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Abstract. We study approximations of non-Gaussian stationary processes having long range

correlations with microcanonical models. These models are conditioned by the empirical value

of an energy vector, evaluated on a single realization. Asymptotic properties of maximum

entropy microcanonical and macrocanonical processes and their convergence to Gibbs measures

are reviewed. We show that the Jacobian of the energy vector controls the entropy rate of

microcanonical processes.

Sampling maximum entropy processes through MCMC algorithms require too many

operations when the number of constraints is large. We define microcanonical gradient descent

processes by transporting a maximum entropy measure with a gradient descent algorithm which

enforces the energy conditions. Convergence and symmetries are analyzed. Approximations

of non-Gaussian processes with long range interactions are defined with multiscale energy

vectors computed with wavelet and scattering transforms. Sparsity properties are captured with

l1 norms. Approximations of Gaussian, Ising and point processes are studied, as well as image

and audio texture synthesis.
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1. Introduction

Building probabilistic models of large systems of interacting variables that can be

efficiently estimated from data is a core problem in statistical physics, machine

learning and signal processing. We consider the estimation of the probability

measure of stationary processes X.u/ on the infinite grid u 2 Z
` given a single

realization xx.u/, observed over a finite domain u 2 ƒd � Z
` of cardinality d . For

` D 2 and ` D 1, such processes provide models of image and audio textures. Given

a piece of texture over ƒd , we may want to synthesize similar texture examples

by sampling the resulting probability model. Building probability models from a

single observation is also needed in finance and in many physical problems, such as

geophysics exploration or fluid dynamics. These estimations rely on the ability to

build low-dimensional approximations of the underlying stationary measure. This
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paper introduces microcanonical sparse multiscale models, which can take into

account non-Gaussian phenomena and long range interactions.

In his seminal paper, Jaynes [27] interprets statistical physics as an inference of

a probability distribution from partial measurements, by maximizing its entropy. In

Jaynes words [27], maximizing the entropy of a probability distribution “is maximally

noncommittal with regard to missing information.” Macrocanonical models are

maximum entropy distributions conditioned on the expected value of a vector of

potential energies. They are used in large classes of stochastic models [24] and will

thus be our departure point.

Since we only know a single realization xx.u/ ofX.u/ inƒd , the expected value of

stationary energies are estimated by the average potential energy vectorˆd .xx/ of xx in

the domain ƒd of size d . When d is sufficiently large, weak ergodicity assumptions

imply that ˆd .X/ concentrates near the empirical energy vector ˆd .xx/ with high

probability. A microcanonical model is a probability measure supported over the

microcanonical set of all x having nearly the same energy: kˆd .x/ � ˆd .xx/k � �.

Maximum entropy microcanonical models have a uniform density over this set.

Under appropriate hypotheses, the Boltzmann equivalence principle states that a

maximum entropy microcanonical model converges to the same Gibbs measure as

the macrocanonical model, when d goes to 1. Section 2.4 reviews these results.

Microcanonical models exist with mild assumptions, even-though macrocanon-

ical distributions may not exist, particularly for signals x having strong sparsity

properties. We thus consider these models not as approximations of macrocanonical

models, which may not exist, but as stochastic models in their own sake. Section 3

relates their entropy rate to their energy vector. Sampling micro and macrocanonical

measures is a classic problem in statistical mechanics, typically approached with

MCMC algorithms or Langevin Dynamics [6, 15] or variational methods [45].

Their numerical effectiveness on high-dimensional problems is hindered by the

slow mixing speed of the Markov Chain [15], which limits their applications. To

avoid this computational issue, we introduce an alternative class of microcanonical

models where the Markov chain is replaced by a gradient flow resulting from the

microcanonical energy vector. A microcanonical gradient descent model begins from

a high entropy measure and computes a progressive transport of this measure with

gradient steps, towards the microcanonical set. Similar algorithms have been applied

to texture synthesis [23] with deep convolutional neural networks. Section 3 studies

their convergence to a microcanonical set. Although the gradient descent transport

does not converge to a maximum entropy measure, we prove that it preserves an

important subset of symmetries which is specified.

A major issue is to specify energy vectorsˆd providing accurate microcanonical

gradient descent approximations of non-Gaussian processes with long range

interactions. Section 4 introduces energy vectors which take into account long range

interactions by separating scales with wavelet transforms. Non-Gaussian properties

are captured with l1 norms which measure the sparsity of wavelet coefficients.
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These energy vectors are augmented with wavelet scattering coefficients, providing

information on the geometry of sparse wavelet coefficients [10, 33].

Section 5 studies the approximation of Gaussian, Ising and point processes,

with microcanonical gradient descent models computed with wavelet and scattering

energy vectors. For Ising, the wavelet scale separation is closely related to the Wilson

renormalization group approach [5]. We show that scattering microcanonical model

can also give good perceptual approximations of large classes of image and audio

textures.

Notation. We use cursive captial letters A;B; : : : to denote sets, small capital

letters x; y; : : : to denote vectors, capitals X; Y;Z to denote random processes, and

capital letters E;H;ˆ; : : : to denote operators and functions. yx denotes the Fourier

transform of x. kxk denotes the Euclidean norm of x.

2. Microcanonical and macrocanonical models

We consider a stationary process X.u/ taking its values in an interval I � R

for all u 2 Z
`. We denote by � the probability measure of this stationary

process. We write E�.f .x// the expected value of f .X/ or Ep.f .x// if � has

a density p. Let ƒd � Z
` be a cube with d grid points and I

ƒ
d

the product

domain. Let xx 2 I
ƒ
d

be a realization of X restricted to ƒd . Microcanonical models

described in Section 2.1 are probability densities conditioned on a K-dimensional

energy vector ˆd .xx/. Section 2.2 reviews the properties of macrocanonical models

which have a maximum entropy conditioned on E�.ˆd .x//. We concentrate on

shift-invariant energies ˆd introduced in Section 2.3, to define stationary maximum

entropy processes. Section 2.4 reviews the resulting convergence properties of

micro and macrocanonical models towards the same Gibbs measures. In statistical

physics terms, it amounts to verify the Boltzmann equivalence principle in the

thermodynamical limit, for lattice gaz models. We shall then see that microcanonical

models are also interesting in their own sake, even in regimes where macrocanonical

models do not exist.

2.1. Maximum entropy microcanonical models. A microcanonical model is comp-

uted from y D ˆd .xx/. To estimate the measure � of a stationary X from a single

realization, we need ergodicity assumptions. We assume that ˆd .X/ concentrates

with high probability around E�.ˆd .x// when d goes to 1:

8� > 0 ; lim
d!1

Prob�

�

kˆd .X/ � E�.ˆd .x//k � �
�

D 1 : (1)
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If there exists C > 0 such that kE�.ˆd .x//k � C then this convergence in

probability is implied by a mean-square convergence:

lim
d!1

E�

�

kˆd .x/ � E�.ˆd .x//k2
�

D 0 : (2)

The microcanonical set of width � associated to y D ˆd .xx/ is

�d;� D
˚

x 2 I
ƒ
d W kˆd .x/ � yk � �

	

:

The concentration property (1) implies that when d goes to 1, X belongs to

microcanonical sets �d;� of width � D �.d/ converging to 0, with a probability

converging to 1. In other words, (1) guarantees that the support of the measure � is

mostly concentrated in �d;� for large d .

The differential entropy of a probability distribution � which admits a dens-

ity p.x/ relatively to the Lebesgue measure is

H.�/ WD �
Z

p.x/ logp.x/ dx : (3)

A maximum entropy microcanonical model �mi.d; �; y/ was defined by Boltzmann

as the maximum entropy distribution supported in �d;� . We usually define ˆd .x/

so that �d;� is compact. It results the maximum entropy distribution has a uniform

density pd;�:

pd;�.x/ WD
1�d;�

.x/
R

�d;�
dx

: (4)

Its entropy is therefore the logarithm of the volume of �d;�:

H.pd;�/ D �
Z

pd;�.x/ logpd;�.x/ dx D log
�

Z

�d;�

dx
�

: (5)

We thus face a fundamental trade-off when constructing microcanonical models.

On the one hand, we seek representationsˆd that satisfy a concentration property (1)

to ensure that typical samples from � are included in�d;� with high probability, and

hence typical for the microcanonical measure �mi. On the other hand, the sets �d;�

must not be too large to avoid having elements of�d;� and hence typical samples of

�mi which are not typical for �. To obtain an accurate microcanonical model, the

energy ˆd must define microcanonical sets of minimum volume, while satisfying

the concentration (1).

2.2. Macrocanonical models. Sinceˆd .X/ concentrates close to E�.ˆd .x// and xx
is a realization of X , one could expect that the maximum entropy distribution

conditioned on ˆd .xx/ converges to the maximum entropy distribution conditioned

on E�.ˆd .x// when d goes to 1. Section 2.3 studies conditions under which this
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Boltzmann equivalence principle is verified. We begin by reviewing the properties

of macrocanonical maximum entropy models conditioned on E�.ˆd .x// D y. Let

M.Iƒ
d
/ denote the space of measures of I

ƒ
d

.

A macrocanonical measure �ma with density pma has a maximum entropy

conditioned on Epma
.ˆd .x// D y:

pma 2 arg max
p2Ay

H.p/ ;

with Ay D
n

p 2 M.Iƒ
d /I

Z

I
ƒ
d

ˆd .x/ p.x/ dx D y
o

: (6)

The entropy is a concave function of p whereas Ep.ˆd .x// D y is a set of linear

conditions over p. If ˆd .x/ is bounded over �d;� then the set of densities p which

satisfy the moment conditions is compact. As a consequence, there exists a unique

macrocanonical density pma which maximizes H.p/. It is obtained by minimizing

the following Lagrangian

Ld .p; ˇ/ D �H.p/C hˇ;Ep.ˆd .x// � yi ; (7)

also called free energy in statistical physics. The Lagrange multipliers ˇ D fˇkgk�K

are adjusted so that the moment condition (6) is satisfied. The density which

minimizes (7) can be written as an exponential family

pma.x/ D Z
�1 exp

�

� hˇ;ˆd .x/i
�

; (8)

where Z guarantees that
R

pma.x/ dx D 1 and hence

Z D
Z

I
ƒ
d

exp
�

hˇ;ˆd .x/i
�

dx : (9)

A direct calculation shows that the resulting maximum entropy is

H.pma/ D � log Z C hˇ; yi : (10)

If the probability measure of the restriction ofX toƒd has a densityp relatively to

the Lebesgue measure, then we can also verify that the Kullback–Liebler divergence

KL.pkpma/ D
Z

ƒd

p.x/ log
pma.x/

p.x/
dx

satisfies

KL.pkpma/ D H.pma/ �H.p/ � 0 : (11)

Optimizing the interaction energy ˆd thus amounts to minimizing the resulting

maximum entropy H.pma/ [49] so that H.pma/ D H.p/ and hence �ma D �.
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Note that it is not necessary to impose that ˆd is bounded on I
ƒ
d

. If there exists

ˇ 2 R
K such that the distribution (8) satisfies the moment condition (6), then one

can verify from (11) that �ma is the unique maximum entropy distribution. However,

if ˆd is not bounded on I
ƒ
d

then there may not exist such a ˇ 2 R
K . Indeed,

the maximization of entropy defines a limit distribution over distributions which

satisfy the moment constraints, but this limit may not satisfy the moment constraints

anymore. One can construct such examples with high order moment conditions [44].

In this case the macrocanonical model does not exist although we may still define a

microcanonical model.

Macrocanonical estimation. Given an energy vector ˆd , and desired moment

constraints y D E�Œˆ.x/�, fitting macrocanonical models requires estimating

E�ma Œˆd .x/�. This expectation can be estimated with MCMC algorithms such

as Metropolis–Hastings, which sample the Gibbs distribution (8) to estimate

E�ma.ˆd .x// and iteratively update the Lagrange multipliers ˇ until E�ma.ˆd .x//

converges to y. However, when d is large, this is numerically unfeasible because

sampling a high-dimensional probability distribution is computationally dominated

by the mixing time of the Markov Chain, which in generally has an exponential

dependence on the data dimensionality [32].

2.3. Shift equivariant and finite range potentials. Microcanonical densities

in (4) and macrocanonical densities in (8) depend on ˆd . These densities remain

constant under any transformation of x which leaves ˆd .x/ constant. Stationary

densities are obtained with a ˆd which is invariant to translations. It is calculated

by averaging a potential vector which is equivariant to translations. We review

simple examples with l1 and l2 norms. It illustrates convergence issues of micro

and macrocanonical densities when d goes to 1, with sparse regimes where

microcanonical models exist without macrocanonical models.

Equivariant potentials. For any x 2 I
Z`

we define a potential Ux.u/ 2 R
K for

each u 2 Z
`. We write T�x.u/ D x.u � �/ a translation of x by � 2 Z

`. A

potential U is shift-equivariant if

8.x; �/ 2 I
Z` � Z

` ; U T�x D T�Ux :

The energy ˆd .x/ is computed from the restriction of x in a square ƒd D Œa; b�`.

We extend x over Z
d into a signal which is b�a D d1=` periodic along each of the `

generators of the grid Z
`. With an abuse of notation we write Ux the potential U

applied to the periodic extension of x and

ˆd .x/ D d�1
X

u2ƒd

Ux.u/ : (12)
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Observe that ˆd .x/ 2 R
K is invariant to periodic translations of x in ƒd

modulo d1=`.

We say that Ux has a finite range � if Ux.u/ only depends upon the values

of x.u0/ for u � u0 2 Œ��;��`. The resulting macrocanonical density (8) is a

Markov Random Field over cliques Œu ��;uC��` around each u

pma.x/ D Z
�1 exp

�

� d�1
X

u2ƒd

hˇ;Ux.u/i
�

: (13)

To approximate random processes, we must choose� to be the integral scale beyond

which structures become independent. When there are long range interactions as

in turbulent flows, this integral scale may be very large. Before reviewing the

general convergence properties of the resulting micro and macrocanonical densities

we consider two important examples obtained with lr norms.

Convergence of lr macro and microcanonical densities. The potential Ux.u/ D
jx.u/jr for u 2 Z defines an lr norm energy over intervals ƒd D Œ1; d � � Z:

ˆd .x/ D d�1 kxkr
r D d�1

X

u2ƒd

jx.u/jr : (14)

The macrocanonical measure with density pma defined by Epma
.ˆd .x// D y � 0

is

pma.x/ D Z
�1e�ˇ d�1 kxkr

r

for some ˇ > 0. It is the density of a vector of d i.i.d random variablesXd .u/ having

an exponential distribution / e�ˇ jzjr .

A microcanonical densitypd;�;y is uniform over�d;� Dfx2R
d W jd�1kxkr

r � yj
� �g, which is a thin shell around an lr ball in R

d . It is the density of a random

vector Xd;� defined on ƒd . For a fixed m > 0, when d goes to 1 and � goes

to zero then the joint density of Xd;�.1/; : : : ; Xd;�.m/ converges in total variation

distance to i.i.d random variables having an exponential distribution / e�ˇ jzjr [4],

and E.jXd;�.u/jr/ converges to y. The microcanonical distribution thus converges

to the macrocanonical distribution. This family of results has a long history, first

proved in 1906 by Borel [7] for r D 2 and in 1987 by Diaconis and Freeman for

r D 1 [18].

Intersections of l1 and l2 balls. The situation becomes more complex for the

two-dimensional potential Ux.u/ D .jx.u/j1; jx.u/j2/ which defines an energy

ˆd .x/ D .d�1kxk1; d
�1kxk2

2/ over intervals ƒd D Œ1; d � � Z. We shall see that

microcanonical models may exist without macrocanonical models.

One can verify that there exists a unique maximum entropy density pma

conditioned on Epma
.ˆd .x// D y if and only if

1 � y2

y2
1

� 2 ;
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in which case there exists ˇ1 and ˇ2 such that

pma.x/ D Z
�1e�d�1 .ˇ1kxk1Cˇ2kxk2

2
/ :

The microcanonical set �d;� D fx W kˆd .x/ � yk � �g is a thin shell around

the intersection of the simplex kxk1 D d y1 and the sphere kxk2
2 D d y2. Since

kxk2
2 � kxk2

1 � dkxk2
2, this intersection is non-empty over a wider range defined by

1 � y2

y2
1

� d :

When 1 < y2=y
2
1 � 2, micro and macrocanonical densities have the same limit

when d goes to 1 and � goes to zero. S. Chatterjee [13] proves that the joint

microcanonical density of Xd;�.1/; : : : ; Xd;�.m/ for a fixed m converges to i.i.d

random variables having an exponential distribution equal to ˛e�ˇ1jzj�ˇ2jzj2 , and

.E.jXd;�.u/j1;E.jXd;�.u/j2/ converges to y. If y2=y
2
1 D 2 then ˇ2 D 0. In this

regime where macrocanonical densities are well-defined, micro and macrocanonical

measures converge to each other so the Boltzmann equivalence principle is again

verified.

However, when y2=y
2
1 > 2 the macrocanonical density is not defined, so the

Boltzmann equivalence principle is violated. The microcanonical set contains

sparse signals which are not captured by exponential distributions. In this case,

Chatterjee [13] proves that when d goes to 1 and � to 0, Xd;� has one large

coefficient randomly located at some u0 2 ƒd for which X2
d;�
.u0/ � d.y2 � 2y2

1/

with a probability which tends to 1. All other coefficients have a much smallerO.y1/

amplitude. For m fixed, Xd;�.1/; : : : ; Xd;�.m/ converge in law to i.i.d random

variables having marginals equal to e�ˇ1jzj, but there is no convergence of moments.

This example shows that the Boltzmann equivalence principle is not necessarily

satisfied, particularly when signals exhibit a strong sparsity behavior.

2.4. Boltzmann equivalence principle. Micro and macrocanonical densities are

defined over configurations x specified in a finite cubeƒd of dimension `. Letˆd .x/

be a shift-invariant energy vector computed by averaging a finite range potential Ux.

To compute estimators which converge when d goes to 1, we need to ensure that

microcanonical densities converge in the moments sense. We consider the limit

among measures defined on the configuration space I
Z`

, with the product topology

of Borel fields on the interval I � R. The asymptotic equivalence between micro

and macrocanonical measures is called the Boltzmann equivalence principle [22].

Their convergence to the same Gibbs measures was first proved by Landford [30]. It

is the center of a large body of work, rooted in the theory of large deviations [20].

We review results obtained when I is a bounded interval and for Gaussian processes.
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Macrocanonical convergence. When I is a bounded interval, macrocanonical

distributions are unique minimizers of the Lagrangian (7). When d goes to 1, the

limit Gibbs measure is defined by normalizing this Lagrangian so that it converges

to a variational problem defined over a stationary measure �. Suppose that �

exists. Since Ux is equivariant to translations and � is stationary it results that

E�.Ux.u// D E�.Ux/ does not depend upon the grid point u. Suppose that � has

no long range correlation so that boundary values have a negligible influence. Since

ˆd .x/ is an average of Ux.u/ in ƒd it follows that

lim
d!1

E�.ˆd .x// D E�.Ux/ :

The Lagrangian (7) includes a negative entropy term that diverges as d ! 1 if �

has finite range correlations. The normalisation replaces the entropy by an entropy

rate xH.�/, defined by considering the restriction �d of � on the finite dimensional

configuration space I
ƒ
d

. Let qd be the density of �d relatively to the Lebesgue

measure. If � has a finite range correlation we expect that H.qd / grows linearly

with d . The entropy rate is defined by

xH.�/ D lim
d!1

d�1H.qd / : (15)

Normalizing the free energy Lagrangian (7) by d and taking the limit when d

goes to 1 defines a new Lagrangian

L1.�; ˇ/ D � xH.�/C hˇ;E�.Ux/ � yi : (16)

Gibbs measures minimize this Lagrangian over the space of stationary measures for ˇ

fixed.

IfU is a bounded, finite range and continuous potential, then one can prove [17,25]

that the set of Gibbs measures which minimize this Lagrangian is a non-empty,

convex and compact set of measures. In general the solution is not unique because

contrarily to the finite Lagrangian (7) where �H.p/ is strictly convex, the entropy

rate xH.�/ is affine [17, 25]. This implies that depending upon boundary conditions

inƒd , macrocanonical densities may converge to different Gibbs measures, which is

a phase transition phenomena.

Periodic boundary conditions over the finite cube ƒd simplify computational

algorithms, but they are artificial. The limit Gibbs measure will not depend upon

these boundary conditions if it is unique, and hence if there is no phase transition.

This happens when there is no long range interactions, so that boundary values do

not condition the probability distributions of far away values. In this paper, we

concentrate on problems where there is no such phase transition.

Microcanonical convergence. The main difficulty is to find conditions which

guarantee that microcanonical measures converge to the same Gibbs measure, having
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a maximum entropy rate conditioned by moment conditions. Suppose that U is

continuous, bounded and has a finite range. When d goes to 1 and � goes to zero,

one can prove [17, 25] that microcanonical distributions converge for an appropriate

topology, to a limit measure which minimizes the same Lagrangian (16) as the one

obtained from macrocanonical densities. If there is no phase transition, so that the

macrocanonical measure converges to a unique Gibbs measure �, then this limit

is the same for macrocanonical and microcanonical measures. More specifically,

if f .x/ is a bounded and continuous function defined for any x 2 I
Z`

, then the

expected value of f computed over ƒd with microcanonical and macrocanonical

measures converge to E�.f .x// when d goes to 1. We thus have a convergence

for all bounded moments. However, it is not necessary to impose that I is bounded

to verify the Boltzmann equivalence principle, as shown by the following Gaussian

example.

Gaussian processes. Gaussian stationary measures are important examples of Gibbs

measures where x takes its values in I D R. They are obtained with a quadratic

potential Ux D fUkxgk�K computed with convolutions so that it is equivariant to

translations over the grid Z
d . Let us define

Ukx.u/ D jx ? hk.u/j2 D
ˇ

ˇ

ˇ

X

m2Zd

x.u �m/hk.m/
ˇ

ˇ

ˇ

2

;

where each hk has a support in Œ��;��.
If x 2 R

ƒ
d

then Ux is computed by extending x on Z
` with a periodic extension

beyond boundaries. Potentials can then be rewritten with circular convolutions of x

Ukx.u/ D jx ? hd;k.u/j2 D
ˇ

ˇ

ˇ

X

m2ƒd

x.m/ hd;k.n �m/
ˇ

ˇ

ˇ

2

: (17)

with periodic filters

hd;k.n/ D
X

m2Z`

hk

�

n �md1=`
�

: (18)

The energy ˆd .x/ is thus a vector of normalized l2 norms:

ˆd .x/ D
n

d�1
X

u2ƒd

jx ? hd;k.u/j2 D d�1kx ? hd;kk2
2

o

k�K
: (19)

If yhk.!/ does not vanish for all ! 2 Œ0; 2�� and k � K then Varadhan and

Donsker [19] proved that Boltzmann equivalence principle is satisfied when d goes

to 1. The microcanonical and macrocanonical models converge to a Gaussian

stationary process � whose power-spectrum is

P�.!/ D
�

K
X

kD1

ˇkjyhk.!/j2
��1

: (20)
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The next section studies asymptotic properties of microcanonical models even though

the macrocanonical model may not exist.

3. Microcanonical models beyond Boltzmann equivalence

We can guarantee that a maximum entropy microcanonical measure exists by

making sure that microcanonical ensembles are compact. Even if this valid, the

macrocanonical measure may not exist if x.u/ is defined over an interval I which is

not bounded. In this case the Boltzmann equivalence principle is violated. Section 2.3

gives an example with uniform measures over intersections of l1 and l2 balls, in the

sparse regime. Microcanonical models thus offer more flexibility, particularly for

signals having sparse behavior.

In the rest of the paper, we embed all processes over R, including binary

processes such as Ising and Bernoulli . We thus consider that x.u/ takes its

values in I D R, in which case I
ƒ
d

D R
d , where the grid topology is omitted

for ease of notation. We study microcanonical properties independently from the

corresponding macrocanonical measures which may not exist. For this purpose,

Section 3.1 relates the maximum entropy of a microcanonical measure to the Jacobian

of the energy potential. It gives sufficient conditions so that the entropy rate converges

when d goes to 1. However, sampling a maximum entropy microcanonical process

is computationally very expensive. Section 3.2 introduces a different class of

microcanonical processes obtained by transporting a maximum entropy measure

with a gradient descent algorithm which converges towards the microcanonical set.

The transported measure does not have a maximum entropy but we prove that it

has common symmetries with the maximum entropy measure. Convergence to

microcanonical sets is studied in Section 3.3.

3.1. Microcanonical entropy and Jacobian. We study the convergence of maxi-

mum entropy microcanonical models when d goes to 1 by studying the convergence

of their entropy rate without supposing that there exists a macrocanonical model. This

is done by relating the maximum entropy rate to the Jacobian of the energy ˆd .

We consider a shift-equivariant and finite range potential from Section 2.3, and

the corresponding microcanonical measure �mi
d;�

, defined as the uniform distribution

on compact sets of the form

�d;� D
˚

x 2 R
d W kˆd .x/ � yk � �

	

:

We saw in (5) that the entropy of �mi
d;�

is

H.�mi
d;�/ D �

Z

pd;�.x/ logpd;�.x/ dx D log
�

Z

1�d;�
.x/ dx

�

: (21)
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Since ˆd .x/ D d�1
P

u2ƒd
Ux.u/ and Ux.u/ only depends on the values

of x.i/ for i 2 Œu � �;u C ��`, one can verify that the i -th column Jiˆd .x/ D
@x.i/ˆd .x/ 2 R

K only depends upon the restriction of x in Œi��; iC��`. Moreover,

thanks to the equivariant structure of U , one can verify that

8 i � d ; Jiˆd .x/ D d�1
X

jmj��

@x.0/U.T�i /x.m/ ;

so the global properties of the Jacobian Jˆd .x/ can be derived from the Jacobian of

the potential, restricted on a window:

JU W R
.2�C1/` ! R

K

x 7!
X

jmj��

@x.0/Ux.m/ :
(22)

We denote by @A the frontier of a set A and by A
o D A � @A the interior

of A, and by xA the complement of A. We also denote by jJˆd .x/j D
p

det.Jˆd .x/Jˆd .x/T / the K-dimensional determinant of Jˆd , and by dH .x/L

the L-dimensional Hausdorff measure. We shall make the following assumptions

on U :

(A) U is uniformly Lipschitz on compact sets, which implies that for any compact

C � R
d there exists ˇ � 0 such that

8.x; x0/ 2 C
2d ; kˆd .x/ �ˆd .x

0/k2 � ˇ kx � x0k2 : (23)

It also implies that jJˆd .x/j � ˇK for x 2 C .

(B) We shall also suppose that ˆ�1
d

maps compact sets C to compact sets, with a

controlled growth with respect to d . For each compact set C � R
K , there exists a

constant C independent of d such that

8 d ; ˆ�1
d .C/ D

˚

x 2 R
d W ˆd .x/ 2 C

	

� B2;d .C
p
d/ ; (24)

where Bp;d .R/ denotes the d -dimensional lp Euclidean Ball of radius R. It follows

thatˆ�1
d
.y/ is a compact and Lipschitz manifold whose dimension is typically d�K,

except for degenerated cases. For example, if d�1kxk2
2 is a component of the

vector ˆd , this condition is satisfied.

Lastly, we need to control the integrability of jJˆd j�1 nearby microcanonical

sets. More precisely, for each y and any sufficiently small � > 0, we require

that jJˆd .x/j�1 is integrable in �
y

d;�
. The following gives a sufficient condition

which depends only on the potential function.

(C) For some R > 0, let X be drawn from the uniform measure in the ball

B.2�C 1;R/ and Z D JU.X/ 2 R
K be the random vector obtained by applying

the mapping JU defined in (22). We shall suppose that there exists � > 0 such that

8 S � R
K Lebesgue measurable ; P.Z 2 S/ . jS j� : (25)
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This condition assumes that the differential of U does not concentrate too much on

a low-dimensional subspace of R
K , nor in a discrete subset, but it does not require

that its distribution is absolutely continuous with respect to the Lebesgue measure.

We shall see next that potentials of the form Ux D fjx ? hkjpgk�K with p D 1; 2

with complex filters hk define an integrable jJˆd j�1.

The following theorem computes the entropy of a microcanonical process from

a change of variable metric, which depends upon the Jacobian of the interaction

energy ˆd . The theorem derives a microcanonical entropy rate which converges

when d goes to 1.

Theorem 3.1. Suppose U verifies (A), (B), and (C) above. Then the following
properties are verified:

(i) For sufficiently large d ,

H.�mi
d;�/ D log

Z

kz�yk��


d .z/ dz ; (26)

where 
d is the change of variable metric which satisfies


d .y/ D
Z

ˆ�1
d

.y/

jJˆd .x/j�1 dH
d�K.x/ < 1 a:e:; (27)

where H
d�K is the d �K dimensional Hausdorff measure. Moreover, 
d .y/

has a finite integral on compact sets.

(ii) The function 
d is strictly positive in the interior of ˆd .R
d /, up to a thin shell

on the boundary; i.e. on sets Cd � ˆd .R
d / satisfying

sup
y2Cd

dist.y;ˆd .Rd // � c � d�1=` ;

for some constant c.

(iii) Suppose that either � D 1, or that the potential U is Hölder continuous with
parameter ˛ < 2=`: jU.x/ � U.x0/j � Ckx � x0k˛ . Then, for each � > 0, the
entropy rate d�1H.�mi

d;�
/ converges as d ! 1 and satisfies

� 1 < lim
d!1

d�1H.�mi
d;�/ � C log kyk2 ; (28)

where C is a universal constant.

The proof is in Appendix A. This theorem highlights the connection between

the entropy and the Jacobian through 
d .y/, via the coarea formula. It defines the

entropy rate of a microcanonical ensemble for general ˆd in the thermodynamical

limit d ! 1, without relying on a macrocanonical model. One can compare
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the conditions of Theorem 3.1 with those that ensure the convergence of the

microcanonical and macrocanonical measures. In [16, 43] this equivalence is

established for bounded, finite-range potentials U . Our condition to prove that

the entropy rate converges is weaker (U Hölder continuous), but we do not study

convergence beyond the entropy rate. Studying the convergence of the microcanonical

measure in more general conditions remains an open question. Finally, notice that

for positive integers k, the Hausdorff measure is equivalent to the k-dimensional

Lebesgue measure up to a constant rescaling.

The microcanonical thickness parameter � is important to ensure appropriate

convergence. The following corollary quantifies the effect of � in the entropy rate,

and proves that its contribution to the energy is small for sufficiently large d .

Corollary 3.2. Under the same conditions as Theorem 3.1, for d fixed and when
� ! 0, the entropy rate of the �-thick microcanonical model satisfies

d�1H.�mi
d;�/ � K

d
log �:

As a consequence of this corollary, the entropy variation due to a change in

the thickness from � to �0 is of the order of K
d

log
�

�
�0

�

, which is negligible if

K log
�

�
�0

�

� d .

This paper concentrates on interaction energy vectors ˆd defined by l2 and l1

norms of convolutions of x with multiple filters. The next proposition proves that

such interaction energies satisfy the assumptions of Theorem 3.1. The proof is in

Appendix C.

Proposition 3.3. ˆd satisfies assumptions (A), (B), and (C) in the following cases:

(i) ˆd .x/ D fd�1kx ? hkk2
2gk�K and the fhkgk�K are linearly independent.

(ii) ˆd .x/ D fd�1kxk2; d�1kxk1g.
(iii) ˆd .x/ D fd�1kxk2; d�1kx ? hkk1gk�K and the hk are linearly independent

with jyhk.�!/j ¤ jyhk.!/j for all !.

3.2. Microcanonical gradient descent model. Computing samples of a maximum

entropy microcanonical model is typically done with MCMC algorithms or Langevin

Dynamics [15], which is computationally very expensive. Computations can be

considerably reduced by avoiding to enforce the maximum entropy constraint over the

microcanonical set. Microcanonical models computed with alternative projections

and gradient descents have been implemented to sample texture synthesis models

[23, 26, 39]. Another related sampling algorithm is the so-called Herding algorithm

by Welling [47], which produces “pseudo-samples” of a microcanonical model in a

deterministic fashion by solving a sequence of primal-dual updates.

We consider microcanonical gradient descent models obtained by transporting

an initial measure towards a microcanonical set, using gradient descent with respect
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to the distance to the microcanincal ensemble. We prove that the gradient descent

preserves many symmetries of the maximum entropy microcanonical measure.

Let ˆd be a shift-invariant function as defined in Section 2.3 and y 2 ˆd .R
d /.

We transport an initial measure �0 towards a measure supported in a microcanonical

set �d;� , by iteratively minimising

E.x/ D 1

2
kˆd .x/ � yk2 (29)

with mappings of the form

'n.x/ D x � �nrE.x/ D x � �nJˆd .x/
T .ˆd .x/ � y/ ; (30)

where �n is the gradient step at each iteration n.

Given an initial measure �0, the measure update is

�nC1 WD 'n;#�n; (31)

with the standard pushforward measure f#.�/ŒA� D �Œf �1.A/� for any �-measur-

able set A, where f �1.A/ D fxIf .x/ 2 Ag.
Samples from �n are thus obtained by transforming samples x0 from �0 with the

mapping x' D 'n ı 'n�1 ı � � � ı '1. It corresponds to n steps of a gradient descent

initialized with x0 � �0:

xlC1 D xl � �lJˆd .xl/
T .ˆd .xl/ � y/ :

Next section studies the convergence of the gradient descent measures�n. Even if

they converge to a measure supported in a microcanonical set�d;� , in general they do

not converge to a maximum entropy measure on this set. However, the next theorem

proves that if �0 is a Gaussian measure of i.i.d Gaussian random variables then they

have a large class of common symmetries with the maximum entropy measure. Let

us recall that a symmetry of a measure � is a linear invertible operator L such that

for any measurable set A, �ŒL�1.A/� D �ŒA�. A linear invertible operator L is a

symmetry of ˆd if for all x 2 R
d , ˆd .L

�1x/ D ˆd .x/. It preserves volumes if its

determinant satisfies jdetLj D 1. It is orthogonal if LtL D LLt D I and we say

that it preserves a stationary mean if L1 D 1 for 1 D .1; : : : ; 1/ 2 R
`.

Theorem 3.4. (i) If L is a symmetry of ˆd which preserves volumes then it is a
symmetry of the maximum entropy microcanonical measure.

(ii) If L is a symmetry of ˆd and of �0 then it is a symmetry of �n for any n � 0.

(iii) Suppose that �0 is a Gaussian white noise measure of d i.i.d Gaussian random
variables. Then, if L is a symmetry of ˆd which is orthogonal and preserves a
stationary mean then it is a symmetry of �n for any n � 0.



272 J. Bruna and S. Mallat

The theorem proof is in Appendix D. The initial measure �0 is chosen so that it

has many symmetries in common with ˆd and hence the gradient descent measures

have many symmetries in common with a maximum entropy measure. A Gaussian

measure of i.i.d Gaussian variables of mean m0 and �0 is a maximum entropy

measure conditioned by a stationary mean and variance. It is uniform over spheres

which guarantees that it has a large group of symmetries. The stationary mean m0

and variance �2
0 are adjusted so that that microcanonical sets are nearly included over

the sphere of mean m01 and radius �0, where �0 concentrates and is uniform. We

thus setm0 and �2
0 to be the empirical stationary mean and variance calculated from

the realization xx of X :

m0 D d�1
X

u2ƒd

xx.u/ and �2
0 D d�1

X

u2ƒd

.xx.u/ �m0/
2 : (32)

Observe that periodic shifts are linear orthogonal operators and preserve a

stationary mean. The following corollary applies property (iii) of Theorem 3.4

to prove that �n are circular-stationary.

Corollary 3.5. If ˆd is invariant to periodic shift and �0 is a Gaussian white noise
then �n is circular-stationary for n � 0.

3.3. Convergence of microcanonical gradient descent. This section studies con-

ditions so that the gradient descent (31) converges to a stationary measure supported

in a microcanonical ensemble, and we give a lower bound of its entropy rate. To

guarantee that the algorithm is not trapped in local minima, we use the characterization

of stable solutions from [31,38] based on the second-order analysis of critical points

of (29). Such analysis reveals that gradient descent methods do not get stuck at critical

points which are strict saddles — in which at least one Hessian eigenvalue is strictly

negative, since the set of initialization parameters corresponding to the non-negative

spectrum has measure 0 relative to �0.

Definition 3.6. We say thatˆd D .�1; : : : ; �K/ has the strict saddle condition ifˆd

is at least C2 and for each v 2 Null.Jˆd .x/
>/ � R

K , v ¤ 0, the matrix

X

k�K

vkr2�k.x/C Jˆd .x/
>Jˆd .x/ (33)

has at least one strictly negative eigenvalue, where r2�k is the Hessian of �k .

The following theorem, proved in Appendix E, establishes basic properties of

the distribution generated by gradient descent, including sufficient conditions for its

convergence to the microcanonical ensemble.
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Theorem 3.7. Assume ˆd is C2 and satisfies property (B) (24). Suppose that ˆd

is Lipschitz with Lipˆd
D ˇ and that rˆd is also Lipschitz, with Liprˆd

D �. Let

y 2 ˆd .R
d /ı. Then:

(i) If ˆd satisfies the strict saddle condition, then (29) has no poor local minima.
Moreover, if jJˆd .x/j > 0 for all x 2 ˆ�1

d
.y/, then by choosing step-sizes �n

such that �n < �
�1 for all n, �n converges almost surely to a limit measure �11

Moreover, �1 is supported in the microcanonical ensemble ˆ�1
d
.y/ with

appropriate choice of learning rate �n; that is,A\ˆ�1
d
.y/ D ; ) �1.A/ D 0.

(ii) The entropy rate d�1H.�n/ satisfies

d�1H.�n/ � d�1H.�0/ �
�

1 � K

d

�

�
X

n0�n

�n0rn0 � K

d
ˇ2

X

n0�n

�n0 ; (34)

where rn D E�n

p

E.x/ is the average distance to the microcanonical ensemble
at iteration n.

Part (i) gives sufficient conditions for the gradient descent sampling to converge

towards the microcanonical ensemble. Each gradient descent step can reduce the

entropy rate. By computing an upper bound of this entropy reduction, part (ii) gives

a lower bound of the entropy rate after n iterations. Although the gradient descent

converges to the microcanonical ensemble in general the resulting measure will not

have a maximum entropy. However, (34) gives a lower bound of its entropy rate. By

choosing a measure �0 having a maximum entropy, we maximize the entropy of the

lower-bound (34).

Our current results rely on second-order stationarity assumptions, but first-order

stationary condition rE.x�/ D 0 may be sufficient to characterize convergence as

d ! 1. Indeed, this condition implies that either we reached the microcanonical

ensemble, ˆ.x�/ D y, or that we have found a non-regular point, with

jJˆd .x
�/j D 0. Such points occur with vanishing probability as d ! 1, but

the rigorous analysis of this phenomena is left for future work.

The sufficient condition for �n to converge to a limit measure �1 requires

jJˆd .x/j > 0 for x 2 ˆ�1
d
.y/, which for certain choices of ˆd may be hard

to check. The following corollary, proved in Appendix F, provides an alternative

sufficient condition which is stronger but easier to evaluate.

Corollary 3.8. If ˆd is C1 and Lipschitz and satisfies the strict saddle condition,
then �n converges for any y 2 ˆd .R

d / up to a set of zero measure, and �1 is
supported in the microcanonical ensemble.

We now give examples of energies ˆd which satisfy the assumptions of

previous theorem. The next theorem, proved in Appendix G, shows that the l2

1Defined as ProbŒ�n.A/ ! �1.A/ for any F -measurable set A� D 1, where F is the Borel

� -algebra on Rd .
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ellipsoid representation satisfies the strict saddle condition, and therefore that

the microcanonical gradient descent measure is supported in the microcanonical

ensemble.

Theorem 3.9. If ˆd .x/ D fd�1kx ? hkk2
2gk with linearly independent and com-

pactly supported hk , then ˆd satisfies the strict saddle condition and jJˆd .x/j > 0
for x 2 ˆ�1

d
.y/ with y 2 ˆd .R

d /ı, and therefore �1 is supported in the micro-
canonical ensemble.

A current limitation of the convergence analysis is that it relies on smoothness

properties of ˆd , thus leaving out of scope the l1-based representations. This

limitation is intrinsic to the convergence analysis of non-smooth, non-convex

optimization methods, which provides no guarantees using simple gradient descent.

The analysis of other algorithms such as ADMM [46] or gradient sampling [12] in

such conditions is left for future work.

Continuous-time limit dynamics. The measure transport (31) defined by gradient

descent can be seen as a discretization of an underlying partial differential equation

in the space of measures, describing the behavior as the step-size �n ! 0. The

resulting dynamics is described by the well-known continuity equation, expressed in

the distributional sense as

@t�t D div.rE � �t / ; (35)

or equivalently

8 � 2 C1 ; @t

�

Z

�.x/�t .dx/
�

D �
Z

hr�.x/;rE.x/i�t .dx/ ;

where C1
c denotes the space of C1 compactly supported test functions. As opposed

to MCMC algorithms, which are discretizations of diffusion Stochastic Differential

Equations (SDEs), the dynamics in our case are deterministic, and the only source

of randomness comes from the initial measure �0. Notice also that the symmetry

preservation properties described in Theorem 3.4 directly apply to the Liouville

equation above. Equation (35) can also be interpreted as a Wasserstein Gradient

Flow over the functional energy

EŒ�� D
Z

E.x/�.dx/ :

Recent work [14,40] has established global convergence of such Wasserstein Gradient

Flows in the cases where E is positively homogeneous, for suitable initialization.

Although in our case E is not homogeneous, we leave for future work to exploit

the homogeneity properties of ˆd to derive similar convergence results that can

generalize Theorem 3.7.
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4. Multiscale microcanonical wavelet and scattering models

We study multiscale microcanonical models obtained with energy vectors computed

with a wavelet transform. Next section introduces energy vectors computed with l2

and l1 norms of wavelet coefficients. Section 4.2 introduces scattering which provide

complementary l1 norm coefficient computed with a second wavelet transform.

4.1. Wavelet transform l2 and l1 norms. A wavelet transform, computes signal

variations at different scales through convolutions with dilated wavelets. Maximum

entropy models conditioned by wavelet l2 norms define Gaussian processes. Wavelet

transforms define sparse representations of large classes of signals. This sparsity

characterize non-Gaussian behavior which is specified by wavelet l1 norms. We

write yx the Fourier transform of x.

Wavelet transform. Wavelet coefficients are convolutions x ?  j;q.u/ for u 2 R
`,

where each wavelet j;q is a dilated band-pass filter which covers different frequency

domains:

 j;q.u/ D 2� j̀ q.2
�ju/ ) y j;q.!/ D y q.2

j!/: (36)

We will focus our attention on the compactly-supported case, where the Q mother

wavelets  q have a support in Œ�C;C �` so the support of  j;q is in Œ�C2j ; C2j �`.

The Fourier transform y q.!/ have an energy concentrated in frequency intervals

which barely overlap for different q.

If x is supported in a cube ƒd � Z
`, then u is discretized on this square grid.

Convolutions are defined by extending x into a periodic signal over Z
`. We showed

in (17) that it is equivalent to computing circular convolutions with periodic wavelet

filters (18). Discrete periodic wavelets  j;q are band-pass filters with a zero average
P

u2ƒd
 j;q.u/ D 0. The minimum scale 2j is limited by the sampling interval

normalized to 1, whereas the maximum scale 2J is limited by the width d1=` ofƒd .

Wavelet coefficients x? j;q.u/ separate the frequency components of x in several

frequency bands, at scales 1 � 2j � 2J . The remaining low frequencies at scales

larger than 2J are carried by a single low-pass filter which we write  J;0.u/ D
2�Jd 0.2

�Ju/, whose support is also included in Œ�C2J ; C2J �`.

The wavelet transform of x is defined by

Wx D
˚

x ?  j;q

	

1�j �J;q�Q
: (37)

We impose that the frequency supports y j;q cover uniformly the whole frequency

domain, which is captured by the following Littlewood–Paley condition. There exists


 < 1 such that

8! ; 1 � 
 � j y J;0.!/j2 C 1

2

X

j;q

�

j y j;q.!/j2 C j y j;q.�!/j2
�

� 1C 
 : (38)



276 J. Bruna and S. Mallat

The condition implies the following energy inequalities for any x 2 Iƒd

.1 � 
/kxk2
2 � kx ?  J;0k2

2 C
X

j;q

kx ?  j;qk2
2 � .1C 
/ kxk2

2 : (39)

This is proved by multiplying (38) with jyx.!/j2 and applying the Plancherel equality.

This property implies thatW is a bounded and invertible operator, and its inverse has

a norm smaller than .1 � 
/�1=2. If 
 D 0 then W is an isometry.

For audio signals in dimension ` D 1, each wavelet is a complex filter whose

Fourier transform y q.!/ has an energy concentrated in the interval Œ2q=Q; 2.qC1/=Q�.

It follows that y j;q.!/ covers the interval Œ2�j Cq=Q; 2�j C.qC1/=Q� and satisfies

the Littlewood–Paley condition (38). The parameter Q is the number of wavelets

per octave, which adjusts their frequency resolution. Wavelet representations are

usually computed with about Q D 12 wavelets per octave, which are similar to

half-tone musical notes. In numerical computations, we choose Gabor wavelets as

in [2]. Although strictly speaking this wavelet family does not have spatially compact

support, the decay is exponential and has no practical effect.

For images in ` D 2 dimensions, each wavelet is computed by rotating a single

mother wavelet

 j;q.u/ D 2� j̀  .2�j r�1
q u/ ) y j;q.!/ D y .2j rq!/; (40)

where rqu is a rotation of u 2 R
2 by an angle q�=Q. We choose a complex mother

wavelet  .u/ whose Fourier transform y .!/ is centered at a frequency � over a

frequency domain of radius approximately j�j=2. The support of each y j;q is dilated

and rotated according to (40). Wavelet coefficients x ?  j;q thus compute variations

of x at scales 2j along different directions. In numerical computations we use Morlet

wavelets as in [10] withQ D 8 angles to satisfy the Littlewood–Paley condition (38).

As in the case of audio, these wavelets have exponentially decaying spatial envelop.

Wavelet l2 norms. We saw in Section 2.4 that microcanonical maximum entropy

measures conditioned by energy vectors (50) of l2 norms converge to Gaussian

processes. We can define such energy vectors with wavelet l2 norms, with the

quadratic potential

Ux D
˚

jx ?  j;qj2
	

j �J;q�Q
: (41)

Since each filter support is included in Œ�C2J ; C2J �`, this potential has a finite range

� D C2J . When x is defined over a cubeƒd then Ux is computed by periodizing x

which is equivalent to periodizing the wavelet filters and replacing convolutions with

circular convolutions, as shown in (17). To simplify notations, the periodized filters

are still written  j;q . According to (50) the energy over a cube ƒd is given by

normalized l2 norms

ˆd .x/ D
˚

d�1 kx ?  j;qk2
2

	

j �J;q�Q
: (42)

It measures the energy of x in the different frequency bands covered by each y j;q .
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Wavelet l1 norms for sparsity. Non-Gaussian properties can be captured with

statistics sensitive to sparsity, as observed in early works studying the statistics of

natural images [41], and formalized on specific processes such as multifractals [11].

Suppose thatX ? j;q.u/ has few large amplitude coefficients and a large proportion

of negligible coefficients. For example, ifX.u/ is piecewise regular thenX ? j;q.u/

is negligible over domains where X.u/ is regular and it has a large amplitude near

singularities and sharp variations. The marginal probability density ofX ? j;q.u/ is

then highly concentrated near 0. It is thus better approximated by a Laplacian rather

than a Gaussian distribution. We saw in Section 2.3 that Laplacian distributions are

maximum entropy distributions conditioned by first order moments. This suggests to

estimate E�.jx ?  j;q.u/j/ as opposed to E�.jx ?  j;q.u/j2/, with a normalized l1

norm

d�1kx ?  j;q.u/k1 D d�1
X

u2ƒd

jx ?  j;q.u/j :

A wavelet l1 norm energy is defined by replacing the quadratic potential (41) by a

modulus potential

Ux D
˚

jx ?  j;qj
	

j �J;q�Q
; (43)

which also has a finite range � D C2J . The resulting energy over a cube ƒd is

ˆd .x/ D
˚

d�1 kx ?  j;qk1

	

j �J;q�Q
: (44)

It captures the sparsity of wavelet coefficients for each scale and orientation.

4.2. Scattering transform. Wavelet l1 norm measure the sparsity of wavelet co-

efficients but do not specify the spatial distribution of large amplitude wavelet

coefficients. Scattering transforms provide information about this geometry by

computing interaction terms across scales, with an iterated wavelet transform. Their

mathematical properties are described in [11, 33], and applications to image and

audio classification are studied in [2, 10]. We review important properties needed to

define microcanonical models, including the energy conservation allowing to recover

wavelet l2 norms.

The mean of x is estimated over a cube u 2 ƒd by d�1
P

u2ƒd
x.u/. The

modulus of a wavelet coefficient jx ? j;q.u/j measures the variation of x around its

mean, in a neighborhood of u of size proportional to 2j . A normalized l1 norm is

the average of jx ?  j;q.u/j

d�1kx ?  j;qk1 D d�1
X

u2ƒd

jx ?  j;q.u/j :

Similarly, we can capture the variability of jx ?  j;q.u/j around this mean by

convolving jx ?  j;q.u/j with a new set of wavelets:

jjx ?  j;qj ?  j 0;q0.u/j:
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It measures the variations of jx ?  j;q.u/j in a neighborhood of size 2j 0
. We

shall consider the second wavelet  j 0;q0 is calculated from the same mother wavelet

than j;q but for different j 0; q0, although the second mother wavelet may be changed

as in [2].

The maximum scales 2j and 2j 0
remain below a cut-off scale 2J which specifies

the maximum interaction range of the model. Incorporating first and second order

coefficients defines a new potential which captures the multiscale variations of x as

well as interaction terms across scales:

Ux D
˚

x ; jx ?  j;qj ; jjx ?  j;qj ?  j 0;q0 j
	

j;j 0�J;q;q0�Q
: (45)

The corresponding energy vector is

ˆd .x/ D
n

d�1
X

u2ƒd

x.u/ ; d�1 kx ? j;qk1 ; d
�1 kjx ? j;qj? j 0;q0k1

o

1�j;j 0�J;
q;q0�Q

:

(46)

It includes K D 1C JQC J 2Q2 coefficients.

The following proposition, shows that wavelet l2 norms can be closely

approximated from l1 norm scattering coefficients. As a result, we will be able

to approximate Gaussian process as well as non-Gaussian processes with a scattering

energy vector. It is proved in Appendix H,

Proposition 4.1. Suppose that the wavelets satisfy (38) with 
D0 then for J D log2 d

kx ?  j;qk2
2 D kx ?  j;qk2

1 C
log2 d
X

j 0D1

Q
X

q0D1

kjx ?  j;qj ?  j 0;q0k2
1

C
log2 d
X

j 0D1

Q
X

q0D1

log2 d
X

j 00D1

Q
X

q00D1

kjx ?  j;qj ?  j 0;q0 j ?  j 00;q00k2
2: (47)

This proposition proves that l2 of wavelet coefficients are approximated by sums

of first and second order scattering coefficients plus a third order term

X

j 0;q0;j 00;q00

kjx ?  j;qj ?  j 0;q0 j ?  j 00;q00k2
2:

For most stationary process this third order term is much smaller than the first two

and can be neglected [10]. The theorem hypothesis supposes that wavelets satisfy the

Littlewood inequality (38) with 
 D 0. If 
 is non-zero, it creates corrective terms

proportional to .1 � 
/2. Observe also that we set J D log2 d . In microcanonical

models, 2J is a fixed scale so that the number of scattering coefficients does not

increase with d .
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5. Approximations of stationary processes

We study approximation of probability measures associated with stationary pro-

cesses X.u/, u 2 Z
`, taking its values in R, with gradient descent microcanonical

models calculated with shift-invariant energy vectors. We first concentrate

on Gaussian, Ising and point processes whose properties are well understood

mathematically. We then consider the synthesis of image and audio textures from a

single example.

5.1. Microcanonical approximation errors. This section analyzes the approxi-

mation errors of a stationary process X of probability measure � by a gradient

descent microcanonical model of measure �n. The gradient descent is initialized

with a Gaussian white measure �0 whose mean and variance are defined in (32).

Since the energy ˆd is shift-invariant, Corollary 3.5 proves that the gradient descent

measures �n are stationary.

Concentration. Section 2.1 explains that a microcanonical model is based on a con-

centration hypothesis, which needs to be verified. For almost all realization x of X ,

ˆd .x/ should remain in a ball of radius �d which converges to zero when d goes

to 1. We can verify this convergence in probability from a mean-square convergence,

by calculating the variance

x�2
� D E�

�

kˆd .x/ � E�.ˆd .x//k2
�

:

The Markov inequality implies that if limd!1 x��.ˆd .x//=�d D 0 then

lim
d!1

Prob
�

kˆd .X/ � E�.ˆd .x//k � �d

�

D 0 :

This means that when d increases there is a probability converging to 1 that a

realization ofX belongs to a microcanonical set computed from a single realization xx
with y D ˆd .xx/:

�d;�d
D

˚

x 2 R
ƒd W kˆd .x/ �ˆd .xx/k � �d

	

:

In numerical calculations, we stop the gradient descents after a fixed number n

of iterations so that the resulting gradient descent measure is supported in a

microcanonical set �d;� for � small enough. If �=x�2
�.ˆd .x// � 1 then nearly

all realizations of X are included in �d;� . However, the microcanonical set may

become too large and hence include points which are not typical realizations of X .

We thus typically wait to reach a smaller � width

Sinceˆ.x/ is in a space of dimensionK, Corollary 3.2 proves that reducing � by a

factor 
 reduces the maximum entropy of the microcanonical model by a factor of the

order ofK log 
 . In the extensive case, this maximum entropy is proportional to d so
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the entropy reduction is negligible if K j log.�=x��.ˆd .x//j � d . In all numerical

calculations of this paper �=x��.ˆd .x// is of the order of 10�3. We evaluate the

concentration of ˆd .X/ by computing the normalized variance

�2
�.ˆd / D

E�

�

kˆd .x/ � E�.ˆd .x//k2
�

E�

�

kˆd .x/k2
� : (48)

Microcanonical gradient descent entropy. Since I D R, the gradient descent is

initialized with a Gaussian white noise measure �0 of variance �2
0 D d�1kxxk2

2. The

convergence of the gradient descent algorithm to the microcanonical set is checked

by verifying that for almost all Gaussian white realization x0, after a sufficient large

number n of gradient steps

kˆd .xn/ �ˆd .xx/k � �;

and hence xn 2 �d;� . Convergence issues may be due to existence of local minima

or because the Hessian of ˆd .x/ is too ill-conditioned. Let �n be the resulting

microcanonical gradient descent measure. If �n is supported in �d;� then it has

a smaller entropy than the maximum entropy microcanonical measure, which is

uniform in �d;� . Theorem 3.7 gives an upper bound on the reduction of entropy.

Model error. Suppose that the restriction of X to ƒa has a maximum entropy

measure � associated to a known energy ˆ
�

d
.x/. This will be the case for Gaussian

or Ising processes. The typical sets where the realizations of X are almost all

concentrated are sets where kˆ�

d
.x/� E�.ˆ

�

d
.x//k is sufficiently small. In this case

we can verify that the gradient descent microcanonical measure �n computed with

a model energy ˆd is also included in such a typical set with high probability. This

concentration property is satisfied if the mean-square variation of the process energy

E�n
.kˆ�

d
.x/ � E�.ˆ

�

d
.x//k2/ converges to 0 when d increases. This convergence

is evaluated by computing the concentration of ˆ
�

d
.x/ around E�.ˆ

�

d
.x// for �n:

e2
�n
.ˆd / D

E�n

�

kˆ�

d
.x/ � E�.ˆ

�

d
.x//k2

�

E�n

�

kˆ�

d
.x/k2

� : (49)

If �n D � then e2
�n
.ˆd / D �2

�.ˆ
�

d
/ but the reverse is not true. It would be true

only if the microcanonical gradient descent measure had a maximum entropy, which

is not valid in general. On the other hand, if e2
�n
.ˆd / � �2

�.ˆ
�

d
/ then it indicates

that there is a model error.

5.2. Approximation of Gaussian processes. We study approximations of station-

ary Gaussian random processes with gradient descent microcanonical models, defined

with wavelet and scattering energy vectors.
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We consider a scalar quadratic potentialUx D jx?h.u/j2 for u 2 Z
2. As in (18),

we define a periodic filter hd .n/ D
P

m2Z2 h.n �md1=2/ over square images of d

pixels and an energy

ˆ
�

d
.x/ D d�1kx ? hd k2

2 D d�1
X

!

jyx.!/j2 jyhd .!/j2: (50)

If inf! jyh.!/j > 0 then we saw in (20) that microcanonical and macrocanonical

models converge to a Gaussian stationary process � over Z
2 whose power spectrum

is

P�.!/ D ˇ�1 jyh.!/j�2 : (51)

In numerical experiments, we choose a discrete filter h.n/ D c e�jnj=� with � D 0:5,

whose Fourier transform satisfies for ! 2 Œ��; ��2

jyh.!/j2 D c2
X

m2Z2

�

�2 C j! C 2m�j2
��2

: (52)

Figure 1(a) shows realizations of the Gaussian process of power spectrumP�.!/,

which is nearly the same as the maximum entropy microcanonical process computed

with the scalar energy ˆ
�

d
. Since ˆ

�

d
is an l2 energy, Theorem 3.9 proves that

the gradient descent is not trapped in a local minima and thus converges to a

microcanonical set of ˆ
�

d
. This is verified by Table 1 where e2

�n
.ˆ

�

d
/ D �2

�.ˆ
�

d
/.

However Figure 1(b) shows that realizations of the microcanonical gradient descent

process are different from realizations of the original Gaussian process and hence of

the maximum entropy microcanonical process. Figure 2(a,b) show that the maximum

entropy microcanonical process has a power spectrum which is different from the

spectrum of the microcanonical gradient descent process.

Observe that the power spectrum in Figure 2(a,b) are invariant by rotations in

the Fourier plane. These rotations are orthogonal operators and they preserve the

stationary mean which corresponds to the Fourier transform value at! D 0. If yhd .!/

is invariant by a rotation of ! then (50) implies that ˆ
�

d
.x/ is invariant to these

rotations, and Theorem 3.4 proves that �min
d;�

and �n are invariant to these rotations.

This rotation invariance is not strictly valid at the highest frequencies because of the

square grid sampling.

ˆd D ˆ
�

d
ˆd DWavelet l2 ˆd D Wavelet l1 ˆd D Scattering

dim.ˆd / 1 40 40 114

�2
�.ˆd / 5e-4 4e-3 4e-3 5e-3

e2
�n
.ˆd / 5e-4 2e-2 0.15 2e-2

Table 1. The first line gives the dimension of each energy vectors ˆd .x/. The next lines give

the normalized variance �2
�.ˆd / and the process energy concentration e2

�n
.ˆd /, depending

upon the microcanonical energy vector ˆd , for the Gaussian process (51).
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(a) (b) (c) (d) (e)

Figure 1. (a) Realization of the Gaussian process (51). (b) Realization of the microcanonical

gradient descent computed withˆd .x/ D ˆ
�

d
.x/ D kx ? hk2

2
. (c) Realization computed with

a vector ˆd .x/ of l2 wavelet norms. (d) ˆd .x/ is composed of l1 wavelet norms. (e) ˆd .x/

is a scattering transform.

(a) (b) (c) (d) (e)

Figure 2. (a) Power spectrum of the original Gaussian process. (b) Estimation of the spectrum

of a microcanonical gradient descent computed with the energy vector ˆd .x/ D �d .x/ D
kx ? hk2

2
. (c) The energy vector ˆd .x/ consists of l2 wavelet norms. (d) ˆd .x/ includes l1

wavelet norms. (e) ˆd .x/ includes l1 scattering norms.

Wavelet l2 norms. Let us now compute the gradient descent microcanonical mea-

sure �n with a wavelet l2 norm energy vector ˆd in (42). We shall see that it

can provide good approximations of Gaussian processes. The normalized variance

�2.ˆd / in Table 1 remains small which indicates that this energy vector remains

concentrated around its mean. Figure 1(c) shows a realization of the resulting

microcanonical gradient descent model and Figure 2(c) gives an estimation of the

power spectrum of this stationary process. This power spectrum is now much closer

to the original power spectrum.

To understand this, observe that wavelet l2 norms specify the signal energy in the

different frequency bands covered by each band-pass wavelet filter y j;q.!/:

kx ?  j;qk2 D
X

!

jyx.!/j2 j y j;q.!/j2: (53)

The fact that the power spectrum remains nearly constant over the support of each y j;q

is a consequence of Theorem 3.4(iii). Indeed, suppose that Lx is a linear operator

which performs a permutation of the values of yx.!1/ and yx.!2/, for two non-zero

frequencies !1 and !2 such that y j;q.!1/ D y j;q.!2/ for all j; q. It is an orthogonal
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operator which preserves the mean (zero frequency) and it is a symmetry of ˆd .

Theorem 3.4(iii) implies that the gradient descent measure �n is also invariant to

the action of L and is thus a stationary process whose power spectrum is the same

at !1 and !2. This property is approximately valid for any frequencies !1 and !2

located near the center of the support of each y j;q , where it remains nearly constant

and where all other y j 0;q0 nearly vanish. It implies that the spectrum of �n remains

nearly constant in these frequency domain.

The energy concentration e2
�n

in Table 1 is small although not as small as �2
�.ˆ

�

d
/

which indicates the presence of a bias. To reduce this bias we must reduce the

support size of each wavelet y j;q where the spectrum must remain nearly constant.

Appropriate wavelet design can yield arbitrarily small errors when d increases.

Besides having an appropriate power spectrum, these microcanonical gradient

descent models are also nearly Gaussian processes. This can be shown with a phase

symmetry argument, which is explained without a formal proof. The wavelet norms

in (53) and hence ˆd .x/ are invariant if we preserve jyx.!/j but change the complex

phase of yx.!/ for ! ¤ 0. Arbitrary rotations of the Fourier complex phases which

transform real signals into real signals are linear orthogonal operators which preserve

the stationary mean. As a result, Theorem 3.4 proves that the gradient descent process

is invariant to any such Fourier phase rotation. This means that Fourier transforms of

realizations of these microcanonical gradient descent processes have phases which

are independent and uniformly distributed. Given a fixed power spectrum, a standard

result based on the central limit theorem proves that stationary random processes

with independent and uniformly distributed Fourier phases converge to a Gaussian

processes when the dimension d goes to 1 [21]. Under appropriate hypotheses,

microcanonical gradient descent processes conditioned by l2 wavelet norms will thus

converge to Gaussian processes.

Wavelet l1 norms. Maximum entropy models conditioned by wavelet l1 norms

capture sparsity with Laplacian distributions but do not approximate Gaussian

processes accurately. Figure 1(d) shows samples of the microcanonical gradient

processes computed with a wavelet l1 norm energy (44). The l1 norm constraints

produce wavelet coefficients which are more sparse than a true Gaussian process. It

creates images which are more piece-wise regular than in Figure 1(c). Errors are also

visible in the resulting power spectrum shown in Figure 2(d). Table 1 shows that the

resulting model error e2
�n

for the l1 norm wavelet vector is about 10 times larger than

with the l2 wavelet energy vector.

Scattering energy. The scattering energy vector (46) includes high order multiscale

terms which can nearly reproduce the l2 norms of wavelet coefficients, as proved by

Proposition 4.1. Table 1 gives the normalized variance �2
�.ˆd .x// which shows that

it concentrates nearly as well as wavelet l2 norm energy vectors, despite the fact that
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it is much larger. Figure 1(e) shows a realization of the scattering microcanonical

gradient descent model and Figure 2(e) gives its power spectrum. It is nearly as

precise as the l2 norm microcanonical model and the model error e2
�n

in Table 1 has

about the same amplitude.

5.3. Ising processes. We consider a two-dimensional Ising process with no out-

side magnetization, over a two-dimensional square lattice with periodic boundary

conditions. We denote by x.u/ the spin values in f�1; 1g. The Ising probability of a

configuration x is

p.x/ D Z
�1 exp .�ˇ �d .x// with �d .x/ D d�1

X

u2ƒd

X

u02Nu

x.u/x.u0/; (54)

where Nu is the 4 point neighborhood of x.u/ in the two-dimensional grid.

The constant ˇ D .kBT /
�1 is the inverse temperature scaled by the Boltzmann

constant kB . In two dimension, the free energy can be exactly computed with the

method of Onsager [37]. It has a phase transition when T reaches a critical value

Tc � 2:27. We study the approximation of Ising for several values of the temperature.

The complex behavior of Ising arises from the conjunction of the quadratic

Hamiltonian with the binary constraint. This binary condition may be replaced by a

condition on a fourth order moment to obtain the same critical behavior but we shall

impose it here through first and second order moments. For all x 2 R
d , one has

kxk2 � kxk1 �
p
dkxk2, and kxk1 D

p
d kxk2 if and only if jx.u/j is constant. It

follows that

8u ; x.u/ D ˙1 , kxk1 D kxk2
2 D d :

We can thus impose that x is binary by adding d�1kxk2
2 and d�1kxk1 into the energy

vector. The resulting microcanonical interaction energy for x 2 R
ƒ
d

is

ˆ
�

d
.x/ D

˚

d�1kxk2
2 ; d

�1kxk1 ; �d .x/
	

: (55)

If we remove the l1 term, this energy is quadratic and the maximum entropy model

is therefore a stationary Gaussian process.

The Ising model has a phase transition at the critical temperature Tc � 2:27,

from an “ordered” to a “disordered” state. The spin spatial correlation exhibits a

characteristic scale �.T / for T > Tc and EfX.u/X.uC r/g ' e�jrj=�.T / [29], with

�.Tc/D0. The correlation is self-similar at T DTc and EfX.u/X.uC r/g'jr j�1=2.

Figure 2(a) gives two realizations of Ising for a large temperature (bottom) and a

temperature just above the critical temperature (top). Figure 2(b) shows realizations

of the microcanonical gradient descent process computed with the Ising energy

vector ˆ
�

d
. The first column of Table 2 shows that e2

�n
.ˆ

�

d
/ � �2.�.ˆ

�

d
/ which

means that the microcanonical gradient descent does not converge to a microcanonical

set for � small. Near the critical temperature, the gradient descent microcanonical
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model is unable to recover low-frequency long-range structures which appear in Ising.

This is due to a well-known instability near criticality.

ˆd D ˆ
�

d
ˆd D Wavelet l2 ˆd D Wavelet l1 ˆd D Scattering

dim.ˆd .x// 3 42 42 116

�2
�.ˆd /,

T D 2:2
6e-6 3e-4 4e-4 6e-4

e2
�n
.ˆd /,

T D 2:2
2e-2 7e-2 5e-2 9e-3

�2
�.ˆd /,

T D 3
3e-6 2e-5 4e-5 4e-5

e2
�n
.ˆd /,

T D 3
7e-3 4e-2 5e-2 5e-3

Table 2. The first line gives the dimension of each energy vectors ˆd .x/. We consider two

Ising processes (54), computed near the critical temperatureT D 2:2 and at a larger temperature

T D 3. The table gives the normalized variance �2
�.ˆd / and the Ising energy concentration

e2
�n
.ˆd /, for different ˆd .x/.

(a) (b) (c) (d) (e)

Figure 3. (a) Realizations of an Ising process near the critical temperature T D 2:2 (top), and for

T D 3 (bottom). (b) Realizations computed with the microcanonical gradient descent with

ˆd D ˆ
�

d
. (c) ˆd .x/ includes l2 wavelet norms. (d) ˆd .x/ includes l1 wavelet norms.

(e) ˆd .x/ includes l1 scattering norms.

Renormalization and wavelets. As in Wilson renormalization group, wavelets

separate the frequency components of x into dyadic frequency annulus. Relations
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between wavelets and renormalization group decompositions were studied by

Battle [5]. In the following, we give a qualitative argument to explain how to

approximate the Ising potential with wavelet norms.

Since x.u/ 2 f�1; 1g, for an integer p

x.u/x.u0/ D 1 � 2�1 jx.u/ � x.u0/jp

so we can rewrite the Ising energy �d .x/ D d�1
P

u2ƒd

P

u02Nu
x.u/x.u0/ satisfies

d � �d .x/ D 2�1
X

u2ƒd

X

u02Nu

jx.u/ � x.u0/jp D k�1xkp
p C k�2xkp

p; (56)

with �1x.u1; u2/ D x.u1; u2/ � x.u1; u2 � 1/ and �2x.u1; u2/ D x.u1; u2/ �
x.u1 � 1; u2/.

The equivalence of lp norms of increments and lp norms of wavelet coefficients

is established in [36]. For any p > 1 there exists Ap > 0 and Bp > 0 so that for any

x 2 l2.Z2/

Ap

X

j;q

2�jpkx ?  j;qkp
p � k�1xkp

p C k�2xkp
p � Bp

X

j;q

2�jpkx ?  j;qkp
p: (57)

For p D 1 the upper-bound remains valid but to get a lower-bound we must replace

the sum over j; q by a sup operator. However, we conjecture that there exists A1

which verifies the lower bound for p D 1 when the values of x.u/ are restricted

to f�1; 1g. With equations (56) and (57) one can approximate the Ising energy �d .x/

with discrete wavelet lp norms computed at all scales 2j � 2J D d . We limit the

maximum scale 2J independently of d , which is set to be the largest correlation

length of the process.

As in Section 5.3, we capture the fact that x.u/ 2 f�1; 1g by including a condition

on d�1kxk1 and d�1kxk2
2. The resulting energy vector for p D 1 and p D 2 is

ˆd .x/ D
˚

d�1kxk2
2 ; d

�1kxk1 ; d
�1 kx ?  j;qkp

p

	

j �J;q�Q
: (58)

Table 2 shows the normalized variance �2.ˆd / is smaller at high temperature than

near critical temperature but the separation of scale still provides a high concentration

of ˆd .x/ for an Ising process, close to the critical temperature. Figure 3(c,d)

show realizations of a microcanonical gradient descent Ising model computed with

the wavelet energy (58) for p D 1 and p D 2. Near critical temperature, the

microcanonical gradient descent still converges where as it was not the case when

the energy was calculated directly with the Ising Hamiltonian energy �d .x/ in

Figure 3(b). The scale separation avoids having an ill-conditioned gradient descent.

The Ising approximation with an l2 energy vector for p D 2 amounts to compute

a Gaussian approximation of Ising, which is not precise, when we are close to the

critical temperature [28]. One can indeed visualize important differences with the
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statistical distribution of original Ising in Figure 3(a). Table 2 shows that the model

error e2
�n

is smaller at higher temperature.

The Ising approximation with an l1 energy vector has about the same error as

the model computed with an l2 energy vector. Near the critical temperature, the

microcanonical models obtained with l1 wavelets norms shown in Figure 3(d) are

more piecewise regular than the ones in Figure 3(c) obtained with wavelet l2 norms.

This is due to the wavelet coefficient sparsity imposed by these l1 norms.

Scattering energy. A scattering energy vector is defined for Ising process, by

complementing the scattering energy vector (46) with l1 and l2 norms of x in order

to impose that x.u/ takes binary values:

ˆd .x/ D
n

d�1kxk2
2 ; d

�1kxk1 ; d
�1

X

u2ƒd

x.u/ ;

d�1 kx ?  j;qk1 ; d
�1 kjx ?  j;qj ?  j 0;q0k1

o

j;j 0�J;q;q0�Q
: (59)

Table 2 shows that the normalized variance of the scattering energy is about

twice larger than for l2 wavelet energy vectors. Figure 3(e) shows realizations of

microcanonical gradient descent models computed with this scattering energy vector.

They are visually difficult to distinguish from realization of the original Ising process

above the critical temperature and close to the critical temperature. Table 2 shows

that the model error e2
�n

is about 10 times smaller than with l2 or l1 wavelet energies.

These numerical experiment seem to indicate that scattering microcanonical

gradient descents can provide accurate model of Ising even close to critical

temperature. However, this needs to be sustained by a better mathematical of these

approximations, by analyzing the preservation of symmetries.

5.4. Point processes. Point processes provide powerful models of stochastic geom-

etry, with applications in many areas of astrophysics, neuroscience, finance and

computer vision. Realizations of point processes have a support reduced to isolated

points. We first show that this sparsity can be captured by wavelet l1 norms. We then

study approximations of point processes and shot noises with microcanonical models

defined by scattering coefficients.

Support from wavelet l1 norms. We prove that wavelet l1 norms capture important

geometric properties of the support of point processes. Young’s inequality implies

that

kx ?  j;qk1 � kxk1 k j;qk1:

If x is a Dirac in ƒd then this inequality is an equality. Conversely, the following

theorem, proved in Appendix I proves that if this inequality is an equality then x is a
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sum of Diracs, with conditions on their distances. The inner product and norm of v

and v0 in R
` is written v:v0 and kvk.

We suppose that wavelets are defined from a mother wavelet  .u/ which is

continuous with  .0/ ¤ 0. We suppose that  .u/ D j .u/j ei '.�:u/ where � 2 R
`

and the complex phase ' is a bi-Lipschitz function. We may choose linear phase

'.�:u/ D �:u. This wavelet is rotated and dilated  j;q.u/ D 2�j` .2�j r�1
q u/,

where the rq are Q � ` different rotations in R
`. The following theorem applies to

these wavelets.

Theorem 5.1. (i) If kx ?  j;qk1 D kxk1 k j;qk1 then x is non-zero at u and u0

only if �q:.u � u0/ D 0 with �q D rq� or if j�q:.u � u0/j � C 2j , where C > 0

does not depend on x.

(ii) Suppose that has a compact support, and that x has a support which is a union
of isolated points with distances larger than �. If x0 satisfies

8q � Q ; 8j � log2� ; kx0? j;qk1 D kx? j;qk1 and kx0k1 D kxk1 (60)

then the support of x0 is a set of isolated points of distances larger than C �,
where C > 0 does not depend on x.

In dimension ` D 2, property (i) of Theorem 5.1 proves that the support of x is

included in straight lines perpendicular to �q , whose distances are larger thanC 2j . If

this is valid for several q then the support is included over intersections of non-parallel

lines and hence reduced to isolated points, as proved by property (ii).

If x is a realization of a point process, its support is a union of isolated points

whose minimum distance depends the point process distribution. If we construct an

� D 0 microcanonical model with wavelet l1 norms then property (ii) proves that all

realizations of this microcanonical model will also be a point process with a similar

separation between points.

Microcanonical models of point processes. We study microcanonical models of

point processes with wavelet l1 norms and scattering coefficients. A point processN

on R
` is a measure whose support is composed of isolated points. Second-order

point processes [8] are those satisfying EŒN.C /2� < 1 for all bounded Borel sets

C � R
`. If N is a stationary, second-order point process then one can define its

associated Bartlett spectral measure [8] PN , which generalizes the power spectrum

of second-order stationary processes.

Given a non-negative stationary process �.t/, t 2 R
`, a Cox process N is

defined as a Poisson process conditional on � with intensity �.t/. Important

geometric information ofN is captured by its Bartlett power spectrum, which satisfies

PN .d!/ D P�.d!/C E.�/ ı.d!/ [8]. Shot noises are classes of random processes

defined by convolutions of point processes with a filter h.t/

X.t/ D N ? h.t/ :
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The filter h.t/ can be interpreted as a pattern which is randomly translated at point

locations and added. It may also be the transfer function of a detector measuring the

point-process. In this case, the power spectrum of X is P.d!/ D PN .d!/ jyh.!/j2,

which mixes the geometric information of N with the profile of the filter h. We will

show that they can be disentangled by a wavelet scattering transform.

The loss of information in the power spectrum is due to the fact that it does not

measure scale interactions. When there is a scale separation between N and h, i.e.

E.�/2 �
Z

u2jh.u/j2 du (61)

then for sufficiently small scales 2j , one can verify [11] that

jX ?  j;qj D jN ? . j;q ? h/j � N ? j j;q ? hj (62)

with high probability, due to the fact that the events in N rarely interact at spatial

scales j such that 2j � E.�/. From this approximation, it follows that for sufficiently

large scale gap j 0 � j , we have

jjX ?  j;qj ?  j 0;q0 j � Cj;qjN ?  j 0;q0 j ; (63)

since j j;q ? hj ?  j 0;q0 � Cj;qı ?  j 0;q0 . Second order scattering coefficients,

indexed with pairs .j; q; j 0; q0/, thus provide measurements that convey spectral

information about the point process N as .j 0; q0/ varies, disentangled from the

spectral information of h.

We illustrate this phenomena by considering a two-dimensional Cox point

process N.u/, whose rate �.u/ is a stationary Gaussian process whose power

spectrum is concentrated in the low-frequencies, and with an integral scale of 100

pixels. This Cox process is convolved with a pattern h.u/ with zero mean and

small spatial support of 5 pixels. We build microcanonical models with energy

vectors ˆd .x/ defined by wavelet l1 norms or scattering coefficients, computed up

to a maximum scale 2J . For the shot noise measure � shown in Figure 4(a), Table 3

gives the normalized variances �2
� D E�.kˆd .x/ � E.ˆd .x//k2/=kE�.ˆd .x//k2

as a function of the maximum scale 2J . Although the size of scattering vectors for

large J becomes relatively large, the normalized variance remains small which proves

that these energy vectors remain concentrated around their mean, for images of size

d D 2562. We can thus define microcanonical models from an energy vectorˆd .xx/
calculated from the realization xx shown in Figure 4(a).
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J D 2 J D 4 J D 6

�2
�.ˆd / dim.ˆd / �2

�.ˆd / dim.ˆd / �2
�.ˆd / dim.ˆd /

ˆd : Wavelet l1 410�6 21 3 10�6 38 3 10�6 52

ˆd : Scattering 8 10�6 88 10�5 422 10�5 580

Table 3. Estimated normalized variance for wavelet l1 norm and scattering energy vectorsˆd ,

at different maximum scales 2J . They are computed for a shot noise of size d D 2562 defined

from a Cox point process. Figure 4(a) shows a realization.

(a) (b) (c) (d) (e)

Figure 4. (a) Realization of a shot noise computed with a Cox process. (b), (c) Realizations of

a gradient descent process, computed with an energy ˆd including wavelet l1 norms of maxi-

mum scale respectively 2J D 8 and 2J D 64. (d), (e) Same computed with an energy ˆd

including scattering l1 norms of maximum scale respectively 2J D 8 and 2J D 64.

Figure 4 gives realizations of microcanonical gradient descent models computed

from wavelet l1 norms and scattering energies, at different maximum scales 2J .

Figure 4(b,d) are computed with 2J D 8. These microcanonical models can only

capture sparsity properties up to this maximum scale. At larger scale, the entropy

maximisation creates Gaussian random process like variations having a uniform

low-frequency spectrum. Figure 4(c,e) are microcanonical realizations computed

at a larger maximum scale 2J D 64. In this case, wavelet l1 norm and scattering

microcanonical models capture the point process sparsity. The geometry of the

shot noise is defined by the stationary rate �.u/ which has relatively high frequency

oscillations vertically but low frequency variations horizontally. The scattering model

Figure 4(e) captures this distribution thanks to second order coefficients. This is not

the case for the l1 norm model in Figure 4(c) which can not reproduce the low-

frequency horizontal alignments.

5.5. Image and audio texture synthesis. An image or an audio texture is usually

modeled as the realization of a stationary process. Modeling textures amounts to

compute an approximation of this stationary process given a single realization. A

texture synthesis then consists in calculating new realizations from this stochastic

model, which are hopefully perceptually identical to the original texture sample,
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although different if considered as deterministic signals. As opposed to the Gaussian,

Ising or point process examples, since we do not know the original stochastic process,

perceptual comparisons are the only criteria used to evaluate a texture synthesis

algorithm. Microcanonical models can be considered as texture models computed

from an energy function ˆd .x/ which concentrate close to its mean. We review

previous work and give results obtained with a scattering microcanonical gradient

descent model.

Geman and Geman [24] have introduced macrocanonical models based on

Markov random fields. They provide good texture models as long as these textures

are realizations of random processes having no long range correlations. Several

approaches have then been introduced to incorporate long range correlations. Heeger

and Bergen [26] capture texture statistics through the marginal distributions obtained

by filtering images with oriented wavelets. This approach has been generalized by

the macrocanonical Frame model of Mumford and Zhu [49], based on marginal

distributions of filtered images. The filters are optimized by trying to minimize the

maximum entropy conditioned by the marginal distributions. Although the Cramer-

Wold theorem proves that enough marginal probability distributions characterize any

random vector defined over R
d the number of such marginals is typically intractable,

which limits this approach.

Portilla and Simoncelli [39] made important improvements to these texture

models, with wavelet transforms. They capture the correlation of the modulus of

wavelet coefficients with a covariance matrix which defines an energy vectorˆd .x/.

Although they use a macrocanonical maximum entropy formalism, their algorithm

computes a microcanonical estimation from a single realization, with alternate

projections as opposed to a gradient descent. This approach was extended to audio

textures by McDermott and Simoncelli [35]. A scattering representation is related

to Portilla and Simoncelli model but covariance coefficients are replaced by a much

smaller number of scattering l1 norms.

Excellent texture synthesis have recently been obtained with deep convolutional

neural networks. In [23], the authors consider a deep VGG convolutional network,

trained on a large-scale image classification task. The energy vectorˆd .x/ is defined

as the spatial cross-correlation values of feature maps at every layer of the VGG

networks. This energy vector is calculated on a particular texture image. Texture

syntheses of very good perceptual quality are calculated with a gradient descent

microcanonical algorithm initialized on random noise. However, the dimension of

this energy vector ˆd .x/ is larger than the dimension d of x. These estimators are

therefore not statistically consistent and have no asymptotic limit.

In the following, we give results obtained with different wavelet microcanonical

models computed on a collection of natural image and auditory textures. The Brodatz

image texture dataset2 consists of 155 texture classes, with a single 512�512 sample

2Available at http://sipi.usc.edu/database/database.php?volume=textures.
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per class. Auditory textures are taken from McDermott and Simoncelli [35], which

contains 1 second samples of different sounds.

(a) (b) (c) (d)

Figure 5. (a) Original texture. (b) texture synthesized with a microcanonical gradient descent

model with a vector ˆd .x/ of wavelet l2 norms. (c) ˆd .x/ has wavelet l1 norms. (d) ˆd .x/

has wavelet scattering coefficients.

Since we have a single realization of each texture, we can not compute the

concentration properties of energy vectors over these textures. Figure 5(a) gives

input examples xx corresponding to realizations of different stationary processesX.u/.

Figure 5(b) shows texture samples obtained with a microcanonical gradient descent

computed with an energy vectorˆd .x/ of wavelet l2 norm. It provides a good model

for the bottom texture which is nearly Gaussian but it otherwise destroys the texture

geometry. Figure 5(c) displays textures obtained with a vector ˆd .x/ of wavelet l1
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(a) (b) (c)

Figure 6. (a) Spectrograms of original audio textures produced (from to to bottom) by jack-

hammer, applause, wind, helicopter, sparrows, train, rusting paper. (b) Spectrograms of an

audio texture synthesized with a microcanonical gradient descent model with a vector ˆd .x/

of wavelet l2 norms. (c) Spectrogram produced with a vector ˆd .x/ of wavelet scattering

coefficients.

norms. Their wavelet coefficients are more sparse than in Figure 5(b) which produces

more “piecewise regular” images, but it does improve the texture geometry. On the

contrary, scattering microcanonical textures in Figure 5(d) have a geometry which

is much closer to original textures. Scattering coefficients can be interpreted as

convolutional deep neural networks computed with predefined wavelet filters [10] as

opposed to filters learned on a supervised image classification problem as in VGG.

The reconstruction of auditory textures is computed with a one-dimensional Gabor

wavelet transform [9] with Q D 12 scales per octave. Auditory textures have a rich

mixture of homogeneous and impulsive, transient components, as well as amplitude

and frequency modulation phenomena. Figure 6(a) displays the spectrograms of

original auditory textures xx. Figure 5(b) shows the spectrogram of Gaussian texture

models calculated with a microcanonical gradient descent computed with an energy

vectorˆd .x/ of wavelet l2 norm. The global spectral energy is preserved but the time

variations which destroys ability to recognize these audio textures. On the contrary,

Figure 5(c) shows that audio textures synthesized with a scattering energy vector

have spectrograms with the same type of time intermittency as the original textures.

The resulting audio textures are perceptually difficult to distinguish from the original

ones.

Synthesis from scattering energy vectors can also destroy some certain structures

which affect their perceptual quality. This is the case for speech or music backgrounds
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which have harmonic alignments which are not reproduced by scattering coefficients.

Deep convolutional network reproduce image and audio textures of better perceptual

quality than scattering coefficients, but use over 100 times more parameters. Much

smaller models providing similar perceptual quality can be constructed with wavelet

phase harmonics for audio signals [34] or images [48], which capture alignment of

phases across scales. However, understanding how to construct low-dimensional

multiscale energy vectors to approximate random processes remains mostly an open

problem.

6. Conclusion

This paper shows that gradient descent microcanonical models computed with

multiscale energy vectors can provide powerful models to approximate large classes

of stationary processes. Realizations of such models are calculated with a gradient

descent algorithm which is much faster than MCMC algorithms, used to sample from

macrocanonical models.

We introduced a mathematical framework to analyze the statistical and algorithmic

properties of these microcanonical gradient descent models. Our analysis reveals

that, whereas micrcocanonical gradient descent measures do not generally agree with

the microcanonical maximum entropy measure, they have rich regularities through

shared symmetries, and, under appropriate conditions, are shown to converge to

the microcanonical ensemble. In the high-dimensional setting, gradient descent

microcanonical models are therefore valid alternatives to classic macrocanonical

and microcanonical maximum entropy measures, thanks to their computational

tractability.

However, many mathematical questions remain open. For instance, on the

convergence properties of this gradient descent algorithm, on the choice of the energy

vector to obtain accurate approximations of random processes, and on the extension

to locally stationary processes.
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A. Proof of Theorem 3.1

A.1. Proof of Part (i). The main technical challenge to prove (26) is to show that

assumption (C) is sufficient to guarantee that jJˆdxj�1 is integrable. Since ˆd is
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Lipschitz from assumption (A), the coarea formula proves that for any integrable

function g.x/
Z

B

g.x/ jJˆdxj dx D
Z

RK

Z

ˆ�1
d

.y/

g.x/ dH
d�K.x/ dy : (64)

In order to apply (64) to jJˆd .x/j�1 and obtain the expression of H.�mi
d;�
/, we

need to show that jJˆd .x/j�1 is integrable in ˆ�1
d;�
.y/. Using the notation for each

Jacobian column (22), we verify that jJˆd .x/j satisfies

jJˆd .x/j � d�` max
˚

jdetŒJU. xX1/; : : : ; JU. xXK/�j; : : :
: : : ; jdetŒJU. xX zdC1

/; : : : ; JU. xX zdCK
/�j

	

; (65)

where xXi is a projection of x onto disjoint subsets of 2� C 1 coordinates, and
zd � d.2�C 1/�1 D ‚.d/.

We will show that for d large enough and arbitrary R > 0,
Z

jxj1<R

jJˆd .x/j�1dx < 1 ; (66)

by interpreting (66) as proportional to the expected value of EX�Unif.d;R/jJˆd .X/j�1.

Since ˆ�1
d;�
.y/ is a compact set thanks to assumption (B), it is bounded, so

ˆ�1
d;�
.y/ � fx I jxj1 < Rg for some R, which proves that jJˆd .x/j�1 is integrable

in ˆ�1
d;�
.y/.

For that purpose, let us prove that assumption (C) from (25) is sufficient to

guarantee (66). If FV .y/ denotes the cumulative distribution function of a random

variableV , andY denotes the r.v.Y D jdetŒJU. xX1/; : : : ; JU. xXK/�j, we first observe

that thanks to (65) it is sufficient to show that

FY .y/ . y� ; for some � > 0 ; .y ! 0/ : (67)

Indeed, since V D jJˆd .X/j � max.Y1; : : : ; Y zd
/ with Yi independent and

identically distributed, we have that

FV .y/ � FY .y/
zd ' y� zd :

It follows that

EX�Unif.d;R/jJˆd .X/j�1 �
Z

v�1fV .v/ dv D C C
Z R0

0

v�2FV .v/ dv < 1

as soon as zd� > 1, which will happen for large enough d .

Let us thus prove (67) by induction on K. When K D 1, V D jdetJU. xX1/j D
jJU. xX1/j and assumption (C) directly implies that

FV .y/ D P.V � y/ . y� :
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Now, suppose (67) is true for K � 1 and let us prove it for K. We use the following

lemma:

Lemma A.1. We say that a bounded random vector Z in B.K;R/ � R
K has

property .�/ if there exists � > 0 such that

8 S � R
K Lebesgue measurable ; P.Z 2 S/ . jS j� :

If Z has property .�/ andK > 1, then ZH , the orthogonal projection of Z onto any
hyperplane, also has property .�/, and

E
�

kZk��
�

< CR;� : (68)

Before proving the lemma, let us conclude with (67). By denotingZi D JU. xXi /,

i D 1; : : : ; K, and assuming kZ1k > 0, one Gram–Schmidt iteration yields

jdet
�

Z1; : : : ; ZK

�

j D kZ1kjdet
� zZ2; : : : ; zZK

�

j ;

where zZi is the projection of Zi onto the orthogonal complement of Z1. Using

assumption (C), we use Lemma A.1 to observe that zZi , i D 2; : : : ; K also satisfies

assumption (C), since we compute it with an orthogonal projection that depends only

on Z1, which is independent from all the Zi , i � 2. Thus by induction hypothesis

and using (68) we obtain

FY .y/ D P
�

jdet
�

Z1; : : : ; ZK

�

j � y
�

D P
�

kZ1kjdet
� zZ2; : : : ; zZK

�

j � y
�

D EZ1
P

�

jdetŒ zZ2; : : : ; zZK �j � ykZ1k�1 j Z1

�

� EZ1
y�kZ1k�� . y� ;

which proves (67).

Let us finally prove Lemma A.1. Let SH be a measurable set in a given

hyperplaneH of dimensionK�1, and let zS D SH � .�R;R/ be the corresponding

cylinder in B.K;R/. By definition, we have

P.ZH 2 SH / D P.Z 2 zS/ � j zS j� D jSH j�.2R/�

which proves that ZH also has the property .�/.
Finally, let us show that E.kZk��/ < CR;� . For positive random variables we

have

E
�

kZk��
�

D
Z R

0

r��fkZk.r/ dr

D R� � lim
r!0

r��P
�

kZk � r
�

C �

Z R

0

r���1P
�

kZk � r
�

dr

� R� C C�

Z R

0

r���1C�Kdr � CR;� ;

since K > 1 and � > 0. This proves Lemma A.1 and thus (26).
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To prove that 
d .y/ is integrable on any bounded set, we apply the coarea formula

to (64) to g.x/ D jJKˆxj�1 1A.ˆx/ where A is bounded:

Z

Rd

1A.ˆx/ dx D
Z

A

Z

ˆ�1.z/

jJKˆxj�1 dH
d�K dz D

Z

A


d .z/ dz :

If A is a compact set then by assumption (B) it follows immediately that

Z

Rd

1A.ˆx/ dx D
Z

ˆ�1.A/

dx � jB2;d .C
p

.d//j < 1; (69)

which proves that 
d is integrable on a compact.

A.2. Proof of Part (ii). Let us now prove that for eachd , 
d .y/ can only vanish when

dist.y;ˆd .Rd // � c=d for some fixed constant c. We will exploit the relationship

between the sets ˆd .R
d / and ˆd=2.R

d=2/ thanks to the fact that ˆd is an average

potential over the domain.

The inequality (27) proves that 
d .y/ D 0 only if
R

ˆ�1.y/
dH

d�K D 0. Since

in finite integer dimensions the Hausdorff measure H
` is a multiple of the Lebesgue

measure in R
`, it is sufficient to show that whenever y 2 .ˆd .R

d //ı , the setˆ�1.y/

has positive Lebesgue measure of dimension d �K.

Without loss of generality, assume that ˆ D .�1; : : : ; �K/ are linearly independ-

ent functions. Otherwise, if there were a linear dependency of the form

X

k�K

˛k�k.x/ � 0 ;

then ˆd .R
d / D @ˆd .R

d /, thus ˆd .R
d /o is empty and there is nothing to prove.

Let us write d D r`, with r denoting the length of the cube ƒd . Suppose first

that r is even. Given y 2 .ˆ2�`d .R
2�`d //ı we will see that there exists x 2 ˆ�1.y/

whose Jacobian Jˆ.x/ has rank K. Then, by the Implicit Function Theorem, one

can find a local reparametrization of ˆ�1.y/ in a small neighborhood V of the form

x D .v; '.v// such that

˚

.v; '.v//I v 2 V � R
d�K ; ' W V ! R

K
	

D
˚

.v; v0/ 2 V �'.V /I ˆ.v; v0/ D y
	

;

which has positive Lebesgue measure of dimension d �K.

Suppose first that� D 1. Then the sets Sd D ˆd .R
d / � R

K satisfy Sd � Sq`d

for q D 1; 2; : : : . Indeed, given y 2 Sd , by definition there exists x 2 R
d with

ˆd .x/ D y. Consider zx D .x; : : : ; x/˝` 2 R
q`d , a tiling of x, q times along each

dimension. By construction, zx satisfies ˆq`d .zx/ D y and therefore y 2 Sq`d .

Now, consider y 2 S
ı
d

� S
ı
2`d

. If ˆd was a smooth C s map, with s > d �K,

then by Sard’s theorem, the image of critical points fx 2 R
d I jJˆd .x/j < Kg has
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zero Lebesgue measure in Sd . Although one can extend Sard’s theorem to weaker

regularity assumptions [3], for our purposes we will use a weaker and simpler property

that does not require the smoothness assumption, as described in the following lemma:

Lemma A.2. Under the assumptions of the theorem, the set

A D
˚

y 2 R
K I 0 < 
d .y/ < 1

	

is dense inˆd .R
d /, and for each y 2 A there exists x 2 ˆ�1

d
.y/with jJˆd .x/j > 0.

It follows that for a sufficiently small ı > 0, a neighborhood B.y; ı/ � Sd

of y necessarily contains two points y1 D y C �, y2 D y � � such that ˆ�1
d
.y1/

or ˆ�1
d
.y2/ contain a regular point. Let x1 2 ˆ�1

d
.y1/ and x2 2 ˆ�1

d
.y2/ be two

points such that at least one is regular. The point zx D .x˝`
1 ; x˝`

2 / 2 R
2`d , obtained

by concatenating x1 and x2 along the first coordinate, and tiling them along the rest,

satisfies

ˆ2`d .zx/ D 1

2

�

ˆd .x1/Cˆd .x2/
�

D y ;

and jJˆ2`d .zx/j � max
�

jJˆd .x1/j; jJˆd .x2/j
�

> 0 ;

which shows that we have just found an element zx ofˆ�1
2`d
.y/with rank.Jˆ2`d .zx// D

K.

Suppose finally that � > 1. The proof follows the same strategy, but we need to

handle the border effect introduced by the support�. In that case, given y 2 Sd , we

consider zx D .x; u; x/˝`, where u has 2.� � 1/ zero coordinates and x 2 ˆ�1
d
.y/.

That is, we consider 2` copies of x separated by 2.��1/ zeroes along each dimension

so that their potential functions do not interact.

Let zd D .2r C 2.� � 1//`. It follows that

ˆ zd
.zx/ D 2`dˆd .x/

zd
D

�

1C � � 1
r

��`

ˆd .x/ D
�

1C � � 1
d1=`

��`

y ;

which shows that dist.yI S zd
/ . C`kyk=d1=` for any y 2 Sd .

Now consider y in the open set Cd D Sd \ S zd
, such that dist.y; @Sd / �

kyk`�d�1=`. It follows from the previous argument that there exists small ı > 0

and x1 2 ˆ�1
d
.y1/ with jJˆd .x1/j > 0 and y1 2 B.y; ı/ \ Sd \ S zd

. We verify

from the assumption that

y2 D 2

�

1C � � 1
r

�`

y � y1 2 Sd ;

and therefore for any x2 2 ˆ�1
d
.y2/ the point zx D .x1Iu; x2/

˝` that contains 2`�1

copies of x1 and 2`�1 copies of x2 satisfies by construction

ˆ.zx/ D d2`�1y1 C d2`�1y2

zd
D y
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and rank.Jˆ2d .zx// D K. Finally, the case where r is odd is treated analogously,

but splitting the coordinates into b r
2
c and d r

2
e parts.

It remains to prove Lemma A.2. We know from part (i) that thanks to the coarea

formula,

8 � 8y 2
�

ˆd .R
d /

�ı
; 0 <

Z

kz�yk��


d .z/ dz D
Z

kˆ.x/�yk��

dx < 1 :

It follows that A D fzI 0 < 
d .z/ < 1g is dense in ˆd .R
d /. But if y 2 A, by

definition this implies thatˆ�1
d
.y/ has positive .d �K/-Hausdorff measure, and that

there is necessarily x 2 ˆ�1
d
.y/ with jJˆd .x/j�1 < 1, therefore with a full-rank

Jacobian.

A.3. Proof of Part (iii). In order to prove (28), we will again exploit the relationships

between the sets Sd D ˆd .R
d / as d grows. We also first establish the result for

� D 1, and then generalize it to � > 1. Denote Fd;� D d�1H.�mi
d;�
/ the entropy

rate associated with y and � and �d;�.y/ D fx I kˆd .x/ � yk � �g.
In the last section we proved that when� D 1, Sd � Sq`d for q D 1; 2; : : : . For

any � > 0 and y 2 Sd , observe that

�d;�.y/ ˝ � � �
—̋

2` times

�d;�.y/ � �2`d;�.y/ : (70)

Indeed, if x 2 �d;�.y/ ˝ � � �
—̋

2` times

�d;�.y/, then by definition x D .x1; : : : ; x2`/ with

kˆd .xi / � yk � � :

But

ˆ2`d .x/ D 2�`

2`
X

iD1

ˆd .xi /

and kˆ2`d .x/ � yk � � by the convexity of the l2 norm, thus x 2 �2`d;�.y/. It

follows that

F2`d;� D d�12�`H
�

�mi

2`d;�

�

� d�12�` log

�� Z

kˆd .x/�yk��

dx

�2`�

D Fd;� :

(71)

Thus, for any fixed d0, y 2 Sd0
and � > 0, the sequence Fk D F2k`d0;� is increasing.

Also, thanks to assumption (B), we have that

8 d ; x 2 �d;�.y/ H) kxk � C
p
d

�

kyk C �
�

;
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which implies that j�d;�.y/j � jBd .
p
dR0/j. Therefore

8 d ; F y

d;�
� d�1 log jBd .

p
dR0/j ;

and we verify from jBd .R/j D �d=2

�.d=2C1/
Rd that jBd .

p
dR0/j ' zKd with zK D

2�R2
0e, which shows that limd!1 d�1 log jBd .

p
dR0/j D log zK and thus that the

entropy rateFk is also upper bounded, and therefore its limit exists limk!1 Fk D NF :
We shall see later that the limit does not depend upon the choice of d0.

Let us now prove the case when � > 1. The idea is to show that (70) is now

valid up to an error that becomes small as d increases, provided that the potential U

is Holder continuous.

Consider y 2 Sd . Given � > 0, we form

‰2`d;�.y/ D
�

�d;�.y/
�˝2`

as the Cartesian product of 2` copies of �d;�.y/. When � D 1, we just saw that

‰2`d;�.y/ � �2d;z�.y/ (72)

with � D z�, but when � > 1, let us see how to increase z� so that (72) is verified.

Given x 2 ‰2`d;�.y/, we write x D .x1; : : : ; x2`/ to denote its projections into each

of the 2` subdomains C1;d ; : : : ; C2`;d of size d . We have

ˆ2`d .x/ D
P

n Ux.n/

2`d

D 2�`

2`
X

kD1

d�1

�

X

n2C ı
k;d

Ux.n/C
X

n2@Ck;d

Ux.n/

�

; (73)

where each C ı
k;d

contains the interior of the domain that does not interact with the

other domains, and @Ck;d D Ck;d n C ı
k;d

. We have j@Ck;d j D d � .d1=` � 2�/`,

thus

d�1j@Ck;d j D 1 �
�

1 � 2�d�1=`
�`

.
`�

d1=`
: (74)
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Since jUx.n/j � Bkxk˛ with ˛ < 2=` by the Holder assumption, and kxk � C
p
d

by assumption (B), we have jUx.n/j � B 0d˛=2. It follows from (73) and (74) that





ˆ2`d .x/ � y




 D












2�`

2`
X

kD1

�

d�1

�

X

n2C ı
k;d

Ux.n/C
X

n2@Ck;d

Ux.n/

�

� y
�












� 2�`

2`
X

kD1

�

kˆd .xi / � yk C 2B 0d˛=2
�

1 �
�

1 � 2�d�1=`
�`�

�

� � C o
�

d
˛
2 � 1

` `�
�

;

Thus by taking z� D � C o.d
˛
2 � 1

` `�/ (72) is verified. By denoting � D ˛
2

� 1
`
, it

follows that the entropy rate Fd;� satisfies

Fd;� � F
2`d;�Cz̀d� ;

with z̀ D C�`, and � < 0 since ˛ < 2=`. By repeating the inequality for sufficiently

large d and k D 1; 2; : : : and � > 0 we have

Fd;� � F
d2k` ; �Cz̀d�

Pk
k0D0

2k0`� � Fd2k`;2� � zC ; (75)

and thus by defining

F1;� WD lim
k!1

Fd02k`;�k
; with �k D � C z̀d �

0

k
X

k0D0

2`�k0

(76)

we have shown that its entropy rate is well-defined for each � > 0 and d0 sufficiently

large.

It remains to be shown that this limit does not depend upon d0. SupposeF1;�;0 ¤
F1;�;1 where F0 is associated with d0 and F1 is associated with d1, and suppose

d1 > d0 without loss of generality. Let ri D d
1=`
i for i D 0; 1.

Observe that an analogous argument to (73) shows that if r D ra C rb , then

Fr`;z� � ra

r
Fr`

a;� C rb

r
Fr`

b
;� ; (77)

and Fl`d;z� � Fd;� for l D 1; 2; : : : ; (78)

with z� D � C o .d �`�/. Consider now large integers k and zk '
p
k, and let q; zq

denote respectively the quotient and residual such that

r12
k D r02

zkq C zq
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with 0 � zq < r02zk . Then, for any ı > 0, by choosing k large enough we obtain from

(77) and (78) that

jFd12k`;z� � F1j � ı=4 ;

jF
d02`zkq`;z�

� F0j � ı=4 ;

and jFd12k`;x� � F
d02zk`q`;z�

j � ı=4 ; (79)

with x� D z� C o.d �`�/.

Finally, let us show that Fd;� is continuous with respect to � for � > 0. Let us

denote 
d;� D
R

kz�yk��

d .z/ dz. Since Fd;� D d�1 log.


y

d;�
/ and 
d .y/ > 0 for

all y 2 S
ı
d

from the previous section, it is sufficient to show that 
d;� is continuous

with respect to �. Let z� D � C ı with � > 0, and suppose ı > 0 without loss of

generality. By denoting Q.ı; �; y/ D fz I � < kz � yk � � C ıg, we have

j
d;z� � 
d;�j D
Z

�<kz�yk��Cı


d .z/ dz D
Z


d .z/1Q.ı;�;y/.z/ dz

WD
Z


d ı.z/ dz

For each z, 
d ı.z/ D 
d .z/1Q.ı;�;y/.z/ converges pointwise to 0 as ı ! 0, except

for a set of measure zero, fzI kz � yk D �g. Also, j
d ı j � 
d , which is integrable

in ˆ.�d / by part (i). We can thus apply the dominated convergence theorem, and

conclude that

lim
ı!0

Z


d ı.z/ dz D
Z

�

lim
ı!0


d ı.z/
�

dz D 0 ;

which shows that 
d;� is continuous with respect to �.

It follows from (79) that

jFd12k`;z� � F
d02zk`q`;z�

j ! 0 as k ! 1 ;

but Fd12k`;z� ! F1 and F
d02zk`q`;z�

! F0 as k ! 1, which is a contradiction with

the fact that F0 ¤ F1.

B. Proof of Corollary 3.2

We saw in Theorem 3.7 that the entropy rate of the microcanonical measure can

be measured with the co-area formula as d�1H.�mi
d;�
/ D d�1 log

R

kz�yk��

d .z/ dz

and that 
d .z/ > 0 in the interior ofˆd .R
d /. As � ! 0, we can interpret the previous

formula in terms of an L1.RK/ approximate identity h�.z/ D CK�
�K1kzk��.z/:

CK�
�K

Z

kz�yk��


d .z/ dz D 
d ? h�.y/ ! 
d .y/ as � ! 0
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inL1.RK/. One can verify that, by possibly reparametrising �, this implies pointwise

convergence for almost every y, so

ˇ

ˇ log
�

CK�
�K


y

d;�

�

� log 
d .y/
ˇ

ˇ !
�!0

0 ; a:e: ; (80)

which shows that d�1H.p
y

d;�
/ ' �K

d
log � as � ! 0.

C. Proof of Proposition 3.3

Properties (A) and (B) are verified for (i)–(ii) because the potentialsU are continuous

and the resulting features ˆ always include d�1kxk2 respectively. We thus focus on

proving property (C).

Part (i) is easily obtained, since the l2 wavelet model has a Jacobian Jˆ.x/ that

is linear with respect to x, and therefore it has absolutely continuous density relative

to the Lebesgue measure.

Part (ii) is proved by directly controlling jJˆd .x/j�1. A direct computation

shows that jJˆd .x/j D d�1
q

dkxk2 � kxk2
1, which only vanishes when jxj is a

constant vector. Therefore, for y ¤ .˛;ƒd˛/,ˆ
�1
d;�
.y/ does not contain those points

for sufficiently small �.

Let us now show part (iii). The Jacobian matrix in that case is given by

Jˆd .x/j D d�1Re
n

�

x ? hj

jx ? hj j

�

? h�
j

o

;

with j � K. We proceed by induction over the scale K. Suppose first K D 1.

Since hj has compact spatial support, its Fourier transform only contains a discrete

number of zeros. Denote by �j the spatial support of hj . We can thus generate all

but a zero-measure set of unitary signals z with zs D ei�s , s D 1; : : : ; �j from the

uniform measure over x using z D x?hj

jx?hj j
. In the uniform phase space defined by

�1; : : : ; ��j
, the event jdet xJU. xX1/j � y has a probability proportional to y, since it

is equivalent to

ˇ

ˇ

ˇ

X

s

cos.�s/Re.h�
j .s// �

X

s

sin.�s/Im.h
�
j .s//

ˇ

ˇ

ˇ
� y :

Suppose now the result holds for the K � 1 filters in the family with smallest spatial

support, and let us show how to extend it to an extra filter hK with strictly larger

spatial support. Among the variables xX 2 R
2�C1, a subset of them, say RK , only

affect the K-th output corresponding to filter hK . It follows that a set S � R
K with

shrinking measure necessarily introduces constraints on the variables in RK , and

therefore P.Z 2 S/ � jS j1=K .
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D. Proof of Theorem 3.4

(i) Let us first prove that volume preserving symmetries ofˆd .x/ are symmetries of

the microcanonical maximum entropy measure. If for allx2R
d ,ˆd .L

�1x/Dˆd .x/

then a microcanonical set �d;� is invariant to the action of L and L�1. Since L

preserves volume and hence the Lebesgue measure of a set, for any measurable

set A, since �mi
d;�

is supported over �d;� and uniform relatively to the Lebesgue

measure, we have

�mi
d;�

�

L�1
A

�

D �mi
d;�

�

L�1
A \�d;�

�

D �mi
d;�

�

L�1
�

A \�d;�

��

D �mi
d;�

�

A \�d;�

�

D �mi
d;�ŒA�;

so L is a symmetry of �mi
d;�

.

(ii) We prove that symmetries of ˆd .x/ and �0 are symmetries of �n, by induction

on n. It is trivially valid for n D 0. Suppose now by induction that �n is invariant to

the action of L which is a symmetry of ˆd . From (31), �nC1 D 'n;#�n, with

'n.x/ D x � �nJˆd .x/
>

�

ˆd .x/ � y
�

:

Let us verify that 'n is equivariant to the action of L: 'nL
�1x D L�1'nx for all x.

Since ˆd .L
�1x/ D ˆd .x/, and since L is linear

Jˆd .L
�1x/> D L�1

�

Jˆd .L
�1x/

�> D L�1
�

Jˆd .x/
�>

(81)

so

'nL
�1x D L�1x � �nJˆd .L

�1x/>
�

ˆd .L
�1x/ � y

�

D L�1x � L�1�nJˆd .x/
>

�

ˆd .x/ � y
�

D L�1'nx ;

which proves that 'n is equivariant to the action of L. Moreover, if 'n is equivariant

to the action of L then we verify that it is equivariant to the action of L�1. Also,

observe that

'�1
n .L�1.A// D

˚

xI'n.x/ 2 L�1
A

	

D
˚

xIL'n.x/ 2 A
	

D
˚

xI'n.Lx/ 2 A
	

D L�1'�1
n .A/ :
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Finally, using the definition of pushforward measure, �nC1 D 'n;#�n, for any

measurable A, the induction hypothesis yields

�nC1

�

L�1
A

�

D �n

�

'�1
n .L�1

A/
�

D �n

�

L�1'�1
n .A/

�

D �n

�

'�1
n .A/

�

D �nC1ŒA� ;

which proves that �nC1 is also invariant to the action of L.

(iii) We prove that an orthogonal operator which preserves a stationary mean is a

symmetry of a Gaussian measure �0 of d i.i.d Gaussian random variables. Applying

the statement (ii) then implies the statement (iii). Letm0 be the mean of each of the d

Gaussian random variables. The Gaussian measure �0 is uniform over all spheres

of R
d centered over the stationary mean m0 1. An orthogonal operator L which

preserves the stationary mean leaves invariant all spheres centered in m0 1 2 R
d .

Indeed L.m0 1/ D m0 1 and kLxk2 D kxk2 so

kLx �m01k2 D kL.x �m01/k2 D kx �m01k2:

IfS.m1; r/ is a sphere centered inm1 of radius r then R
d D[.m;r/2R�RCS.m1; r/.

So for any measurable set A

�0ŒL
�1

A� D �0

�

L�1
A \ [.m;r/2R�RCS.m1; r/

�

D �0

�

[.m;r/2R�RC L�1
�

A \ S.m1; r/
��

D �0

�

[.m;r/2R�RC A \ S.m1; r/
�

D �0ŒA�;

so L is a symmetry of �0.

E. Proof of Theorem 3.7

E.1. Proof of Part (i). Let us first show how the strict saddle condition (33) implies

that the minimisation E.x/ has no poor local minima. The statement follows directly

from [31], which shows that when the saddle points are strict, gradient descent does

not converge to those saddle points, up to a set of initialization values with Lebesgue

measure 0. Observe first that �n < ��1 ensures that 'n.x/ D x � �rE.x/ is a

diffeomorphism for each n. Observe also that a critical point x such that rE.x/ D
Jˆd .x/

T .ˆd .x/�y/ D 0 necessarily falls into two categories. Eitherˆd .x/ D y,

which implies that x is a global optimum, or x is such that Jˆd .x/
T v D 0 with

v D ˆd .x/ � y ¤ 0. We verify that assumption (33) implies that in that case x is a

strict saddle point by observing that the Hessian of E satisfies

r2E.x/ D
K

X

kD1

r2ˆk.x/vk C Jˆ.x/T Jˆ.x/ :
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Since �0 is absolutely continuous with respect to the Lebesgue measure, we can

apply Theorem 2.1 from [38], and establish that gradient descent does not converge

to any saddle point with probability 1.

Let us now prove that the hypothesis that jJˆd .x/j > 0 for x 2 ˆ�1
d
.y/ with

y 2 ˆd .R
d /ı, together with the strict saddle condition, implies that the gradient

descent sequence xn has a limit limn!1 xn (that may depend upon x0). For that, we

will apply the following result from [1]:

Theorem E.1. If E.x/ is twice differentiable, has compact sub-level sets, and the
Hessian r2E.x/ is non-degenerate on the normal space to the level set of local
minimisers, then xn has a limit, denoted x1 WD limn!1 xn.

Indeed, since ˆd satisfies assumption (B), it follows that the sub-level sets of E,

fxIE.x/ � tg are compact for each t . We need to show that the Hessian of E is

non-degenerate on the normal space of ˆ�1
d
.y/. Since 
d > 0 for y 2 ˆd .R

d /ı

for sufficiently large d from Theorem 3.1, ˆ�1
d
.y/ has positive d �K-dimensional

Hausdorff measure, hence it is sufficient to show that r2E.x/ hasK strictly positive

eigenvalues when x 2 ˆ�1.y/. But by definition,

r2E.x/ D
X

k�K

r2�k.x/
�

�k.x/ � yk

�

C Jˆd .x/
T Jˆd .x/ ;

thus

r2E.x/ D Jˆd .x/
T Jˆd .x/ for x 2 ˆ�1

d .y/ : (82)

Therefore, if jJˆd .x/j > 0 for x 2 ˆ�1
d
.y/, we can apply Theorem E.1, and

conclude that the iterates xn from gradient descent have a limit, for each x0 � �0.

We have just proved that

P�0

˚

.xn/n is Cauchy
	

D 1 ;

or, equivalently, that Xn � �n is almost surely Cauchy, which implies [42]

that �n converges almost surely to a certain measure �1. Moreover, since

limn!1 krE.xn/k D 0, the strict saddle condition implies that xn does not converge

to saddle points, so we conclude that necessarily

�1

�

ˆ�1
d .y/

�

D P�0

˚

lim
n!1

xn 2 ˆ�1
d .y/

	

D 1 ;

therefore that �1 is supported in the microcanonical ensemble ˆ�1
d
.y/, which

finishes the proof.

E.2. Proof of Part (ii). We first compute how the entropy is modified at each gradient

step. By definition of the pushforward measure, for any diffeomorphism ' and any

measurable g

Ex�'#�g.x/ D Ex��g.'.x// :
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Also, from a change of variables we have, by denoting z� D '#�, z�.x/ D
jJ'�1.x/j�.'�1.x// ; and thus

log z�.x/ D log�
�

'�1.x/
�

� log
ˇ

ˇJ'
�

'�1.x/
�ˇ

ˇ :

It follows that

�Ex�z� log z�.x/ D �Ex�� log�.x/C Ex�� log jJ'.x/j

and hence

H.'#�/ D H.�/ � E� log jJ'.x/j : (83)

The change in entropy by applying the diffeomorphism is thus given by the term

E� log jJ'.x/j, and thus the entropy of �n is given by

H.�n/ D H.�0/ �
X

n0�n

E�n0 log jJ'n.x/j

By definition, the Jacobian of 'n is

J'n.x/ D 1 � 
n

�

X

k�K

r2�k.x/
�

�k.x/ � yk

�

C Jˆd .x/
T Jˆd .x/

�

: (84)

We know that ˆ is Lipschitz, which implies that kJˆ.x/k � ˇ, and that rˆ
is also Lipschitz, meaning that kr2�k.x/k � � for all k. Applying the Cauchy–

Schwartz inequality, it follows that










X

k�K

r2�k.x/
�

�k.x/ � yk

�









� �K

p

E.x/ :

We abuse notation and redefine � WD �K since K is a constant. Also, the term

Jˆ.x/T Jˆ.x/ is of rank at most K. We can thus write J'n.x/ as

J'n.x/ D An.x/C Bn.x/ ; (85)

with An.x/ full rank d and with singular values within the interval

�

1 � 
n�
p

E.x/; 1C 
n�
p

E.x/
�

I

and �Bn.x/ positive semidefinite of rankK, with singular values bounded by 
nˇ
2.
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It follows that the singular values of J'n.x/, called �1; : : : ; �d , satisfy

j log jJ'n.x/jj �
d

X

iD1

j log�i j

�
d�K
X

iD1

max
�

j log.1C 
n�
p

E.x//j; j log
�

1 � 
n�
p

E.x/
�

j
�

C
K

X

iD1

j log.1 � 
nˇ
2/j

� .d �K/ log
�

1C 
n�
p

E.x/
�

CK log.1C 
nˇ
2/C o.
2

n /

and thus up to second order terms we have

E�n
log jJ'n.x/j � .d �K/ log

�

1C 
n�E�n

p

E.x/
�

CK log.1C 
nˇ
2/ ;

� .d �K/
n�E�n

p

E.x/CK
nˇ
2 ; (86)

where we have used Jensen’s inequality on the concave function log.1 C x/ and

log.1 C x/ � x for x � 0 to obtain the inequality E log.1 C X/ � log.1 C EX/.

Denoting by rn D E�n

p

E.x/ the average distance to the microcanonical ensemble

at iteration n, it results from (86) that after n steps of gradient descent the entropy

rate has decreased at most

�

1� K

d

�

�
X

n0�n


n0rn0 C K

d
ˇ2

X

n0�n


n0 :

F. Proof of Corollary 3.8

The proof is a direct application of Theorem 3.7 and Sard’s theorem, that states

that if ˆd is a C1 Lipschitz function, then the image of its critical points

fx I jJˆd .x/jD0g has zero measure. We can thus apply Theorem E.1 from Part (ii)

of the proof of Theorem 3.7 for almost every y.

G. Proof of Theorem 3.9

We show that ˆd .x/ D fd�1kx ? hkk2
2gk satisfies the strict saddle condition.

Here x 2 R
d , and we recall that the Fourier transform is defined as yx.!/ D

P

u x.u/e
�i!u2�=d , with ! 2 .�d=2; d=2�. The gradient of the loss function

E.x/ D 1
2
kˆ.x/ � yk2 is

rE.x/ D Jˆd .x/
T

�

ˆd .x/ � y
�

;
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and its Hessian is

r2E.x/ D
X

k

r2�k.x/vk C Jˆd .x/
>Jˆd .x/ ;

where vk D �k.x/ � yk . Expressing the gradient and the Hessian in the Fourier

domain yields

rE.yx/ D yx �
�

X

k

vkjyhkj2
�

(87)

r2E.yx/.!; !0/ D
X

k

vkjyhk.!/j2ı.! � !0/C yx.!/jyhk.!/j2 yx.!0/�jyhk.!
0/j2 :

(88)

The Hessian thus contains a diagonal term and a rank-K term. We need to show that

a critical point x satisfying rE.yx/ D 0 with kvk > 0 has a Hessian matrix with at

least one negative eigenvalue. From (87), it follows that a critical point satisfies

8! ; yx.!/ �
�

X

k

vkjyhk.!/j2
�

D 0 : (89)

Let C D f! I yx.!/ ¤ 0g. The Hessian is expressed in terms of block matrices

regrouping the frequencies in C as

r2E.yx/ D
�

M 0

0 r2
C;C

�

;

where M is the diagonal matrix of size .d �jC j/� .d �jC j/ given by the frequencies

outside C , such that yx.!/ D 0:

M!;! D
X

k

vkjyhk.!/j2 ; ! … C :

We examine the diagonal block corresponding to M. The image of ˆd is the convex

cone C in R
K
C determined by the directions o! D .j Oh1.!/j2; : : : ; jyhk.!j /j2/ 2 R

K ,

! D 1; : : : ; d . Without loss of generality, we assume here that ko!k > 0 for all !,

since frequencies that are invisible to all the filters do not play any role in the gradient

descent. The target y is by hypothesis in the interior of C . Further, any two directions

o; o0 in C satisfy

ho; o0i D
X

k

jyhk.!/j2jyhk.!
0/j2 > 0 ;

since the filters have compact spatial support.

If C is empty, then x D 0, which implies that v D ˆ.x/ � y D �y has all its

entries negative, and therefore diag.
P

k vkjyhk.!/j2/ < 0. We shall thus assume in
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the following that C is non-empty. Similarly, we verify that the space spanned by

o! , ! 2 C , cannot have full rank K. Indeed, if this was the case, the first order

optimality condition (89) reveals that v should be orthogonal to all directions o! ,

! 2 C . Since this system has rank K, this contradicts the fact that v ¤ 0.

We can thus write C as generated by directions OC D fo! I! 2 C g and

O xC D fo! I! … C g, with jO xC j > 0, jOC j > 0. Since y is in the interior, it follows

that

y D
X

!2C

ˇ!o! C
X

!…C


!o! ; ˇ! ; 
! > 0 8 ! : (90)

We need to show that there exists at least one ! … C such that hv; o!i < 0. Suppose

otherwise, i.e. that for all ! … C , hˆd .x/; o!i � hy; o!i. Since o! 2 OC )
hˆd .x/; o!i D hy; o!i by the first order critical conditions, we have

hy; yi D
X

!2C

ˇ!ho! ; yi C
X

!…C


!ho! ; yi

�
X

!2C

ˇ!ho! ; ˆd .x/i C
X

!…C


!ho! ; ˆd .x/i : (91)

On the other hand, from (90) we also have

hy;ˆd .x/i D
X

!2C

ˇ!ho! ; ˆd .x/i C
X

!…C


!ho! ; ˆd .x/i ; (92)

and since ˆ.x/ D
P

!2C ˛!o! is a linear combination of vectors in O xC , we also

have hˆ.x/; yi D hˆ.x/;ˆ.x/i. This implies from (91) that

hy; yi � hy;ˆd .x/i D hˆd .x/;ˆd .x/i ; (93)

which leads to y D ˆ.x/ and therefore v D 0, which is a contradiction.

Finally, if x 2 ˆ�1
d
.y/ for y 2 ˆd .R

d /ı, then y falls necessarily inside the

convex hull of C , which implies that fr�k.x/ D yx.!/ � jyhkj2.!/gk�K have rankK.

This concludes the proof.

H. Proof of Proposition 4.1

If 
 D 0 then (39) proves that

kxk2
2 D kx ?  J;0k2

2 C
log2 d
X

j 0D1

X

q

kx ?  j 0;q0k2
2:
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If J D log2 d then  J;0.u/ D d�11ƒd
and x ? J;0.u/ is the average of x overƒd .

We thus get

kxk2
2 D d�1

�

X

u

x.u/
�2

C
log2 d
X

j 0D1

X

q

kx ?  j 0;q0k2
2: (94)

Replacing x by jx ?  j;qj gives

kx ?  j;qk2
2 D d�1kx ?  j;qk2

1 C
log2 d
X

j 0D1

X

q

kjx ?  j;qj ?  j 0;q0k2
2:

We finally prove (47) by decomposing each term kjx ?  j;qj ?  j 0;q0k2
2 into an l1

norm plus a sum of l2 norms, obtained replacing x by jjx? j;qj? j 0;q0 j in (94).

I. Proof of Theorem 5.1

Let us first prove property (i). Young’s inequality is proved by observing that

kx ?  j;qk1 D
X

n2ƒd

ˇ

ˇ

ˇ

X

u2ƒd

x.u/ j;q.n � u/
ˇ

ˇ

ˇ

�
X

n2ƒd

X

u2ƒd

jx.u/ j;q.n � u/j D kxk1 k j;qk1 :

The inequality is an equality if and only if for any fixed n, the product x.u/ j;q.n�u/
has a constant phase when u varies. Since x.u/ is real, its phase is either 0 or � . It

implies that  j;q.n� u/ has a phase modulo � which does not depend upon u when

x.u/ j;q.n�u/ ¤ 0 and hence x.u/ ¤ 0. Since the phase of  is '.�:u/, the phase

of  j;q.u/ D 2� j̀ .2�j r�1
q u/ is '.2�j �q:u/ with �q D rq� so

8u 2 ƒd ; '
�

2�j �q:.n�u/
�

D a.2�jn/Ck� if x.u/ j;q.n�u/ ¤ 0with k 2 Z :

(95)

Since ' is bi-Lipschitz, there exists ˇ > 0 such that

ˇ�1ja � a0j � j'q.a/ � 'q.a
0/j � ˇja � a0j : (96)

Since  q.0/ ¤ 0 and  q is continuous, there exists ˛ > 0 such that j q.u/j > 0 for

u 2 Œ�˛; ˛�`. If 2�j ju� u0j � 2˛ then for n D .uC u0/=2 we have 2�j jn� uj � ˛

and 2�j jn� u0j � ˛, so  j;q.n� u/ ¤ 0 and  j;q.n� u0/ ¤ 0. If the inner product

�q:.u � u0/ is not zero then (96) implies that

ˇ

ˇ'
�

2�j �1:.n � u/
�

� 'q

�

2�j �q:.n � u0/
�ˇ

ˇ > 0:
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So if x.u/ and x.u0/ are non-zero (95) implies that

ˇ

ˇ'
�

2�j �1:.n � u/
�

� '
�

2�j �q:.n � u0/
�ˇ

ˇ � �:

It follows from (96) that if 2�j ju � u0j � 2˛ then

2�jˇj�q:.u � u0/j � �;

which proves j�q:.u � u0/j � C 2j for C D min.�ˇ�1; 2˛j�qj/, and hence Part (i).

Let us now prove property (ii). Since  q has a compact support it is included

in Œ�
; 
�` for 
 large enough. Since the support of x are points of distance at least�

it results that for any n 2 Z
` and 2j � �
�1, the product x.u/ j;q.n � u/ is

non-zero for at most one u 2 Z
`. It results that

kx ?  j;qk1 D
X

n2ƒd

ˇ

ˇ

ˇ

X

u2ƒd

x.u/ j;q.n � u/
ˇ

ˇ

ˇ

D
X

n2ƒd

X

u2ƒd

jx.u/j j j;q.n � u/j D kxk1 k j;qk1 :

The hypothesis (60) implies that kx0k1 D kx0 ?  j;qk1 for all q � Q and

2j � � min.1; 
�1/. Applying Theorem 5.1 for 2j � 2�1� min.1; 
�1/ proves

that x0.u/ and x0.u0/ are non-zero only for all q � Q we have �q:.u � u0/ D 0

or j�q:.u � u0/j � C 0�, where C 0 does not depend upon x and x0.

Since the f�qgq�Q areQ � ` different rotations of a non-zero � 2 R
`, they define

a frame of R
`. It results that there exists A and B such that for any v 2 R

`

A jvj �
X

q�Q

jv:�qj � B jvj : (97)

This inequality applied to v D u � u0 ¤ 0 proves that there exists q � Q such that

�q:.u � u0/ ¤ 0. If x.u/ ¤ 0 and x.u0/ ¤ 0 then we proved that if �q:.u � u0/ ¤ 0

then j�q:.u�u0/j � C 0�. The frame inequality (97) implies that ju�u0j � B�1 C 0�

which shows that any two points in the support of x0 have a distance at least C �

with C D C 0B�1.
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