeater than approximately
0.117pelow this value the drift undergoes a saddle-node bifurcation that creates a pair of
equilibria near x = 1 and y = 1. To achieve such small values of P would require reducing the
eddy velocity scale from 10 cm/s to 1 cm/s, which is unrealistically small. The approximate
models derived in this section show that the mean effect of eddies is linear and diffusive. Since
a linear diffusive effect is already present in the equations (the terms —x and —y in (1a) and
(1b)),the mean eddy effect could be viewed as a double-counting of eddy-induced diffusive
exchange between the boXbkss can be rectified by eliminating the mean diffusion terms,
and such a model is formulated and studied in §6. By avoiding a double-counting of diffusive
exchange, the model in §6 allows multiple equilibria with small, yet realistic eddy amplitudes.

4. Numerical Methods

Numerical methods are needed to compare the qualitative behavior of the three models (1),
(5), and (7) . Many methods are derived based on the assumption that the drift is globally-
Lipschitz (Kloeden and Platen 1992), which is not the case here. Several more recent investi-
gations have analyzed numerical methods for SDEs whose drift satisfies a one-sided Lipschitz
condition (e.g. Higham et al. (2002) and Mao and Szpruch (2013)), but none of the models in
consideration here satisfy such a condition. A method appropriate to polynomial drifts is de-
rived by Lamba et al. (2007), but their analysis requires an invertible diffusion matrix, which
the model (1) does not have. The Euler-Maruyama method may be appropriate, but is known
to behave poorly in problems with polynomial drift (Mattingly et al. 2002, Hutzenthaler et al.
2011)In light of this,the ‘backward Eule(BE) method is used here for dHree models.

For a general system of SDEs of the form

dX = b(X)dt + Z(X)dW

the BE method takes the following form

X n+1— Ath(Xp41) = X + Z(X n)AW (8)

where At is the time step.In every simulation presented here At2 x 107%, which is
significantly smaller than the smallest time scale of the system —£. Mattifgly et al.
(2002) prove that the method is ergodic (for sufficiently é&)adind that the invariant
measure ofthe numericainethod converges to that dfe SDE as At - 0. Though the
analysis of Mattingly et al. (2002) focuses on models with additivehedsdemethod is
nevertheless applied here to the model (7) with multiplicative noise.

For the model (1), a two-step process is used to generate solutions of the nonlinear system
of equations (8First, an asymptotic approximation in the limit At = 0 is computed that
has the form X = X, + Z(X ,)AW , + O(At); this approximation is followed by a single
Newton stepFor the systems (5) and (7approximate solutions to the nonlinear systems
were generated using 10 fixed-point iterations started @tv¥n the smakltep sizethe
resulting approximations solve their respective nonlinear systems with high atberacy;
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Figure 1. Base-10 logarithm of the climatological joint probability density functions of x and y for (a) Full model (1),
(b) Deterministic approximation (5),and (c) Gaussian-stochastic approximation (7)The vertical lines are placed at
x = 0.96 and x = 0.985.

336 residuals are typically on the order of!10
337

338 5. Results

339 5.1. Climatology

320 A suite of 10,000 independent simulations was run starting from x, y, v, T, S=0att = 0.

s Data were saved for the time interval t € [4, 10], saving'®vane X06p for a spacing of

32 2 X 10% The mean and covariance appeared to have stabilized by t = 4, suggesting that the
323 data in t € [4, 10] represents the stationary climatological distribution of the system. Recalling
324 that the dimensional time unit is 220 years, this amounts to 1,320 years of data saved approx-
35 imately twice per month. The three models all have the same mean of (x, y) = (0.974, 0.094),
ss6 Which is very close to the equilibrium of the deterministic and Gaussian stochastic models at
327 (0.974, 0.093). All three models have the same marginal standard deviation of y approximately
33 equal to 0.034. This can be explained by the fact that the amplitude of the eddy noise in the y
;a9 equation is estimated in the Gaussian stochastic model 5& Bg 4 0.015 for y = 0.093,

350 Which is much less than the atmospheric noise with amplituee@15.The parameter

351 vValues (2) derived from the literature are necessarily immeci$es order of magnitude

352 difference between the eddy noise and the atmospheric noise in the y equation suggests that
353 the effects of eddy noise (Gaussian or otherwise) on the salinity dynamics obtbarreal

354 may be small in comparison with atmospheric forcing.

355 The climatologicalistributions ofthe models differ in other respedter examplethe

3s6 marginal standard deviation of x is 0.0063, 0.0035, and 0.0065 in the full, deterministic, and
357 Gaussian stochastic models, respectively. The eddy noise in the x equation is of comparable
358 Size to the atmospheric noise, and has a significant impact on the variability; the deterministic
350 model lacks this eddy noise, and has too little variability. The lack of eddy noise in the x equa-
360 tion of the deterministic model also leads to an overestimate of the correlation between x and
361 y: the full and Gaussian stochastic models have correlations 0.15 and 0.14, respectively, while
362 the deterministic modeds correlation 0.2Bhe most-probable values of the distributions

363 are (x, y) = (0.976, 0.092) for therwtlel,(0.974, 0.091) for the deterministic maae!,

364 (0.973, 0.093) for the Gaussian stochastic model; the differences in the y value are negligible,
365 but the differences in the x value are up to half of a standard deviation.

366 Time-lagged correlation functions were computed, for example Corr[x(t), x(t + T)] = C(T)
367 (stationarity is assumed). The correlation functions are all very similar across the models (not
368 shown)The correlatiop functions alkkcay monotonically to zeso,it is naturako define

s a decorrelation time by’ C(t )dT The correlation functions for y in &liree models are
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very similarwith decorrelation time approximately 22 yddrs.correlation function for

x exhibits similar rapid initiadecay in allthree modelsThe correlation function for x in
the deterministic modes a long tailwith larger long-lag correlations than the other two
modelsjeading to a decorrelation timeloé yearswhich is longer than the decorrelation
times ofthe fullmodeland Gaussian stochastic modmth ofwhich are approximately 1
year.

A simple binning procedure was used to generate approximations to the climatological prob-

ability density function (pdf) for each model; results are shown in Fig. 1, with panels (a)-(c)
presenting the futhodeldeterministic modeind Gaussian stochastic modes$pectively.
It has already been noted that the three models have the same marginal variance for y, and
indeed the range of y in the three models is quite similar. The deterministic model is clearly
under-dispersed with respect to x. The climatological distribution of the Gaussian stochastic
model has a more-accurate core, but is not skewed in the same way as the full model.

It is possible that minor deficiencies near the cotbeflistribution could be corrected
by adding order- corrections to the drift of the Gaussian stochastic rnodehe results
of Bouchet efal. (2016) indicate that such corrections moli generate correct rare-event
probabilities even in the limit —» 0. To emphasize differences in the rare event probabilities,
the probabilities ok = 0.96 and x = 0.985 were calculated for the three models (these
X values are indicated by vertidates in Fig. 1). The small-event probabilities are 0.039
for the fullmodel,less than 10* for the deterministic modalnd 0.022 for the Gaussian
stochastic model. The large-event probabilities are 0.016 for the full model, 1&$srthan 10
the deterministic modahd 0.048 for the Gaussian stochastic mbldélsurprisinglythe
deterministic approximation has too-sraedl event probabiliti@$he Gaussian-stochastic
model is more accurate, but is still incorrect by nearly a factor of 2 for small-event probabilities,
and a factor of 3 for large-event probabilities.

The system (1) has two stable equilibria, near (x, y) = (1, 1) and (1, 0.22). The simulations
described above had no trajectorieearthe stable equilibrium a€1,1); to verify that
the system does not remain near the stable equilibriuti)adt (x, y) = (1, 1),a set of
1,000 simulations ¢1) was run with initialcondition (x, y, v, T, S) = (1, 1, 0, OTigse
simulations were again run for the interval t € [0, 10], saving the output from t € [4, 10]. The
stationary distribution did not display a secondary peak neatifdicaring that the two
stable equilibria of the full model are largely irrelevant to the dynamics of the system.

5.2. Rare event forecasting

The previous section examined only the stationary climatotbsfiddutions othe three
modelsWithin a climate prediction scenasbort-term behavior is also importdsiten

that the climatological distributions differ mainly in their rare event probabilities, a separate
set ofexperiments was used to investigate the abilitlyeomodels to predict rare events

over a shorter time intervdhe goalwas to test how accurately the approximate models
forecast the probability of the unusually large and small x values over a range of forecast lead
times. Two trajectories of the system (1) were selected out of the 10,000 discussed above: one
reaching a value af< 0.96 and one reaching a valuxat 0.985These trajectories are

shown in Fig2 panels (a) and (bNote that the large-x trajectory passes the threshold of

0.985 approximately half a year before the final time, whereas the small-x trajectory crosses
the 0.96 threshold only at the last time sEepembles of 10,000 independent forecasts for

all three models were initialized from the true trajectory for a range of lead times out to 2
years. Thus, for each of the three models a 10,000 member ensemble forecast was initialized
att = —2 years and run untit = 0, and another 10,000 member ensemble forecast was
initialized at t = —1 year and run untik= 0, etc.These ensembles were used to estimate
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Figure 2. (a) and (b): x trajectories of the full model (1). (c) probability that x > 0.985 at t = 0, and (d) probability
that x < 0.96 at t = 0O for forecasts initialized from the trajectories in (a) and (b), respectively. Note that the time axes
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in (c) and (b) are different from each other and from those in (a) and (b).

the probabilities P (x(t = 0) = 0.96) for the small-event case and P (x(t = 0) = 0.985) for

the large-event case. The probabilities shown in Fig. 2c correspond to the large-x trajectory,
and those in Fig. 2d correspond to the small-x trajectory. Since the large-x trajectory crosses
the threshold nearly hafyear before the findime,all 10,000 ofhe forecasts initialized

at any lead time less than half a year in advance are already above thregbdideless,

the probability at the findime is less than one because many of the trajectories cross the

threshold back towards smaller values of x.

In both cases the forecast by the deterministic model is significantly worse that the other two
models at all but the shortest lead times. The rare-event probability forecast by the Gaussian
stochastic model, in contrast, begins to increase from its climatological value at approximately
the same time that the true forecast probability begins to increase, between 0.8 and 0.6 years in
advance for the large-x event and around 0.3 years in advance for the small-x event. Although
the actual probability assigned by the Gaussian stochastic model at relatively long lead times
is incorrect, the fact that it begins to increase at the right time could still be used qualitatively
to predict whether the modegetting close to a rare evedice the probability of a rare
event increases past about 20%, the Gaussian stochastic model uniformly under-predicts the
correct probability, despite having over-predicted the climatological probability for x > 0.985.
For example, with a lead time of about 2.5 months the Gaussian stochastic model predicts the
large-x event with probability only 53% while the true probability is in fact 67%; with a lead
time of half a month the Gaussian stochastic model predicts the small-x event with probability
only 21% while the true probability is 61Béfferences in the small-event and large-event
predictability for these two cases are probably less related to intrinsic predictability than to
the fact that the true trajectory remains above threshold for half a year before the forecast
verification time t = 0 in the large-event case, while in the small-event case the true trajectory

reaches threshold only at t = 0.

In summary, the deterministic model is essentially useless for rare-event forecasting, while
the Gaussian stochastic model is only qualitatively useful, predicting whether a rare event is

more likely but not with a robust uncertainty estimate.
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6. A model without mean diffusion

As noted at the end 0§3, the averaged effecttdfe eddies is linear and diffusikénear

diffusive terms are already included in the budgetseat and saltwith the result that

the averaged models have only one stable equilibrium unless the eddies are assumed to be
extremely weakyith velocities on the order of 1 cnifsone assumes that linear diffusive
exchange between the boxes is entirely eddy-driven then one can drop the mean diffusion
terms from the governing equations of the full model, i.e. equations (1a) and (1b) are changed
to

r __
T T

and

dy = 1 — B(x — yfy + 4vSdt + gdW, (10)

respectively. The eddy reductions proceed as before, so that the —x and —y terms are similarly
dropped from the deterministic (5) and Gaussian (7) mdéelsesulting modé$ much

more amenable to multiple equilibria. For P greater than about 0.514 there is a single stable
equilibrium with x = 1 and y = 0.B®low this value of P the system undergoes a saddle-

node bifurcation that creates a pair of equilibria near (x, y) =ttie 43ddle then moves

down towards the original equilibrium, which it joins in a reverse saddle-node bifurcation at

P approximately 0.301, below which there remains only a single equilibrium. We investigate
the system at a value @f* 32, i.e. P = 0.45, where there are three equilibria: a stable one

at (.99, .24), a saddle at (1.00, .65), and another stable one at (1.00, 1.11).

6.1. Ergodicity

Recallthat there are two conditions for ergodicitlyygfoelliptic SDEs in Mattingly et al.
(2002). The first condition is that there is an inner-product norm k-k such that hu, F (u)i =
a — Bkukfor some a, B > 0 where u is a vector containing the dependent variables and F (u)
is the drift. The second condition is that the vector{R g g1} sparR®> where gi =
1, 2, 3 are the columns of the diffusion matrix, and [+, -] is a Lie bracket. It is straightforward
to verify that the second condition is met in this model in the same way that it is met in the
original model (1).

The first condition is more difficult. We will use the inner product huywit=tpr, +
u 3v3 + (2/P 2)(usv4 + Wsvs), so we must show that there are a, B > 0 such that

hu, F (u)i — a + Bktik 0

—a+y—x(x—1¥ = Pox = yF% + y¥) — ¥ — (2/P)(T? + 57
+BOE+ Y+ v2+ (2/P )(T?+ 5%) < 0.
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Figure 3. (a) Climatological marginalprobability density functions p(y) for the three models without mean diffusion.
Climatologicaljoint probability density functions p(x, y) for (b) Fullmodel, (c) Deterministic approximationand (d)
Gaussian-stochastic approximation.

477 The terms involving the eddy variabled (\and S) will clearly pose no problem provided
a8 that B < ~1. It therefore remains to see whether one can choose a, B8 such that

—a 4y — x(x = 1 = Pa(x = y}(X® + y2) + B(X + ¥’) < 0.

479 Consider the behavior along a line through the origin in the (x, y) plane: along any line except
ss0 ¥y = X the function is a quartic polynomial that can be made negative by choosing a sufficiently
a1 large. Along the line y = x the condition reduces to

—a+ x — x(x — 1)/ + 2BX < 0.

a2 As long as B < 1/(2Z) it will be possible to choose a sufficiently large that this condition is

183 met. The model without mean diffusion terms is therefore still ergodic. Ergodicity is important
asa because it implies that there is a single climatological distribution independent of the initial
a5 conditionthe conditions dflattingly et al.(2002) further guarantee that the distribution

a6 Collapses exponentially quickly towards the climatological distribution.

ag7 6.2. Numericalexperiments

ass Ensemble simulations for the three models without mean diffusion were run with 1000 ensem-
s89 ble members each; all parameters are the same as in §5=ex3&pthe deterministic and

a90 Gaussian approximate models were initialized with x = 1, y = 0.6, while the full model was

s01 initialized with x = 1y = 0.65,and v, T, S = OAfter a burn-in of 4 nondimensioniahe

292 UnNits, the simulations were run for 500 more time units, i.e. about 110,000 years. Although the
203 models are geometrically ergodic, with distributions collapsing exponentially quickly towards
a94 the invariant distribution, this was not enough time for the approximate models to reach the
05 invariant distribution. These models were then extended for a further 500 time units, during

296 Which time their distributions convergad.full modelwas initialized closer to the saddle

297 point, so its distribution converged within the first 504 time units.
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Figure 4. Regime transitions for the three models without mean diffusiofa) A single y(t) trajectory from the full
system showing jumps between regimes. (b) The probabiliiy(p) of a transition from y(t) < 0.5 to y(t + ) > 0.8. (c)
The probability po(t ) of a transition from y(t) > 0.8 to y(t + T) < 0.5.

a8 The climatological distributions of the slow variables are shown in Fig. 3. Panel (a) shows

a99 the marginay distributions of the three modeldile panels (b)-(d) show the joint (x, y)

soo distributions. The three models are remarkably similar. Though is the same as in the previ-
so1 OUs caseR is smaller.The diffusion correction in the x equation of the Gaussian-stochastic

502 approximatiovn has amplitude5® 2x = 0.026 which is smaller than the atmospheric noise

so3 amplitude ¢/ ° 7 = 0.1;the atmospheric noise similarly dominates the y equa&&an.

soa result, the effects of eddy noise are not seen in the equilibrium distributions of the three models.
505

so6  The noise levels are low enough that the system trajectories make rare transitions between
so7 the neighborhoods of the two stable equilfigia4 panela) shows a system trajectory y

sos from the full model that jumps between regimes. The rates and paths of these transitions are
soo the subject of large deviation theory (Freidlin and Wentzell 2012). The methods of Bouchet

s10 etal. (2016) to analyze the transitions do not seem to apply directly here becdhee of

s11 inclusion of noise forcing in the slow dynamics. In any case, it is not difficult to estimate the
s12 transition probabilities from simulations. For practical purposes it was convenient to estimate
s13 the following probabilitieg(@ ) =P (y(t + ) > 0.8 | y(t) < 0.5) ad p=P (y(t + 7) <

s12 0.5 | y(tP> 0.8). These transition probabilities are plotted for the three models in&ig.

s15 panels (b) and (c)respectivelylhe effects oflifferences in the eddy noise are clébhe

s16 deterministic model has the lowest transition probabilities; the Gaussian stochastic model has
s17 _higher transition probabilities; the full model has the highest transition probabilities.

s18 7. Conclusions

s19 This paper formulates a stochastic two-box ocean model modeled after Stommel’s (1961); the
s20 modelconsists of system ob SDEs (1). Previous stochastic Stomnmabdels (e.gCessi

s21 1994V elez-Belckt al. 2001 Monahan etal. 2002 Monahan 2002Monahan and Culina

s2 2011), modeled the atmospheric heat and freshwater forcing as Gaussian stochastic processes,
523 and the exchange of heat and salt between the boxes as a nonlinear drift term corresponding
s2a to the large-scale overturning thermohaline circulgt®novelty of the formulation here

s25 IS that a fasteddy-driven component is added to the the exchange between thbdoxes.

s26 terms modeling the eddy-driven exchange are quadratic products of approximately Gaussian
s27 random variableproducts ofointly-Gaussian random fields were recently found to be an

s2s accurate model of eddy-driven exchanges in Grooms (2016).

s20  In more complete and complex ocean modlst eddy effects are frequently modeled
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deterministicallstochastic parameterizations have recently been developed that multiply
these deterministic eddy parameterizations by Gaussian random fields (Andrejczuk et al. 2016,
Juricke et al. 2017), which is a popular approach for atmospheric models based on the work

of Buizza et al. (1999) and Sura et al. (20@%ey benefit of stochastic parameterizations

in comparison to deterministic ones is the former’s ability to induce realistic variability in the
resolved scales. Models with realistic variability are needed for making forecasts with robust
uncertainty estimatashich explains the wide adoptionsbéchastic parameterizations in

weather forecasting (Buizza et al. 199€gll et al. 2001Palmer et al. 200Berner et al.

2017, Leutbecher et al. 2017).

Using methods of averaging and homogenization for slow-fast systems (Pavliotis and Stuart
2008, Freidlin and Wentzell 2012, Bouchet et al. 2016), two models were derived approximating
the evolution of the slow components (the difference in heat and salt content of the two boxes).
The first model (5) replaces the fast eddy-driven exchange terms by a fixed ‘deterministic’ drift
term, analogous to the standard approach of deterministic parameterization in more complex
ocean models. The second model (7) adds an additional multiplicative noise term accounting
for fast variations in the eddy-driven flux. A suite of simulations of each of the three models
was used to compare their qualitative behavior in a parameter regime with a single stable
equilibriumAll three models were then altered by removing an explicit representation of
diffusion and allowing all diffusive effects to be achieved completely by the eddies. Numerical
simulations of these models were used to compare their qualitative behavior in a parameter
regime with two stable equilibria.

The main results are as follow$here is little qualitative difference in the corethé
stationary distributions of the full, non-Gaussian model and the Gaussian multiplicative ap-
proximationln the regime with a single equilibrium the deterministic masébo little
variability but the Gaussian modejives an accurate climatologicean and covariance.

In the regime with two stable equilibria the climatologjstaibution ofhe three models

is nearly the sameén the regime with two stable equilibria the amplitudd@®ddies is

smaller than in the regime with a single equilibrium, which could perhaps account for the fact
that the deterministic model is more accurate in the former regime. Observational estimates
suggest that up to 30% of the variability of the Atlantic Meridional Overturning Circulation
(AMOC) is driven by ocean eddies, with the rest driven by atmospheric noise (Hirschi et al.
2013, Sonnewald et al. 2013).

Though the Gaussian stochastic mageés a good approximation of the core of the cli-
matological distribution, the rare event probabilities are inaccurate. In the single-equilibrium
regime there is no clear trend in the beha¥ierGaussian modelerestimates rare event
probabilities on one side of the mean, and underestimates on the other side. This inaccuracy
manifests for short timeansient behavior toeven with a short lead timne Gaussian
modelgives inaccurate predictionstbé probability of rare eventSurprisinglydespite
overestimating the climatological rare event probability for one kind of event, in a rare event
forecasting configuration the Gaussian medstEmatically underestimates the rare event
probability for both kinds of events (i.e. events above and below the climatological mean).

In the regime with two stable equilibria the rare events of interest are the transitions between
the two. Despite the fact that the amplitude of the eddy noise in this regime is smaller than the
amplitude of the atmospheric noise, clear differences were observed in the rates of transition
from the neighborhood of one equilibrium to another: the deterministic model had the rarest
transitions, and the Gaussian model still made transitions less frequently than the full model.

In the single-equilibrium regimnsggnificant differences in the rare-event dynantiae of
three models were only found in the x variabhéch describes the temperature difference
between the poleward and equatorial boxes. The amplitude of the eddy noise in the salinity
equation was an order of magnitude smaller than the amplitude of the atmospheric noise, and
the latter dominated despite the long-tailed non-Gaussian statishiesofse in the full
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model. In contrast, the amplitude of the eddy noise in the temperature equation was closer to
the amplitude of the atmospheric noise, and the effects of non-Gaussianity in the noise were
evident in the rare-event statistinsthe regime with two stable equilibria the rare events
are transitions between neighborhoods of the two equilibria, and they are most prominent in
the salinity rather than the temperatilihee amplitude of the eddy noise in this regime is
smaller than the amplitude of the atmospheric noise by a factor of about 6, but the long-tailed
non-Gaussianity of the eddy noise is still able to have an impact on the rare event probability.
The goal of the investigation was to investigate the qualitative impacts of non-Gaussian eddy
noise of the type observed by Grooms (2016) in a simple amatd, compare to models
with Gaussian noise and without eddy noise. The extreme simplicity of the model precludes
confident extrapolation to more complex and comprehensive ocean models. Nevertheless, the
results suggest that Gaussian stochastic parameterizations in ocean general circulation models
may be able to successfully produce the day-to-day variability associated with the core of the
climatologicalistributionput that more accurate non-Gaussian models may be needed to
correctly modetare eventsSuch rare events include extreme behavior like droughts and
heat wavess wellas abrupt transitions between climate regimesmpact of stochastic
parameterizations on rare event distributions in climate models has only recently begun to be
investigated (Tagle et al. 2016).
The qualitative impact of non-Gaussian eddy noise seems to depend on the relative ampli-
tude of that noise in comparison with atmospheric noise fifiritiegeddy noise is signifi-
cantly smaller than the atmospheric noise, then it will presumably have little impact on the
variability of the systemhe parameters used here (2) to describe the amplitude of atmo-
spheric and eddy noise are drawn from the literdtwtrare necessarily imprecBischi
et al. (2013) and Sonnewald et al. (2013) argue on the basis of observations that up to 30%
of the variability othe Atlantic MeridionaDverturning Circulation (AMOC) is driven by
ocean eddies, with the rest driven by atmospheric noise. Our results suggest that there should
be qualitative differences between the rare event probabilities of systems with Gaussian and
non-Gaussian eddy models even for noise as small as 30%.
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