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A T-inner function is a holomorphic map h from the unit disc D to I" whose bound-
ary values at almost all points of the unit circle T belong to the distinguished
Interpolation boundary bI' of I'. A rational I'-inner function h induces a continuous map h|r from
Pick matrix T to bI'. The latter set is topologically a Mobius band and so has fundamental
Complex geodesic group Z. The degree of h is defined to be the topological degree of h|r. In a pre-
vious paper the authors showed that if h = (s,p) is a rational I-inner function of
degree n then s? — 4p has exactly n zeros in the closed unit disc D™, counted with
an appropriate notion of multiplicity. In this paper, with the aid of a solution of
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rational I'-inner functions of degree n with the n zeros of s> — 4p prescribed.
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1. Introduction

The symmetrized bidisc is the set

T (24w 2w): 2] <1, w| <1} C C2.

I has attracted considerable interest in recent years because of its rich function theory [16,1,32], complex
geometry [21,24,28,34,35,38], some associated operator theory [6,5,14,15,37,36,41] and its connection with

* The first author was partially supported by the National Science Foundation Grant on Extending Hilbert Space Operators DMS
1361720. The second and third authors were partially supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/N03242X /1. The third author was partially supported by EPSRC grant EP/K50340X/1. The collaboration
was partially supported by London Mathematical Society Grant 41431.

* Corresponding author.

E-mail address: Nicholas.Young@ncl.ac.uk (N.J. Young).

http://dx.doi.org/10.1016/j.jmaa.2016.10.035
0022-247X/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).



1164 J. Agler et al. / J. Math. Anal. Appl. 447 (2017) 1163-1196

the difficult problem of u-synthesis [12,2,43]. The distinguished boundary of T, that is, the Silov boundary
of the algebra of continuous functions on I' that are holomorphic in the interior of I", will be denoted by bI".
Concretely, bI' is the symmetrization of the 2-torus [7, Theorem 2.4]:

bl = {(z + w, zw) : |z| = Jw| = 1}.

A T'-inner function is a holomorphic map h from the unit disc D to I' whose boundary values at almost all
points of the unit circle T (with respect to Lebesgue measure) belong to bI'. The I'-inner functions constitute
a natural analog of the inner functions of A. Beurling [13], which play a central role in the function theory
of the unit disc. For example, it was known to Nevanlinna and Pick that an n-point interpolation problem
for functions in the Schur class is solvable if and only if it is solvable by a rational inner function of degree
at most n. Likewise, every n-point interpolation problem for functions in the class Hol(ID, T") of holomorphic
maps from D to I', if solvable, has a rational I-inner solution (for example, [22, Theorem 4.2]). Here, the
degree of a rational I'-inner function A is defined to be the topological degree of the restriction of A mapping T
continuously to bI'. Since bI' is homeomorphic to a Mobius band, its fundamental group is Z, and so the
degree of h is an integer; it will be denoted by deg(h).

We shall address the analog for rational I'-inner functions of a problem about rational inner functions
solved by W. Blaschke [17]. The Argument Principle tells us that a rational inner function ¢ of degree n
has exactly n zeros in DD, counted with multiplicity, from which fact one deduces that ¢ is a finite Blaschke

product
n
A—a
A) = J
PN =c H 1— A
j=1
where || = 1 and aq, ..., a, are the zeros of . In similar fashion, we should like to write down, as explicitly

as possible, the general rational I'-inner function of degree n. It was shown in [3] that if A = (s, p) is a rational
I-inner function of degree n then s? — 4p has exactly n zeros in the closed unit disc D™, counted with an
appropriate notion of multiplicity. The n zeros of s — 4p can be regarded as analogs of the a; for present
purposes.

The variety

R {(22,2%) : z€ C}

={(s,p) € C?: 5" = 4p} (1.1)

plays a special role in the function theory of I': it is called the royal variety. For a rational I'-inner function
h = (s,p), the zeros of s> —4p in D~ are the points A such that h()\) € R; we shall call them the royal nodes
of h. If o € D™ is a royal node of h then h(c) = (—2n,7n?) for some € D~; we call 5 the royal value of h
corresponding to the royal node o.

Let us formalize the problem of describing the general rational I'-inner function in terms of its royal
nodes and values.

Problem 1.1. Given distinct points o1,...,0, in D™ and values 71, ...,7n, in D™ find if possible a rational
[-inner function h of degree n such that

h(o;) = (_2773’777]2') forj=1,...,n.

The results of this paper show that there is a close connection between Problem 1.1 and an n-point
interpolation problem for finite Blaschke products of degree n in which there are interpolation nodes in
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both D and T and in which tangential information is specified at interpolation nodes in T. To formulate
this problem we introduce some terminology.

Definition 1.2. Let n > 1 and 0 < k < n. By Blaschke interpolation data we mean a triple (0,7, p) where

(1) 0 = (01,09,...,0,) is an n-tuple of distinct points such that o; € T for j = 1,...,k and o; € D for
j=k+1,...,n;

(2) n=(m,n2,...,mn) wheren; € Tfor j=1,...,kandn; e Dfor j=k+1,...,n;

(3) p=(p1,p2,...,pr) where p; >0for j=1,... k.

For such data the Blaschke interpolation problem with data (0,7, p) is the following:

Problem 1.3. Find if possible a rational inner function ¢ on D (that is, a finite Blaschke product) of degree
n with the properties

ploj)=mn; forj=1,...,n (1.2)
and
Ap(o;) =p; forj=1,...k, (1.3)
where Ap(e?) denotes the rate of change of the argument of ((e'?) with respect to 6.

Problem 1.3 has been much studied, for example [39,40,11,29,26,42,27]. Without the tangential conditions
(1.3), or some other constraint (for example, a degree constraint), the problem would arguably be ill-posed:
solvability would depend only on the interpolation conditions at nodes in D, and the conditions at o1, ..., 0%
would be irrelevant. With the conditions (1.3), however, the problem has an elegant solution. There is a
simple criterion for the existence of a solution of Problem 1.3 in terms of an associated “Pick matrix”, and
better still, there is an explicit parametrization of all solutions ¢ by a linear fractional expression in terms
of a parameter ¢ € T. There are polynomials a, b, ¢ and d of degree at most n such that the general solution
of Problem 1.3 is

_aC+b
T +d (14)

where the parameter ¢ ranges over a cofinite subset of T (see Theorem 3.3 below). The polynomials a, b, ¢
and d are unique subject to a certain normalization.

Analogously, Problem 1.1 needs to be modified by the addition of tangential conditions at interpolation
nodes in T in order to be well posed. We are led to the following refinement of Problem 1.1.

Problem 1.4. Given Blaschke interpolation data (o, 7, p) with n interpolation nodes of which & lie in T, find
if possible a rational T-inner function h = (s,p) of degree n such that

h(o;) = (—2n;,m;) forj=1,...,n
and

Ap(o;) =2p; forj=1,...,k.
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We shall call this the royal I'-interpolation problem with data (o, 7, p).

The connection between Problems 1.4 and 1.3 can be described with the aid of a certain 1-parameter
family of rational functions ®,, on I', where w € T. These functions play a central role in the function theory
of T' (for example, [6,7]). They are defined by

2wp — s

P, (s,p) = (1.5)

2—ws
®,, is holomorphic on T', except for a singularity at (2w, w?), and maps I' into D~. They constitute a universal
set of Carathéodory extremal functions for the interior of I' [7, Corollary 3.4].

A consequence of Theorems 4.4 and 4.9 is:

Theorem 1.5. For Blaschke interpolation data (o,1,p) the following two statements are equivalent.

(1) Problem 1.4 with data (0,1, p) is solvable by a rational T'-inner function h such that h(D) ¢ R;
(2) Problem 1.3 with data (o,n, p) is solvable and there exist so,pg € C such that

|50| <2, |p0| =1,

S0 = SoPo,

soa — 2b + 2pgc — sod = 0,

where a, b, ¢ and d are the polynomials in the normalized parametrization (1.4) of the solutions of
Problem 1.3.

The TI'-inner functions whose range is contained in R, those of the form (2f, f2) for some inner f, behave
differently from others.

Theorem 4.9 gives a formula for a solution h of Problem 1.4 in terms of sg, pg, a, b, ¢ and d. Since the
polynomials a, b, ¢ and d are computed in Theorem 3.9 and Remark 3.11, we obtain an explicit solution of
Problem 1.4. The algorithm is presented in Section 5.

The connection between the solution sets of the royal I'-interpolation problem and the Blaschke interpo-
lation problem can be made explicit with the aid of the functions ®,,.

Theorem 1.6. Let (0,7, p) be Blaschke interpolation data. Suppose that h is a solution of Problem 1.4 with
these data and that h(D) ¢ R. For allw € T\ {—m,—"02,..., =Nk}, the function ®, o h is a solution of
Problem 1.3 with the same data. Conversely, for every solution ¢ of the Blaschke interpolation problem with
data (o,m,p), there exists w € T such that ¢ = ®,, 0 h.

This theorem is a corollary to Theorem 4.4.

In an earlier paper [3] the authors gave another construction of the general rational I-inner function
h = (s,p) of degree n, starting from different data, to wit, the royal nodes of h and the zeros of s. One
step in the construction in [3] is to perform a Fejér—Riesz factorization of a non-negative trigonometric
polynomial, whereas, in contrast, the construction in this paper can be carried out entirely in rational
arithmetic.

2. Background material
In this section we establish some notation and terminology and present some elementary facts about the

set I' discussed in the introduction.
The following results afford useful criteria for membership of T' and bI" [7].
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Proposition 2.1. Let (s,p) € C2. The point (s,p) lies in T if and only if
|s| <2 and |s —3p| < 1— |p|*.
The point (s,p) lies in bT if and only if
ls| <2, |p| =1, and s —3p = 0.
The interior of T', the open symmetrized bidisc

G (24w, 2w) ¢ |2 < 1, |w| < 1} (2.1)
will also arise.

Proposition 2.1 implies that if h = (s,p) € Hol(D,C?) then h is T-inner if and only if p is inner, |s| is
bounded by 2 on D and s(7) — s(7)p(7) = 0 for almost all 7 € T with respect to Lebesgue measure (by
Fatou’s theorem, s and p have non-tangential limits a.e. on T). This paper focuses on the case that h is
rational (that is, s and p are rational), in which case s = sp on the whole of T.

Let us clarify the notion of the degree of a rational I'-inner function h.

Definition 2.2. The degree deg(h) of a rational I'-inner function h is defined to be h.(1), where h, : Z =
m1(T) — (b)) is the homomorphism of fundamental groups induced by h when it is regarded as a
continuous map from T to bI.

According to [3, Proposition 3.3], for any rational T'-inner function h = (s,p), deg(h) is equal to the
degree deg(p) (in the usual sense) of the finite Blaschke product p.
We denote by S the Schur class, which comprises all holomorphic maps from D to D~.

Definition 2.3. For any differentiable function f : T — C\ {0} the phasar derivative of f at z = €' € T is
the derivative with respect to 6 of the argument of f(e'?) at z; we denote it by Af(z).

Thus, if f(e'?) = R(0)e9®) is differentiable, where g(f) € R and R(#) > 0, then g is differentiable on
[0,27) and the phasar derivative of f at z = e € T is equal to

Af() = S arg £(7) = ' (0). (2.2)

The above is not standard notation, but we shall find it useful in the sequel. We summarize some elementary
properties of phasar derivatives.

Proposition 2.4.
(1) For differentiable functions ¢, : T — C\ {0} and for any ¢ € C\ {0},
Alpp) = A+ Ap  and  A(cp) = Av. (2.3)

(2) For any rational inner function ¢ and for all z € T,
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(3) Ifa €D and

z—a«
B,(z) =
(2) 1—az
then
1— 2
AB,(z) = 1=fal >0 forzeT.
|z —af?

(4) For any rational inner function p,

Ap(z) >0 forall z € T.

Recall that a point A € D~ is a royal node of a T-inner function h if and only if h()) is in the royal
variety R = {(22,2%) : z € C}.

In the next proposition we shall use the notation ®(z,s,p) as a synonym for ®,(s,p). Thus, for any
function v on D,

2up — s
@O(U,h): m

Proposition 2.5. Let h = (s,p) be a rational T-inner function and let o be a royal node of h on T. Then
(i) there exists n € T such that p(c) =n* and s(o) = —2n;

(ii) o is a zero of s> — 4p of multiplicity at least 2;
(iii) for any finite Blaschke product v,

Po (v, h)(0) =1

independent of v;
(iv) for any finite Blaschke product v such that v(o) # —17,

A® o (v, h) (o) = L Ap(o).
Proof. (i) By [1, Lemma 7.10], the royal nodes of h = (s,p) on T are precisely the points o € T such that
|s(o)| = 2. Thus there exists n € T such that s(o) = —2n and, since 4p(c) = s(c)?, we have p(c) = n?.
(ii) By Proposition 2.1, on T we have

pAp—s*)=4— (ps)s =4 —3ss=4—|s]* > 0.

Since |s(o)| = 2, the function f(0) = 4 — |s(e?’)|? has a local minimum at ¢ where o = €. Therefore

0= L (a—1s(e)P),
d 2/ ,i0
= 0 (p(4p— 57)(e ))\5
= p(e®)ie? (4p' (e°) — 255 (™). (2.5)
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Hence
(4p — s*)/(0) =0,
and so o is a zero of s? — 4p of multiplicity at least 2.
(iii) If vs(o) # 2, then

Do (v, h)(0) = 22— ()

2 —ws

=1. (2.6)

Thus ® o (v, h)(0) = n independent of v, as long as vs(o) # 2, that is, v(o) # —1.
For any finite Blaschke product v such that v(c) = —7, by Proposition 2.4, we have

(o)

Ap(o) = 0];(0) = oi’p/ (o)

and

Since v and p are inner functions
which is equivalent to

Note that v(o) = —7 implies that
2u(o)p(o) — s(o) =0 =2 —v(o)s(0),

and so

(up—s)
(2 —vs) (o)

20'p + 2up’ — &'
=——F— (o)

—v's —wvs’

Do (v,h)(0) =

20+ 2(=n)p’ +
—v'(=2n) = (=) (=np’)
2n°v" — i’

=———-(0)

2771}/ _ ﬁ2p/
277,1)/ _ 77]2p/
= _— = . 2.7
Mgy (o) 27)

Thus ® o (v, h)(c) = n independent of v.
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(iv) For any finite Blaschke product v such that v(o) # —7, by Proposition 2.4, we have

Ad o (v, h)(0) = A(2up — s)(0) — A(2 — vs)(0)

20'p + 2up’ — &' —v's —vs’
=c————(0)—0————(0)
2up — s 2 —wvs
2v'n? + 2up’ + np’ v'(=2n) + v(=7p’)
=0 (0)+o (o)
2un2 4 2n 2+ 2un
= ﬁ (20" + 2qvp’ + 7?p’ — 20" — vigp) (o)
_ o)1+ vn)
2(14wvn)
_ lap'(a)
? p(o)
=1Ap(o). O (2.8)

3. The Blaschke interpolation problem and rational I'-inner functions

The Blaschke interpolation problem, Problem 1.3, is an algebraic variant of the classical Pick interpolation
problem. One seeks a Blaschke product of a given degree n satisfying n interpolation conditions, rather than
merely a Schur-class function, and one admits interpolation nodes in both the open unit disc and the unit
circle. As with the classical Nevanlinna-Pick problem, there is a criterion for the solvability of such a
problem in terms of the positivity of a ‘Pick matrix’ formed from the interpolation data; however, to obtain
a concise formulation, one has to impose additional interpolation conditions, on phasar derivatives at the
interpolation nodes on the circle, and the bounds on these phasar derivatives appear on the diagonal entries
of the Pick matrix. This modified Pick matrix appears in the work of several authors [10,4,40,25], but for
simplicity we shall continue to speak of the Pick matrix. To be precise, the Pick matriz associated with
Blaschke interpolation data (o,7, p) as in Definition 1.2 is defined to be the n x n matrix M = [m;]}; 4
with entries

Di ifi=4j<k
mij = 1 — 7.

# otherwise.

1-— 0i0;

Remark 3.1. Of course, it can happen for n-point Blaschke interpolation data (0,7, p) that there exists a
Blaschke product ¢ of degree strictly less than n satisfying the conditions (1.2) to (1.3), but in the present
context we are concerned with solutions of degree exactly n.

In the case that n = k, that is, where all the interpolation nodes lie on the unit circle there is an elegant
solvability criterion due to D. Sarason [40]. His result implies that, when n = k, Problem 1.3 is solvable if and
only if the corresponding Pick matrix M is minimally positive, that is, when M > 0 and there is no positive
diagonal n x n matrix D, other than D = 0, such that M > D. Actually, Sarason considers interpolation by
functions in the Schur class, not just Blaschke products, and so there is a subtlety concerning the existence
of phasar derivatives at boundary points (related to the Julia—Carathéodory theorem), but since we are
only concerned with rational functions, no such difficulty will arise here.

The following result is well known — see [10, Sections 21.1 and 21.4] or [4,40,25].
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Proposition 3.2. If Problem 1.3 is solvable then the corresponding Pick matriz M is positive definite and the
solution of the problem is not unique.

Several authors have developed deep and far-reaching machines to characterize solvability of interpolation
problems for classes related to Problem 1.3, and to parametrize their sets of solutions [10,11,19,30,20,25];
there is a brief history in [10, Notes for Part V, p. 500]. A paper which addresses the combined interior and
boundary problem specifically for finite Blaschke products is [26]. However, we have not found the precise
statement that we need, and so, for the convenience of the reader, we give a self-contained treatment.

Our strategy for the construction of the general solution of Problem 1.3 is to adjoin an additional
boundary interpolation condition; this augmented problem will have a unique solution, and in this way we
obtain all solutions of Problem 1.3 in terms of a unimodular parameter.

The following is a refinement of the Sarason Interpolation Theorem [40], in that we consider interpola-
tion nodes both on the circle and in the open disc. The result is contained in [18, Theorem 2.5]. See also
[20, Theorem 5.2] for a solution to the analogous interpolation problem for the upper half plane.

Theorem 3.3. Let M be the Pick matriz associated with Blaschke interpolation data (o,n, p).
(1) There exists a function ¢ in the Schur class such that
ploj)=mn; forj=1,....n, (3.1)
and the phasar derivative Ap(o;) exists and satisfies
Ap(oj) <p; forj=1,....k (3.2)
if and only if M > 0;
(2) if M is positive and of rank r < n then there is a unique function  in the Schur class satisfying

conditions (3.1) and (3.2), and this function is a Blaschke product of degree r;
(3) the unique function ¢ in statement (2) satisfies

Ap(oj)=p; forj=1,....k (3.3)
if and only if M is minimally positive.

Consider a point 7 € T distinct from o1, ...,0x. For each ( € T we seek a solution ¢ to Problem 1.3
that satisfies the additional interpolation condition ¢(7) = ¢ and Ap(7) = p¢ -, where p¢ - > 0 is chosen
to make the Pick matrix B¢, of the augmented interpolation problem singular. We record the following
simple lemma without proof.

Lemma 3.4. If C is an n x n positive definite matriz, u is an n x 1 column, p = (C~lu,u) and the
(n+1) x (n+ 1) matriz B is defined by

then B is positive semi-definite, rank(B) = n and

579 =0
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The Pick matrix B¢, of the augmented problem is the (n 4+ 1) x (n + 1) matrix,

M Ue,r
B¢, = ' A4
o=t b ] 3.4
where M is the Pick matrix associated with Problem 1.3, u¢ ~ is the n x 1 column matrix defined by

1-71¢
1-o171

Uer = | (3.5)
1-1n¢
1-o,7

and

per = (M ug 2 uc 7).

Thus the augmented problem that we are considering is the Blaschke interpolation problem with data
(6,7, p) where

o= (o’, T)v = (77,0, p= (P; p(a"’)'

Proposition 3.5. Let 1) be a Blaschke product of degree N. Let 0 = (01,09,...,0,) be an n-tuple of distinct
points in D™, let n; = (o;) for j=1,...,n and let p; = A(o;) for j such that |o;| = 1. The Pick matriz
for the data (o,m, p) has rank at most N.

Proof. In the case that the o; all lie in I the assertion is well known — see [4]. It follows easily from the
fact that in this case the Pick matrix M is given by

M = K(l —TwTJ)kAj»kAiﬂf ;
i,j=1
where k) denotes the Szeg6 kernel and T}, is the analytic Toeplitz operator on the Hardy space H 2 with
symbol 1.
Consider the case that o1,...,01 € T and ojy1,...,0, € D. Let M be the Pick matrix for the data
(6,1, p). Choose r € (0,1) and let \; = ro; for j = 1,...,n. By the foregoing observation, the matrix

M(T) déf 1- 1/)(1"0’@)1/)(7’(%‘)

1 — 12550,

i,j=1

has rank at most N. Let r — 1—. It follows from L’Hépital’s rule that the jth diagonal entry, for j = 1,..., k,
tends to Ay(o;). The remaining entries of M(r) also tend to the corresponding entries of M, and so
M(r) — M. It follows that rank(M) < N. O

Proposition 3.6. If the Pick matriz M associated with Problem 1.3 is positive definite then, for any T €
T\ {o1,...,01} and ¢ € T there is at most one solution ¢ of Problem 1.3 for which ¢(1) = (.

Proof. Let ¢ be a solution of Problem 1.3 such that ¢(7) = ¢ and let p, = Ay(7). Thus ¢ is in the Schur
class and satisfies
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U(oj) =n; forj=1,....n,
AY(o;) =p; forj=1,...,k,
(1) = ¢,
AP(T) = pr. (3.6)

Since v is a Blaschke product of degree n, it follows from Proposition 3.5, applied to the augmented problem
with data (,7, (p, pr)), that the corresponding Pick matrix

o M Uc¢,r
M= |:U/Z~77_ Pr :|

has rank less than or equal to n and so it is singular. Thus
Pr = <M71UC7T’UC7T> = P¢rs

and so AY(7) is the same for every solution of Problem 1.3 such that ¥(7) = . By Theorem 3.3, there is a
unique function v in the Schur class satisfying the conditions (3.6), and hence there is at most one solution
of Problem 1.3 such that ¢(7) =¢. O

We denote by e; the jth standard basis vector in C".

Proposition 3.7. If the Pick matriz M associated with Problem 1.3 is positive definite, if 7 € T\{o1,...,0k},
CeTand

(M~ lug,r,e5) # 0 (3.7)
for i =1,...k, then there exists a unique solution ¢ to Problem 1.3 such that ¢(7) = (.

Proof. Observe that by Lemma 3.4, if B. ; is defined by equation (3.4), then B¢ » > 0 and rank(B¢ ;) = n.
-1
Further, Lemma 3.4 guarantees that ker(B¢ ) is spanned by the vector [ M 1 u¢ af] . The inequation (3.7)

M1 )
implies, for j =1,...,k, that [ M 1 UC’T} ya [60]} and therefore, for every ¢ > 0, we have

(e ] e[S [0 | [ ])-
(] Ll

< 0.
Ber—c¢ [%j] & [eoj:| 2 0.

It follows that B¢ , is minimally positive and the proposition follows from Theorem 3.3. O

— &

Thus

In the light of Proposition 3.7 we define the exceptional set Z. for Problem 1.3 to be

Z;={Ce€T: forsomej, 1 <j <k, (M tuc,e;) =0} (3.8)
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Define n x 1 vectors ) and yy for A € D™\ {o1,...,0%} by the formulas
1 i
=i oA
Ty = ; Yx = ) (39)
1 T
= oA
so that
Uc,r = &r — CYr. (3.10)

Proposition 3.8.
(i) For any T € T\ {o1,...,0k} if
(xr, M~ te;) = 0= (y,, M 'e;) for some j, 1<j <k,

then Z, =T.
(ii) There exist uncountably many 7 € T\ {o1,...,01} such that the equation

(2, M) =0 = (ye, M)
does not hold for any j, 1 < j < k. Moreover, for such 7, the set Z. consists of at most k points.
Proof. (i) Let
ZI={CeT: (x; —Cy;) LM 'ej);

By the definition (3.8) and equation (3.10),

Note that ZZ = T if and only if, for every ¢ € T,
(xr — Cyr, M tej) = (w7, M~ e;) — Clyr, M te;) = 0.
Hence, for 7 € T\ {01,...,0%}, the set Z = T if and only if
(xr, M~ te;) = 0= (y-, M 'e;).
Otherwise, Z7 consists of at most one point ¢ € T.
We shall call a point 7 € T\{o1, ..., 0%} unsuitable if there exists j, 1 < j < k, such that M ~'e; L{z,, y, }.
(ii) For j, 1 < j <k, let
Ej={reT\{o1,...,on} : {&r,y- } LM te;}.
Suppose that every 7 € T\ {01, ...,0%} is unsuitable. Then
T\ {o1,...,0k} = F1U---UE}.

Pick jo such that £, is uncountable. Thus, for every 7 € Ej,
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<wT7M_1ej0> =0= <yT’M_1ej0>'
Let

C1

By equations (3.9),

1—o57
and
Mle; ) =Y —1— =0
<y7'7 _]()> ; 1 _ O'—Z‘T
Since the functions f;(\) = ﬁ, i =1,...,n, restricted to the infinite bounded set E;, C C are linearly

independent, ¢; = 0 for all ¢ and M’lejo = 0. This is impossible. Therefore there exists 7 € T\ {o1,...,0%}
such that the equalities

(a7, M7he)) = 0= (y,, M~"e))

do not hold for any j, 1 < j < k. Hence there exists 7 € T\ {01, ...,0%} such that the set Z, consists of at
most k points. O

Our final result concerning Problem 1.3 is that the particular solution guaranteed by Proposition 3.7 is
uniquely determined by ¢ and varies linear-fractionally in (. We suppose that Blaschke interpolation data

(0,1, p) are given, as in Definition 1.2.

Theorem 3.9. Let the Pick matriz M for Problem 1.3 be positive definite, and let 7 € T \ {o1,...,0%} be
such that the set

Z; ={CeT:uc, LM e; for somej, 1 <j<k}
contains at most k points, where u¢ - is defined by equation (3.5).

(1) If € T\ Z-, then there is a unique solution ¢ of Problem 1.3 that satisfies p¢(T) = (.
(2) There exist unique polynomials a,, b, ¢., and d, of degree at most n such that

ar(t) b (r)| |1 O
[CT(T) d(n)| = o 1 (3.11)
and, for all ¢ € T, if v is a solution of Problem 1.3 such that o(1) = (, then

_ )
P(A) = N Ed () (3.12)

S
N
—~
>
N
I
+
=
3
—~
>

for all X € D.
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(3) If a, b, & d are rational functions satisfying the equation

[Zé:§ 22:%} - {é ?} (3.13)

S
N
—~
Xt
7
+
=
3
>
N
1
>
Ny
—+
=
>

a4
= ANC (3.14)

holds for all A € D, then there exists a rational function X such that a = Xa, b= Xb,, ¢ = Xc, and
d=Xd,.

Proof. (1) By Proposition 3.8, there exists 7 € T \ {o1,...,0k} such that the set Z, consists of at most k
points. Proposition 3.7 asserts that if M is positive definite and ¢ € T\ Z, then there exists a solution ¢ to
Problem 1.3 with ¢(7) = ¢. By Proposition 3.6, the solution (when it exists) is unique.

(2) Let ¢ € T be such that there is a solution ¢ of Problem 1.3 satisfying ¢(7) = ¢. With the setup of
the proof of Proposition 3.7, we have B¢, > 0 and

1 1
ran(B¢ ;) = {_M 1 uC’T} ) (3.15)

For A € D, we define a (n+ 1) x 1 column matrix v x, by

[1=Tre(M) ]
77A
Ve = L—neN) |,
1-o, A
1—Cp(N)
L 1-7x

and define a (n + 2) x (n + 2) matrix C¢ » by

Cea =

Ber o wea ]

ot lleO)P
CA T—[A2

As C¢ » is the localization of the Pick matrix for ¢ to the points o1,...,0,,7, A, it follows that C¢ x > 0.

Hence, equation (3.15) implies that
7M71UC r
Ve s 1 =0. (3.16)
Note that

x Yx
uc,r = xr — Cyr and ve ) = [ e ] —o(N) [ ¢ } (3.17)
1-7X 1-7X

where n x 1 vectors z) and y) are defined for A € D~ \ {o1,...,0k} by the formulas (3.9). Hence, by
equations (3.16) and (3.17), we have
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= ((@x = eWNyn), =M@z = Cyr)) + =5 (3.18)
Therefore
(2x = e(Nyn, (M lyr = M) + _1ﬂ — (N7 _Zﬂ = (3.19)
Equation (3.19) for ¢()) yields, after simplification,
p(A) = m, (3.20)
where
AN = =(2x, M) + _1ﬂ, (3.21)
B(\) = (2, M y,), (3.22)
C(N) = —(ya, M~ 1ar), (3.23)
and
D) = (ya, M~ yr) + 1 _1ﬂ- (3.24)

As the right hand sides of equations (3.21)—(3.24) depend only on the prescribed data of Problem 1.3,
equation (3.20) implies that ¢ is unique as claimed.
To define a,, b;, ¢,, d, with the desired properties, let

n

_ 11—
") = - [[ ;==
Jj=1
and set
ar =TA, by = 7B, ¢, =7C, and d, = 7D. (3.25)

With these definitions, equation (3.11) follows immediately from equations (3.21)—(3.24) and equation (3.12)
follows from equation (3.20).

(3) To prove the final assertion of Theorem 3.9, assume that a, I~), c, d are rational functions satisfying
equation (3.13) and such that for 3 distinct points ¢ in T \ Z,, equation (3.14) holds for all A € D. Cross
multiplication in equation (3.14) yields

ac C? + (ad, + ber )¢ + bdr = aréC? + (ard + br3)C 4 brd
for 3 distinct values of (. Hence,

ac; = a,é, (3.26)

ad, 4 ber = ard + bré (3.27)
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and
bd, = b.d. (3.28)

Solving equation (3.26) for ¢ and equation (3.28) for b and then substituting into equation (3.27), we deduce
that

a d
ar d,
Here, as equation (3.11) guarantees that a, and d, are not identically zero, @/a, and d/d, are well defined
rational functions. Since equations (3.26) and (3.28) imply that

~ a 7
¢ = —TCT and b = Zbﬁ
the final assertion of the theorem follows with X = a/a..

To see the uniqueness of polynomials a-, b, ¢,, d; assume that there is a second collection a1, b1, c1,
dy of polynomials of degree < m such that equations (3.13) and (3.14) hold. By what was proved in the
previous paragraph, it is not the case that both collections of polynomials are relatively prime. Otherwise,
there is a third collection as, ba, o, da of polynomials of degree < n — 1 such that equations (3.11) and
(3.12) hold. This contradicts the fact that deg(p) =n forall (€ T\ Z,. O

In view of Theorem 3.9 we can make precise what we mean by a parametrization of the solutions of a
Blaschke interpolation problem.

Definition 3.10. Let (0,7, p) be Blaschke interpolation data, with n distinct interpolation nodes of which k&
lie in T. Suppose that Problem 1.3 is solvable. We say that

aC +b

Tt d

is a mormalized linear fractional parametrization of the solutions of Problem 1.3 if

(1) a, b, ¢, d are polynomials of degree at most n;
(2) for all but at most k values of { € T, the function

a(A)¢+Db(N)

p(A) = AN+ A (3.29)

is a solution of Problem 1.3;
(3) for some point 7 € T\ {o1,...,01},

a(t) b(r)| |1 0],
e(r) d(r)| |0 1}’
(4) every solution ¢ of Problem 1.3 has the form (3.29) for some ¢ € T.

Remark 3.11. Let (0,7, p) be Blaschke interpolation data, with n distinct interpolation nodes of which & lie
in T. Suppose the Pick matrix M of this problem is positive definite. The above proof of Theorem 3.9 gives
an explicit linear fractional parametrization of the solutions of Problem 1.3. As in Theorem 3.9 choose 7 €
T\{o1,...,0x} such that the set Z, contains at most k points. A normalized linear fractional parametrization
of the solution set of Problem 1.3 is
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a, ¢+ b

e Ctdy

where the polynomials a,, b-, ¢; and d, are defined by equations (3.25). Note that different choices of 7
will yield different normalized parametrizations.

In the terminology of Definition 3.10, Theorem 3.9 tells us the following.

Corollary 3.12. Let (0,7, p) be Blaschke interpolation data, with n distinct interpolation nodes. Suppose the
Pick matriz M of this problem is positive definite. There exists a normalized linear fractional parametrization

_aC+b
e +d

of the solutions of Problem 1.3. Moreover

(1) at least one of the polynomials a, b, ¢, d has degree n;
(2) the polynomials a, b, ¢, d have no common zero in C;
(3) Il < |d| on D~

Proof. As in Theorem 3.9 choose 7 € T\ {o1,...,0k} such that the set Z, contains at most k points. Let
the polynomials a = a,, b = b;, ¢ = ¢, and d = d, be defined by equations (3.25). Theorem 3.9 shows that
(a, b, c,d) has the properties (1), (2) and (3) of Definition 3.10. Let ¢ be a solution of Problem 1.3 and let
¢ = ¢(7). By Theorem 3.9(2), ¢ is given by equation (3.29). Hence property (4) of Definition 3.10 holds.

Moreover (1) if all of a, b, ¢, d have degree strictly less than n then ¢ = ?512 is a rational function of

degree strictly less than n, and so is not a solution of Problem 1.3.

(2) Suppose a € C is a common zero of the polynomials a, b, ¢, d. On canceling the common factor A — «
above and below in equations (3.29) and multiplying numerator and denominator by a suitable nonzero
scalar we obtain a different normalized parametrization of solutions of Problem 1.3, with the same T,
contrary to the uniqueness statement in Theorem 3.9(2). Hence a, b, ¢ and d have no common zero in C.

(3) By the normalization property in Definition 3.10(3),

(ad—bc)(A\) =1 asA—T.

Hence ad — be is a polynomial of degree at most 2n and is not identically zero. Therefore

Y N eD: (ad - be)(\) = 0}
contains at most 2n points.

We claim that the real-valued function f(A) = |d(A\)| — |¢(A)] has no zeros in D\ Y. For suppose that
Ao is a zero of f. Then there exists (o € T such that ¢(Ao)¢o + d(Ag) = 0. Since |p| = ‘zgj_'s’ <1 on D for
almost all ¢ € T, it follows that also a(Ag){o + b(Ao) = 0, and therefore (ad — be)(Ag) = 0, that is, Ag € Y.

Since ¢(7) = 0 and d(7) = 1, the continuous function f is strictly positive on a neighborhood of 7 in D.

Suppose that f(A;) < 0 for some A; € D. Then f < 0 on an open set, and hence there are infinitely many
points in D at which f = 0, a contradiction. Hence f > 0on D. O

4. Prescribing the nodes and values
In this section we shall show how to construct rational I'-inner functions with prescribed royal nodes

and values. Our answer will be in terms of the solution to Problem 1.3 as described in Proposition 3.7 and
Theorem 3.9. First we require a notion of multiplicity for royal nodes.
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Definition 4.1. Let h be a rational I'-inner function with royal polynomial R. If ¢ is a zero of R of order /,
we define the multiplicity #0 of o (as a royal node of h) by

4 ifoeD
#o =
%Z ifoeT.

The type of h is the ordered pair (n, k) where n is the sum of the multiplicities of the royal nodes of h that
lie in D~ and k is the sum of the multiplicities of the royal nodes of h that lie in T. We denote by R™* the
collection of rational I'-inner functions h of type (n, k).

By [3, Theorem 3.8], if h = (s,p) belongs to R™* then deg(h) = n and p is a Blaschke product of
degree n.

The following example of rational I'-inner functions from R™F for even n > 2 can be found in
[1, Proposition 12.1].

Example 4.2. For all v > 0 and 0 < r < 1, the function

)\1/+1 )\(/\21/—}-1 —|—’I“)
hy(N\) = <2(1 —7“)1 AL ] o a2vtL ) , AeD, (4.1)

belongs to R?*+22+1 The royal nodes of h, that lie in T, being the points at which |s| = 2, are the
(2v 4 1)th roots of —1, that is,

wj = TEFD/ @D Dy — o oy,
They are all of multiplicity 1. Note that there is a simple royal node at 0.
In this section we are concerned only with rational I'-inner functions whose royal nodes all have multi-
plicity 1.

The following elementary calculation will be useful.

Lemma 4.3. Let a,b, ¢,d, so,po € C and suppose that |po| = 1, so = Sopo, soc # 2d and |sg| < 2. Let

2poc — sod
S:2M

soc _2d (4.2)

Then
sl <2 e | <ldl (43)

Proof.
|s| <2 <= |2poc — sod|? < |soc — 2d|? (4.4)

<= 4|c|* — 2Re(2pocsod) + |so|*|d|?

< |s0|?|¢|? — 2Re(2s0cd) + 4|d|?
— (4 —|s0/*)(|c|* = |d|*) < 4Re(sgcd — spcd)
= | —1]d* <0

= | < |d|. O (4.5)



J. Agler et al. / J. Math. Anal. Appl. 447 (2017) 1163-1196 1181

The next result provides a necessary condition for the existence of a rational I'-inner function with
prescribed royal interpolation data.

Theorem 4.4. Let h = (s, p) be a rational T-inner function of type (n, k) having distinct royal nodes o1, . ..,0n
and corresponding royal values ny, ..., M, where o1,...,0; € T. Let p; = %Ap(oj) forj=1,... k.

(1) There exists a rational inner function p that solves Problem 1.3, that is, such that deg(p) = n,
ploj)=mn; for j=1,...,n (4.6)
and
Ap(oj)=p; for j=1,... k. (4.7
Any such function o is expressible in the form ¢ = ®, o h for some w € T.

(2) There exist polynomials a, b, ¢, d of degree at most n such that a normalized parametrization of the
solutions of Problem 1.3 is

¢eT.

(3) For any polynomials a, b, ¢, d as in (2), there exist so,po € C such that

50 = S0Po, (49)
|so| < 2 (4.10)
le] < |d, (4.11)
soa — 2b+ 2pgc — spd =0 (4.12)
and
(2poc — sod)? # (—2poa + sob)(soc — 2d). (4.13)
Moreover
2poc — sod
=2— 4.14
y soc—2d ( )
—2poa + Sob
= 4.15
b SoC — 2d ( )
Proof. (1) For w € T consider the rational function
= B o h = WP (4.16)
= o = - .
¢ ¢ 2 —ws
Thena if w 7é _T_]h _"7]27 LR _T_]kv
2wn3 + 215
ww(oj):M:nj for j =1,2,...,n. (4.17)

2 +w2n;
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We claim that, for w € T \ {—71....,7,}, the function ¢ = 1, is a solution of Problem 1.3. By
[1, Proposition 3.2|, for any w € T and any point (s(A),p(N)) € T,

@, (s(\),p(A)| =1 ifandonly if  w(s(A) — s(\)p(A) = 1 — [pV)[2.

Thus it is easy to see that ¢ is inner. The equation (4.17) shows that 1, takes the required values at

O1,...,0n. By Proposition 2.5(iv),
A, (0j) = %Ap(oj) =p; forj=12,... k. (4.18)
It is also true that deg(t),,) = n for w # —7;. ..., —7k. By [3, Proposition 2.2], for a rational I'-inner function

h = (s,p) such that deg(p) = n and if D is the denominator when p is written in its lowest terms then s
can also be written with denominator D. It follows that

deg(vh,,) = deg(p) — #{cancellations between 2wp — s and 2 — ws}. (4.19)
By [1, Theorem 7.12], such cancellations can occur only at the royal nodes o; € T, j = 1,...,k, and then
only when w = %s(0;) = —#);. Hence there are no cancellations in equation (4.19), and so deg(¢.,) = n. We
have shown that, if w # —71, =72, . .., — 7k, then @ = 1, is a solution of Problem 1.3.

(2) Since Problem 1.3 is solvable, its Pick matrix is positive definite and so Theorem 3.9 tells us that
there exist polynomials a, b, ¢, d of degree at most n which parametrize the solutions of Problem 1.3. Let
us choose a particular such 4-tuple of polynomials, as described in Theorem 3.9. By Proposition 3.8, there
exists 7 € T\ {o1,...,0} such that the set Z. (defined in equation (3.8)) consists of at most k points. Fix
such a 7 € T; then there exist unique polynomials a,, b, ¢, d, of degree at most n such that

T b‘r 10
Bt B (420
and, for all ¢ € T\ Z;, the function

aC+b,
= — 4.21
=T, (4.21)
is the unique solution of Problem 1.3 that satisfies o(7) = (. Moreover, the general 4-tuple of polynomials
that parametrizes the solutions of Problem 1.3 is expressible in the form

(a,b,e,d) = (Xar, Xbr, Xer, Xd;) (4.22)

for some rational function X.

Let so = s(7), po = p(7). Since h is T-inner, equations (4.8) and (4.9) hold by virtue of Proposition 2.1.
Since 7 is chosen not to be a royal node of h, the inequation (4.10) also holds. Moreover |so| < 2, since,
for any point (21, 22) in the distinguished boundary bI" of I', we have |z;| = 2 if and only if 22 = 425 — see
[1, Proposition 3.2(3)]. It remains to prove equations (4.12) and (4.11).

Lemma 4.5. Let

g~ def —2Mmpo — S0 —212po — So —27MKpo — S0
" 2+7ms0 | 2+47mse 0 2+7mse S

If ( € T\ Z7 then the function
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4p — 2 -2
o= (4p — s05)¢ + 250p — 2pos (4.23)
(280 — 25)C + 4po — sps

is a solution of Problem 1.3 and satisfies p(7) = (.

Proof. Observe that, by equation (4.16), for any w € T,

_ 2wpo — So

Yo(T) =

2 —wsy

which is well defined since |sg| < 2. We have, for ¢ € T,

_ 2wpy — S0
bu(r) = ¢ =
2¢ + sg
w=—
2po + (50
Hence, as long as
2¢ + s _ _
— A ., =Tk, 4.24
2pe 1 Cso # Tk (4.24)
the function
O =1y =1 _2cssg_ (4.25)
2po+<so

is a solution of Problem 1.3 which satisfies in addition ¢(7) = (. Condition (4.24) can equally be written

2P0 + So

, forj=1,2,... k
7 2+ 1550 /

or equivalently ¢ ¢ Z~.
On computing ¢ from equations (4.25) and (4.16) we find that ¢ is indeed given by equation (4.23); this
establishes the Lemma. 0O

We conclude the proof of Theorem 4.4 (2). For ¢ € T\ (Z,; U ZY') we have two expressions for the unique
solution of Problem 1.3 for which ¢(7) = (, to wit equations (4.21) (with the normalizing condition (4.20))
and (4.23). Note that

_ | 4po—s0so  250po — 2poso
- 280 — 280 4p0 — 5050

= (4po — 57) [é (1)} :

4dp(7) — sos(T)  2sop(T) — 2p08(T):|
280 — 2s(7) 4dpo — sos(7)

Since the set Z, U Z" is finite, the linear fractional transformations in equations (4.21) and (4.23) are equal
at infinitely many points, hence coincide. On taking account of the normalizing condition we obtain

ar br| ; 4p — sps  2sop — 2pos
cr dr | T 4py — s? 289 — 28  4pg — Sos | °

Suppose that a, b, ¢, and d are polynomials that parametrize the solutions of Problem 1.3, as in Theo-
rem 4.4 (2). By the observation (4.22), there exists a rational function X such that



1184 J. Agler et al. / J. Math. Anal. Appl. 447 (2017) 1163-1196

Xa =4p — sps, (4.26)
Xb=2s9p — 2pos, (4.27)
Xc=2syp—2s, and (4.28)
Xd = 4py — sps. (4.29)

Thus
X (spa — 2b+ 2pgc — spd) =
s0(4p — s08) — 2(2s0p — 2pos) + 2po(2s0 — 25) — so(4po — S0S)

which is zero. Hence equation (4.12) holds.
Let us find connections between s, p and the polynomials a, b, ¢, d. Solving equations (4.28) and (4.29)
for s and X we find that

252 — 8py
xX==0 = 4.30
spc — 2d ( )

and

2 — Sod
s—9 PoC — So

. 4.31
soc — 2d ( )

Eliminating s from equations (4.26) and (4.27) we deduce that
(80 — 253)p = X (2poa — sob), (4.32)

which implies via equation (4.30) that
—2poa + sob

= 4.33
p soc — 2d ( )

Since h = (s,p) is a rational I'-inner function, |s| < 2 on D and, by Lemma 4.3, equation (4.11) holds.
Since, by assumption, h(D) ¢ R, we have s> # 4p on D~ and inequation (4.13) holds. The proof of
Theorem 4.4 is complete. O

Remark 4.6. The above proof shows that, if w # —1,..., =7, then &, 0h is a solution of the corresponding
Blaschke interpolation problem. What if w = —7; for some j € {1,...,k}? Then the rational function ®,0h
has a removable singularity at ;. After cancellation, it is still true (by Proposition 2.5) that ®,,0h(c;) = n;,
but we cannot assert that A(®, oh)(o;) = 2p;. In any case @, o h has degree n — 1, and so is not a solution
of Problem 1.3.

There is a converse to Theorem 4.4. To prove it we need the following purely algebraic observation, which
is proved by a routine calculation.

Proposition 4.7. Let a, b, ¢, d be polynomials in the indeterminate A\ and suppose that sg,pg € C satisfy
83 # 4po, soc # 2d and

soa — 2b + 2pgc — sod = 0.

Let rational functions s, p be defined by
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2poc — sod —2pga + sgb
—oZ0r 0% = 7 4.34
soc—2d p soc — 2d ( )
and let
((w) = 2P0 %0 (4.35)
T 2—wsy ’

Then, as rational functions in (w,\),

2wp(A) — s(A) _ a(A)¢(w) +b(A)
2 —ws(N) c(A)¢(w) +d(N)’

This algebraic relation has implications for rational maps from D to T'.

Proposition 4.8. Let a, b, ¢, d be polynomials having no common zero in D™ and satisfying |c| < |d| on D.
Suppose that sg,pg € C satisfy soc # 2d and

soa — 2b + 2pgc — sod = 0.

Suppose in addition that |po| = 1, |so| < 2 and so = Sopo. Let rational functions s, p be defined by equations
(4.34) and let

_a)¢+ b
Pe(A) = T AN (4.36)
(i) If, for all but finitely many values of A € D,
[he(N)] <1 (4.37)

for all but finitely many ¢ € T, then soc — 2d has no zeros in D~ and (s,p) is a holomorphic map from
DtoT.

(ii) If, for all but finitely many ¢ € T, the function ¢ is inner, then h = (s,p) is a rational T'-inner
function.

Proof. (i) Notice first that the hypotheses on sy and py imply that ((-) (defined by equation (4.35)) is an
automorphism of D and so defines a bijective self-map of T.

By hypothesis there is a finite subset F of D such that, for all A\ € D\ E, there is a finite subset F) of T
such that the inequality (4.37) holds for all ¢ € T \ F).

We claim that the denominator soc — 2d of s and p in equations (4.34) has no zeros in D~. For suppose
that « is such a zero. Since |¢| < |d| on D™ and |so| < 2,

0 = |spc — 2d| > 2|d| — |soc]
> (2= |sol)ld|
at «, and hence d(a) = 0, and consequently c¢(a) = 0.

Choose a sequence «; in D\ E such that o; — «. For each j, for { € T\ F();) we have |¢)¢] < 1 on
D\ E. Hence, for all but countably many ¢ € T (that is, for ( € T\ U;F();))
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Since ¢(a;)¢+d(a;) — 0 uniformly almost everywhere for ( € T as j — 0o, the same holds for a(a;)(+b(c;).
Hence a(cj) — 0 and b(a;) — 0. Thus a(a) = b(a) = 0. Hence a, b, ¢, d all vanish at «, contrary to
hypothesis. It follows that sgc — 2d has no zeros in D~.

Thus s and p are rational functions having no poles in D™.

Consider A € D\ E. By Proposition 4.7,

B (s, p(N)) = TR LY (4.38)

M={weT:ws(A\)=2 or cAN)(w)=—-dN)}.
Q) contains at most two points. On combining the relations (4.36), (4.37) and (4.38) we deduce that

@y (s(A),p (M) <1

for all w € T such that w ¢ Q) U ™(F)), hence for all but finitely many w € T. By Lemma 4.3, [s(\)| < 2.
It follows from [1, Proposition 3.2(2)] that (s(\),p(A\)) € T. Since this is true for all but finitely many A € D
and s, p are rational functions without poles in D™, (s, p) maps the whole of D~ into T.

(ii) Suppose that, for some finite subset F' of T, the function ¢, is inner for all ¢ € T\ F. By Part (i), (s,p)
maps D into I' and therefore extends to a continuous map of D™ into I". Consider A € T. By Proposition 4.7
and equation (4.36),

Do (s(A), p(A)) = Ye(w)(N) (4.39)
whenever both sides are defined, that is, for all w € T \ Q2 where
M ={weT:ws(A)=2 or cAN){(w)=—-dN}.

Q) contains at most two points. For w € T\ (™ (F) the function (., is inner. Hence, for w € T\ (™' (F)U
Q/\)7

[P (5(A), P(A)] = [Y¢() ()] = 1. (4.40)
[1, Proposition 3.2] asserts that, for any w € T and any point (s1,p1) € T,

[®,(s1,p1)|=1 ifandonly if w(sy—381p1)=1- |p1|2.

Hence, if |®,(s1,p1)] = 1 for two distinet w € T, then [p;] = 1 and s; = $1p;, which is to say that
(s1,p1) is in the distinguished boundary bI' of I'. Therefore, since equation (4.40) holds for many w € T,
(s(A),p(X)) € bI'. Thus h = (s,p) is a rational I'-inner function. O

The following result gives the promised explicit construction of a solution of the royal I'-interpolation
problem in terms of a normalized parametrization of solutions of the corresponding Blaschke interpolation
problem.

Theorem 4.9. Let (0,7, p) be Blaschke interpolation data with n distinct interpolation nodes of which k lie
in T, as in Definition 1.2. Suppose that Problem 1.3 with these data is solvable and the solutions ¢ of
Problem 1.3 have normalized parametrization
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_aC+b
(p_chLd

Suppose that there exist scalars sg and pg such that

|p0‘ =1, sp = Sgpo, |80| <2 (441)
and

spa — 2b + 2pgc — sod = 0. (4.42)
Then there exists a rational T'-inner function h = (s,p) such that
) h
) hioj) = (—277]-,77?-) forj=1,2,...,n,
(ili) Ap(oj) =2p; for j=1,2,...,k,

)

An explicit function h = (s,p) satisfying conditions (1)—(iv) is given by

2 — Sod
s—9 PoC — So

4.43
soc—2d "’ ( )
—2poa + sob
= 4.44
p spc — 2d ( )
a)

Proof. By Corollary 3.12 (3), |¢| < |d| on D~. Hence ey

and therefore soc # 2d on D~. By Proposition 4.8, h is a rational I'-inner function. Since a, b, ¢, d are

‘ > 1 for A € D™. By assumption |sg/2| < 1,

polynomials of degree at most n, the rational function i has degree at most n. Recall that the degree of h
coincides with the degree of p.

By Definition 3.10 of a normalized linear fractional parametrization of the solutions of Problem 1.3, for
some point 7 € T\ {o1,...,04},

Thus it is easy to see that

_ 2poc(T) — sod(T) _
s(t) =2 soclr) —2d(r) — (4.45)
(r) = —2poa(T) + spb
soc(T) — 2d(7

gT) = po. (4.46)

By assumption, |pg] = 1 and |sg| < 2, and hence s(7)?> # 4p(7). Therefore h(D™) is not in the royal
variety R.
Let us show that h satisfies the interpolation conditions

h(o;) = (—2n;,73) (4.47)

for j =1,...,n, which is to say that o; is a royal node of h with corresponding royal value ;. By hypothesis,
there is a finite set F' C T such that, for all ¢ € T\ F, the function
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is a solution of Problem 1.3, and so

ve(oj) =m; forj=1,....n (4.48)
and

AYe(oj)=p; forj=1,...,k (4.49)
for all ¢ € T\ F. By Proposition 4.7

a(A)C(w) +b(A) _ 2wp(A) = 5(})
c(N)C(w) +d(N) 2 —ws(A)

Ve)y(A) = = ®, 0 h(}N) (4.50)
as rational functions in (w, A), where ((w) = @TQSO' Hence, for w € T\ ("Y(F), ®, o h is a solution of
Problem 1.3; this proves statement (iv).

For any A € D~ equation (4.50) holds whenever both denominators are nonzero, hence for all but at most
two values of w € T. On combining equations (4.48) and (4.50) (with A = ¢;) we infer that, for j=1,...,n
and for all but finitely many w € T,

2wp(o;) — s(ay)

2 —ws(o;) = Vo)) = 15

Therefore, for almost all w € T,

2wp(aj) — s(oj) = nj(2 — ws(ay)).

It follows that s(o;) = —27; and p(o;) = 77?-, j=1,2,...,n, and so the interpolation conditions (4.47) hold.

We have already observed that deg(h) < n and that h(D) is not in R. Thus [3, Theorem 3.8| tells us
that, in this case, the number of royal nodes of h is equal to the degree of h. Therefore h has at most n
royal nodes. Since the points o, j = 1,2,...,n are royal nodes, they comprise all the royal nodes of h and
deg(h) = n. Precisely k of the o; lie in T, and so h has exactly k royal nodes in T. Thus h € R™* and
statement (i) holds.

Next we show that Ap(o;) = 2p;. Fix j € {1,...,k}. By Proposition 2.5(iv), for w € T, w # —7; (and so
2 —ws(o;) = 2(1 + wn;) #0),

A(D, o h)(oj) = %Ap(aj). (4.51)

There is also a set €; containing at most one w; € T such that ¢(o;){(w) + d(o;) = 0 for w € Q;. Hence
if we T\ ({7} UQy), it follows from equation (4.50) that ¢,y = P, o h in a neighborhood of o, and
consequently, for such w,

Ate(w) (07) = A(®w 0 h)(;). (4.52)

Each of the equations (4.51), (4.52) and (4.49) hold for w in a cofinite subset of T. Hence, for w in the
intersection of these cofinite subsets,

Ap(o;) = 2A(P,, o h) (o)) = 2A%¢ () (o)) = 2p;

as required. 0O
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Remark 4.10. Under the assumptions of Theorem 4.9, the condition (4.13):
(2poc — s0d)* # (—2poa + sob) (soc — 2d) (4.53)
is satisfied automatically and the rational I'-inner function A is such that A(ID™) is not in the royal variety R.

Remark 4.11. Every solution of a royal I'-interpolation problem is obtainable by the method in the theorem.
Let data (o, 7, p) be as in Theorem 4.9. Suppose that Problem 1.3 with these data is solvable and the solutions
@ of Problem 1.3 have normalized parametrization

_aC+b
T td

By Theorem 4.4, every rational [-inner function h = (s,p) € R™* satisfying

() h(o;)

) = (=2n;,n3) for j =1,2,...,n,

2p; for j =1,2,...,k is expressible by the equations

2poc — sod
=2— 4.54
soc—2d ' (4.54)
—2poa + spb
= 4.55
spc — 2d ( )

for some choice of sy, pg satisfying conditions (4.41) and (4.42).

Example 4.12. Consider 3 distinct points o1, 02,03 € T and 3 distinct points 11, 72,73 € T in the same cyclic
order as o1, 03, 03. There is a Blaschke factor ¢ such that p(o;) = n; for j = 1,2,3; let p; = Ap(o;) for
j =1,2,3. Problem 1.3 with data (o,, p) is solvable and ¢ is a solution. Let h = (—2¢, ©?); then h(D) C R.
Every point of D™ is a royal node of h; in particular, h has the 3 distinct royal nodes o1, 09,03 € T with
corresponding royal values 11,172,135 € T, and

Ap(o;) = Ap*(0;) = 24p(0;) = 2p;, j=123.

At the same time deg(h) = 2. The example shows that for the rational I'-inner functions whose range is
contained in R, it can happen that deg(h) is strictly less than n.

5. The algorithm

In this section we summarize the steps in the solution of the royal I'-interpolation problem in the form
of a concrete algorithm.

We suppose given Blaschke interpolation data (0,7, p) as in Definition 1.2. Here there are n prescribed
royal nodes o, of which the first £ lie in T and the remaining n — & are in ID. To construct a rational I'-inner
function or functions of degree n having royal nodes o, royal values n; and phasar derivatives 2p; at o; we
proceed as follows.

(1) Form the Pick matrix M = [m;;]};_, for the data (o, 7, p), with entries

pi iti=j<k

mij = 1 =7
# otherwise.
1-— 0i0;
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If M is not positive definite then the interpolation problem is not solvable. Otherwise, introduce the notation

1 70

1—o1A 1—o1A
T = ) Y\ = ) (51)
1 N
1-o, )\ 1-o, A

as in equations (3.9).
(2) Choose a point 7 € T \ {o1,...,0%} such that the set of ¢ € T for which

(M 'z e5) = (M 'y, e;) for some j € {1,...,n}

(where e; is the jth standard basis vector in C™) is finite.
(3) Find sg,pp € C such that |sg| < 2, |po| =1, so = Sopo and, for all A € D,

so ((@xs M~ w7 ) + (yn, M7 Hyr)) + 2 (@x, M~ yr) + 2p0 (ya, Ml = 0. (5.2)

If there is no pair (sg, po) satisfying these conditions, then the interpolation problem is not solvable; otherwise
(4) Let

I
>

3

o =] 1=
j=1

J
J
and let polynomials a, b, ¢, d be given by

A) =g\ (1= (1 =7\ {2\, M '2,)),
(A1 = 7A) (ax, M1y, ),

d
Note that
a(t) b(r)| |1 0
e(r) d(r)| — |0 1
(5) Let
B 22poc — sod
T T spc—2d
_ —2poa + sob
T spc—2d

It is easy to see that
s(1) = s and p(7) = po.

Then h = (s, p) is a rational -inner function of degree at most n such that h(a;) = (=2n;,73) forj =1,...,n
and Ap(c;) = 2p; for j = 1,..., k. By assumption, |pg| = 1 and |so| < 2, and hence s(7)? # 4p(7). Therefore
h(D7) is not in the royal variety R and the degree of h is exactly n.

The following comments relate the steps of the algorithm to results in the paper.
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(1) If the royal T'-interpolation problem is solvable, then the Blaschke interpolation problem with the
same data is solvable, by Theorem 4.4. By Proposition 3.2, M > 0.

(2) This amounts to saying that Z, is finite, in the notation of equation (3.8). By Proposition 3.8, there
are uncountably many such 7 € T.

(3) The necessity of the existence of sg, pp is given in Theorem 4.4 equation (4.12), together with the
equations (3.21) to (3.25) for a, b, ¢ and d.

The conditions that |so| < 2, |[po] = 1 and sg = Sopo are equivalent to (sg,po) € bI' and |sg| < 2. By a
standard parametrization of bI' [7, Theorem 2.4], we can take sg = 2tw, po = w? for some t € (—1,1) and
w € T. The condition (5.2) then becomes: for all A € D,

(yn, M*1x7> w? 4+t ((za, M*IxT> + <y)\,M*1yT>) w+ (2, M*1y7.> =0. (5.3)

After multiplication of both sides by H?Zl (1—a;)), the coefficients in this equation relating ¢ and w become
polynomials in A of degree at most n, and so the equation is in effect a system of 2n+ 2 real equations in two
real variables. Consequently the system is over-determined. The existence of sg, po satisfying equations (5.2)
is thus in principle a stringent condition for the solvability of a royal I'-interpolation problem. Remarkably,
in the two examples in the next section, the A terms factor out entirely from equation (5.3), and one obtains
a single real equation in ¢ and w, which has a 1-parameter family of solutions.

(4) The equations for a, b, ¢ and d are equations (3.21) to (3.25).

(5) The equations for s and p are (4.45) and (4.46).

6. Two examples

Even the simplest case of Problem 1.4, the royal I'-interpolation problem with only one interpolation
node, demands a surprising amount of calculation to solve. This problem is so simple that it can be readily
solved without the foregoing theory, but it is instructive to see how the algorithm in Section 5 works in this
case.

Example 6.1. Consider the case n = 1, k = 0 of Problem 1.4. There are prescribed a single royal node o7 € D
and a single royal value € D, and we seek a I-inner function h of degree 1 such that h(oy) = (—2n,n?).
By composition with an automorphism of D we may reduce to the case that o1 = 0. There is clearly at least
a l-parameter family of solutions, if any, since if h is a solution then so is h(w)) for any w € T.

The recipe for h in Section 4 proceeds as follows. Choose an arbitrary 7 € T. The normalized parametriza-
tion of the solution set of the associated Blaschke interpolation problem, according to equations (3.25), is

given by
A = [nf?
ar(\) = —"L
™ 1—nl?
n(l—7A)
br(A) = L2,
™ 1—nf?
71 —7A)
(V) = -T2
» 1—nl?
1—[n7A
d,(\) = —"1"2
» 1 —n|?

The next step is to determine whether there exist sp, po such that equations (4.8) to (4.13) hold. A little
calculation shows that there is a 1-parameter family of such (sg,po), given by
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4w Re(w
- (;7)3 p0:w2
L+ [n

So =

for any w € T. Substitution of these values into equations (4.45) and (4.46) yields the degree 1 I'-inner
function

h(\) = (_2T]+T_m>\ KX 4 n? )

1+ 726N 14+ 726
where

,w2—n2

K=T———.
1 2u?

k is a general point of T, and so we do obtain a 1-parameter family of I'-inner functions of degree 1 satisfying
h(0) = (—=2n,7?%). An alternative expression for h is

h(X) = (B+ Bp(A),p(N))
where

27 ) KA + 1

B=-—13, =
L+ [n|?

14 2RN
Example 6.2. Next consider the case of a single interpolation node on the unit circle — say o = 1. A point
n € T and a p > 0 are prescribed, and we seek a I'-inner function h = (s,p) of degree 1 such that
h(1) = (=2n,7%) and Ap(1) = 2p.

Choose T € T\ {1}. Again calculate the normalized parametrization of the solution set of the associated
Blaschke interpolation problem according to equations (3.25):

1-— 1—7
ar(A) = 7 _j P _T:\lz,
b, (N) = ’L(ﬁ::é)

) ===,
)= o T

Equations (4.8) to (4.13) for (sg,po) have solution

So = —1N— OJ277, Po = WQ

for any w € T\ {n}. Then equations (4.45) and (4.46) yield the degree 1 I'-inner function h = (s, p) where

s(n) = 22 + W) (1 = 7)(1 = A) + (1 — w?7) (1 — 7A)
—20(1 = 7)1 = A) + (@22 — 1)(1 — 7A)
_ 2= (1= A) + (@ — 7P (1= 7A)

P = —2p(1 =7)(1 =\ + (W22 = 1)(1 = T\) (6.1)

One can check directly that h = (s,p) is a I-inner function of degree 1 satisfying h(1) = (—2n,7n?) and
Ap(1) = 2p. Tt appears at first sight that we have constructed a 2-parameter family of functions with the
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prescribed royal node, value and phasar derivative, since the parameters w and 7 range through T (or at
least, cofinite subsets thereof). However, by means of some entertaining algebra, one can express h in terms
of a single unimodular parameter (the same thing happened, though more simply, in Example 6.1). Let

" 2p(1 — 1w — 7(0 — w)
Clearly k is unimodular. Now let
20— K
a(k) = 1129
It transpires that |a(k)| < 1 and
20(1—-7) -1+
alk) = pl-7)-1+0

2p(1—7) —7(1 —w?)’
One may verify that the functions s and p in equations (6.1) can be written
s(A) = —n —1p(A),

A= a(k)
1—a(k)\’

PN =R (6.2)
with k € T, evidently a 1-parameter family.

Tt is noteworthy that the function h = (s, p) defined by equations (6.2) maps D into the disc {(n+7z, 2) :
z € D)}, which is a subset of the topological boundary OT' of T'. Inner functions A such that h(D) C oT'
were called superficial in [1] and discussed in [1, Proposition 8.3]. The example shows that the solutions of
a royal ['-interpolation problem can be superficial.

7. Concluding remarks

In this section we relate the results of the paper to some classical results in the theory of invariant
distances and thereby describe some of the original motivation for our work.

The algorithm which is developed in this paper provides constructions of n-extremal maps and
m-geodesics in Hol(D, G) with prescribed royal nodes ¢;, royal values 1; and phasar derivatives at ;. The
n-extremal maps simultaneously generalize both Blaschke products and complex geodesics and constitute
a significant class.

Recall that for a domain G in CV the Carathéodory distance Cq on G is defined by

Ca(z1,22) = sup  p(F(z1), F(z2)). (7.1)
FEHol(G,D)

In equation (7.1) z; and 2y are two points in G, p denotes the pseudohyperbolic distance on D,

zZ—w

plz,w) =

1—wzl|’

and, for any domain G and any set E, Hol(G, E) denotes the space of holomorphic mappings from G

to E. A dual notion is the Kobayashi distance of G, which is defined to be the largest pseudodistance K¢
subordinate to the Lempert function pg of G (e.g. [33,23]). The Lempert function of G is given by

= inf A1, Aa). 7.2

palz1 ) heHol(D,l(I;'l) A1, A2 €D p(Ar; A2) (72)

h()\l):zl
h(}\g)zzz



1194 J. Agler et al. / J. Math. Anal. Appl. 447 (2017) 1163-1196

The Kobayashi extremal problem for a pair of points z1, zo € G is to find the quantity pg(z1, 22) [31]. Any
function h € Hol(D, G) for which the infimum is attained is called a Kobayashi extremal function for the
domain G and the points z1, 2z2. In the special case when G = G it turns out that the 1-parameter family
®,, € Hol(G,D), which we encountered in equation (1.5), is “universal” for the Carathéodory extremal
problem [7, Corollary 3.4], the following sense.

Theorem 7.1. If z1, 20 € G then there exists w € T such that

Ca(z1,22) = p(Pu(21), Puw(22)). (7.3)

Another fact about the complex geometry of G is that
pg = Kg = Cg.

This corresponds to the geometric property of G that if i is an extremal function for the Kobayashi problem
(7.2), then the range ran(h) of h is a totally geodesic analytic disc in G [7, Corollary 5.7].

The Kobayashi extremal problem can be viewed as an extremal 2-point interpolation problem. Specifically,
by a finite interpolation problem in Hol(D, G), one means the following.

Problem 7.2. Given n distinct points A1, ..., A, in D and n points 21, . . ., 2, in an open or closed set G C CV,
to determine whether there exists a function h € Hol(D, G) such that h(\;) = z; for j =1,...,n.

We say that Problem 7.2 is solvable, or that the data A\; — z; are solvable, if there does exist an
h € Hol(D, G) that satisfies these interpolation conditions. We say that the problem is (or the data are)
extremal when the problem is solvable but there do not exist an open neighborhood U of the closure of D
and a map h € Hol(U, G) such that the conditions

h(Aj)=2z; for j=1,...,n, (7.4)

hold.

A map h € Hol(D, G) is said to be n-extremal if, for any choice of n distinct points Aq,..., A, € D, the
interpolation data A\; € D — h();) € G are extremally solvable.

With this perspective, if A and A1, A2 minimize the right hand side of equation (7.2), then the 2-point
interpolation problem A\; — z;, j = 1,2 for Hol(D, G) is extremal and h is an extremal solution to it. Just as
the Kobayashi extremal functions on G are both rational and I'-inner, more generally, the following result
obtains (see [22] or [2, Theorem 3.1]).

Proposition 7.3. If \; — (s;,p;), j =1,...,n, is a solvable n-point interpolation problem for Hol(D, G) then
it has a rational I'-inner solution.

The royal variety (or more precisely, R N G) is a complex geodesic of G, with extremal function given by

hr(A) = (2X, A?). Furthermore, among the complex geodesics in G, the royal variety is characterized by the
property that

a(RNG)=RNG

whenever « is a biholomorphic self map (automorphism) of G [9, Lemma 4.3]. In addition, the automorphism
group of G acts transitively on R N G.
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If F is a Carathéodory extremal function for some pair of points in G then so is m o F' for any Mobius
transformation m of the disc. The universal set described in Theorem 7.1 above is normalized so as to satisfy
®, 0 hg = —idp. As a result,

®,|R does not depend on w. (7.5)

A Kobayashi extremal function on any domain for which the Lempert function and the Carathéodory
distance coincide has a holomorphic left inverse. L. Kosinski and W. Zwonek [32] introduced a generalization
of this notion: a map h : D — G, for any domain G, is said to be an n-complex geodesic if there exists a
holomorphic map F : G — D such that Foh is a Blaschke product of degree at most n. The following result
shows that rational I'-inner functions enjoy this property.

Proposition 7.4. Let h be a rational T-inner function of degree n which is not superficial and let h(D) ¢ R.
Then

(1) h is an (n + 1)-extremal holomorphic map in Hol(D,T') and is an n-complex geodesic of G;
(2) if in addition h has at least one royal node o € T then h is an n-extremal holomorphic map in Hol(D,T")
and is an (n — 1)-complez geodesic of G.

Proof. Asin Theorem 4.4, ¢ = ®,, 0 h for some w € T is a rational inner function ¢ € Hol(D,D™) such that
deg(y) < n. Thus h is an n-complex geodesic. By a version of Pick’s result, the (n+1)-extremal holomorphic
self-maps of D are precisely the Blaschke products of degree at most n. Thus ¢ is a (n + 1)-extremal in
Hol(D, D). Therefore, by [1, Proposition 2.2, h is (n + 1)-extremal in Hol(D, T").

(i) If h(o) = (—=2n,7%) and w = —ij then the rational function @, o h has a removable singularity at o.
After cancellation ®,, o h has degree (n — 1). As above h is an n-extremal holomorphic map in Hol(D,T)
and is an (n — 1)-complex geodesic of G. O

Corollary 7.5. All non-superficial functions h in R¥® U R>*! are complex geodesics of G.

Proof. First we recall a result from [8] that an analytic function A : D — G is a complex geodesic of G if
and only if there is an w € T such that ®,, 0 h € Aut D and that every complex geodesic of G is I'-inner. By
Proposition 7.4, each non-superficial function from the set R"° UR?! is a complex geodesic. O
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