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Abstract

We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from
the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically
confirmed SNeIa from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the
literature. Our “DES-SN3YR” result from these 329 SNeIa is based on a series of companion analyses and
improvements covering SNIa discovery, spectroscopic selection, photometry, calibration, distance bias
corrections, and evaluation of systematic uncertainties. For a flat ΛCDM model we find a matter density

0.331 0.038mW =  . For a flat wCDM model, and combining our SNIa constraints with those from the cosmic
microwave background (CMB), we find a dark energy equation of state w 0.978 0.059= -  , and

0.321 0.018mW =  . For a flat w0waCDM model, and combining probes from SNIa, CMB and baryon
acoustic oscillations, we find w 0.885 0.1140 = -  and w 0.387 0.430a = -  . These results are in agreement
with a cosmological constant and with previous constraints using SNeIa (Pantheon, JLA).

Key words: dark energy – dark matter

1. Introduction

Type Ia supernovae (SNe Ia) were used to discover the
accelerating expansion of the universe (Riess et al. 1998;
Perlmutter et al. 1999) and remain one of the key probes for
understanding the nature of the mysterious “dark energy.” Over
the last two decades, there have been considerable improve-
ments in the calibration and size of samples at low redshift (Jha
et al. 2006; Hicken et al. 2009b, 2012; Contreras et al. 2010),
intermediate redshift (Holtzman et al. 2008), and high redshift
(Astier et al. 2006; Wood-Vasey et al. 2007; Conley et al.
2011; Betoule et al. 2014; Rest et al. 2014). When combined
with cosmic microwave background (CMB) data, these
samples have been used to demonstrate that the dark energy
equation of state, w, is consistent with a cosmological constant
(w=−1) with a precision of σw=0.04. The recent Pantheon

analysis combines >1000 SNeIa from several surveys,

resulting in w=−1.026±0.041 (Scolnic et al. 2018).
The Dark Energy Survey Supernova program (DES-SN) is

striving to find even greater numbers of SNe while reducing

systematic uncertainties on the resulting cosmological para-

meters. A top priority of this effort has been to accurately

model each component of the DES-SN search and analysis, and

to accurately simulate bias corrections for the SNIa distance

measurements. DES has also made improvements in instru-

mentation and calibration, including: (i) detectors with higher

z-band efficiency to improve measurements of rest frame

supernova (SN) colors at high-redshift, and (ii) extension of the

photometric calibration precision over a wide color range by

correcting each charge-coupled device (CCD) and exposure for

atmospheric variations and the spectral energy distribution

2
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(SED) of the source (see Section 3). These improvements
enable DES-SN to make a state-of-the-art measurement of dark
energy properties.

This Letter reports “DES-SN3YR” cosmological constraints
from the spectroscopically confirmed SNeIa in the first three
years of DES-SN in combination with a low-redshift SNIa
sample from the literature. The results presented here are the
culmination of a series of companion papers that contain details
of the SN search and discovery (Goldstein et al. 2015; Kessler
et al. 2015; Morganson et al. 2018), spectroscopic follow-up
(D’Andrea et al. 2018), photometry (Brout et al. 2018a),
calibration (Burke et al. 2018; Lasker et al. 2018), simulations
(Kessler et al. 2018), and technique to account for selection
bias (Kessler & Scolnic 2017). The cosmological analysis
method and validation are detailed in Brout et al. (2018b, B18),
which presents the full statistical and systematic uncertainty
budget for these new results. Hinton et al. (2018) tested a new
Bayesian Hierarchical Model for supernova cosmology. In this
Letter, we summarize these contributions and present our
measurements of the equation of state (w) and matter density
( mW ). Data products used in this analysis are publicly available
online.77 In addition, Macaulay et al. (2018) measured the
Hubble constant (H0) by applying these DES-SN3YR results to
the inverse-distance-ladder method anchored to the standard
ruler measured by baryon acoustic oscillations (BAO; Alam
et al. 2017; Carter et al. 2018), and related to the sound horizon
measured with CMB data (Planck Collaboration et al. 2016).

In Section 2 we discuss the data sets used in our analysis. In
Section 3, we summarize the analysis pipeline. In Section 4, we
present the cosmology results. In Section 5, we present our
discussion and conclusions.

2. Data Samples

The DES-SN sample for this analysis was collected over
three 5-month-long seasons, from 2013 August to 2016
February, using the Dark Energy Camera (DECam; Flaugher
et al. 2015) at the Cerro Tololo Inter-American Observatory.
Ten 2.7deg2 fields were observed approximately once per
week in the griz filter bands (Abbott et al. 2018). The average
depth per visit was 23.5mag in the eight “shallow” fields, and
24.5mag in the two “deep” fields. Within 24 hr of each
observation, search images were processed (Morganson et al.
2018), new transients were discovered using a difference-
imaging pipeline (Kessler et al. 2015), and most of the
subtraction artifacts were rejected with a machine-learning
algorithm applied to image stamps (Goldstein et al. 2015).

A subset of light curves was selected for spectroscopic
follow-up observations (D’Andrea et al. 2018), resulting in 251
spectroscopically confirmed SNeIa with redshifts 0.02<
z<0.85, and 207 SNeIa that satisfy analysis requirements
(B18) such as signal-to-noise and light curve sampling; this
sample is called the DES-SN subset. The spectroscopic
program required a collaborative effort coordinated across
several observatories. At low to intermediate redshifts, the
primary follow-up instrument is the 4 m Anglo-Australian
Telescope, which confirmed and measured redshifts for 31% of
our SN Ia sample (OzDES collaboration; Yuan et al. 2015;
Hinton et al. 2016; Childress et al. 2017). A variety of
spectroscopic programs (D’Andrea et al. 2018) were carried out
using the European Southern Observatory Very Large

Telescope, Gemini, Gran Telescopio Canarias, Keck, Magel-
lan, MMT, and South African Large Telescope.
We supplement the DES-SN sample with a low-redshift

(z< 0.1) sample, which we call the low-z subset, comprising
122 SNe from the Harvard-Smithsonian Center for Astro-
physics surveys (CfA3, CfA4; Hicken et al. 2009a, 2012) and
the Carnegie Supernova Project (Contreras et al. 2010;
Stritzinger et al. 2011). We only use samples with measured
telescope+filter transmissions, and thus CfA1 and CfA2 are
not included.

3. Analysis

Supernova cosmology relies on measuring the luminosity
distance (dL) versus redshift for many SNeIa and comparing
this relation to the prediction of cosmological models. The
distance modulus (μ) is defined as

d5 log 10 pc . 1Lm = [ ] ( )

For a flat universe with cold dark matter density mW , dark

energy density WL, and speed of light c, the luminosity distance

to a source at redshift z is given by

d z c
dz

H z
1 , 2L

z

0
ò= +

¢
¢

( )
( )

( )

with

H z H z z1 1 . 3w
0 m

3 3 1 1 2= W + + W +L
+( ) [ ( ) ( ) ] ( )( )

Observationally, the distance modulus of a supernova is

given by

m x M G . 4B 1 0 host biasm a b g m= + - + + + D ( )

For each SNIa, the set of griz light curves are fit (Section 3.4)

to determine an amplitude (x0, with m x2.5 logB 0º - ( )), light

curve width (x1), and color (). γ describes the dependence on

host-galaxy stellar mass (Mhost, Section 3.5), where Ghost =
1 2+ if M M10host

10> , and G 1 2host = - if Mhost <
M1010 . A correction for selection biases ( biasmD ) is

determined from simulations (Section 3.6).
All SNeIa are assumed to be characterized by α, β, γ, and

M0. The first three parameters describe how the SNIa
luminosity is correlated with the light curve width (αx1), color
( b ), and host-galaxy stellar mass ( Ghostg ). M0 accounts for
both the absolute magnitude of SNeIa and the Hubble
constant. In the rest of this section we describe the main
components of the analysis pipeline that are needed to
determine the distances (Equation (4)) and cosmological
parameters.

3.1. Calibration

The DES sample is calibrated to the AB magnitude system
(Oke & Gunn 1983) using measurements of the Hubble Space
Telescope (HST) CalSpec standard C26202 (Bohlin et al.
2014). DES internally calibrated roughly 50 standard stars per
CCD using a “Forward Global Calibration Method” (Burke
et al. 2018; Lasker et al. 2018). Improvements in calibration at
the 0.01 mag (1%) level are made using SED-dependent
“chromatic corrections” to both the standard stars and to the
DES-SN light curve photometry. The low-z sample is calibrated to
the AB system by cross-calibrating to the Pan-STARRS1 (PS1)
photometric catalogs (Scolnic et al. 2015). We also cross-calibrate77

https://des.ncsa.illinois.edu/releases/sn
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DES to PS1 and find good agreement (see Section3.1.2, Figure3
of B18).

3.2. Photometry

To measure the SNIa flux for each observation, we employ
a scene modeling photometry (SMP) approach (Brout et al.
2018a) based on previous efforts used in SDSS-II (Holtzman
et al. 2008) and SNLS (Astier et al. 2013). SMP simultaneously
forward models a variable SN flux on top of a temporally
constant host galaxy. We test the precision by analyzing images
that include artificial SNeIa, and find that photometric biases
are limited to <0.3%. Each CCD exposure is calibrated to the
native photometric system of DECam, and zero points are
determined from the standard star catalogs (Section 3.1).

3.3. Spectroscopy: Typing and Redshifts

Spectral classification was performed using both the Super-
Nova IDentification (Blondin & Tonry 2007) and Superfit
(Howell et al. 2005) software, as described in D’Andrea et al.
(2018). All 207 events are spectroscopically classified as
SNeIa. Redshifts are obtained from host-galaxy spectra where
available, because their sharp spectral lines give more accurate
redshifts (σz∼ 5× 10−4; Yuan et al. 2015) than the broad
SNIa spectroscopic features (σz∼ 5× 10−3). While 158 of the
DES-SN events have host galaxy redshifts, the rest have
redshifts from the SNIa spectra. For the low-z sample, we use
the published redshifts with a 250 km s−1 uncertainty from
Scolnic et al. (2018). Peculiar-velocity corrections are com-
puted from Carrick et al. (2015).

3.4. Light Curve Fitting

To measure the SN parameters (m x, ,B 1 ), the light curves
were fit with SNANA

78
(Kessler et al. 2009) using the SALT2

model (Guy et al. 2010) and the training parameters from
Betoule et al. (2014).

3.5. Host Galaxy Stellar Masses

For the Ghostg term in Equation (4), we first identify the host
galaxy using catalogs from Science Verification DECam
images (Bonnett et al. 2016), and the directional light radius
method (Sullivan et al. 2006; Gupta et al. 2016). Mhost is
derived from fitting galaxy model SEDs to griz broadband
fluxes with ZPEG (Le Borgne & Rocca-Volmerange 2002).
The SEDs are generated with Projet d’Etude des GAlaxies par
Synthese Evolutive (PEGASE; Fioc & Rocca-Volmerange
1997). In the DES-SN subset, 116 out of 207 hosts have
M M10host

10< . The low-z host galaxy stellar masses are
taken from Scolnic et al. (2018).

3.6. μ-bias Corrections

We use a simulation-based method (Kessler et al. 2018) to
correct for distance biases arising from survey and spectro-
scopic selection efficiencies, and also from the analysis and
light curve fitting. For each SNIa we calculate the bias
correction in Equation (4), bias truem m mD º á - ñ, where áñ is
the average in bins of measured redshift, color, and stretch. The
distance μ is determined by analyzing the simulated data in the
same way as the real data (but with 0biasmD = ), and truem is the

true distance modulus used to generate each simulated event.
The correction increases with redshift, and for individual SNe
Ia it can be as large as 0.4 mag (Section9 of Kessler et al.
2018).
The simulation accurately models DES-SN3YR selection

effects. For each generated event it picks a random redshift,
color, and stretch from known distributions (Perrett et al. 2012;
Scolnic & Kessler 2016). Next, it computes true SNIa
magnitudes at all epochs using the SALT2 SED model,
intrinsic scatter model (Section 3.7), telescope+atmosphere
transmission functions for each filter band, and cosmological
effects such as dimming, redshifting, gravitational lensing, and
galactic extinction. Using the survey cadence and observing
conditions (point-spread function, sky noise, zero-point),
instrumental noise is added. Finally, our simulation models
the efficiencies of DiffImg and spectroscopic confirmation.
The quality of the simulation is illustrated by the good
agreement between the predicted and observed distribution of
many observables including redshift, stretch, and color
(Figures 6 and 7 in Kessler et al. 2018, and Figure5 in B18).

3.7. Intrinsic Scatter Model

We simulate bias corrections with two different models of
intrinsic scatter that span the range of possibilities in current
data samples. First is the “G10” model, based on Guy et al.
(2010), in which the scatter is primarily achromatic. Second is
the “C11” model, based on Chotard et al. (2011), which has
stronger scatter in color. For use in simulations, Kessler et al.
(2013) converted each of these broadband scatter models into
an SED-variation model.

3.8. Generating the Bias-corrected Hubble Diagram

We use the “BEAMS with Bias Corrections” (BBC) method
(Kessler & Scolnic 2017) to fit for {α, β, γ, M0} and to fit for a
weighted-average bias-corrected μ in 18 redshift bins. In
addition to propagating the uncertainty from each term in
Equation (4), the BBC fit adds an empirically determined
μ-uncertainty ( ints ) to each event so that the best-fit

N 12
dofc = . This redshift-binned Hubble diagram is used for

cosmology fitting as described in Section 3.9. Figure 1 shows
the binned Hubble diagram, and also the unbinned Hubble

Figure 1. Hubble diagram for the DES-SN3YR sample. Top: distance modulus
(μ) from BBC fit (black bars, which are used for cosmology fits) and for each
SN (red, orange circles). The dashed gray line shows our best-fit model, while
the green and blue dotted lines show models with no dark energy and matter
densities 0.3mW = and 1.0 respectively. Bottom: residuals to the best-fit
model; 1σ error bars show 68% confidence.

78
https://snana.uchicago.edu
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diagram using individual bias-corrected distances computed in
the BBC fit.

3.9. Cosmology Fitting

Cosmological parameters are constrained using the log-
likelihood

D DC 5T2
stat syst

1c = +
-[ ] ( )

and minimizing the posterior with CosmoMC (Lewis & Bridle

2002). D z zi i idata modelm m= -( ) ( ) for redshift bin i 1, 18= ,

zi datam ( ) is the BBC-fitted distance modulus in the ith redshift

bin, and zi modelm ( ) is given by Equation (1). The covariance

matrix (Cstat syst+ ) is described in Section3.8.2 of B18, and

incorporates systematic uncertainties from each analysis

component in Section 3.
D and Cstat syst+ are computed separately using the G10 and

C11 scatter model in the bias-correction simulation. Each set of
quantities is averaged over the G10 and C11 models, and these
averages are used in Equation (5). The purpose of averaging is
to mitigate the systematic uncertainty related to our under-
standing of intrinsic scatter (Section4.2 of B18).

Finally, we combine these SN Ia results with priors from
CMB and BAO as described in Section 4.

3.10. Blinding and Validation

The cosmological parameters were blinded until preliminary
results were presented at the 231st meeting of the American
Astronomical Society in 2018 January. The criteria for
unblinding (Section7 of B18) included analyzing large
simulated DES-SN3YR data sets, and requiring (i) w-bias
below 0.01, and (ii) the rms of w-values agrees with the fitted
w-uncertainty, for simulations with and without systematic
variations. Following this initial unblinding, several updates
were performed (Section3.8.4 of B18), again blinded, and the
final results presented here were unblinded during the DES
internal review process. Compared to the initial unblinding, w
increased by 0.024 and the total uncertainty increased by 3%
(0.057 to 0.059).

4. Results

We present the first cosmological results using SNeIa from
DES. We begin with the BBC-fitted parameters ( , , , inta b g s )

in Section 4.1, then present our statistical and systematic
uncertainty budget for w in Section 4.2 and Table 1. Finally, we
present our cosmological parameters in Section 4.3 and
Table 2. For our primary results we combine DES-SN3YR
with the CMB likelihood from Planck Collaboration et al.
(2016) using their temperature power spectrum and low-
ℓpolarization results. We also present results without a CMB
prior, and with both CMB and BAO priors. All reported
uncertainties correspond to 68% confidence. To evaluate
consistency between our primary result and BAO, we compute
the evidence using PolyChord (Handley et al. 2015a,
2015b), and compute the evidence ratio (R) defined in Equation
(V.3) of DES Collaboration et al. (2018). Consistency is
defined by R>0.1.

4.1. Results for Standardization Parameters

While the cosmology results are based on averaging
distances using the G10 and C11 intrinsic scatter models, here

we show best-fit BBC values from B18 using the G10 intrinsic
scatter model: α=0.146±0.009, β=3.03±0.11, γ=
0.025±0.018, and 0.094 0.008ints =  . Our α, β, and ints
values are consistent with those found in previous analyses,
while γ is smaller compared to those in Kelly et al. (2010),
Sullivan et al. (2010), Lampeitl et al. (2010), Betoule et al.
(2014), and Scolnic et al. (2018). Results with the C11 model
(Table 5 of B18) show similar trends.
We also check the consistency among the DES-SN and low-

z subsets. While α and β are consistent, we find ints =
0.066 0.006 for DES-SN, the lowest value of any rolling SN
survey. This value differs by 3.3σ from 0.120 0.015ints = 
for the low-z subset, and the systematic uncertainty in adopting
a single ints value is discussed below in Section 4.2 and also in
Section7.3 of B18. Our γ values differ by 1.5σ: γDES=
0.009±0.018 (consistent with zero) and γlowz=0.070±
0.038.

4.2. w-uncertainty Budget

Contributions to the systematic uncertainty budget are
presented in B18 and shown here in Table 1 for flat wCDM
fits combined with the CMB likelihood. The statistical
uncertainty on w ( w,stats ) is determined without systematic
contributions. Each systematic contribution is defined as

6w w w,syst ,tot
2

,stat
2s s s= -( ) ( ) ( )

where w,tots is the total (stat+syst) uncertainty from including a

specific systematic, or a group of systematics. The uncertainty

Table 1

w-uncertainty Contributions for wCDM Modela

Descriptionb σw w w,stats s

Total Stat ( w,stats ) 0.042 1.00

Total Systc 0.042 1.00

Total Stat+Syst 0.059 1.40

[Photometry and Calibration] [0.021] [0.50]

Low-z 0.014 0.33

DES 0.010 0.24

SALT2 Model 0.009 0.21

HST Calspec 0.007 0.17

[μ-Bias Correction: Survey] [0.023] [0.55]

†Low-z 3σ Cut 0.016 0.38

Low-z Volume Limited 0.010 0.24

Spectroscopic Efficiency 0.007 0.17

†Flux Err Modeling 0.001 0.02

[μ-Bias Correction: Astrophysical] [0.026] [0.62]

Intrinsic Scatter Model (G10 versus C11) 0.014 0.33

†Two σint 0.014 0.33

 , x1 Parent Population 0.014 0.33

†w, mW in sim. 0.006 0.14

MW Extinction 0.005 0.12

[Redshift] [0.012] [0.29]

Peculiar Velocity 0.007 0.17

†z+0.00004 0.006 0.14

Notes.
a
The sample is DES-SN3YR (DES-SN + low-z sample) plus CMB prior.

b
Item in [bold] is a sub-group and its uncertainty.

c
The quadrature sum of all systematic uncertainties does not equal 0.042

because of redshift-dependent correlations when using the full covariance

matrix.

† Uncertainty was not included in previous analyses.
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in w has nearly equal contributions from statistical and

systematic uncertainties, the latter of which is broken into four

groups in Table 1.
The first three systematic groups have nearly equal

contributions: (1) photometry and calibration ( 0.021ws = ),
which includes uncertainties from the DES-SN and low-z
subsets, data used to train the SALT2 light curve model, and
the HST Calspec standard; (2) μ-bias corrections from the
survey ( 0.023ws = ), which includes uncertainties from reject-
ing Hubble residual outliers in the low-z subset, magnitude
versus volume limited selection for low-z, DES-SN spectro-
scopic selection efficiency, and determination of DES-SN flux
uncertainties; and (3) μ-bias corrections from astrophysical
effects ( 0.026ws = ), which includes uncertainties from
intrinsic scatter modeling (G10 versus C11, and two ints ,
parent populations of stretch and color, choice of w and mW in
the simulation, and Galactic extinction. The fourth systematics
group, redshift ( 0.012ws = ), includes a global shift in the
redshift and peculiar velocity corrections.

Finally, the Table 1 systematics marked with a dagger (†)

have not been included in previous analyses, and the combined
uncertainty is 0.024ws = . Most of this new uncertainty is
related to the low-z subset, which is almost 40% of the DES-
SN3YR sample. For previous analyses with a smaller fraction
of low-z events (e.g., Pantheon, JLA) we do not recommend
adding the full 0.024 w-uncertainty to their results.

4.3. Cosmology Results

4.3.1. ΛCDM

Using DES-SN3YR and assuming a flat ΛCDM model, we
find 0.331 0.038mW =  . Assuming a ΛCDM model with
curvature ( kW ) added as a free parameter in Equation (3) (e.g.,
see Section3.1 of Davis & Parkinson 2017) we find the
constraints shown in Figure 2 and Table 2 (row 2). Solid
contours show our result with both statistical and systematic
uncertainties included, while dashed contours show the

statistical-only uncertainties for comparison. Figure 2 also
shows that the CMB data provide strong flatness constraints,
consistent with zero curvature; the impact of using this CMB
prior is shown in row3. The impact from adding a BAO prior
is shown in row4, where the evidence ratio R 110= shows
consistency between the SN+CMB and BAO posteriors.

4.3.2. Flat wCDM

For our primary result, we use DES-SN3YR with the
CMB prior and a flat wCDM model ( 0kW = ) and

Table 2

Cosmological Resultsa

Row SN Sample + Prior (ΛCDM)
mW WL

1 DES-SN3YRb+flatness 0.331±0.038 0.669±0.038

2 DES-SN3YR 0.332±0.122 0.671±0.163

3 DES-SN3YR+CMBc 0.335±0.042 0.670±0.032
4 DES-SN3YR+CMB+BAOd 0.308±0.007 0.690±0.008

Row SN Sample + Prior (Flat wCDM) mW w

5 DES-SN3YR+CMB R 0.321±0.018 −0.978±0.059

6 DES-SNe
+CMB 0.341±0.027 −0.911±0.087

7 DES-SN3YR+CMB+BAO 0.311±0.009 −0.977±0.047
8 DES-SN+CMB+BAO 0.315±0.010 −0.959±0.054

9 CMB+BAO 0.310±0.013 −0.988±0.072

Row SN Sample + Prior (Flat w w CDMa0 ) mW w0 wa

10 DES-SN3YR+CMB+BAOR 0.316±0.011 −0.885±0.114 −0.387±0.430

11 CMB+BAO 0.332±0.022 −0.714±0.232 −0.714±0.692

Notes.
a
Samples in bold font are primary results given in the abstract.

b
DES-SN3YR: DES-SN + low-z samples.

c
CMB: Planck TT + lowP likelihood (Planck Collaboration et al. 2016).

d
BAO: SDSS DR12 (Alam et al. 2017); SDSS MGS (Ross et al. 2015); 6dFGS (Beutler et al. 2011).

e
DES-SN alone (no low-z).

Figure 2. Constraints on mW WL– for ΛCDM model (68% and 95% confidence
intervals). SN contours are shown with statistical uncertainty only (white
dashed), and with total uncertainty (green shaded). Constraints from CMB
(brown) and DES-SN3YR+CMB combined (red) are also shown.
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find 0.321 0.018mW =  and w 0.978 0.059= - 
(Table 2, row 5). Our constraint on w is consistent with the

cosmological-constant model for dark energy. The 68% and

95% confidence intervals are given by the red contours in

Figure 3, which also shows the contributions from DES-

SN3YR and CMB. We show two contours for DES-SN3YR,

with and without systematic uncertainties, in order to

demonstrate their impact. In Table 2, row6, we show the

impact of the low-redshift SN sample by removing it; the w-

uncertainty increases by 25% and the constraint lies approxi-

mately 1σ from w=−1.
Next, we consider other combinations of data. Adding a

BAO prior (Beutler et al. 2011; Ross et al. 2015; Alam et al.

2017) in addition to the CMB prior and SN constraints, our

best-fit w-value (Table 2, row 7) is shifted by only 0.006, the

uncertainty is reduced by 20%~ compared to our primary

result, and the evidence ratio between SN+CMB and BAO is

R 81= showing consistency among the data sets. If we remove

the low-z SN subset (row 8), the w-uncertainty increases by

only ∼8%. Furthermore, we remove the SN sample entirely

and find that the w-uncertainty increases by nearly

50% (row 9).

4.3.3. Flat w0waCDM

Our last test is for w evolution using the w wa0 CDM model,

where w=w0+wa(1−a) and a=(1+ z)−1. Combining

probes from SNe, CMB, and BAO, we find results (Table 2,

row 10) that are consistent with a cosmological constant

(w w, 1, 0a0 = - ) and a figure of merit (Albrecht et al. 2006)

of 45.5. Removing the SN sample increases the w0 and wa

uncertainties by a factor of 2 and 1.5, respectively (row 11).

4.4. Comparison to Other SNIa Surveys/Analyses

The DES-SN3YR result has competitive constraining power
given the sample size ( 0.059w,tots = with 329 total SNeIa),
even after taking into account additional sources of systematic
uncertainty. While our DES-SN3YR sample is less than one-
third of the size of the Pantheon sample (PS1+SNLS+SDSS
+low-z+HST, 0.041w,tots = ), our low-z subset is 70% the size
of Pantheon’s low-z subset, and we included five additional
sources of systematic uncertainty, our improvements
(Section 1) result in a w-uncertainty that is only ×1.4 larger.

5. Discussion and Conclusion

We have presented the first cosmological results from
the DES-SN program: 0.321 0.018mW =  and w =
0.978 0.059-  for a flat wCDM model after combining with

CMB constraints. These results are consistent with a
cosmological constant model and demonstrate the high
constraining power (per SN) of the DES-SN sample. DES-
SN3YR data products used in this analysis are publicly
available at https://des.ncsa.illinois.edu/releases/sn. These
products include filter transmissions, redshifts, light curves,
host masses, light curve fit parameters, Hubble Diagram, bias
corrections, covariance matrix, MC chains, and code releases.
We have utilized the spectroscopically confirmed SNIa

sample from the first three years of DES-SN as well as a low-
redshift sample. This 3-year sample contains ∼10% of the
SNeIa discovered by DES-SN over the full five-year survey.
Many of the techniques established in this analysis will form
the basis of upcoming analyses on the much larger five-year
photometrically identified sample.
To benefit from the increased statistics in the five-year sample

it will be critical to reduce systematic uncertainties. We are
working to improve calibration with a large sample of DA white
dwarf observations, including two HST Calspec standards. Other
improvements to systematics are discussed in Section7.2
of B18. We are optimistic that our systematic uncertainties can
remain at the level of our statistical uncertainties for the five-year
analysis. This progress in understanding systematics will be
critical for making new, exciting measurements of dark energy
and for paving the way toward Stage-IV dark energy
experiments like the Large Synoptic Survey Telescope and the
Wide Field Infrared Survey Telescope.

Funding for the DES Projects has been provided by the U.S.
Department of Energy, the U.S. National Science Foundation,
the Ministry of Science and Education of Spain, the Science
and Technology Facilities Council of the United Kingdom, the
Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmo-
logical Physics at the University of Chicago, the Center for
Cosmology and Astro-Particle Physics at the Ohio State
University, the Mitchell Institute for Fundamental Physics
and Astronomy at Texas A&M University, Financiadora de
Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo
à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Científico e Tecnológico and the Ministério
da Ciência, Tecnologia e Inovação, the Deutsche Forschungs-
gemeinschaft, and the Collaborating Institutions in the Dark
Energy Survey.

Figure 3. Constraints on mW –w for the flat wCDM model (68% and 95%
confidence intervals). SN contours are shown with only statistical uncertainty
(white dashed) and with total uncertainty (green shaded). Constraints from
CMB (brown) and DES-SN3YR+CMB combined (red) are also shown.
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