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Abstract

We present an exquisite 30 minute cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh
(ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and
continuing past peak brightness. These data are supplemented by multi-color Panoramic Survey Telescope (Pan-
STARRS1) and Rapid Response System 1 and Cerro Tololo Inter-American Observatory 4 m Dark Energy Camera
(CTIO 4-m DECam) observations obtained within hours of explosion. The K2 light curve has an unusual two-
component shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic
rise as seen for typical supernovae (SNe)Ia. This “flux excess” relative to canonical SNIa behavior is confirmed in
our i-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess
peaks 2.14±0.04 days after explosion, has a FWHM of 3.12±0.04 days, a blackbody temperature of
T 17, 500 9,000

11,500= -
+ K, a peak luminosity of 4.3 0.2 10 erg s37 1 ´ - , and a total integrated energy of

1.27 0.01 10 erg43 ´ . We compare SN 2018oh to several models that may provide additional heating at early
times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these
models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance
of ∼2 10 cm12´ based on our early color measurements, although the exact distance depends on the uncertain
viewing angle. Additional confirmation of a companion interaction in future modeling and observations of
SN 2018oh would provide strong support for a single-degenerate progenitor system.

Key words: supernovae: general – supernovae: individual (SN 2018oh)
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1. Introduction

Through a combination of theoretical arguments and strong
observational constraints, it has long been understood that Type
Ia supernovae (SNe Ia) are the result of a thermonuclear
explosion of a carbon/oxygen white dwarf (WD; e.g., Hoyle &
Fowler 1960; Colgate & McKee 1969; Woosley et al. 1986;
Bloom et al. 2012) in a binary system. Nevertheless, despite
SNeIa being used to discover the accelerating expansion of the
Universe two decades ago (Riess et al. 1998; Perlmutter et al.
1999) and continuing to be a powerful dark energy probe (e.g.,
Jones et al. 2018; Scolnic et al. 2018), we still do not know the
nature of their progenitor systems, whether they come from
multiple progenitor scenarios, and if so, in what proportion.

Roughly speaking, possible SN progenitor systems can be
separated into two main classes (or channels): the single-
degenerate (SD) channel, where the primary WD accretes
material from a non-degenerate companion triggering a
thermonuclear runaway near the Chandrasekhar mass (MCh;
e.g., Whelan & Iben 1973), and the double-degenerate (DD)

channel where the SN is triggered by the merger of two WDs
(e.g.; Iben & Tutukov 1984). Numerical modeling of explo-
sions (e.g., Hillebrandt & Niemeyer 2000; Hillebrandt et al.
2013) combined with radiative hydrodynamic modeling (e.g.,
Kasen et al. 2009; Woosley & Kasen 2011; Pakmor et al. 2012;
Sim et al. 2012, 2013) indicate that the basic properties of the
SNIa population can be reproduced by either scenario.
Therefore, we must turn to observations to further constrain
the possible progenitor systems of SNeIa.

Thus far, the observations have been similarly limited, and
are often inconsistent with a single scenario. No SNIa
progenitor system has yet been directly observed in the handful
of SNeIa with reasonably deep pre-explosion images (Li et al.
2018; Goobar et al. 2014; Kelly et al. 2014; although one has
for a peculiar WD SN, the SN Iax 2012Z; McCully et al. 2014).
However, the images were not sufficiently deep to exclude all
SD progenitor systems. On a different approach, a search for
the surviving non-degenerate companion star at the central
regions of SN remnants (SNRs), believed to have a SN Ia
origin, also excludes WD + subgiant or red giant (RG) systems
(Kerzendorf et al. 2012, 2014; Schaefer & Pagnotta 2012).
Nonetheless, several indirect observations can reveal the nature
of the companion with some scenarios having specific and
distinct observational predictions.

Observing SNeIa as close to explosion as possible can
provide unique information for distinguishing between pro-
genitor scenarios. For example, the earliest moments can be
dominated by the shock cooling of the exploding WD (Piro
et al. 2010), which was used in the case of SN 2011fe to
constrain the explosion to be coming from a degenerate star
(Bloom et al. 2012). For SD progenitor systems containing a
Roche-lobe-filling companion, signs of the SN ejecta interact-
ing with the non-degenerate companion star are expected for
some lines of sight (Kasen 2010). This produces strong X-ray
and ultraviolet (UV)/optical emission that will surpass the
radioactive luminosity of the SN at these early epochs. The
amount of observed flux depends on the viewing angle and
the distance between the exploding WD and the companion—
which given the Roche-lobe overflow assumption, provides
constraints on the companion star radius. Specifically, evolved
RGs are expected to produce more flux than smaller stars.

While early excess emission is a robust prediction for the
Roche-lobe-filling SD scenarios, other physical phenomena can

possibly also produce early heating. In particular, 56Ni near the
surface (i.e., with a mass fraction exceeding that of lower
layers) should also introduce flux in excess of the canonical
“expanding fireball” model (Piro & Nakar 2013). This scenario,
which can occur for both progenitor channels, can conceal or
resemble interaction models. A specific explosion model that
can produce such a configuration is the double-detonation
explosion of a sub-Mch WD, where the detonation of a surface
helium layer will produce significant surface 56Ni (Noebauer
et al. 2017). Piro & Morozova (2016) also found that shallow
56Ni distributions and/or interaction with circumstellar material
(CSM) expelled during a DD merger can modulate the early
light curve shape.
Observations that are early enough and with sufficient

cadence to search for these early light curve features are still
relatively rare. Nearby events, such as SNe 2011fe (Nugent
et al. 2011; Bloom et al. 2012), 2014J (Goobar et al. 2014), and
ASASSN-14lp (Shappee et al. 2016) provide upper limits to the
potential separation distance of the companion, ruling out stars
that are more evolved than a RG, while for SN 2009ig, a small
blue excess is attributed to the unusual color evolution of the
particular event (Foley et al. 2012a). SNIa sample studies
(Hayden et al. 2010a; Bianco et al. 2011; Ganeshalingam et al.
2011; Tucker 2011; Brown et al. 2012) exclude RGs for a fraction
of the events, allowing less-evolved stars as companions.
On the other hand, two SNe, SNe 2012cg and 2017cbv, have

early light curves that are somewhat consistent with interaction
with a companion star. Marion et al. (2016) found that
interaction with a 6M main sequence (MS) star can explain
the early UV/optical excess of SN 2012cg. For SN 2017cbv,
Hosseinzadeh et al. (2017), analyzing many possibilities,
favored an interaction with a subgiant companion, within the
uncertainties in the modeling. Both of these interpretations
have been questioned by Shappee et al. (2018a) and Sand et al.
(2018), respectively, where the authors disfavored a non-
degenerate companion, based in part on nondetections of
stripped hydrogen or helium (within some limits) in nebular
spectra. For SN 2012fr, Contreras et al. (2018) found an initial
slow, nearly linear rise in luminosity, followed by a faster
rising phase, and attributed it to a moderate amount of 56Ni
mixing in the ejecta, while for the almost-linear rise of
iPTF 16abc, Miller et al. (2018) argued in favor of either ejecta-
mixing or pulsational delayed-detonation models. In the case of
the SN 2002es-like (Ganeshalingam et al. 2012) iPTF 14atg
(Cao et al. 2016), data are compatible with a companion at a
separation of 70Re; Kromer et al. (2016), using numerical
simulations of explosion models, found difficulties reconciling
its peculiar spectral evolution with a non-degenerate compa-
nion. Finally, Jiang et al. (2017) showed an early red flux
excess for MUSSES1604D and, comparing different scenarios,
favor a double detonation.
To search for such companion-shock emission, one would

ideally conduct a survey with continuous, high-cadence
observations to precisely constrain the explosion time and
either track or constrain any possible early-time excess flux.
The Kepler telescope (Haas et al. 2010), with its wide field of
view and 30 minute cadence continuous observations, is
particularly well suited to discover SNe within moments of
explosion and continuously monitor those SNe (for recent
transient studies with Kepler see Garnavich et al. 2016; Rest
et al. 2018a). Kepler has the ability to observe thousands of
galaxies at a time and therefore has the potential to discover
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∼10 SNe a month if the observations are devoted to relatively
nearby galaxies. During the main Kepler mission, Olling et al.
(2015) discovered three likely SNeIa with extraordinary
coverage from the moments of explosion through the rise and
decline of the SNe. Despite these extraordinary observations,
there was no significant detection of interaction.

Nevertheless, it has been demonstrated that Kepler has
unique capabilities for precise monitoring of the earliest phases
after an SN explosion. To this end, the successor of the Kepler
mission, K2, has dedicated a substantial number of targets
during Campaign 16, lasting from 2017 December 7 to 2018
February 25, to the K2 Supernova Cosmology Experiment (K2
SCE). Significant advantages of K2 SCE over previous Kepler
mission SN studies include (1) monitoring about 50 times as
many galaxies (although for a shorter time) and (2) being
“forward-facing,” where the field is pointed roughly away from
the Sun, allowing for simultaneous ground-based observations
of all transients discovered in the Campaign 16 field.

In this Letter, we present observations of SN 2018oh, a
normal SNIa whose host galaxy was monitored by the K2 SCE
starting before explosion, continuing to first light, and through
peak brightness. In addition to its impressive K2 light curve,
SN 2018oh SN was extensively monitored by many ground-
based facilities. In this Letter, we focus on the first week after
explosion. In the data, we robustly identify, with unprecedented
photometric coverage, an excess early-time rise component.

This Letter is part of a series of papers analyzing SN 2018oh:
Shappee et al. 2018b provide an alternative analysis of the K2
light curve data of the SN and Li et al. (2018) presented the
photometric and spectroscopic properties of the SN near and
after peak brightness.

This Letter is organized as follows. In Section 2, we present
the discovery of SN 2018oh and the early-time data that we use
in this Letter, including the reduction and calibration steps. In
Section 3, we describe the analysis of the early-time light
curve, while in Section 4 we propose various physical models
that explain it. Finally, in Section 5, we discuss our findings in
the context of the progenitor problem of SNe Ia, and outline
our conclusions.

Throughout this Letter, Modified Julian Days (MJDs) are
reported as observed days while phases are reported in rest frame,
unless where noted. We adopt the AB magnitude system, unless
where noted, and a Hubble constant of H 730 = km s−1Mpc−1.

2. Discovery and Early-time Observations

SN 2018oh was discovered by the All Sky Automated
Survey for SuperNovae (ASAS-SN; Shappee et al. 2014) in
images obtained on 2018 February 4.41 UT (all times presented
are UT; with discovery name ASASSN-18bt; Brown et al.
2018; Shappee et al. 2018b), at V=15.2 mag, with the last
nondetections at 2018 January 27.13. The supernova is located
at 09 06 39. 592h m sa = , 19 20 17. 47od = + ¢  (J2000.0; Cornect
et al. 2018), 7. 8 north and 2. 0 east of the center of UGC4780,
an Sdm star-forming galaxy, with a redshift of z=0.010981
and a distance of 49.4Mpc. The Milky Way reddening toward
SN 2018oh is E(B− V )=0.0368 mag (Schlafly & Finkbeiner
2011). The transient was classified on 2018 February 5 as a
relatively young (−8 to −6 days relative to peak brightness)
normal SNIa (Leadbeater 2018; Zhang et al. 2018).

UGC4780 was included as a Campaign 16 target through
“The K2 ExtraGalactic Survey (KEGS) for Transients”
(PI: A. Rest) and the “Multi-Observatory Monitoring of K2

Supernovae” (PI: R. J. Foley) programs as part of the K2 SCE

(internal Kepler ID 228682548). After the end of Campaign 16,

the data were transferred to MAST, from which we retrieved

the UGC4780 data. We produced a provisional light curve

with the “quick look” routine KADENZA
64

(Barentsen &

Cardoso 2018) by summing counts in a 5×5 pixel aperture

centered at the peak of each 30 minute image. The background

was determined by estimating the median flux of the outermost

pixels. Due to its unique observing strategy, which requires

regular thruster use to maintain pointing, K2 data suffer from a

“sawtooth pattern” and long-term sensitivity trends, partly due

to temperature changes as the Sun angle and the zodiacal light

levels change during a Campaign. In order to correct for these

effects, third-order polynomials were fit in both spatial

dimensions to remove the “sawtooth.” To account for the

long-term trends, we performed a principal-component analysis

that represents the common simultaneous trends seen in the

light curves of all the (assumed non-varying) galaxies observed

on the same chip. Through an iterative procedure, the optimal

number of principal-component analysis vectors was deter-

mined to be only one. We then determined and removed the

long-term trend for SN 2018oh. Finally, the noise was

estimated by computing the rms variation just before the

explosion and then scaling this by the square root of the galaxy

flux plus the SN flux in the aperture. For a more detailed

discussion on the K2 reduction steps, see Shaya et al. (2015).
During Campaign 16, we actively observed the K2 field with

both the Panoramic Survey Telescope and Rapid Response

System 1 (Pan-STARRS1) telescope (PS1; Chambers et al.

2016; Magnier et al. 2016; Waters et al. 2016) and the Cerro

Tololo Inter-American Observatory (CTIO) 4 m Mayall tele-

scope with the Dark Energy Camera (DECam; Honscheid et al.

2008; Flaugher et al. 2015). The main goal was to discover and

obtain multi-color light curves of transients in K2-observed

galaxies. This program was successful where we discovered

nine and eight such transients in C16 with PS1 (Smith et al.

2018) and DECam (Rest 2018; Rest et al. 2018b), respectively.

Unfortunately, immediately after the explosion of SN 2018oh,

poor weather prevented observations for seven nights. During

that gap, we did not have scheduled DECam nights either.
All PS1 and DECam images were reduced using the

PHOTPIPE imaging and photometry package (Rest et al. 2005,

2014), which performs standard reduction processes, including

bias subtraction, cross-talk corrections, flat-fielding, astrometric

calibration, and image resampling. Instrumental point-spread

function (PSF) magnitudes are calculated by using DOPHOT

(Schechter et al. 1993) on the difference images, and the final

calibration is performed with PS1 standard-star fields. This

photometric procedure is well tested and has been applied in

many transient studies (e.g., Rest et al. 2014; Kilpatrick et al.

2018). We present PS1 and DECam images from before and

immediately after explosion, as well as images near peak

brightness, in Figure 1.
Spectroscopic and photometric follow-up observations of the

SN were performed immediately after its discovery, and a

complete presentation of the SN properties is presented in Li

et al. (2018).

64
https://github.com/KeplerGO/kadenza
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3. Analysis

In this section, we present the early photometric observations
of SN 2018oh, both from ground-based facilities and K2. We
then present a basic analysis of the early evolution of the SN,
based on analytical models.

3.1. Ground-based Photometry

SN 2018oh is detected in PS1 g and i images, on UT 2018-01-
26.56 and 26.57 (for g and i, respectively), 8.9days before
the ASAS-SN discovery image, with AB magnitudes of gP1 =
20.72 0.18 and i 20.94 0.25P1 =  , while the last nondetec-
tions were at UT 2018-01-23.38 and UT 2018-01-22.55.
Moreover, from DECam i-band images taken one day later,
SN 2018oh was i=19.04±0.01 and 18.96±0.01mag on
2018 January 27.25 and 27.29, respectively, revealing a rise in
the i-band of ∼1mag in one day. A collection of ground-based
images, showing pre-explosion, first detection, and close-to-peak
luminosity, in g- and i-bands, is presented in Figure 1, and
reported in Table 1.

After correcting for the Milky Way extinction using the
Fitzpatrick (1999) law with R 3.1V = , we fit the uBVgriz
photometry (Li et al. 2018) with the most recent version
of the SALT2 light curve fitter (SALT2.4; Guy et al. 2010;
Betoule et al. 2014) through the SNANA framework (Kessler
et al. 2009). We measure a SALT2 shape parameter of

x 0.879 0.0121 =  and a color parameter of c=−0.09±
0.01. We determine that SN 2018oh peaked at Bpeak =
14.185 0.010 mag on MJD 58163.339±0.016.

To infer the distance, we use the distance estimator from
Betoule et al. (2014), and references therein:

m M x c , 1B B M1m a b= - + ´ - ´ + D ( )

where mB, x1 and c are given above. We use the values of the

nuisance parameters α=0.141, β=3.099, and M 19.17B = -
given by Betoule et al. (2014). Regarding the host galaxy mass

step MD (Kelly et al. 2010; Lampeitl et al. 2010; Sullivan et al.

2010), we use Sloan Digital Sky Survey (SDSS) g and i

magnitudes with the relation of Taylor et al. (2011, their

Equation (8)) to derive the host galaxy mass of UGC4780. We

find the mass to be 8.81 dex, comfortably on the low-mass side

of the step function, and we correct with 0.06MD = - mag.

The final distance modulus, assuming H 730 = km s−1Mpc−1,

is estimated to be μ=33.61±0.05 mag, corresponding to a

distance of 52.7±1.2Mpc. As UGC4780 is not in the

Hubble flow and has no independent distance measurement,

the distance using the SN itself is the most accurate and precise

distance, and we use this distance for the remainder of the

analysis.
The near-peak and post-peak photometric data of SN 2018oh

show that the SN is a normal SNIa, while the only spectral

Figure 1. SN 2018oh g (top row) and i (bottom row) images of pre-explosion (left), first detection (middle), and close to peak magnitude (right). The images are
107 5×107 5 stamps from DECam (left) and PS1 (middle and right). For the first detections, we additionally show a zoom of 12 5×12 5 of the difference
image in the onset. We label the date of observation, time from B-band peak (in rest-frame days) and measured AB magnitude in each image stamp. The location of the
SN is indicated with a check mark (and a circle for the difference image).
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peculiarity is the (relatively) long-lived carbon absorption
features, seen even to about three weeks after the maximum
light and discussed in Li et al. (2018). From all available data,
we conclude that SN 2018oh is a normal SNIa.

3.2. Kepler Light Curve

After the reduction of the SN 2018oh Kepler/K2 light curve
as described in Section 2, which only provides a relative-flux
light curve, we determine the true K2 flux as follows. We use
the uBVgriz photometry (Li et al. 2018), which has been
calibrated to the PS1 system to determine the SN 2018oh flux
as a function of time and wavelength. We then use the “max
model” of the SNooPy

65 package (Burns et al. 2015) to
determine the spectral energy distribution (SED) of the SN as a
function of time. This model first fits for the peak flux in each
photometric band by scaling template light curves (Burns et al.
2011) to the data, with the model K-corrections calculated by
warping the Hsiao et al. (2007) SNIa spectral series to match
the observed colors. This approach accounts for assumptions
about host-reddening and the distance to the SN by modeling
the multi-band photometry before determining the K2 magni-
tudes. The best-fit parameters were used to normalize the
mangled spectral series to the observed photometry and to
generate a synthetic SED. As the Burns et al. (2011) method
mangles the spectral series to match the SED in each observer-
frame passband, there is a choice of which passband’s
normalized SED could be used as a model for the K2 band.
We use the V-band as its effective wavelength is closest to that
of the K2 band. After integrating over the K2 passband,
recovering the “synthetic” K2 light curve, we solve for the
absolute zeropoint, using the background-subtracted K2 flux
light curve, interpolated over a range of±3d around the time
of B-band maximum light, where the supernova color evolves
slowly. We estimate ZPK2=25.324±0.004 (statistical). We
find a±0.011 (systematic)mag, systematic uncertainty arising
from the choice of which (observer-frame) passband normal-
ized SED is used to model the synthetic K2 light curve.

We present the SN 2018oh K2 light curve in Figure 2,
normalized to the peak of the light curve, which we estimate by
fitting a polynomial to the data from MJD 58160.0 to 58165.0.
We find that the peak in the K2 band occurs at
MJD 58162.58max

K2 = , ∼0.12days prior to B-band maximum,
with K2 14.401 0.001max =  . A portion of the light curve is
presented in Table 2, while the complete data set is available in
the electronic edition.

3.3. Basic Analysis of the K2 Light Curve

Assuming that the photospheric temperature of a SN Ia does
not change significantly in the first few days after explosion,
the luminosity of the Rayleigh–Jeans tail of the blackbody
radiation will increase with time as L∝t2 (Arnett 1982; Riess
et al. 1999), as the size of the photosphere increases. However,
the K2 light curve of SN 2018oh shows a prominent “two-
component rise”: an initial flux excess, from ∼18 to 13days
before peak brightness, which eventually subsides and the
usual “expanding fireball” rise dominates starting about
13days before peak brightness.
We determine the onset of the K2 light curve as follows. For

a given sliding time window, we calculate the weighted-mean
of the flux and we compare it with the flux of the time window
prior to it, marking as a detection when Fluxi>3σi−1. By an
iterative procedure, using decreasing time-window widths, we
record the detection times and we estimate their mean and
standard deviation. We calculate t 17.99 0.04det

K2 = -  days

from maximum light (at MJD 58144.39det
K2 = ), shown as the

black vertical line in Figure 2. We note that the first PS1
detections were 0.18days (4.32 hours) after the K2 first
detection, which we estimate to be 2018 January 26.04.
In order to determine the properties of the power-law rise

(i.e., excluding the first component rise), we attempt to estimate
a time range by iteratively fitting, using IDLʼs MPFIT function,
a t t0

2-( ) power law to the data in a window from a variable
(shifting by steps of 0.02 days) start time beginning 20days
before peak brightness until the flux reaches 40% of the peak
flux, as has been done with other Kepler SNIa studies (Olling
et al. 2015). Our best fit (reduced χ2=1.09) is for a time

Figure 2. SN 2018oh K2 light curve, normalized to peak flux, with respect to peak brightness. Unbinned K2 photometry and data averaged over 12 hours are shown

as gray and black points, respectively. In the inset’s upper panel, we show the zoomed light curve from 20 to 10days before peak brightness. A L t2µ model (red
line) fit to the data in the “Fit region” is displayed. The residual of the fit is shown in the lower panel. The time of our last DECam nondetection, first PS1 and DECam
observations are marked with green, orange, and red arrows, respectively. The black vertical line corresponds to the estimation of the onset of the K2 light curve, as
described in the text, with the blue-shaded region representing the 3σ standard deviation.

65
https://users.obs.carnegiescience.edu/cburns/SNooPyDocs/html/
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window from 11.54 to 10.32days before peak brightness,
which we mark with a vertical two-headed arrow in Figure 2.
From this fit, we estimate a time of first light, t 18.140 = - 
0.02 days—∼0.15days (∼3.6 hours) before our first K2
detection. We display the residual to the fit in the bottom
panel of the inset in Figure 2. We find that ∼2 days after t0, the
flux excess is ∼3 times as luminous as the power-law rise, and
represents ∼65% of the total flux at that time.

As it has been shown in previous rise time studies (Riess
et al. 1999; Hayden et al. 2010b; Ganeshalingam et al. 2011;
González-Gaitán et al. 2012; Firth et al. 2015), the index of the
power law can significantly vary from 2 for a particular SN. To
account for this possibility, we repeat the previous procedure
and, using emcee, a Python-based application of an affine
invariant Markov chain Monte Carlo (MCMC) with an
ensemble sampler (Foreman-Mackey et al. 2013), we fit a

t t0- a( ) power law (thus, additionally fitting for the power-law
index). Doing so, we find a similar best-fit region as before,

with the new best-fit parameters t 17.860 0.25
0.24= - -

+ days before
peak brightness, with α=1.92±0.07.

In order to quantify the rise of the excess flux component, and
motivated by its shape, we consider a simple analytical model that
consists of (1) a power law L t t0µ - a( ) and (2) a skewed
Gaussian to account for the early flux excess. We fit the light curve
from 20days before peak brightness through the time when the
flux reaches 40% of the peak flux, with both a fixed power-law
index of 2, and with the index allowed to float. By fixing the index

to α=2, we estimate t 18.000 0.02
0.03= - -

+ . When simultaneously
fitting for the power-law index, we find t 18.19 0.050 = -  and
a=2.08±0.02. The later fit is shown in Figure 3. These results
are generally consistent with the canonical expanding fireball
model, and the initial assumption that L t t0

2µ -( ) seems
reasonable given the data.

From the multi-component fit, we also estimate that the
early excess flux peaked with a luminosity of 4.3 0.2 ´( )

1037 ergs−1 at t 16.05 0.04c
peak
1 = -  days, approximately

2.2days after t0, and had a FWHM of 3.12days. The total
emitted energy above the power-law rise is 1.27 0.01 ´( )

1043 erg.

3.4. Comparison to Other SNe

First, we compare the K2 light curve of SN 2018oh with the
Kepler SNe presented in Olling et al. (2015), focusing on the
discovery and rise epochs (Figure 4). As mentioned in Olling
et al. (2015), KSN 2011b (blue full circles) and KSN 2012a
(red full circles) occurred in red and passive galaxies at
redshifts ∼0.05 and ∼0.09 (we exclude the third Kepler SN of
Olling et al. 2015, KSN 2011c, due to the lower quality of
data). Moreover, these SNe are fast decliners (thus, have lower

Figure 3. Top: SN 2018oh K2 light curve, normalized to peak flux, with
respect to the first K2 detection. Our full fit is shown as a solid black line, while
the decomposition of the fit is shown as a red line for the SN power-law flux,
and a blue line for the first rise component. The red downward arrow denotes
the time of first light t0, estimated from the fit. Middle: the early flux excess,
plotted as the data minus the fitted power-law model. The result of the first
component fit is shown as a blue line. Bottom: the residual of the fit (data
minus full model fit).

Figure 4. Comparison of the K2 SN2018oh light curve (black circles),
normalized to peak, with respect to peak brightness, with KSN 2011b (upper
panel) and KSN 2012a (lower panel). The Kepler light curves of KSN 2011b
and KSN 2012a have been “stretch-corrected” to match the SN2018oh light
curve. We show the original 12 hr time binned data from Olling et al. (2015) in
full circles, and the “stretch-corrected” ones with open circles. In the insets, we
show a zoom of the light curves at peak.
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absolute luminosities), while SN 2018oh is a normal SN Ia. For
this reason, we “stretch-correct” (Perlmutter et al. 1997) the
Kepler SN light curves to the K2 light curve of SN 2018oh by
determining the stretch factor that, when applied, best matches
the light curves (see the insets in Figure 4). The “stretch-
corrected” light curves are shown as open blue (KSN 2011b)
and red (KSN 2012a) circles.

As it can be seen, the applied stretch correction successfully
matches the SNe at the epochs around peak brightness.
However, SN 2018oh clearly deviates for the first few days
after explosion, when the flux excess is observed. We estimate
that, at the time of the peak of the flux excess, t 16.05c

peak
1 = -

days, SN 2018oh is 51% and 32% more luminous than the
stretch-corrected KSN 2011b and KSN 2012a, respectively.

Next, we compare the early SN 2018oh light curves with
those of two other SNe with very early data: the well-studied,
extremely young SN 2011fe (Nugent et al. 2011), a normal
Type Ia supernova that shows no flux excess at the extremely
early times, and SN 2017cbv (Hosseinzadeh et al. 2017), an
SNIa with a prominent blue early flux excess. For this
comparison, we need comparable filters. SN 2017cbv has
extensive early-time photometry in the desired g- and i-bands
(Hosseinzadeh et al. 2017). SN 2011fe also has an early g-band
light curve (Nugent et al. 2011), but lacks an early i-band light
curve. In place of filtered photometry, we use the Pereira et al.
(2013) spectrophotometric time series, from which we
synthesize an i-band light curve.

In Figure 5, we simultaneously display the early SN 2018oh
K2 (gray), g (blue), and i (red) light curves. For comparison,
we also show similar data for SNe 2011fe and 2017cbv. In the
inset, we show the first six days after explosion, where the SN
rose >2 orders of magnitude in flux. We also display the full
two-component fit to the SN 2018oh light curve and just the
power-law component.

While SN 2011fe clearly lacks the flux excess of SN 2018oh
and rises close to t2, SN 2017cbv has a flux excess at early
times and an early photometric behavior comparable to

SN 2018oh. At later times (t 10> - days), all three SNe
evolve similarly. Notably, from that point on, SN 2018oh looks
identical to the “normal” SN 2011fe.
Finally, we investigate the color evolution of SN 2018oh,

and in particular the g−i, g K2- and iK2 - colors. We
compare the SN 2018oh colors to the synthetic colors of
SNe 2011fe and 2017cbv, calculated as described above (note
that we also estimate the synthetic K2 magnitude). Addition-
ally, we compute the color evolution of the Hsiao et al. (2007)
template spectra. The results are shown in Figure 6.
While SNe 2018oh and 2017cbv generally have similar

colors for the epochs examined here, generally having bluer
colors than both SN 2011fe and the Hsiao et al. (2007)
template, there is a distinct difference at the earliest epochs,
when the prominent flux excess is observed. We note the
difference in the iK2 - color, at the onset of the excess flux
component where SN 2018oh is bluer than all comparison SNe
(∼0.1 and 0.08 mag from SN 2011fe and SN 2017cbv,
respectively). Unfortunately, we only have a single i observa-
tion during this phase. Nonetheless, this single observation is
critical in separating SN 2018oh from SN 2017cbv.

3.5. SED of the Excess Flux

Finally, we investigate the SED of the excess flux observed
from 18 to 13 days before peak brightness. While we have no
spectra during this phase, we have filtered photometry that can
constrain the SED. In addition to the K2 photometry, we will
use the PS1 g and DECam i observations at t=−17.8 and
−17.1days, respectively, which were obtained while the flux
excess was still rising (see the inset of Figure 2).
We will focus on the crucial DECam i observation at

t=−17.1 days from the K2 maximum, which coincides with
the rise of the flux excess (see inset of Figure 2). While there is
no spectrum of SN 2018oh taken at that epoch, motivated by
the similar peak/post-peak photometric and spectroscopic
behavior with SN 2011fe, we use the Lick/KAST spectrum,

Figure 5. SN 2018oh flux in gP1 (blue), i and iP1 (red), and K2 (gray), with respect to the rest-frame time since first light, t0, as estimated in Section 3.3. Nondetections
in the K2 band are plotted as open gray circles. Similar light curves for SN 2011fe (g and synthetic iP1) and SN 2017cbv (g and i) are also shown, after being
normalized to the appropriate peak flux of SN 2018oh. Inset: a zoomed-in region of the extremely early light curve, normalized to the K2 flux at sixdays after
explosion. Note that the comparison SN sample is additionally plotted as solid (SN 2011fe) and dashed (SN 2017cbv) lines, with some of the photometric points
removed for clarity. We overplot the fits described in Section 3 as indicated in the legend.
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presented initially by Nugent et al. (2011), taken ∼1.5 days
after the SN 2011fe explosion (−16.33 rest-frame days from
B-band maximum light). We attempt to spectroscopically
match this spectrum (for which no flux excess is observed) with
the photometric colors of SN 2018oh at the epoch in question.
As mentioned above, we unfortunately do not have g
observations at this epoch; therefore, we assume no color
evolution in g−i for the first days (see the left panel of
Figure 6). We note that this assumption is somehow arbitrary.
Our photometry at −17.8days has large uncertainties, while
the g−i color is redder compared to SN 2017cbv. Never-
theless, after redshifting the spectrum to the redshift of
SN 2018oh, we scale it to match the SN component of the
K2 flux at −17.1days, as determined in Section 3.3, Figure 3.
We then perform a MCMC fit of this spectrum and a blackbody
spectrum, where the resulting spectrum reproduces the
observed photometry, with the results shown in Figure 7.

Our best fit includes a blackbody with T 17, 500 9,000
11,500= -

+ K.
The main source of the large uncertainty comes from the
constant color evolution assumption and the corresponding
large photometric uncertainty at this extremely early epoch.
However, the resulting fitted temperature is high, providing an
indication of a hot blackbody component, on top of the normal
SN spectrum.

4. Models

We next consider three scenarios that may provide additional
heating at early times to lead to the two-component rise seen in
the SN 2018oh light curve: the interaction between the SN and
a nearby companion star, a double-detonation model with 56Ni
near the surface of the star, and an additional model in which
we tune that amount of surface 56Ni in an attempt to best match
SN 2018oh.

4.1. Interaction with a Companion Star

One potential explanation for the early-time excess is shock
interaction between the supernova ejecta and a non-degenerate
binary companion (Kasen 2010). The collision is characterized
by prompt X-ray emission, followed by an optical/UV excess

lasting about one week after explosion. Although the excess
peaks in the UV, a measurable signature is observable in the
Kepler bandpass if the system is configured in a favorable
viewing angle (Olling et al. 2015).
To test this scenario, we use a numerical model for the early

light curve following the methods outlined in Piro & Morozova
(2016; using the Chandrasekhar progenitor models from
Martínez-Rodríguez et al. 2016) that roughly matches the rise
of SN 2018oh, and then combine this with the analytic
interaction model of Kasen (2010). The interaction emission
is mainly controlled through two parameters, the orbital
separation a and the characteristic ejecta velocity v. Because
a can vary by many orders of magnitude and v is relatively well
constrained to be v 10 cm s9 1» - , this makes the interaction a
powerful diagnostic for measuring a. In addition, there are
viewing-angle effects, but this is somewhat degenerate with the
other parameters. Thus we focus on the the case when one is
observing directly into the shocked region (when the
companion is roughly between the explosion and the observer)
and take the measured a as a lower limit to the orbital
separation.
From this procedure, we find that a collision with a

companion at a 2 10 cm12= ´ provides a reasonable match
to the early rise. We plot this as a solid blue line in the right
panel of Figure 8, and also show the constituent parts of the
interaction (dashed blue line) and the SN itself (dotted blue
line). An important assumption of this model is that the
companion is overfilling its Roche lobe, and therefore we can
approximate its radius as (Eggleton 1983)

R
q

q q
a

0.49

0.6 ln 1
, 2

2 3

2 3 1 3
=

+ +( )
( )

where q is the ratio of the companion and WD’s mass. For a

range of companion masses from M M1 6» – , this results in

R R10 15» – , respectively. This is generally too large for a

main sequence star, and thus we conclude that the companion

must be a subgiant if interaction is the correct explanation for

the early excess.

Figure 6. g−i (left panel), g K2- (middle panel), and iK2 - (right panel) color curves for SN 2018oh. We additionally include data from the Swope telescope
(Li et al. 2018), to fully capture the color evolution. Similar color curves, computed as described in the text, for SN 2011fe (red), SN 2017cbv (blue), and the Hsiao
et al. (2007) templates (green) are overplotted. The gray-shaded region corresponds to the duration of the flux excess.
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4.2. Double-detonation Sub-Chandrasekhar Explosion

Another possible mechanism for creating an early-time flux

excess is the double-detonation scenario for exploding a sub-

Chandrasekhar mass C/O WD with an accreted shell of helium

on its surface. In this scenario, the helium shell detonates,

producing on the surface some abundance of radioactive

elements such as 56Ni and 48Cr, and sending a shockwave into

the WD that then ignites the C/O core (Woosley &

Weaver 1994). The result produces observables generally

consistent with a SNIa; however, the amount of Fe-group

elements synthesized during the He-shell detonation must be

small to resemble SNeIa near peak brightness. The photons

produced by the radioactive decay of material on the surface

quickly diffuse out of the ejecta, creating a flux excess relative

to a typical SNIa in the first few days after explosion

(Noebauer et al. 2017).
We test this scenario as a candidate for SN 2018oh by

exploring a hydrodynamic and radiative transfer numerical

survey of double-detonations of sub-Chandrasekhar-mass

white dwarfs, the results of which will be presented in full

by A. Polin etal. (2018, in preparation). The parameter space

of the survey spans from M0.7 1.2 – WDs with helium shells

from 0.01 to 0.08Me and a range of mixing mass from 0.05 to

0.3Me. The best-fitting model, based on a reduced 2c
measurement, is a 0.98Me WD with 0.05Me of Helium on

its surface, with the ejecta smoothed over a mixing length of

0.25 M. This model produces a total of 0.448Me of 56Ni,

3.65 10 3´ - Me of 48Cr, and 1.8 10 2´ - Me of 52Fe. From

these elements, the amount of each that is synthesized in the

helium shell (i. e., in the outer layers of ejecta) is 1.22 10 2´ - ,

3.19 10 2´ - , and 6.11 10 2´ - Me, corresponding to 2.7, 87.4,

and 33.9%, respectively. The K2 synthetic light curve is shown

in the left panel of Figure 8. The approximate magnitudes of

both the early-time excess and peak are reproduced, as is the

duration of the excess and rise time to peak brightness.

4.3. A General Off-center Nickel Distribution

The previous model is specifically applicable to the DD
scenario, but it is possible in principle that other scenarios may
mix 56Ni to the outermost layers. To explore this possibility
more generally, we consider models in which we take a normal
SN Ia explosion and place by hand some amount of 56Ni near
the surface. As with the supernova model for the interaction
scenario, we use the methods outlined in Piro & Morozova
(2016) with the progenitors generated in the work of Martínez-
Rodríguez et al. (2016). Using this we place the 56Ni in two
distinct regions, a centrally concentrated region that provides
the main rise and a shallow region above a mass coordinate of
1.3Me. The shallow abundance is varied to find the best fit
with the K2 photometry, including smoothing with a 0.05Me
boxcar, which prevents numerical issues from sharp composi-
tional gradients.
Our best-fit model under this scenario has 0.03Me of 56Ni

near the surface of the WD as shown by the orange solid line in
the middle panel of Figure 8. The model reproduces the general
evolution of the light curve, encapsulating the initial flux
excess. We therefore provisionally consider this a viable
model. Whether or not such a model can reproduce the full
photometric and spectroscopic evolution of SN 2018oh is less
clear. Iron-peak elements at shallow depths can provide
extensive line-blanketing that alters the colors and spectra of
the SN at peak luminosity, potentially making it difficult for
SN 2018oh to be a spectroscopically normal SN Ia. Below we
consider in further detail whether such a model can even
reproduce the early color evolution of SN 2018oh.

4.4. Detailed Model Comparisons

Having found both SD and DD models that can reproduce
the K2 light curve, we must examine additional data that
differentiate these scenarios. The earliest detections by PS1 and
DECam are particularly powerful for this purpose.
In addition to detecting the flux excess in the K2 band, we

also detect an excess in the i-band (see Figure 5). Examining
the iK2 - color during the flux excess, we find that
SN 2018oh is bluer than SN 2011fe by almost 0.2mag.
Moreover, SN 2018oh is also similarly bluer than SN 2017cbv
at that epoch. This means that one day after explosion,
SN 2018oh is not only distinct from the normal SN 2011fe but
also from SN 2017cbv, which also had an early-time flux
excess (Hosseinzadeh et al. 2017). After the onset of the
canonical SN rise (rightward of the gray-shaded region in the
panels of Figure 6), the three SNe evolve in a similar manner
(apart from the usual color dispersion seen in Type Ia
supernovae).
All of the models examined above are able to reproduce the

flux excess at early times of SN 2018oh, but with two main
different physical origins. These models predict very different
SEDs and in particular different colors. Specifically the
companion-interaction model is expected to be bluer than the
surface-Ni model.
We display the expected g−i, g K2- , and iK2 - colors

for each model in Figure 9. The double-detonation model is
particularly red, and it is unable to explain the blue colors of
SN 2018oh. Moreover, sub-Chandrasekhar double-detonations
also leave spectral signatures such as a significant Ti II
absorption features in the peak spectra, which are not seen in

Figure 7. +1.5day from explosion SN 2011fe spectrum (solid black line),

redshifted and scaled to match the t2.08 SN component of the SN 2018oh K2
photometry at +1.09days after t0, obtained from the fit shown in Figure 3. The
gP1 (blue), K2 (orange), and i (red) photometry are shown as full diamonds, at
each filter’s effective wavelength. The solid green line is the best-fit blackbody
spectrum that reproduces the observed photometric colors at +1.09days after
t0 (full circles), with the open circles representing the synthetic fluxes of the
resulting spectrum (dashed line). In the upper panel, we show the response
functions of the gP1 (blue), K2 (orange) and DECam i (red) filters.
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SN 2018oh (Li et al. 2018). The generic off-center 56Ni model

also has a color that is redder than SN 2018oh by ∼0.1 mag. On

the other hand, the companion-interaction model with a

companion at ≈2×1012 cm generally matches both the early

rise and the color evolution of SN 2018oh.
Based on the color evolution of SN 2018oh, we slightly

favor the companion-interaction model over other models that

can also reproduce the early flux excess. A direct prediction of

this model is the presence of hydrogen and/or helium-rich

material stripped from the companion star at the nebular phases

(Pan et al. 2012; Liu et al. 2013). To this end, detections of H

or He features at late-time spectra of SN 2018oh is crucial to

confirm this model.
We note that, while SN 2018oh has an exquisite K2 light

curve, we lack the detailed color information to conclusively

decide between models, particularly at bluer wavelengths.

Additionally, there are no spectra of SN 2018oh during the flux

excess, which would have provided key information for

Figure 8. Absolute magnitude K2 early-time light curve of SN 2018oh (gray and black circles). We overplot our best-fit models, as described in Section 4, of the
double-detonation of a 0.98MeWD with a 0.05Me He layer on its surface (left panel, solid pink), of a near-Chandrasekhar mass WD explosion with a surface layer
of 0.03Me nickel (middle panel, solid orange) and of a collision model (Kasen 2010) with a non-degenerate companion at a distance of a=2×1012 cm (right panel,
solid blue). We show the decomposition of the collision model to the contribution of the SN flux (dotted blue) and the interaction of the SN ejecta with the companion
(dashed blue). The residuals of the model fits are shown in the lower panels.

Figure 9. Same as in Figure 6 (note the different ranges in the axes), but comparing with the predicted colors of the double-detonation model (pink), the nickel-surface
model (orange), and the collision model (blue).
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understanding how spectral features affect the color evolution.
We do not see an abrupt flux excess on the first rise component,
but rather a linear rise similar to other SNe Ia with sufficiently
early, high-cadence photometry that also have two-component
rising light curves (e.g., SN 2012fr, which arguably shows no
signs of interaction; Contreras et al. 2018); this argues against
the interaction model. A linear rise may result from a particular
interaction model (i.e., specific viewing angle, radius, and/or
separation); however, an exploration of how different para-
meter combinations affect the detailed rise behavior is beyond
the scope of this Letter.

However, another interpretation of the flux excess is
possible. Given the growing sample of SNeIa that show
two-component early light curves, with different slopes and
durations, the distinct early light curve evolution of SN 2018oh,
compared to the total SNIa population, could not be due to
some external heating source, but rather a reflection of varying
SNe Ia properties, such as the density profile of the ejecta,
different composition/metallicity of the progenitor star,
asymmetries during the explosion etch (see Stritzinger et al.
2018, for a relevant discussion). Modern transient surveys,
such as ASAS-SN and the Zwicky Transient Facility, and
future powerful surveys, such as Large Synoptic Survey
Telescope, will discover very young SNeIa, and with rapid
follow-up, the early light curve SN sample will increase,
allowing us to investigate this possibility.

5. Discussion and Conclusions

In this Letter, we analyze the early photometric observations
of SN 2018oh, a normal SNIa that occurred within the Kepler
Campaign 16 field. The SN was observed with unprecedented
cadence by the K2 SCE with complementary early Pan-
STARRS1 and DECam imaging. The combination of an
extremely early detection and unprecedented continuous
coverage with Kepler makes SN 2018oh a spectacular reference
object for early SNIa studies, providing invaluable insights on
the explosion physics and the progenitor system.

In the SN 2018oh K2 and i-band light curves, we detect a
distinct flux component in the first few days after explosion
relative to other well-observed SNeIa (e.g., SN 2011fe) and
the t2 luminosity rise seen later in the evolution of SN 2018oh.
This flux excess lasts approximately 5 days, after which
SN 2018oh appears to evolve in a fashion consistent with
typical SNeIa.

Our work provides new insights on the early-time evolution
of SNeIa, for which we find the following.

1. The early K2 light curve shows a distinct two-component
rise evolution. Initially, the SN rises quickly, with a steep
linear gradient, in flux. This flux subsides after about
5 days, when a L t2µ rise dominates the SN evolution.

2. Using the t2 component of the K2 light curve, we
constrain t0 to be −18.19±0.09days before K2 peak
brightness. This time is consistent with the onset of the
flux excess, indicating that both components began at the
same time.

3. Assuming that the t2 component exists while the other
component is bright, we find that the early flux excess
peaks 2.14days after t0, has an FWHM of 3.12days, a
blackbody temperature of 17,500K, a peak luminosity of
4.3 1037´ erg s−1, and a total emitted energy of 1.3 ´
1043 erg.

4. We observed SN 2018oh with Pan-STARRS1 and
DECam only 4.1 and 20.6hours after the first K2
detection, respectively, providing some of the earliest
colors of a SNIa ever. The flux excess is confirmed in
our ground-based i light curve.

5. The SN 2018oh early photometric evolution is relatively
similar to SN 2017cbv, another SNIa with a prominent
two-component rising light curve. However, SN 2018oh
shows bluer iK2 - colors than SN 2017cbv. This is
especially true during the epoch of the initial flux excess.
Around peak brightness, SN 2018oh is similar to both
SNe 2011fe and 2017cbv.

6. The early flux excess can potentially be explained by
additional heating at the epoch in question. We
investigate three possible sources.
(a) The interaction with a non-degenerate companion at

a=2×1012 cm, with an M≈1–6Me Roche-lobe-
filling star.

(b) The presence of a M0.05  helium shell on the surface
of M0.98  C/O WD, and a subsequent sub-
Chandrasekhar-mass explosion.

(c) An off-center 56Ni distribution of 0.03Me.
All of these models can, generally, reproduce the early
shape of the K2 light curve. We slightly favor the
interaction scenario, due to the blue colors at the epoch of
the flux excess. However, another interpretation of the
flux excess considers an intrinsic variation of early-time
behavior, due to varying SNe Ia properties, with no
external heating source required.

While an SD origin for (at least a sizable fraction of) SNeIa
has been previously proposed (Sternberg et al. 2011; Foley
et al. 2012b; Maguire et al. 2013), its validity has been
questioned. Most SNe that have some observational evidence
for the presence of a non-degenerate companion are either
peculiar (e.g., SNe Ia-CSM; Dilday et al. 2012; Silverman et al.
2013; Fox et al. 2015) or have contradictory observations
(Sand et al. 2018; Shappee et al. 2018a). The general progenitor
picture that has emerged over the last decade is that most
SNeIa have a DD origin (Maoz et al. 2014).
Excluding the early-time flux excess, SN 2018oh shows no

signs of photometric and spectroscopic peculiarities. Therefore,
SN 2018oh represents a normal SNIa with a potential SD origin,
challenging the idea that all normal SNeIa have DD progenitors.
Additional SNeIa observed at high cadence during the first few
days after explosion are needed to determine the fraction of
SNeIa with SD progenitors. At the same time, these observations
will grow the early light curve SN Ia sample, and investigate
correlations of the light curve evolution with various SNe Ia
properties.
The K2 SCE has finished and the data are currently collected

and analyzed. With some luck, we will soon have additional
K2-observed SNeIa with data similar in quality to that of
SN 2018oh.
We will continue to monitor SN 2018oh. Late-time observa-

tions, after the SN has become optically thin, will be a direct
test of our proposed models.
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Table 1

SN2018oh Ground-based Photometry

UT Date MJD Phasea Time from Detectionb Filter Value

(YYYY mm dd) (Days) (Rest-frame Days) (Rest-frame Days) (Mag)

2018 Jan 26.24 58144.24 −18.26 −0.15 i 23.155c

2018 Jan 26.29 58144.29 −18.21 −0.10 g 23.322c

2018 Jan 26.56 58144.56 −17.94 0.17 gP1 20.852±0.224

2018 Jan 26.57 58144.57 −17.93 0.18 iP1 21.022±0.268

2018 Jan 27.25 58145.25 −17.26 0.85 i 19.039±0.013
2018 Jan 27.30 58145.30 −17.21 0.90 i 18.957±0.014

2018 Feb 03.33 58152.33 −10.26 7.85 iP1 15.670±0.004

2018 Feb 04.33 58153.33 −9.27 8.84 iP1 15.445±0.004

2018 Feb 04.49 58153.49 −9.11 9.00 iP1 15.388±0.003
2018 Feb 05.40 58154.40 −8.21 9.90 iP1 15.264±0.010

2018 Feb 08.37 58157.37 −5.27 12.84 gP1 14.483±0.002

2018 Feb 09.47 58158.47 −4.18 13.93 gP1 14.359±0.002

2018 Feb 09.48 58158.48 −4.17 13.94 iP1 14.926±0.003

2018 Feb 10.48 58159.48 −3.18 14.93 gP1 14.307±0.002

2018 Feb 11.35 58160.35 −2.32 15.79 gP1 14.285±0.002

2018 Feb 11.35 58160.35 −2.32 15.79 iP1 14.961±0.003
2018 Feb 11.49 58160.49 −2.19 15.92 gP1 14.261±0.002

2018 Feb 12.33 58161.33 −1.36 16.76 gP1 14.241±0.002

2018 Feb 13.56 58162.56 −0.14 17.97 gP1 14.253±0.002

2018 Feb 13.57 58162.57 −0.13 17.98 iP1 15.002±0.003

2018 Feb 14.53 58163.53 0.82 18.93 gP1 14.225±0.002

2018 Feb 20.34 58169.34 6.57 24.68 gP1 14.418±0.002

2018 Feb 21.49 58170.49 7.71 25.82 gP1 14.472±0.002

2018 Mar 07.28 58184.28 21.35 39.46 gP1 15.465±0.005

2018 Mar 07.29 58184.29 21.36 39.47 iP1 15.769±0.006

2018 Mar 08.25 58185.25 22.30 40.42 gP1 15.543±0.004

2018 Mar 08.41 58185.41 22.46 40.57 gP1 15.514±0.003

2018 Mar 18.29 58195.29 32.24 50.35 iP1 15.635±0.006
2018 Mar 18.29 58195.29 32.24 50.35 gP1 16.306±0.009

Notes.
a
Relative to MJD 58162.7B

peak = .
b
Relative to MJD 58144.39K

detection
2 = .

c
3σ upper limit.

Table 2

SN2018oh K2 Photometry

UT Date MJD Phasea Time from Detectionb Value

(YYYY mm dd) (Days) (Rest-frame Days) (Rest-frame Days) (Mag)

2017 Dec 07.99 58094.99 −66.85 −48.86 20.743c

2017 Dec 08.01 58095.01 −66.83 −48.84 20.744c

2017 Dec 08.05 58095.05 −66.79 −48.80 20.745c

2017 Dec 08.07 58095.07 −66.77 −48.78 20.745c

2017 Dec 08.09 58095.09 −66.75 −48.76 20.745c

2017 Dec 08.11 58095.11 −66.73 −48.74 20.745c

Notes. The complete K2 light curve is available in the electronic edition.
a
Relative to MJD 58162.1K2

peak = .
b
Relative to MJD 58144.39K

detection
2 = .

c
3σ upper limit.

(This table is available in its entirety in machine-readable form.)
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