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Multiscale sparse microcanonical models

Joan Bruna and Stéphane Mallat

Abstract. We study approximations of non-Gaussian stationary processes having long range
correlations with microcanonical models. These models are conditioned by the empirical value
of an energy vector, evaluated on a single realization. Asymptotic properties of maximum
entropy microcanonical and macrocanonical processes and their convergence to Gibbs measures
are reviewed. We show that the Jacobian of the energy vector controls the entropy rate of
microcanonical processes.

Sampling maximum entropy processes through MCMC algorithms require too many
operations when the number of constraints is large. We define microcanonical gradient descent
processes by transporting a maximum entropy measure with a gradient descent algorithm which
enforces the energy conditions. Convergence and symmetries are analyzed. Approximations
of non-Gaussian processes with long range interactions are defined with multiscale energy
vectors computed with wavelet and scattering transforms. Sparsity properties are captured with
1! norms. Approximations of Gaussian, Ising and point processes are studied, as well as image
and audio texture synthesis.
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1. Introduction

Building probabilistic models of large systems of interacting variables that can be
efficiently estimated from data is a core problem in statistical physics, machine
learning and signal processing. We consider the estimation of the probability
measure of stationary processes X(u) on the infinite grid u € Z* given a single
realization X(u), observed over a finite domain u € Ay C Z* of cardinality d. For
£ =2 and £ = 1, such processes provide models of image and audio textures. Given
a piece of texture over Az, we may want to synthesize similar texture examples
by sampling the resulting probability model. Building probability models from a
single observation is also needed in finance and in many physical problems, such as
geophysics exploration or fluid dynamics. These estimations rely on the ability to
build low-dimensional approximations of the underlying stationary measure. This
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paper introduces microcanonical sparse multiscale models, which can take into
account non-Gaussian phenomena and long range interactions.

In his seminal paper, Jaynes [27] interprets statistical physics as an inference of
a probability distribution from partial measurements, by maximizing its entropy. In
Jaynes words [27], maximizing the entropy of a probability distribution “is maximally
noncommittal with regard to missing information.” Macrocanonical models are
maximum entropy distributions conditioned on the expected value of a vector of
potential energies. They are used in large classes of stochastic models [24] and will
thus be our departure point.

Since we only know a single realization X (1) of X (1) in A 4, the expected value of
stationary energies are estimated by the average potential energy vector ®;(X) of X in
the domain A4 of size d. When d is sufficiently large, weak ergodicity assumptions
imply that ®;(X) concentrates near the empirical energy vector ®4(X) with high
probability. A microcanonical model is a probability measure supported over the
microcanonical set of all x having nearly the same energy: | ®4(x) — &4(X)|| < €.
Maximum entropy microcanonical models have a uniform density over this set.
Under appropriate hypotheses, the Boltzmann equivalence principle states that a
maximum entropy microcanonical model converges to the same Gibbs measure as
the macrocanonical model, when d goes to co. Section 2.4 reviews these results.

Microcanonical models exist with mild assumptions, even-though macrocanon-
ical distributions may not exist, particularly for signals x having strong sparsity
properties. We thus consider these models not as approximations of macrocanonical
models, which may not exist, but as stochastic models in their own sake. Section 3
relates their entropy rate to their energy vector. Sampling micro and macrocanonical
measures is a classic problem in statistical mechanics, typically approached with
MCMC algorithms or Langevin Dynamics [6, 15] or variational methods [45].
Their numerical effectiveness on high-dimensional problems is hindered by the
slow mixing speed of the Markov Chain [15], which limits their applications. To
avoid this computational issue, we introduce an alternative class of microcanonical
models where the Markov chain is replaced by a gradient flow resulting from the
microcanonical energy vector. A microcanonical gradient descent model begins from
a high entropy measure and computes a progressive transport of this measure with
gradient steps, towards the microcanonical set. Similar algorithms have been applied
to texture synthesis [23] with deep convolutional neural networks. Section 3 studies
their convergence to a microcanonical set. Although the gradient descent transport
does not converge to a maximum entropy measure, we prove that it preserves an
important subset of symmetries which is specified.

A major issue is to specify energy vectors ®,4 providing accurate microcanonical
gradient descent approximations of non-Gaussian processes with long range
interactions. Section 4 introduces energy vectors which take into account long range
interactions by separating scales with wavelet transforms. Non-Gaussian properties
are captured with 1' norms which measure the sparsity of wavelet coefficients.
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These energy vectors are augmented with wavelet scattering coefficients, providing
information on the geometry of sparse wavelet coefficients [10,33].

Section 5 studies the approximation of Gaussian, Ising and point processes,
with microcanonical gradient descent models computed with wavelet and scattering
energy vectors. For Ising, the wavelet scale separation is closely related to the Wilson
renormalization group approach [5]. We show that scattering microcanonical model
can also give good perceptual approximations of large classes of image and audio
textures.

Notation. We use cursive captial letters 4, B,... to denote sets, small capital
letters x, y, ... to denote vectors, capitals X, Y, Z to denote random processes, and
capital letters E, H, ®, ... to denote operators and functions. X denotes the Fourier
transform of x. ||x|| denotes the Euclidean norm of x.

2. Microcanonical and macrocanonical models

We consider a stationary process X(u) taking its values in an interval 4 C R
for all u € Z% We denote by w the probability measure of this stationary
process. We write E, (f(x)) the expected value of f(X) or E,(f(x)) if x has
a density p. Let Ay C Z* be a cube with d grid points and Jé\ the product
domain. Let X € J é\ be a realization of X restricted to A,;. Microcanonical models
described in Section 2.1 are probability densities conditioned on a K-dimensional
energy vector ®;(X). Section 2.2 reviews the properties of macrocanonical models
which have a maximum entropy conditioned on E, ($4(x)). We concentrate on
shift-invariant energies @, introduced in Section 2.3, to define stationary maximum
entropy processes. Section 2.4 reviews the resulting convergence properties of
micro and macrocanonical models towards the same Gibbs measures. In statistical
physics terms, it amounts to verify the Boltzmann equivalence principle in the
thermodynamical limit, for lattice gaz models. We shall then see that microcanonical
models are also interesting in their own sake, even in regimes where macrocanonical
models do not exist.

2.1. Maximum entropy microcanonical models. A microcanonical model is comp-
uted from y = ®,4(x). To estimate the measure p of a stationary X from a single
realization, we need ergodicity assumptions. We assume that ®;(X) concentrates
with high probability around E (P, (x)) when d goes to oo:

Ve >0, dlim Prob, (|4 (X) —Eu (@4 (x))[| <€) = 1. (1)
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If there exists C > 0 such that ||[E, (P4(x))| < C then this convergence in
probability is implied by a mean-square convergence:

Jim E, (|94 ()~ Eu(@a(0)]P) = 0. @
The microcanonical set of width € associated to y = ®4(¥) is
Que={xedy [Pax) -yl <e}.

The concentration property (1) implies that when d goes to oo, X belongs to
microcanonical sets €4 ¢ of width € = €(d) converging to 0, with a probability
converging to 1. In other words, (1) guarantees that the support of the measure w is
mostly concentrated in Q24  for large d.

The differential entropy of a probability distribution © which admits a dens-
ity p(x) relatively to the Lebesgue measure is

H(p) = — / p(x) log p(x) dox . 3)

A maximum entropy microcanonical model u™(d, €, y) was defined by Boltzmann
as the maximum entropy distribution supported in Q4 .. We usually define ®,4(x)
so that 24 ¢ is compact. It results the maximum entropy distribution has a uniform
density pg e:

lg, ()
Pae(x) = “4)
fszd,e X
Its entropy is therefore the logarithm of the volume of Q4 :
Hpad) == [ paco togpacnyax =tog ([ ax).  ©
d.e

We thus face a fundamental trade-off when constructing microcanonical models.
On the one hand, we seek representations @ that satisfy a concentration property (1)
to ensure that typical samples from p are included in €24 . with high probability, and
hence typical for the microcanonical measure ™. On the other hand, the sets €24 ¢
must not be too large to avoid having elements of 2, . and hence typical samples of
u™ which are not typical for ;. To obtain an accurate microcanonical model, the
energy ®; must define microcanonical sets of minimum volume, while satisfying
the concentration (1).

2.2. Macrocanonical models. Since ®;(X) concentratesclosetoE,, (®4(x))and x
is a realization of X, one could expect that the maximum entropy distribution
conditioned on ®,4(X) converges to the maximum entropy distribution conditioned
on E, (®;(x)) when d goes to co. Section 2.3 studies conditions under which this
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Boltzmann equivalence principle is verified. We begin by reviewing the properties
of macrocanonical maximum entropy models conditioned on E, ($4(x)) = y. Let
M(d fl‘) denote the space of measures of fl\.

A macrocanonical measure u™* with density ppn, has a maximum entropy
conditioned on E , (P4 (x)) = y:

Pma € arg max H(p),
PEAYy
with Ay = {p € M(Jﬁ); /JA D (x) p(x)dx = y}. (6)
d

The entropy is a concave function of p whereas E ,($4(x)) = y is a set of linear
conditions over p. If ®;(x) is bounded over Q2,4  then the set of densities p which
satisfy the moment conditions is compact. As a consequence, there exists a unique
macrocanonical density pn,, which maximizes H(p). It is obtained by minimizing
the following Lagrangian

La(p.p) = —H(p) + (B.Ep(Pa(x)) = y). (7

also called free energy in statistical physics. The Lagrange multipliers 8 = {Br}k<x
are adjusted so that the moment condition (6) is satisfied. The density which
minimizes (7) can be written as an exponential family

Pma(x) = Z 7 exp (— (B, P4(x)))., (8)

where Z guarantees that | pya(x) dx = 1 and hence
z= [ e (8. @aCe) d. ©)
d

A direct calculation shows that the resulting maximum entropy is

H(pma) =—logZ+(,8,y). (10)

If the probability measure of the restriction of X to A 4 has a density p relatively to
the Lebesgue measure, then we can also verify that the Kullback—Liebler divergence

KL(p| pma) = /A p(x) log ”;;‘fj) dx

satisfies

KL(pHpma):H(pma)—H(p) >0. (11)

Optimizing the interaction energy ®; thus amounts to minimizing the resulting
maximum entropy H (pm,) [49] so that H(pn,) = H(p) and hence u™ = u.
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Note that it is not necessary to impose that ®, is bounded on J [‘l\. If there exists
B e RX such that the distribution (8) satisfies the moment condition (6), then one
can verify from (11) that ©™? is the unique maximum entropy distribution. However,
if ®; is not bounded on Jﬂ‘l\ then there may not exist such a 8 € RX. Indeed,
the maximization of entropy defines a limit distribution over distributions which
satisfy the moment constraints, but this limit may not satisfy the moment constraints
anymore. One can construct such examples with high order moment conditions [44].
In this case the macrocanonical model does not exist although we may still define a
microcanonical model.

Macrocanonical estimation. Given an energy vector 4, and desired moment
constraints y = [E,[®(x)], fitting macrocanonical models requires estimating
E;m[®g(x)]. This expectation can be estimated with MCMC algorithms such
as Metropolis—Hastings, which sample the Gibbs distribution (8) to estimate
E mi (P4 (x)) and iteratively update the Lagrange multipliers B until E m (P4 (x))
converges to y. However, when d is large, this is numerically unfeasible because
sampling a high-dimensional probability distribution is computationally dominated
by the mixing time of the Markov Chain, which in generally has an exponential
dependence on the data dimensionality [32].

2.3. Shift equivariant and finite range potentials. Microcanonical densities
in (4) and macrocanonical densities in (8) depend on ®,. These densities remain
constant under any transformation of x which leaves ®;(x) constant. Stationary
densities are obtained with a ®; which is invariant to translations. It is calculated
by averaging a potential vector which is equivariant to translations. We review
simple examples with 1' and 1?> norms. It illustrates convergence issues of micro
and macrocanonical densities when d goes to oo, with sparse regimes where
microcanonical models exist without macrocanonical models.

Equivariant potentials. For any x € JZ° we define a potential Ux (u) € RX for
each u € Z% We write Tx(u) = x(u — 7) a translation of x by t € Z¢. A
potential U is shift-equivariant if

V(x,7) € 42 x 2', UT,x = T, Ux .

The energy ®4(x) is computed from the restriction of x in a square Ay = [a, b]*.
We extend x over Z¢ into a signal which is b —a = d /¢ periodic along each of the £
generators of the grid Z*. With an abuse of notation we write Ux the potential U
applied to the periodic extension of x and

Dg(x)=d" Y Ux(u). (12)

uelhy
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Observe that ®;(x) € RX is invariant to periodic translations of x in Ay
modulo d /¢,

We say that Ux has a finite range A if Ux(u) only depends upon the values
of x(u') for u —u’ € [-A, A]*. The resulting macrocanonical density (8) is a
Markov Random Field over cliques [u — A, u + A] around each u

pna®) = Z 7 exp (—d ™' Y0 (B.Uxw))). (13)
ucehy
To approximate random processes, we must choose A to be the integral scale beyond
which structures become independent. When there are long range interactions as
in turbulent flows, this integral scale may be very large. Before reviewing the
general convergence properties of the resulting micro and macrocanonical densities
we consider two important examples obtained with 1” norms.

Convergence of 1" macro and microcanonical densities. The potential Ux (u) =
|x(u)|" for u € Z defines an I" norm energy over intervals Ay = [1,d] C Z:

Oq(x) =d M xlp =d™ Y Ix@)". (14)

uehy

The macrocanonical measure with density py, definedby E,  ($g(x)) =y >0

is

Pmal(x) = 7—1p=Bd ™" lIxI;
for some B > 0. It is the density of a vector of d i.i.d random variables X4 (1) having
an exponential distribution e Blzl",

A microcanonical density pg ¢,y is uniformover Qg ={x € RY :|d7 Y x|7 - y|
< ¢}, which is a thin shell around an 1" ball in RY. Tt is the density of a random
vector X4 . defined on Ay. For a fixed m > 0, when d goes to oo and € goes
to zero then the joint density of Xz ((1),..., X4(m) converges in total variation
distance to i.i.d random variables having an exponential distribution oc e#12I" [4],
and E(| X4 ,¢(u)|") converges to y. The microcanonical distribution thus converges
to the macrocanonical distribution. This family of results has a long history, first
proved in 1906 by Borel [7] for r = 2 and in 1987 by Diaconis and Freeman for
r = 1[18].

Intersections of 1! and 1% balls. The situation becomes more complex for the
two-dimensional potential Ux(u) = (]x(u)|',|x(u)|?) which defines an energy
®,(x) = (d7 Y x|l1,d Y x||3) over intervals Ay = [1,d] C Z. We shall see that
microcanonical models may exist without macrocanonical models.

One can verify that there exists a unique maximum entropy density pm,
conditioned on E ,  (®;(x)) = y if and only if

1<2 <,

y?
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in which case there exists 8; and §, such that

Pa(x) = Z7 @7 Billxli+B20x13)

The microcanonical set Qg = {x : [[®4z(x) — y|| < €} is a thin shell around
the intersection of the simplex ||x||; = d y; and the sphere ||x||3 = d y,. Since
x]13 < [|x||? < d||x||3, this intersection is non-empty over a wider range defined by

Y2

<
1— 2
1

<d.

<

When 1 < y,/y? < 2, micro and macrocanonical densities have the same limit
when d goes to oo and € goes to zero. S. Chatterjee [13] proves that the joint
microcanonical density of Xg(1),..., X4 ¢(m) for a fixed m converges to i.i.d
random variables having an exponential distribution equal to aePrlzl=h2lz |2, and
(E(|Xq.em)|',E(|Xg(u)|*) converges to y. If yo/y? = 2 then B> = 0. In this
regime where macrocanonical densities are well-defined, micro and macrocanonical
measures converge to each other so the Boltzmann equivalence principle is again
verified.

However, when y,/y? > 2 the macrocanonical density is not defined, so the
Boltzmann equivalence principle is violated. The microcanonical set contains
sparse signals which are not captured by exponential distributions. In this case,
Chatterjee [13] proves that when d goes to oo and € to 0, Xz has one large
coefficient randomly located at some uy € Ay for which X 5 [(uo) ~ d(yz2 — 2y?)
with a probability which tends to 1. All other coefficients have a much smaller O(y1)
amplitude. For m fixed, X4(1),..., X4 (m) converge in law to ii.d random
variables having marginals equal to e~A1lzl but there is no convergence of moments.
This example shows that the Boltzmann equivalence principle is not necessarily
satisfied, particularly when signals exhibit a strong sparsity behavior.

2.4. Boltzmann equivalence principle. Micro and macrocanonical densities are
defined over configurations x specified in a finite cube A ;4 of dimension £. Let ®4(x)
be a shift-invariant energy vector computed by averaging a finite range potential Ux.
To compute estimators which converge when d goes to co, we need to ensure that
microcanonical densities converge in the moments sense. We consider the limit
among measures defined on the configuration space JZZ, with the product topology
of Borel fields on the interval 4 C R. The asymptotic equivalence between micro
and macrocanonical measures is called the Boltzmann equivalence principle [22].
Their convergence to the same Gibbs measures was first proved by Landford [30]. It
is the center of a large body of work, rooted in the theory of large deviations [20].
We review results obtained when J is a bounded interval and for Gaussian processes.
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Macrocanonical convergence. When J is a bounded interval, macrocanonical
distributions are unique minimizers of the Lagrangian (7). When d goes to oo, the
limit Gibbs measure is defined by normalizing this Lagrangian so that it converges
to a variational problem defined over a stationary measure w. Suppose that u
exists. Since Ux is equivariant to translations and p is stationary it results that
E,; (Ux(u)) = E,(Ux) does not depend upon the grid point u. Suppose that u has
no long range correlation so that boundary values have a negligible influence. Since
®,(x) is an average of Ux(u) in A it follows that

Jim E,(©4(x)) = Eu(Ux).

The Lagrangian (7) includes a negative entropy term that diverges as d — oco if u
has finite range correlations. The normalisation replaces the entropy by an entropy
rate H (i), defined by considering the restriction 14 of 4 on the finite dimensional
configuration space J é‘. Let g4 be the density of ug relatively to the Lebesgue
measure. If p has a finite range correlation we expect that H(gy) grows linearly
with d. The entropy rate is defined by

H(w) = lim d™" H(qa)- (15)

Normalizing the free energy Lagrangian (7) by d and taking the limit when d
goes to oo defines a new Lagrangian

Loo(it, B) = —H (1) + (B.En(Ux) — y). (16)

Gibbs measures minimize this Lagrangian over the space of stationary measures for
fixed.

If U is abounded, finite range and continuous potential, then one can prove [17,25]
that the set of Gibbs measures which minimize this Lagrangian is a non-empty,
convex and compact set of measures. In general the solution is not unique because
contrarily to the finite Lagrangian (7) where —H (p) is strictly convex, the entropy
rate H (11) is affine [17,25]. This implies that depending upon boundary conditions
in A 4, macrocanonical densities may converge to different Gibbs measures, which is
a phase transition phenomena.

Periodic boundary conditions over the finite cube A, simplify computational
algorithms, but they are artificial. The limit Gibbs measure will not depend upon
these boundary conditions if it is unique, and hence if there is no phase transition.
This happens when there is no long range interactions, so that boundary values do
not condition the probability distributions of far away values. In this paper, we
concentrate on problems where there is no such phase transition.

Microcanonical convergence. The main difficulty is to find conditions which
guarantee that microcanonical measures converge to the same Gibbs measure, having
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a maximum entropy rate conditioned by moment conditions. Suppose that U is
continuous, bounded and has a finite range. When d goes to oo and € goes to zero,
one can prove [17,25] that microcanonical distributions converge for an appropriate
topology, to a limit measure which minimizes the same Lagrangian (16) as the one
obtained from macrocanonical densities. If there is no phase transition, so that the
macrocanonical measure converges to a unique Gibbs measure p, then this limit
is the same for macrocanonical and microcanonical measures. More specifically,
if f(x) is a bounded and continuous function defined for any x € J Z°  then the
expected value of f computed over Ay with microcanonical and macrocanonical
measures converge to E, (f(x)) when d goes to co. We thus have a convergence
for all bounded moments. However, it is not necessary to impose that 4 is bounded
to verify the Boltzmann equivalence principle, as shown by the following Gaussian
example.

Gaussian processes. Gaussian stationary measures are important examples of Gibbs
measures where x takes its values in 4 = R. They are obtained with a quadratic
potential Ux = {Ux}r<x computed with convolutions so that it is equivariant to
translations over the grid 7. Let us define

2
Upx ) = |x b @2 = | D7 xu=m) hie(m)|
meZd4
where each A has a support in [—A, A].
Ifx e ]Rfl,\ then Ux is computed by extending x on Z* with a periodic extension
beyond boundaries. Potentials can then be rewritten with circular convolutions of x

Uix() =[x * hag@)P = | 3 xmhag-m[ . a7

meAy

with periodic filters
hai(n) =Y hi(n—md""). (18)
mezZt
The energy ®,(x) is thus a vector of normalized 1 norms:
-1 2 -1 2
4(x) = {d ZA o hai QP =d7 s haxlB)_ . (19
If Ay (w) does not vanish for all @ € [0,2n] and k < K then Varadhan and
Donsker [19] proved that Boltzmann equivalence principle is satisfied when d goes
to co. The microcanonical and macrocanonical models converge to a Gaussian
stationary process (4 whose power-spectrum is

K -
Pa@) = (3 Belle(@)?) . 20)
k=1
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The next section studies asymptotic properties of microcanonical models even though
the macrocanonical model may not exist.

3. Microcanonical models beyond Boltzmann equivalence

We can guarantee that a maximum entropy microcanonical measure exists by
making sure that microcanonical ensembles are compact. Even if this valid, the
macrocanonical measure may not exist if x (1) is defined over an interval 4 which is
not bounded. In this case the Boltzmann equivalence principle is violated. Section 2.3
gives an example with uniform measures over intersections of 1! and I? balls, in the
sparse regime. Microcanonical models thus offer more flexibility, particularly for
signals having sparse behavior.

In the rest of the paper, we embed all processes over R, including binary
processes such as Ising and Bernoulli . We thus consider that x(u) takes its
values in 4 = R, in which case Jé\ = R%, where the grid topology is omitted
for ease of notation. We study microcanonical properties independently from the
corresponding macrocanonical measures which may not exist. For this purpose,
Section 3.1 relates the maximum entropy of a microcanonical measure to the Jacobian
of the energy potential. It gives sufficient conditions so that the entropy rate converges
when d goes to co. However, sampling a maximum entropy microcanonical process
is computationally very expensive. Section 3.2 introduces a different class of
microcanonical processes obtained by transporting a maximum entropy measure
with a gradient descent algorithm which converges towards the microcanonical set.
The transported measure does not have a maximum entropy but we prove that it
has common symmetries with the maximum entropy measure. Convergence to
microcanonical sets is studied in Section 3.3.

3.1. Microcanonical entropy and Jacobian. We study the convergence of maxi-
mum entropy microcanonical models when d goes to co by studying the convergence
of their entropy rate without supposing that there exists a macrocanonical model. This
is done by relating the maximum entropy rate to the Jacobian of the energy ®,.

We consider a shift-equivariant and finite range potential from Section 2.3, and
the corresponding microcanonical measure “?;,ie’ defined as the uniform distribution
on compact sets of the form

Que={x eRY: | Dy(x) -yl <€}

We saw in (5) that the entropy of M?}i I8

Hlo == [ pacto) g pactrdr =tog [ 10, 0ax). @)
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Since ®4(x) = d! ZueAd Ux(u) and Ux(u) only depends on the values
of x(i) fori € [u — A,u + A%, one can verify that the i-th column J; &4 (x) =
0xi)Pa(x) € RX only depends upon the restriction of x in [i — A, i + A]¢. Moreover,
thanks to the equivariant structure of U, one can verify that

Vi<d, Ji®g(x)=d" Y dxU(T-)x(m),
Im|<A

so the global properties of the Jacobian J ®4(x) can be derived from the Jacobian of
the potential, restricted on a window:

JU:RGATDE L RK
X > Z dxUx(m). (22)
lm|<A

We denote by ds the frontier of a set A and by A° = A — dsA the interior
of 4, and by 4 the complement of 4. We also denote by |J®g(x)| =
Vdet(J®g(x)J D4(x)T) the K-dimensional determinant of J®4, and by d # (x)~
the L-dimensional Hausdorff measure. We shall make the following assumptions
onU:

(A) U is uniformly Lipschitz on compact sets, which implies that for any compact
© C RY there exists B > 0 such that

Ve, x) € €2, [ 04(x) = @4 (X)) < Bllx —lla (23)

It also implies that |J ®4(x)| < BX for x € €.

(B) We shall also suppose that dD(gl maps compact sets € to compact sets, with a
controlled growth with respect to d. For each compact set € C RX there exists a
constant C independent of d such that

Vd, ;€)= {x e R : dy(x) € €} C By g(CVd), (24)

where B, 4(R) denotes the d-dimensional IP Euclidean Ball of radius R. It follows
that <I>;1 (y) is a compact and Lipschitz manifold whose dimension is typically d — K,
except for degenerated cases. For example, if d~!||x||3 is a component of the
vector @, this condition is satisfied.

Lastly, we need to control the integrability of |J®,4|~! nearby microcanonical
sets. More precisely, for each y and any sufficiently small ¢ > 0, we require
that |[J®4(x)|~! is integrable in QZ’G. The following gives a sufficient condition
which depends only on the potential function.

(C) For some R > 0, let X be drawn from the uniform measure in the ball
BQRA + 1,R) and Z = JU(X) € RX be the random vector obtained by applying
the mapping J U defined in (22). We shall suppose that there exists n > 0 such that

V 8 c RX Lebesgue measurable, P(Z € 8) < |8]". (25)
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This condition assumes that the differential of U does not concentrate too much on
a low-dimensional subspace of RX, nor in a discrete subset, but it does not require
that its distribution is absolutely continuous with respect to the Lebesgue measure.
We shall see next that potentials of the form Ux = {|x  hg|?}x<x with p = 1,2
with complex filters 4 define an integrable |J ® 4|1,

The following theorem computes the entropy of a microcanonical process from
a change of variable metric, which depends upon the Jacobian of the interaction
energy ©;. The theorem derives a microcanonical entropy rate which converges
when d goes to co.

Theorem 3.1. Suppose U verifies (A), (B), and (C) above. Then the following
properties are verified:

(i) For sufficiently large d,

Huiglo =tos [ yu(zydz. (26)

lz—yll<e

where yq is the change of variable metric which satisfies

ya(y) = / a0 K () < o ae, @7

@, ()
where #4~K is the d — K dimensional Hausdor{f measure. Moreover, yg(y)
has a finite integral on compact sets.

(ii) The function yq is strictly positive in the interior of ®4(R?), up to a thin shell
on the boundary; i.e. on sets Cqg C ®4(R?) satisfying

sup dist(y, @4 (R9)) <c¢-d~V¢,
yeCy
Jfor some constant c.

(iii) Suppose that either A = 1, or that the potential U is Hélder continuous with
parameter @ < 2/L: |U(x) — UX")| < C||x — x'||*. Then, for each € > 0, the
entropy rate d ' H (MZ“ .) converges as d — oo and satisfies

—oo < lim d="H(uy') < Clogllyll*, (28)
—00 ’

where C is a universal constant.

The proof is in Appendix A. This theorem highlights the connection between
the entropy and the Jacobian through y4(y), via the coarea formula. It defines the
entropy rate of a microcanonical ensemble for general ®; in the thermodynamical
limit d — oo, without relying on a macrocanonical model. One can compare
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the conditions of Theorem 3.1 with those that ensure the convergence of the
microcanonical and macrocanonical measures. In [16, 43] this equivalence is
established for bounded, finite-range potentials U. Our condition to prove that
the entropy rate converges is weaker (U Holder continuous), but we do not study
convergence beyond the entropy rate. Studying the convergence of the microcanonical
measure in more general conditions remains an open question. Finally, notice that
for positive integers k, the Hausdorff measure is equivalent to the k-dimensional
Lebesgue measure up to a constant rescaling.

The microcanonical thickness parameter € is important to ensure appropriate
convergence. The following corollary quantifies the effect of € in the entropy rate,
and proves that its contribution to the energy is small for sufficiently large d.

Corollary 3.2. Under the same conditions as Theorem 3.1, for d fixed and when
€ — 0, the entropy rate of the e-thick microcanonical model satisfies

— mi K
d 1H(;Ld,€) ~ Eloge.

As a consequence of this corollary, the entropy variation due to a change in
the thickness from ¢ to €’ is of the order of g log (§) which is negligible if
K log (§) <L d.

This paper concentrates on interaction energy vectors ®; defined by 12 and I!
norms of convolutions of x with multiple filters. The next proposition proves that
such interaction energies satisfy the assumptions of Theorem 3.1. The proof is in
Appendix C.

Proposition 3.3. &, satisfies assumptions (A), (B), and (C) in the following cases:
(1) ®g(x) = {d 7 ||x » hi |3} k<k and the {hy }x<k are linearly independent.
(i) @q(x) = {d x>, d 7 x]1}-

(i) ®g(x) = {d7||x||2, d7 |\ x * hi|l1}k<k and the hy are linearly independent
with |h; (—w)| # |hi ()] for all w.

3.2. Microcanonical gradient descent model. Computing samples of a maximum
entropy microcanonical model is typically done with MCMC algorithms or Langevin
Dynamics [15], which is computationally very expensive. Computations can be
considerably reduced by avoiding to enforce the maximum entropy constraint over the
microcanonical set. Microcanonical models computed with alternative projections
and gradient descents have been implemented to sample texture synthesis models
[23,26,39]. Another related sampling algorithm is the so-called Herding algorithm
by Welling [47], which produces “pseudo-samples” of a microcanonical model in a
deterministic fashion by solving a sequence of primal-dual updates.

We consider microcanonical gradient descent models obtained by transporting
an initial measure towards a microcanonical set, using gradient descent with respect
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to the distance to the microcanincal ensemble. We prove that the gradient descent
preserves many symmetries of the maximum entropy microcanonical measure.

Let &, be a shift-invariant function as defined in Section 2.3 and y € &4 (Rd).
We transport an initial measure (o towards a measure supported in a microcanonical
set Q4.¢, by iteratively minimising

1
E(x) = ZI1®4(x) - yII? (29)
with mappings of the form
¢n(x) = X = knVE(x) = X = knJ Dg (1) (@4 (x) = ) | (30)

where &, is the gradient step at each iteration n.
Given an initial measure (1o, the measure update is

Mn+1 := Qnplln, (3D

with the standard pushforward measure fy(u)[#] = u[f ! ()] for any p-measur-
able set 4, where f~1(A) = {x; f(x) € A}.

Samples from p,, are thus obtained by transforming samples xo from po with the
mapping ¢ = ¢, o @,—1 0--- 0 ¢p. It corresponds to n steps of a gradient descent
initialized with x¢ ~ po:

X141 = x1 — ki J D (x) T (@y (x1) — y).

Next section studies the convergence of the gradient descent measures (. Even if
they converge to a measure supported in a microcanonical set 24 ¢, in general they do
not converge to a maximum entropy measure on this set. However, the next theorem
proves that if ;1 is a Gaussian measure of i.i.d Gaussian random variables then they
have a large class of common symmetries with the maximum entropy measure. Let
us recall that a symmetry of a measure p is a linear invertible operator L such that
for any measurable set 4, w[L~!(#4)] = p[4A]. A linear invertible operator L is a
symmetry of ® if for all x € R?, ®;(L~'x) = ®4(x). It preserves volumes if its
determinant satisfies |detL| = 1. It is orthogonal if L'L = LL' = I and we say
that it preserves a stationary mean if L1 = 1for1 = (1,...,1) € Rt

Theorem 3.4. (i) If L is a symmetry of ®4 which preserves volumes then it is a
symmetry of the maximum entropy microcanonical measure.

(ii) If L is a symmetry of ®4 and of ¢ then it is a symmetry of i, for any n > 0.

(iii) Suppose that jug is a Gaussian white noise measure of d i.i.d Gaussian random
variables. Then, if L is a symmetry of ®4 which is orthogonal and preserves a
stationary mean then it is a symmetry of W, for any n > 0.
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The theorem proof is in Appendix D. The initial measure ¢ is chosen so that it
has many symmetries in common with ®; and hence the gradient descent measures
have many symmetries in common with a maximum entropy measure. A Gaussian
measure of i.i.d Gaussian variables of mean m( and o¢ is a maximum entropy
measure conditioned by a stationary mean and variance. It is uniform over spheres
which guarantees that it has a large group of symmetries. The stationary mean m,
and variance 0§ are adjusted so that that microcanonical sets are nearly included over
the sphere of mean m 1 and radius ¢, where ¢ concentrates and is uniform. We
thus set mg and o to be the empirical stationary mean and variance calculated from

the realization x of X:

mo=d™" > X(u) and of =d~' > (X(u)—mo)*. (32)

uEAd uGAd

Observe that periodic shifts are linear orthogonal operators and preserve a
stationary mean. The following corollary applies property (iii) of Theorem 3.4
to prove that u, are circular-stationary.

Corollary 3.5. If ®; is invariant to periodic shift and |Lo is a Gaussian white noise
then W, is circular-stationary for n > 0.

3.3. Convergence of microcanonical gradient descent. This section studies con-
ditions so that the gradient descent (31) converges to a stationary measure supported
in a microcanonical ensemble, and we give a lower bound of its entropy rate. To
guarantee that the algorithm is not trapped in local minima, we use the characterization
of stable solutions from [31,38] based on the second-order analysis of critical points
of (29). Such analysis reveals that gradient descent methods do not get stuck at critical
points which are strict saddles — in which at least one Hessian eigenvalue is strictly
negative, since the set of initialization parameters corresponding to the non-negative
spectrum has measure O relative to .

Definition 3.6. We say that ®; = (¢4, ..., ¢k ) has the strict saddle condition if ®;
is at least C2 and for each v € Null(J®4(x) ") € RX, v # 0, the matrix

D V2 (x) + T g (x) T T Dy (x) (33)
k<K

has at least one strictly negative eigenvalue, where V2¢y is the Hessian of ¢y.

The following theorem, proved in Appendix E, establishes basic properties of
the distribution generated by gradient descent, including sufficient conditions for its
convergence to the microcanonical ensemble.
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Theorem 3.7. Assume ®; is C? and satisfies property (B) (24). Suppose that ®4
is Lipschitz with Lipg , = B and that V®; is also Lipschitz, with Lipy g g =N Let
y € ®;7(R4)°. Then:

(i) If ®4 satisfies the strict saddle condition, then (29) has no poor local minima.
Moreover, if |J®4(x)| > 0 forall x € CID[;1 (y), then by choosing step-sizes ky,
such that k, < 1~ for all n, ji, converges almost surely to a limit measure JLoo !
Moreover, Lo is supported in the microcanonical ensemble CD(;I (y) with
appropriate choice of learning rate i, ; that is, AN CD;l(y) =0 = Uo(A) =0.

(ii) The entropy rate d ' H(u,) satisfies

K

7 H ) = a7 Huo) — (1= 5 )0 Y sar = 82 k. 34)

n’'<n n’'<n

where r, = K, / E(x) is the average distance to the microcanonical ensemble
at iteration n.

Part (i) gives sufficient conditions for the gradient descent sampling to converge
towards the microcanonical ensemble. Each gradient descent step can reduce the
entropy rate. By computing an upper bound of this entropy reduction, part (ii) gives
a lower bound of the entropy rate after n iterations. Although the gradient descent
converges to the microcanonical ensemble in general the resulting measure will not
have a maximum entropy. However, (34) gives a lower bound of its entropy rate. By
choosing a measure (1o having a maximum entropy, we maximize the entropy of the
lower-bound (34).

Our current results rely on second-order stationarity assumptions, but first-order
stationary condition VE(x*) = 0 may be sufficient to characterize convergence as
d — o0. Indeed, this condition implies that either we reached the microcanonical
ensemble, ®(x*) = 1y, or that we have found a non-regular point, with
|J®gz(x*)] = 0. Such points occur with vanishing probability as d — oo, but
the rigorous analysis of this phenomena is left for future work.

The sufficient condition for pu, to converge to a limit measure oo requires
|[J®g(x)] > 0 for x € CD(;I(y), which for certain choices of ®; may be hard
to check. The following corollary, proved in Appendix F, provides an alternative
sufficient condition which is stronger but easier to evaluate.

Corollary 3.8. If ©; is C* and Lipschitz and satisfies the strict saddle condition,
then , converges for any y € ®z(R?) up to a set of zero measure, and oo is
supported in the microcanonical ensemble.

We now give examples of energies ®; which satisfy the assumptions of
previous theorem. The next theorem, proved in Appendix G, shows that the I

Defined as Prob[i,; (A) — (oeo(A) for any & -measurable set A] = 1, where ¥ is the Borel
o-algebra on R¥.
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ellipsoid representation satisfies the strict saddle condition, and therefore that
the microcanonical gradient descent measure is supported in the microcanonical
ensemble.

Theorem 3.9. If ®;(x) = {d Y| x * hg||3}x with linearly independent and com-
pactly supported hy, then @, satisfies the strict saddle condition and |J ®4(x)| > 0
for x € CIDJI(y) with y € ®4(R?)°, and therefore |ioo is supported in the micro-
canonical ensemble.

A current limitation of the convergence analysis is that it relies on smoothness
properties of ®4, thus leaving out of scope the 1'-based representations. This
limitation is intrinsic to the convergence analysis of non-smooth, non-convex
optimization methods, which provides no guarantees using simple gradient descent.
The analysis of other algorithms such as ADMM [46] or gradient sampling [12] in
such conditions is left for future work.

Continuous-time limit dynamics. The measure transport (31) defined by gradient
descent can be seen as a discretization of an underlying partial differential equation
in the space of measures, describing the behavior as the step-size k, — 0. The
resulting dynamics is described by the well-known continuity equation, expressed in
the distributional sense as

at//Lt = le(VE . ,LL;) s (35)

or equivalently
V¢eC&a([¢umuwm)=—/ﬁwomVEu»mmm,

where C! denotes the space of C! compactly supported test functions. As opposed
to MCMC algorithms, which are discretizations of diffusion Stochastic Differential
Equations (SDEs), the dynamics in our case are deterministic, and the only source
of randomness comes from the initial measure pg. Notice also that the symmetry
preservation properties described in Theorem 3.4 directly apply to the Liouville
equation above. Equation (35) can also be interpreted as a Wasserstein Gradient
Flow over the functional energy

8M=/Emmw»

Recent work [14,40] has established global convergence of such Wasserstein Gradient
Flows in the cases where E is positively homogeneous, for suitable initialization.
Although in our case E is not homogeneous, we leave for future work to exploit
the homogeneity properties of ®; to derive similar convergence results that can
generalize Theorem 3.7.
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4. Multiscale microcanonical wavelet and scattering models

We study multiscale microcanonical models obtained with energy vectors computed
with a wavelet transform. Next section introduces energy vectors computed with 12
and I' norms of wavelet coefficients. Section 4.2 introduces scattering which provide
complementary I' norm coefficient computed with a second wavelet transform.

4.1. Wavelet transform 1> and 1! norms. A wavelet transform, computes signal
variations at different scales through convolutions with dilated wavelets. Maximum
entropy models conditioned by wavelet 1> norms define Gaussian processes. Wavelet
transforms define sparse representations of large classes of signals. This sparsity
characterize non-Gaussian behavior which is specified by wavelet I' norms. We
write X the Fourier transform of x.

Wavelet transform. Wavelet coefficients are convolutions x * v/ 4(u) for u € R¢,
where each wavelet ; , is a dilated band-pass filter which covers different frequency
domains:

Vigw) =2799,277u) = ¥4(0) = ¥, ). (36)

We will focus our attention on the compactly-supported case, where the O mother
wavelets ¥, have a support in [-C, C ]¢ so the support of jq isin [-C2/,C2/ I¢.
The Fourier transform ﬁq (w) have an energy concentrated in frequency intervals
which barely overlap for different ¢g.

If x is supported in a cube Ay C Z*, then u is discretized on this square grid.
Convolutions are defined by extending x into a periodic signal over Z*. We showed
in (17) that it is equivalent to computing circular convolutions with periodic wavelet
filters (18). Discrete periodic wavelets v ; , are band-pass filters with a zero average
> uen, ¥iq) = 0. The minimum scale 2/ is limited by the sampling interval

normalized to 1, whereas the maximum scale 27 is limited by the width d € of Ag.
Wavelet coefficients x v/ ; , (1) separate the frequency components of x in several
frequency bands, at scales 1 < 2/ < 27. The remaining low frequencies at scales
larger than 27 are carried by a single low-pass filter which we write ¥y o(u) =
277440277 u), whose support is also included in [-C27, C27]¢.
The wavelet transform of x is defined by

Wx = {x wf’q}lsjsJ,qu‘ (37)

We impose that the frequency supports 1} j,¢ cover uniformly the whole frequency
domain, which is captured by the following Littlewood—Paley condition. There exists
y < 1 such that

~ 1 ~ ~
Yo 1=y < [Jro@) + 53 (Wig@)® +1V4-0)) <1+y. (8)
Jsq
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The condition implies the following energy inequalities for any x € 124

A =PIxI3 < lx* Yool + Y I *vigls <A+ x5 (39
J»q
This is proved by multiplying (38) with |X(w)|? and applying the Plancherel equality.
This property implies that W is a bounded and invertible operator, and its inverse has
a norm smaller than (1 — y)~"/2. If y = 0 then W is an isometry.

For audio signals in dimension £ = 1, each wavelet is a complex filter whose
Fourier transform 1},] (w) has an energy concentrated in the interval [24/2, 2(+1D/2],
It follows that v/;,(w) covers the interval [27/+4/@ 2=/+@+1D/Q] and satisfies
the Littlewood—Paley condition (38). The parameter Q is the number of wavelets
per octave, which adjusts their frequency resolution. Wavelet representations are
usually computed with about Q = 12 wavelets per octave, which are similar to
half-tone musical notes. In numerical computations, we choose Gabor wavelets as
in [2]. Although strictly speaking this wavelet family does not have spatially compact
support, the decay is exponential and has no practical effect.

For images in £ = 2 dimensions, each wavelet is computed by rotating a single
mother wavelet

Vig) =279y Q7 r ) = Pjg(@) = U2 rw), (40)

where r u is a rotation of u € R? by an angle g/ Q. We choose a complex mother
wavelet ¥ (u) whose Fourier transform I/A/(a)) is centered at a frequency & over a
frequency domain of radius approximately |£|/2. The support of each I/A/ j,q is dilated
and rotated according to (40). Wavelet coefficients x x ¥; , thus compute variations
of x at scales 2/ along different directions. In numerical computations we use Morlet
wavelets as in [10] with Q = 8 angles to satisfy the Littlewood—Paley condition (38).
As in the case of audio, these wavelets have exponentially decaying spatial envelop.

Wavelet 12 norms. We saw in Section 2.4 that microcanonical maximum entropy
measures conditioned by energy vectors (50) of 1> norms converge to Gaussian
processes. We can define such energy vectors with wavelet 1> norms, with the
quadratic potential

Ux = {|X * ‘/fj,q|2}j51,qu ‘ @D

Since each filter support is included in [-C 27, C271¢, this potential has a finite range
A = C27. When x is defined over a cube A 4 then Ux is computed by periodizing x
which is equivalent to periodizing the wavelet filters and replacing convolutions with
circular convolutions, as shown in (17). To simplify notations, the periodized filters
are still written ¥ ,. According to (50) the energy over a cube A, is given by
normalized 1> norms

q)a,(x) = {d_l ||x * wj,q”%}jsJ,qu' (42)

It measures the energy of x in the different frequency bands covered by each 1/A/‘,-,q.
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Wavelet 1! norms for sparsity. Non-Gaussian properties can be captured with
statistics sensitive to sparsity, as observed in early works studying the statistics of
natural images [41], and formalized on specific processes such as multifractals [11].
Suppose that X = ¥ ,(u) has few large amplitude coefficients and a large proportion
of negligible coefficients. For example, if X (u) is piecewise regular then X * /; , ()
is negligible over domains where X (u) is regular and it has a large amplitude near
singularities and sharp variations. The marginal probability density of X ;4 (u) is
then highly concentrated near 0. It is thus better approximated by a Laplacian rather
than a Gaussian distribution. We saw in Section 2.3 that Laplacian distributions are
maximum entropy distributions conditioned by first order moments. This suggests to
estimate E, (|x x ¥/;,4(u)|) as opposed to E,,(|x * ¥ 4(u)|?), with a normalized I'
norm
A7V x Yig @)l = d7 Y xx )]

uehy

A wavelet 1' norm energy is defined by replacing the quadratic potential (41) by a
modulus potential

Ux = {|x * ¥4 }jsJ,qu’ (43)
which also has a finite range A = C2”. The resulting energy over a cube Ay is
Dq(x) = {d 7" lx * Yjgli} <y <0 (44)

It captures the sparsity of wavelet coefficients for each scale and orientation.

4.2. Scattering transform. Wavelet I' norm measure the sparsity of wavelet co-
efficients but do not specify the spatial distribution of large amplitude wavelet
coefficients. Scattering transforms provide information about this geometry by
computing interaction terms across scales, with an iterated wavelet transform. Their
mathematical properties are described in [11,33], and applications to image and
audio classification are studied in [2, 10]. We review important properties needed to
define microcanonical models, including the energy conservation allowing to recover
wavelet I? norms.

The mean of x is estimated over a cube u € Ag by d~! ZueAd x(u). The
modulus of a wavelet coefficient |x % v/; ;(#)| measures the variation of x around its
mean, in a neighborhood of u of size proportional to 2/. A normalized I' norm is
the average of |x x ¥ 4(u)]

A7 x gl =d™ Y w9l
uelhy

Similarly, we can capture the variability of |x % ¥, ,(u)| around this mean by
convolving |x x ¥, ;(u)| with a new set of wavelets:

[lx * Yjgl * g )]
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It measures the variations of |x % ¥ ,(u)| in a neighborhood of size 2/ . We
shall consider the second wavelet v/ 4+ is calculated from the same mother wavelet
than vy, 4 but for different j’, ¢’, although the second mother wavelet may be changed
as in [2].

The maximum scales 2/ and 2/ remain below a cut-off scale 27 which specifies
the maximum interaction range of the model. Incorporating first and second order
coefficients defines a new potential which captures the multiscale variations of x as
well as interaction terms across scales:

Ux ={x, |x * Vg4

X * Yygl x ‘/ff’,q/|}j,j’sl,q,q’sQ' 43)

The corresponding energy vector is

Pa(x) = a7 D" ). d 7 e gl 7 I * Vgl Vil e e,
uehy q.9'<Q
(46)

Itincludes K = 1 + JQ + J2Q? coefficients.

The following proposition, shows that wavelet 1> norms can be closely
approximated from 1' norm scattering coefficients. As a result, we will be able
to approximate Gaussian process as well as non-Gaussian processes with a scattering
energy vector. It is proved in Appendix H,

Proposition 4.1. Suppose that the wavelets satisfy (38) with y =0 then for J =log, d

logyd Q

2 2
Ix * Yrigll3 = lx * Vgt + > > lllx * vy

j’=1q'=1
logyd Q logod Q

YT D llxx g

j'=1q'=1j"=1q"=1

2
* Vg

* Vil * vimgrll3 @47

This proposition proves that 1> of wavelet coefficients are approximated by sums
of first and second order scattering coefficients plus a third order term

Sl Y

Jq’si".q"

2
* Vg | * Vgl

For most stationary process this third order term is much smaller than the first two
and can be neglected [10]. The theorem hypothesis supposes that wavelets satisfy the
Littlewood inequality (38) with y = 0. If y is non-zero, it creates corrective terms
proportional to (I — y)2. Observe also that we set J = log, d. In microcanonical
models, 27 is a fixed scale so that the number of scattering coefficients does not
increase with d.
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5. Approximations of stationary processes

We study approximation of probability measures associated with stationary pro-
cesses X(u), u € 7t, taking its values in R, with gradient descent microcanonical
models calculated with shift-invariant energy vectors. = We first concentrate
on Gaussian, Ising and point processes whose properties are well understood
mathematically. We then consider the synthesis of image and audio textures from a
single example.

5.1. Microcanonical approximation errors. This section analyzes the approxi-
mation errors of a stationary process X of probability measure pu by a gradient
descent microcanonical model of measure ©,. The gradient descent is initialized
with a Gaussian white measure (o whose mean and variance are defined in (32).
Since the energy @ is shift-invariant, Corollary 3.5 proves that the gradient descent
measures (i, are stationary.

Concentration. Section 2.1 explains that a microcanonical model is based on a con-
centration hypothesis, which needs to be verified. For almost all realization x of X,
®,(x) should remain in a ball of radius €; which converges to zero when d goes
to oo. We can verify this convergence in probability from a mean-square convergence,
by calculating the variance

5; = Eu(|Pa(x) — Ep(@a(x))]?).
The Markov inequality implies that if limg_, o 6, (®g(x))/€q = 0 then

Jim_Prob(| @4 (X) — B, (@4 (0)]| < ea) = 0.

This means that when d increases there is a probability converging to 1 that a
realization of X belongs to a microcanonical set computed from a single realization X
with y = ®4(X):

Que, = {x e RM 1 | 04(x) — Dy ()| < €a) .

In numerical calculations, we stop the gradient descents after a fixed number n
of iterations so that the resulting gradient descent measure is supported in a
microcanonical set Q4 . for € small enough. If e/Eﬁ(q)d (x)) > 1 then nearly
all realizations of X are included in 27 .. However, the microcanonical set may
become too large and hence include points which are not typical realizations of X.
We thus typically wait to reach a smaller € width

Since ®(x) is in a space of dimension K, Corollary 3.2 proves that reducing € by a
factor y reduces the maximum entropy of the microcanonical model by a factor of the
order of K log y. In the extensive case, this maximum entropy is proportional to d so
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the entropy reduction is negligible if K |log(e/5,(®4(x))| < d. In all numerical
calculations of this paper €/, (®4(x)) is of the order of 1073. We evaluate the
concentration of ®;(X) by computing the normalized variance

Eu(l|®a(x) = Eu(Pa(x))]?)
Ep([|®a(x)II?)

o (Pg) = (48)

Microcanonical gradient descent entropy. Since / = R, the gradient descent is
initialized with a Gaussian white noise measure j1o of variance 62 = d~!|X||3. The
convergence of the gradient descent algorithm to the microcanonical set is checked
by verifying that for almost all Gaussian white realization xg, after a sufficient large
number n of gradient steps

19a(xn) = Pa(X)|| < €.

and hence x, € 24 . Convergence issues may be due to existence of local minima
or because the Hessian of ®;(x) is too ill-conditioned. Let u, be the resulting
microcanonical gradient descent measure. If w, is supported in Q24 then it has
a smaller entropy than the maximum entropy microcanonical measure, which is
uniform in €24 . Theorem 3.7 gives an upper bound on the reduction of entropy.

Model error. Suppose that the restriction of X to A, has a maximum entropy
measure y associated to a known energy QDZ (x). This will be the case for Gaussian
or Ising processes. The typical sets where the realizations of X are almost all
concentrated are sets where || QDZ x)—E M(q)’; (x))|| is sufficiently small. In this case
we can verify that the gradient descent microcanonical measure u, computed with
a model energy @, is also included in such a typical set with high probability. This
concentration property is satisfied if the mean-square variation of the process energy
E., (l @‘; (x)—E M(@g (x))||?) converges to 0 when d increases. This convergence
is evaluated by computing the concentration of CDZ (x) around E M(Cbg (x)) for py:

Ep, (195 (¥) = En (@} ))I1?)
Ep, (19} (x)1?)

e (Pg) = (49)

If up, = p then eﬁn (®y) = aﬁ (QDZ ) but the reverse is not true. It would be true
only if the microcanonical gradient descent measure had a maximum entropy, which
is not valid in general. On the other hand, if eﬁn (Py) > Uﬁ(CDZ ) then it indicates
that there is a model error.

5.2. Approximation of Gaussian processes. We study approximations of station-
ary Gaussian random processes with gradient descent microcanonical models, defined
with wavelet and scattering energy vectors.
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We consider a scalar quadratic potential Ux = |x xh(u)|? foru € Z?. Asin (18),
we define a periodic filter i (n) = 3, <72 h(n — md'/?) over square images of d
pixels and an energy

() =dxxhgl}=d" Y |R(@) |ha (). (50)

If inf,, |i?(a))| > 0 then we saw in (20) that microcanonical and macrocanonical
models converge to a Gaussian stationary process 1 over Z2 whose power spectrum
is R

Pu(@) = p~" |h(@)| ™. (51
In numerical experiments, we choose a discrete filter i(n) = ¢ e~ "I/€ with & = 0.5,
whose Fourier transform satisfies for o € [—, 7]?

|h(w))? = ¢? Z (8 + o + 2m71|2)_2. (52)
mez?

Figure 1(a) shows realizations of the Gaussian process of power spectrum Py (w),
which is nearly the same as the maximum entropy microcanonical process computed
with the scalar energy CDZ . Since CDZ is an 1? energy, Theorem 3.9 proves that
the gradient descent is not trapped in a local minima and thus converges to a
microcanonical set of CIJZ . This is verified by Table 1 where ein (Cbg) = aﬁ (CDZ).
However Figure 1(b) shows that realizations of the microcanonical gradient descent
process are different from realizations of the original Gaussian process and hence of
the maximum entropy microcanonical process. Figure 2(a,b) show that the maximum
entropy microcanonical process has a power spectrum which is different from the
spectrum of the microcanonical gradient descent process.

Observe that the power spectrum in Figure 2(a,b) are invariant by rotations in
the Fourier plane. These rotations are orthogonal operators and they preserve the
stationary mean which corresponds to the Fourier transform value atw = 0. If iz (w)
is invariant by a rotation of w then (50) implies that CI>Z (x) is invariant to these
rotations, and Theorem 3.4 proves that ,u‘;“el and [, are invariant to these rotations.
This rotation invariance is not strictly valid at the highest frequencies because of the
square grid sampling.

d,; = CDZ ®,; =Wavelet1> ®; = Waveletl! &, = Scattering

dim(®,) | 40 40 114
0/ (Pg) 5e-4 4e-3 4e-3 5e-3
eﬁn (Dy) Se-4 2e-2 0.15 2e-2

Table 1. The first line gives the dimension of each energy vectors @4 (x). The next lines give
the normalized variance ai(tbd) and the process energy concentration ein (®4), depending
upon the microcanonical energy vector @, for the Gaussian process (51).



282 J. Bruna and S. Mallat

(a) (b) (©) (d) (e)

Figure 1. (a) Realization of the Gaussian process (51). (b) Realization of the microcanonical
gradient descent computed with @4 (x) = dJZ (x)=|xxh ||§ (c) Realization computed with
a vector ®; (x) of I? wavelet norms. (d) ® (x) is composed of 1' wavelet norms. (e) @y (x)
is a scattering transform.

(a) (b) () (d (e)

Figure 2. (a) Power spectrum of the original Gaussian process. (b) Estimation of the spectrum
of a microcanonical gradient descent computed with the energy vector ®;(x) = ¢q(x) =
[lx * h||% (c) The energy vector @ (x) consists of 12 wavelet norms. (d) ® (x) includes 1!
wavelet norms. (e) ®4 (x) includes 1! scattering norms.

Wavelet 12 norms. Let us now compute the gradient descent microcanonical mea-
sure [i, with a wavelet 1> norm energy vector ®; in (42). We shall see that it
can provide good approximations of Gaussian processes. The normalized variance
02(®4) in Table 1 remains small which indicates that this energy vector remains
concentrated around its mean. Figure 1(c) shows a realization of the resulting
microcanonical gradient descent model and Figure 2(c) gives an estimation of the
power spectrum of this stationary process. This power spectrum is now much closer
to the original power spectrum.

To understand this, observe that wavelet 1> norms specify the signal energy in the
different frequency bands covered by each band-pass wavelet filter 1} jq(o):

2= 1R Vg (53)

X * ¥4

The fact that the power spectrum remains nearly constant over the support of each @ i
is a consequence of Theorem 3.4(iii). Indeed, suppose that Lx is a linear operator
which performs a permutation of the values of X(w;) and X(w>), for two non-zero
frequencies w; and w, such that fk\ jq(w1) = 1/A/ j,q(w2) forall j, q. Itis an orthogonal



Multiscale sparse microcanonical models 283

operator which preserves the mean (zero frequency) and it is a symmetry of @ .
Theorem 3.4(iii) implies that the gradient descent measure u, is also invariant to
the action of L and is thus a stationary process whose power spectrum is the same
at w; and w,. This property is approximately valid for any frequencies w; and w;
located near the center of the support of each @ 7,q> Where it remains nearly constant
and where all other 1} j’,¢’ nearly vanish. It implies that the spectrum of u, remains
nearly constant in these frequency domain.

The energy concentration ein in Table 1 is small although not as small as aﬁ (<I>Z“ )
which indicates the presence of a bias. To reduce this bias we must reduce the
support size of each wavelet I’ﬂ\ 7,¢ wWhere the spectrum must remain nearly constant.
Appropriate wavelet design can yield arbitrarily small errors when d increases.

Besides having an appropriate power spectrum, these microcanonical gradient
descent models are also nearly Gaussian processes. This can be shown with a phase
symmetry argument, which is explained without a formal proof. The wavelet norms
in (53) and hence ®,; (x) are invariant if we preserve |X(w)| but change the complex
phase of X(w) for w # 0. Arbitrary rotations of the Fourier complex phases which
transform real signals into real signals are linear orthogonal operators which preserve
the stationary mean. As aresult, Theorem 3.4 proves that the gradient descent process
is invariant to any such Fourier phase rotation. This means that Fourier transforms of
realizations of these microcanonical gradient descent processes have phases which
are independent and uniformly distributed. Given a fixed power spectrum, a standard
result based on the central limit theorem proves that stationary random processes
with independent and uniformly distributed Fourier phases converge to a Gaussian
processes when the dimension d goes to oo [21]. Under appropriate hypotheses,
microcanonical gradient descent processes conditioned by 17 wavelet norms will thus
converge to Gaussian processes.

Wavelet 1! norms. Maximum entropy models conditioned by wavelet 1' norms
capture sparsity with Laplacian distributions but do not approximate Gaussian
processes accurately. Figure 1(d) shows samples of the microcanonical gradient
processes computed with a wavelet 1! norm energy (44). The I' norm constraints
produce wavelet coefficients which are more sparse than a true Gaussian process. It
creates images which are more piece-wise regular than in Figure 1(c). Errors are also
visible in the resulting power spectrum shown in Figure 2(d). Table 1 shows that the
resulting model error ezn for the I' norm wavelet vector is about 10 times larger than

“w
with the 17 wavelet energy vector.

Scattering energy. The scattering energy vector (46) includes high order multiscale
terms which can nearly reproduce the 1> norms of wavelet coefficients, as proved by
Proposition 4.1. Table 1 gives the normalized variance aﬁ(cbd (x)) which shows that
it concentrates nearly as well as wavelet 12 norm energy vectors, despite the fact that
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it is much larger. Figure 1(e) shows a realization of the scattering microcanonical
gradient descent model and Figure 2(e) gives its power spectrum. It is nearly as
precise as the I norm microcanonical model and the model error ein in Table 1 has
about the same amplitude.

5.3. Ising processes. We consider a two-dimensional Ising process with no out-
side magnetization, over a two-dimensional square lattice with periodic boundary
conditions. We denote by x (1) the spin values in {—1, 1}. The Ising probability of a
configuration x is

p(x) = Z7 exp (=B pa(x)) withgg(x) =d™" > Y~ x()x@), (54)

uehyg u'eNy

where N, is the 4 point neighborhood of x(u) in the two-dimensional grid.
The constant B = (kpT)~! is the inverse temperature scaled by the Boltzmann
constant kp. In two dimension, the free energy can be exactly computed with the
method of Onsager [37]. It has a phase transition when T reaches a critical value
T, ~ 2.27. We study the approximation of Ising for several values of the temperature.

The complex behavior of Ising arises from the conjunction of the quadratic
Hamiltonian with the binary constraint. This binary condition may be replaced by a
condition on a fourth order moment to obtain the same critical behavior but we shall
impose it here through first and second order moments. For all x € R4, one has
Ixll2 < Ix]l1 < ~/d|lx|l2,and || x||; = ~/d || x|z if and only if |x ()] is constant. It
follows that

Vu, x() =1 & x| = |xI3=d.

We can thus impose that x is binary by adding d ! | x||3 and d ~!||x||; into the energy
vector. The resulting microcanonical interaction energy for x € ]Ré\ is

L) ={d x5, d7 Ixllr da(x)} (55)

If we remove the 1! term, this energy is quadratic and the maximum entropy model
is therefore a stationary Gaussian process.

The Ising model has a phase transition at the critical temperature 7, ~ 2.27,
from an “ordered” to a “disordered” state. The spin spatial correlation exhibits a
characteristic scale &(T) for T > T, and E{X(u) X (u + r)} ~ e~ "1/E(T) [29], with
£(T,) =0. The correlation is self-similar at 7 =T, and E{X (u) X (u + r)} =~ |r|7V/2.

Figure 2(a) gives two realizations of Ising for a large temperature (bottom) and a
temperature just above the critical temperature (top). Figure 2(b) shows realizations
of the microcanonical gradient descent process computed with the Ising energy
vector ®!/. The first column of Table 2 shows that 2 (%) > o2 (u(®!) which
means that the microcanonical gradient descent does not converge to a microcanonical
set for € small. Near the critical temperature, the gradient descent microcanonical
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model is unable to recover low-frequency long-range structures which appear in Ising.
This is due to a well-known instability near criticality.

Dy =P ®; =Wavelet]? ¢ = Waveletl! &, = Scattering

dim(®g(x)) 3 42 42 116
PO es e
;ﬁ (:d>§l), 366 2e-5 4e-5 de-5
eTfL,;(q;d), 7e-3 4e-2 5e-2 5e-3

Table 2. The first line gives the dimension of each energy vectors ®;(x). We consider two
Ising processes (54), computed near the critical temperature 7 = 2.2 and at a larger temperature
T = 3. The table gives the normalized variance oi(@d) and the Ising energy concentration
e2 (®g), for different @4 (x).

() (®) (©) (d (e)

Figure 3. (a) Realizations of an Ising process near the critical temperature 7 = 2.2 (top), and for
T = 3 (bottom). (b) Realizations computed with the microcanonical gradient descent with
b, = @’;. (¢) ®y4(x) includes 1> wavelet norms. (d) ®(x) includes 1! wavelet norms.
(e) @y (x) includes I! scattering norms.

Renormalization and wavelets. As in Wilson renormalization group, wavelets
separate the frequency components of x into dyadic frequency annulus. Relations
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between wavelets and renormalization group decompositions were studied by
Battle [5]. In the following, we give a qualitative argument to explain how to
approximate the Ising potential with wavelet norms.

Since x(u) € {—1, 1}, for an integer p

x)x@') =1-2"Y|x) —xW)|?

so we can rewrite the Ising energy ¢4 (x) = d ! D uehy Quwen, X()x(u') satisfies

d—¢a(x)=2""Y" " |x) —x@")|” = Ax|5 + [ Axx]h. (56)

UEAG U eNy

with Aqx(uy,uz) = x(ug,uz) — x(uy,up — 1) and Arx(ug,uz) = x(ug,uz) —
x(uyp — 1,up).

The equivalence of 1” norms of increments and 1” norms of wavelet coefficients
is established in [36]. For any p > 1 there exists A, > 0 and B, > 0 so that for any
x € 12(Z?)

Ap Y 277 |x x gD < [ ALX|E + [ Axx ]2 < Bp > 2777 ||x % )
Jsq Jsq

2. (57)

For p = 1 the upper-bound remains valid but to get a lower-bound we must replace
the sum over j,g by a sup operator. However, we conjecture that there exists A
which verifies the lower bound for p = 1 when the values of x(u) are restricted
to {—1, 1}. With equations (56) and (57) one can approximate the Ising energy ¢4 (x)
with discrete wavelet 1”7 norms computed at all scales 27 < 27 = d. We limit the
maximum scale 27 independently of ¢, which is set to be the largest correlation
length of the process.

Asin Section 5.3, we capture the fact that x (1) € {—1, 1} by including a condition
ond ! x|; and d!||x||3. The resulting energy vector for p = 1 and p = 2 is

Dq(x) = {d 7 Ixl3.d7 xlli, d7H x * yqll5} (58)

J=J.q=<Q’
Table 2 shows the normalized variance o?(®4) is smaller at high temperature than
near critical temperature but the separation of scale still provides a high concentration
of ®4(x) for an Ising process, close to the critical temperature. Figure 3(c,d)
show realizations of a microcanonical gradient descent Ising model computed with
the wavelet energy (58) for p = 1 and p = 2. Near critical temperature, the
microcanonical gradient descent still converges where as it was not the case when
the energy was calculated directly with the Ising Hamiltonian energy ¢, (x) in
Figure 3(b). The scale separation avoids having an ill-conditioned gradient descent.
The Ising approximation with an 12 energy vector for p = 2 amounts to compute
a Gaussian approximation of Ising, which is not precise, when we are close to the
critical temperature [28]. One can indeed visualize important differences with the
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statistical distribution of original Ising in Figure 3(a). Table 2 shows that the model
error ein is smaller at higher temperature.

The Ising approximation with an 1' energy vector has about the same error as
the model computed with an 1% energy vector. Near the critical temperature, the
microcanonical models obtained with I' wavelets norms shown in Figure 3(d) are
more piecewise regular than the ones in Figure 3(c) obtained with wavelet 12 norms.

This is due to the wavelet coefficient sparsity imposed by these 1' norms.

Scattering energy. A scattering energy vector is defined for Ising process, by
complementing the scattering energy vector (46) with 1! and 1> norms of x in order
to impose that x (1) takes binary values:

g (xr) = {d 7 X3, a7 xlh . A7 Y waw),

uehy

-1
[, d7 e * ¥jg

A7t v Vil (59)

7i'<T.4.4'<Q
Table 2 shows that the normalized variance of the scattering energy is about
twice larger than for I? wavelet energy vectors. Figure 3(e) shows realizations of
microcanonical gradient descent models computed with this scattering energy vector.
They are visually difficult to distinguish from realization of the original Ising process
above the critical temperature and close to the critical temperature. Table 2 shows
that the model error ein is about 10 times smaller than with I? or 1! wavelet energies.

These numerical experiment seem to indicate that scattering microcanonical
gradient descents can provide accurate model of Ising even close to critical
temperature. However, this needs to be sustained by a better mathematical of these
approximations, by analyzing the preservation of symmetries.

5.4. Point processes. Point processes provide powerful models of stochastic geom-
etry, with applications in many areas of astrophysics, neuroscience, finance and
computer vision. Realizations of point processes have a support reduced to isolated
points. We first show that this sparsity can be captured by wavelet 1! norms. We then
study approximations of point processes and shot noises with microcanonical models
defined by scattering coefficients.

Support from wavelet 1' norms. We prove that wavelet 1! norms capture important
geometric properties of the support of point processes. Young’s inequality implies
that

= lxll 1¥sqlh

If x is a Dirac in Ay then this inequality is an equality. Conversely, the following
theorem, proved in Appendix I proves that if this inequality is an equality then x is a

x * ¥4
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sum of Diracs, with conditions on their distances. The inner product and norm of v
and v’ in R¢ is written v.v’ and ||v].

We suppose that wavelets are defined from a mother wavelet 1 (1) which is
continuous with ¥ (0) # 0. We suppose that ¥ (1) = |y (u)| e €% where £ € R*
and the complex phase ¢ is a bi-Lipschitz function. We may choose linear phase
@(§.u) = &.u. This wavelet is rotated and dilated ¥, 4(u) = 2_151ﬂ(2_jrq_1u),
where the r, are Q > ¢ different rotations in R¢. The following theorem applies to
these wavelets.

Theorem 5.1. (i) If [[x * ¥4l = llx|l1 |¥)qll1 then x is non-zero at u and u’
only if&.(u —u') = 0with&; = ryé orif|&g.(u —u')| = C 2/, where C > 0
does not depend on x.

(ii) Suppose that  has a compact support, and that x has a support which is a union
of isolated points with distances larger than A. If x' satisfies

Vg=0Q.Vj =logy A, [Ix"* gl = Ix*¥jglli and |x'[l1 = [lx]l1 (60)

then the support of X' is a set of isolated points of distances larger than C A,
where C > 0 does not depend on x.

In dimension £ = 2, property (i) of Theorem 5.1 proves that the support of x is
included in straight lines perpendicular to §,, whose distances are larger than C 2/ If
this is valid for several ¢ then the support is included over intersections of non-parallel
lines and hence reduced to isolated points, as proved by property (ii).

If x is a realization of a point process, its support is a union of isolated points
whose minimum distance depends the point process distribution. If we construct an
€ = 0 microcanonical model with wavelet 1! norms then property (ii) proves that all
realizations of this microcanonical model will also be a point process with a similar
separation between points.

Microcanonical models of point processes. We study microcanonical models of
point processes with wavelet I' norms and scattering coefficients. A point process N
on RY is a measure whose support is composed of isolated points. Second-order
point processes [8] are those satisfying E[N(C)?] < oo for all bounded Borel sets
CCRLCIfNGsa stationary, second-order point process then one can define its
associated Bartlett spectral measure [8] Py, which generalizes the power spectrum
of second-order stationary processes.

Given a non-negative stationary process A(¢), ¢ € R¢, a Cox process N is
defined as a Poisson process conditional on A with intensity A(z). Important
geometric information of N is captured by its Bartlett power spectrum, which satisfies
Py(dw) = P)(dw) + E(A) 6(dw) [8]. Shot noises are classes of random processes
defined by convolutions of point processes with a filter 4 (¢)

X(t) =N % h(t).
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The filter 2(¢) can be interpreted as a pattern which is randomly translated at point
locations and added. It may also be the transfer function of a detector measuring the
point-process. In this case, the power spectrum of X is P(dw) = Py (dw) |h(w)|?,
which mixes the geometric information of N with the profile of the filter . We will
show that they can be disentangled by a wavelet scattering transform.

The loss of information in the power spectrum is due to the fact that it does not
measure scale interactions. When there is a scale separation between N and 4, i.e.

E1)? > /u2|h(u)|2du (61)
then for sufficiently small scales 27, one can verify [11] that

X *x gl = IN > (Vjq x D)~ N x| %h (62)

with high probability, due to the fact that the events in N rarely interact at spatial
scales j suchthat2/ < E(A). From this approximation, it follows that for sufficiently
large scale gap j’ > j, we have

X *x¥jgl*Vjgl~Cjg

N * wj'/’q/l , (63)

since [V g x h| * Yjr g0 ~ Cjq48 x ¥jr . Second order scattering coefficients,
indexed with pairs (/,q, j’,q’), thus provide measurements that convey spectral
information about the point process N as (j’,q’) varies, disentangled from the
spectral information of /.

We illustrate this phenomena by considering a two-dimensional Cox point
process N(u), whose rate A(u) is a stationary Gaussian process whose power
spectrum is concentrated in the low-frequencies, and with an integral scale of 100
pixels. This Cox process is convolved with a pattern A2(u) with zero mean and
small spatial support of 5 pixels. We build microcanonical models with energy
vectors ®4(x) defined by wavelet 1! norms or scattering coefficients, computed up
to a maximum scale 27 . For the shot noise measure ;1 shown in Figure 4(a), Table 3
gives the normalized variances 0 = E,, (| ®q(x) — E(®4(x))[|*)/[[E (g (x))|?
as a function of the maximum scale 2. Although the size of scattering vectors for
large J becomes relatively large, the normalized variance remains small which proves
that these energy vectors remain concentrated around their mean, for images of size
d = 2562. We can thus define microcanonical models from an energy vector ®, (X)
calculated from the realization X shown in Figure 4(a).
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J =2 J =4 J =6

op(®g) dim(®g) 05(Pg) dim(Py) o (Py) dim(Py)
®y: Waveletl! 4107 21 3107° 38 3107° 52
®4: Scattering 81076 88 1073 422 107> 580

Table 3. Estimated normalized variance for wavelet I' norm and scattering energy vectors ®,
at different maximum scales 27 . They are computed for a shot noise of size d = 256 defined
from a Cox point process. Figure 4(a) shows a realization.

(a) (b) (©) (d (e)

Figure 4. (a) Realization of a shot noise computed with a Cox process. (b), (c) Realizations of
a gradient descent process, computed with an energy @ including wavelet 1' norms of maxi-
mum scale respectively 27 = 8and 27 = 64. (d), (e) Same computed with an energy ®4
including scattering I' norms of maximum scale respectively 2/ = 8 and 27 = 64,

Figure 4 gives realizations of microcanonical gradient descent models computed
from wavelet ' norms and scattering energies, at different maximum scales 27.
Figure 4(b,d) are computed with 2/ = 8. These microcanonical models can only
capture sparsity properties up to this maximum scale. At larger scale, the entropy
maximisation creates Gaussian random process like variations having a uniform
low-frequency spectrum. Figure 4(c,e) are microcanonical realizations computed
at a larger maximum scale 27 = 64. In this case, wavelet 1! norm and scattering
microcanonical models capture the point process sparsity. The geometry of the
shot noise is defined by the stationary rate A(u) which has relatively high frequency
oscillations vertically but low frequency variations horizontally. The scattering model
Figure 4(e) captures this distribution thanks to second order coefficients. This is not
the case for the 1! norm model in Figure 4(c) which can not reproduce the low-
frequency horizontal alignments.

5.5. Image and audio texture synthesis. An image or an audio texture is usually
modeled as the realization of a stationary process. Modeling textures amounts to
compute an approximation of this stationary process given a single realization. A
texture synthesis then consists in calculating new realizations from this stochastic
model, which are hopefully perceptually identical to the original texture sample,
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although different if considered as deterministic signals. As opposed to the Gaussian,
Ising or point process examples, since we do not know the original stochastic process,
perceptual comparisons are the only criteria used to evaluate a texture synthesis
algorithm. Microcanonical models can be considered as texture models computed
from an energy function ®;(x) which concentrate close to its mean. We review
previous work and give results obtained with a scattering microcanonical gradient
descent model.

Geman and Geman [24] have introduced macrocanonical models based on
Markov random fields. They provide good texture models as long as these textures
are realizations of random processes having no long range correlations. Several
approaches have then been introduced to incorporate long range correlations. Heeger
and Bergen [26] capture texture statistics through the marginal distributions obtained
by filtering images with oriented wavelets. This approach has been generalized by
the macrocanonical Frame model of Mumford and Zhu [49], based on marginal
distributions of filtered images. The filters are optimized by trying to minimize the
maximum entropy conditioned by the marginal distributions. Although the Cramer-
Wold theorem proves that enough marginal probability distributions characterize any
random vector defined over R¢ the number of such marginals is typically intractable,
which limits this approach.

Portilla and Simoncelli [39] made important improvements to these texture
models, with wavelet transforms. They capture the correlation of the modulus of
wavelet coefficients with a covariance matrix which defines an energy vector @4 (x).
Although they use a macrocanonical maximum entropy formalism, their algorithm
computes a microcanonical estimation from a single realization, with alternate
projections as opposed to a gradient descent. This approach was extended to audio
textures by McDermott and Simoncelli [35]. A scattering representation is related
to Portilla and Simoncelli model but covariance coefficients are replaced by a much
smaller number of scattering 1' norms.

Excellent texture synthesis have recently been obtained with deep convolutional
neural networks. In [23], the authors consider a deep VGG convolutional network,
trained on a large-scale image classification task. The energy vector @, (x) is defined
as the spatial cross-correlation values of feature maps at every layer of the VGG
networks. This energy vector is calculated on a particular texture image. Texture
syntheses of very good perceptual quality are calculated with a gradient descent
microcanonical algorithm initialized on random noise. However, the dimension of
this energy vector @, (x) is larger than the dimension d of x. These estimators are
therefore not statistically consistent and have no asymptotic limit.

In the following, we give results obtained with different wavelet microcanonical
models computed on a collection of natural image and auditory textures. The Brodatz
image texture dataset? consists of 155 texture classes, with a single 512 x 512 sample

2Available at http://sipi.usc.edu/database/database.php?volume=textures.
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per class. Auditory textures are taken from McDermott and Simoncelli [35], which
contains 1 second samples of different sounds.

() (b) (© (d)

Figure 5. (a) Original texture. (b) texture synthesized with a microcanonical gradient descent
model with a vector @ (x) of wavelet 12 norms. (c) ®4 (x) has wavelet 1! norms. (d) @4 (x)
has wavelet scattering coefficients.

Since we have a single realization of each texture, we can not compute the
concentration properties of energy vectors over these textures. Figure 5(a) gives
input examples X corresponding to realizations of different stationary processes X (u).
Figure 5(b) shows texture samples obtained with a microcanonical gradient descent
computed with an energy vector ®4 (x) of wavelet 1 norm. It provides a good model
for the bottom texture which is nearly Gaussian but it otherwise destroys the texture
geometry. Figure 5(c) displays textures obtained with a vector ®4(x) of wavelet I!
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(a) (b) (©

Figure 6. (a) Spectrograms of original audio textures produced (from to to bottom) by jack-
hammer, applause, wind, helicopter, sparrows, train, rusting paper. (b) Spectrograms of an
audio texture synthesized with a microcanonical gradient descent model with a vector @4 (x)
of wavelet 12 norms. (c) Spectrogram produced with a vector ®4(x) of wavelet scattering
coeflicients.

norms. Their wavelet coefficients are more sparse than in Figure 5(b) which produces
more “piecewise regular” images, but it does improve the texture geometry. On the
contrary, scattering microcanonical textures in Figure 5(d) have a geometry which
is much closer to original textures. Scattering coefficients can be interpreted as
convolutional deep neural networks computed with predefined wavelet filters [10] as
opposed to filters learned on a supervised image classification problem as in VGG.

The reconstruction of auditory textures is computed with a one-dimensional Gabor
wavelet transform [9] with @ = 12 scales per octave. Auditory textures have a rich
mixture of homogeneous and impulsive, transient components, as well as amplitude
and frequency modulation phenomena. Figure 6(a) displays the spectrograms of
original auditory textures x. Figure 5(b) shows the spectrogram of Gaussian texture
models calculated with a microcanonical gradient descent computed with an energy
vector @4 (x) of wavelet I? norm. The global spectral energy is preserved but the time
variations which destroys ability to recognize these audio textures. On the contrary,
Figure 5(c) shows that audio textures synthesized with a scattering energy vector
have spectrograms with the same type of time intermittency as the original textures.
The resulting audio textures are perceptually difficult to distinguish from the original
ones.

Synthesis from scattering energy vectors can also destroy some certain structures
which affect their perceptual quality. This is the case for speech or music backgrounds
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which have harmonic alignments which are not reproduced by scattering coefficients.
Deep convolutional network reproduce image and audio textures of better perceptual
quality than scattering coefficients, but use over 100 times more parameters. Much
smaller models providing similar perceptual quality can be constructed with wavelet
phase harmonics for audio signals [34] or images [48], which capture alignment of
phases across scales. However, understanding how to construct low-dimensional
multiscale energy vectors to approximate random processes remains mostly an open
problem.

6. Conclusion

This paper shows that gradient descent microcanonical models computed with
multiscale energy vectors can provide powerful models to approximate large classes
of stationary processes. Realizations of such models are calculated with a gradient
descent algorithm which is much faster than MCMC algorithms, used to sample from
macrocanonical models.

We introduced a mathematical framework to analyze the statistical and algorithmic
properties of these microcanonical gradient descent models. Our analysis reveals
that, whereas micrcocanonical gradient descent measures do not generally agree with
the microcanonical maximum entropy measure, they have rich regularities through
shared symmetries, and, under appropriate conditions, are shown to converge to
the microcanonical ensemble. In the high-dimensional setting, gradient descent
microcanonical models are therefore valid alternatives to classic macrocanonical
and microcanonical maximum entropy measures, thanks to their computational
tractability.

However, many mathematical questions remain open. For instance, on the
convergence properties of this gradient descent algorithm, on the choice of the energy
vector to obtain accurate approximations of random processes, and on the extension
to locally stationary processes.
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A. Proof of Theorem 3.1

A.1. Proof of Part (i). The main technical challenge to prove (26) is to show that
assumption (C) is sufficient to guarantee that |J ®,x|! is integrable. Since @ is
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Lipschitz from assumption (A), the coarea formula proves that for any integrable
function g(x)

/g(x)|J<I>dx|dx:/ / g(x)dHK(x)dy . (64)
B RX JoZl(y)

In order to apply (64) to |J ®4(x)|~! and obtain the expression of H (w3, we

need to show that |J ®4(x)|~! is integrable in <I>;1€(y). Using the notation for each
Jacobian column (22), we verify that | J @4 (x)| satisfies

|J®g(x)| > d~* max {|det[JU(X,), ..., JUXg)]l,. ..

et JUX g, ) JUX G N (65)

where X; is a projection of x onto disjoint subsets of 2A + 1 coordinates, and
d>dQ2A+ 1) =0(d).
We will show that for d large enough and arbitrary R > 0,

/|| . |J®y(x)| tdx < oo, (66)
X|oo<

by interpreting (66) as proportional to the expected value of E x ynir(d, Ry |/ Pa (X)) -1
Since @;16 (y) is a compact set thanks to assumption (B), it is bounded, so
@, .(») S {x; |x]oo < R} for some R, which proves that [J®4(x)|™" is integrable
in CD(;}G ().

For that purpose, let us prove that assumption (C) from (25) is sufficient to
guarantee (66). If Fy (y) denotes the cumulative distribution function of a random
variable V', and Y denotes ther.v. Y = |det[J U()?l), R U()?K)] |, we first observe
that thanks to (65) it is sufficient to show that

Fy(y) <y", forsomen >0, (y — 0). (67)
Indeed, since V = |JPyz(X)| > max(Yq,..., Yg) with Y; independent and
identically distributed, we have that
Fy(y) < Fy(»)4 ~ym.

It follows that

R/
E X ~tnit(d.R) | Pa (X)| 7! E/v_lfv(v) dv=C +/ v 2 Fy(v)dv < 00
0

as soon as d n > 1, which will happen for large enough d. 3
Let us thus prove (67) by induction on K. When K = 1, V = [detJU(Xy)| =
|JU(X1)| and assumption (C) directly implies that

Fy(y) =PV <y)<y".
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Now, suppose (67) is true for K — 1 and let us prove it for K. We use the following
lemma:

Lemma A.l. We say that a bounded random vector Z in B(K,R) C RX has
property (x) if there exists n > 0 such that
V 8 C RX Lebesgue measurable , P(Z € 8) < |8|".

If Z has property () and K > 1, then Z g, the orthogonal projection of Z onto any
hyperplane, also has property (), and

E(IZI7") < Cry- (68)
Before proving the lemma, let us conclude with (67). By denoting Z; = JU(X;),
i =1,..., K, and assuming || Z;| > 0, one Gram—Schmidt iteration yields

det[Z1,..., Zk]| = || Z1]||det[Za, ..., Zk]l,

where Z; is the projection of Z; onto the orthogonal complement of Z;. Using
assumption (C), we use Lemma A.1 to observe that Z,-, i =2,...,K also satisfies
assumption (C), since we compute it with an orthogonal projection that depends only
on Z1, which is independent from all the Z;, i > 2. Thus by induction hypothesis
and using (68) we obtain

Fy(y) = P(|det[Zl, cee ZK]l < y)
= P(I1Z:lldet[ Zs. ..., Zx]| < y)
=Ez, P(ldet[Zs..... Zg]l < v Z:| 7" | Z1)
<Ez y"Z:lI™" < »7
which proves (67).

Let us finally prove Lemma A.l1. Let §5 be a measurable set in a given
hyperplane H of dimension K — 1, and let § = &g x (—R, R) be the corresponding
cylinder in B(K, R). By definition, we have

P(Zp € 8n) = P(Z € 8) <|8|" = |85|"(2R)"
which proves that Z g also has the property ().

Finally, let us show that E(||Z||™") < Cg,y. For positive random variables we
have

R
E(1Z]™) = /0 N iz () dr

R
= R" —rli_r)r%)r_"P(HZH <r)+ 77/0 r_”_lP(||Z|| <r)dr

R
<R"+ Cn/ r"HRdr < Cry
0

since K > 1 and n > 0. This proves Lemma A.1 and thus (26). ]
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To prove that Y4 (v) is integrable on any bounded set, we apply the coarea formula
to (64) to g(x) = |Jx ®x|~! 14(Px) where A is bounded:

/ I,A(@x)dx:/ / |JKq)x|_1dJ€d_Kdz:/ va(z)dz.
R4 A JO1(2) A

If 4 is a compact set then by assumption (B) it follows immediately that
/ 14(®x) dx = / dx < |By.4(C+/(d))| < oo, (69)
R4 d—1(4)

which proves that y; is integrable on a compact.

A.2. ProofofPart (ii). Letusnow prove that foreach d, y;(y) can only vanish when
dist(y, ®4(R4)) < c¢/d for some fixed constant c. We will exploit the relationship
between the sets ®4(R¢) and ®y /Z(Rd/ 2) thanks to the fact that ®, is an average
potential over the domain.

The inequality (27) proves that y4(y) = 0 only if fcp_l(y) d#?—K = 0. Since
in finite integer dimensions the Hausdorff measure #* is a multiple of the Lebesgue
measure in RY, it is sufficient to show that whenever y € (®4(R%))°, the set ®~1(y)
has positive Lebesgue measure of dimension d — K.

Without loss of generality, assume that ® = (¢4, ..., ¢k ) are linearly independ-
ent functions. Otherwise, if there were a linear dependency of the form

Y ardr(x) =0,

k<K

then ®4(R%) = 9P, (R?), thus ®,4(R?)? is empty and there is nothing to prove.

Let us write d = r¢, with r denoting the length of the cube Ay. Suppose first
that r is even. Given y € (®,—¢;(R2™9))° we will see that there exists x € ®~1(y)
whose Jacobian J®(x) has rank K. Then, by the Implicit Function Theorem, one
can find a local reparametrization of ®~!(y) in a small neighborhood V of the form
x = (v, ¢(v)) such that

{(v,p());veV C R K gV > REY = {(v,v) € V xo(V); @(v,0) =y},

which has positive Lebesgue measure of dimension d — K.

Suppose first that A = 1. Then the sets 85 = ®7(R?) C RX satisfy 85 C 84tq
forq = 1,2,.... Indeed, given y € &4, by definition there exists x € R? with
®4(x) = y. Consider ¥ = (x,...,x)® € R4 4 tiling of x, ¢ times along each
dimension. By construction, X satisfies ® ¢, (X) = y and therefore y € 8,¢,.

Now, consider y € 8d° - 8;’(3(1. If ®; was a smooth C* map, with s > d — K,
then by Sard’s theorem, the image of critical points {x € R?;|J®4(x)| < K} has
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zero Lebesgue measure in §5. Although one can extend Sard’s theorem to weaker
regularity assumptions [3], for our purposes we will use a weaker and simpler property
that does not require the smoothness assumption, as described in the following lemma:

Lemma A.2. Under the assumptions of the theorem, the set
A:{yeRK; 0 < ya(y) < oo}

is dense in ®4(R?), and foreach y € A there exists x € Cbgl (y) with |JD4(x)| > 0.

It follows that for a sufficiently small § > 0, a neighborhood B(y,§) C 84
of y necessarily contains two points y; = y + 1, y» = y — 1 such that <I>;1(y1)
or @;1();2) contain a regular point. Let x; € <I>;1(y1) and x, € CD;le(yz) be two
points such that at least one is regular. The point X = (xfu, x?f) € R?' 4, obtained
by concatenating x; and x; along the first coordinate, and tiling them along the rest,
satisfies

D0 (%) = 3 (®a(n) + Pa(x2) = .
and 700 (D] = ma (1704 (en)] 1@ (e2)]) > 0.

which shows that we have just found an element X of CIJQJ (V) withrank(J @, (X)) =
K.

Suppose finally that A > 1. The proof follows the same strategy, but we need to
handle the border effect introduced by the support A. In that case, given y € 84, we
consider ¥ = (x, u, x)®¢, where u has 2(A — 1) zero coordinates and x € CDEI (»).
That is, we consider 2¢ copies of x separated by 2(A —1) zeroes along each dimension
so that their potential functions do not interact.

Letd = (2r + 2(A — 1)), It follows that

28d® 4 (x) A-1\"* A-1\""
(1 2) = (14 57)

which shows that dist(y; 857) < Clly|/d"* forany y € 8,.
Now consider y in the open set Cg = 85 N &7, such that dist(y,d84) >

q)g(f) =

v |[€Ad =€, 1t follows from the previous argument that there exists small § > 0
and x; € CD;l(yl) with [J®4(x1)| > 0 and y; € B(y,8) N8 N 87. We verify
from the assumption that

A—1\*
y2 =2 1+T y—Yy1 €384,

and therefore for any x, € ®'(y,) the point ¥ = (x1;u, x2)®* that contains 2¢~!
copies of x; and 2¢~! copies of x, satisfies by construction
d2 1y +d2t 1y,

d(x) =
) =

=)



Multiscale sparse microcanonical models 299

and rank(J ®,4(X)) = K. Finally, the case where r is odd is treated analogously,
but splitting the coordinates into | 5] and [5] parts.

It remains to prove Lemma A.2. We know from part (i) that thanks to the coarea
formula,

VeVy e (®s(RY))°, O</ yd(z)dz=/ dx < 00.
lz—yll<e [@(x)—yll<e

It follows that 4 = {z; 0 < y4(z) < oo} is dense in ®4(R?). Butif y € A, by
definition this implies that @;1 (y) has positive (d — K)-Hausdorff measure, and that
there is necessarily x € ®7'(y) with |J®4(x)|~" < oo, therefore with a full-rank
Jacobian. 0

A.3. Proof of Part (iii). In order to prove (28), we will again exploit the relationships
between the sets 85 = ®4(R¥) as d grows. We also first establish the result for
A = 1, and then generalize it to A > 1. Denote Fy, = d~'H(uy}',) the entropy
rate associated with y and € and Qg ((y) = {x; || P4z (x) — y| < €}.

In the last section we proved that when A = 1, §; C qud forq =1,2,.... For
any € > 0 and y € §,, observe that

Qd,e(Y) X ® Qd,s(y) c Qzﬁd,e(J’)- (70)
N —
2¢ times
Indeed, if x € Q4.(y) ® - ® Qg.(»), then by definition x = (xy, ..., x,¢) with
N —
2¢ times
[®a(xi) —yll <e.
But
2@
Dyeg(x) =270 Dg(x;)
i=1

and || ®,¢,(x) — y|| < € by the convexity of the I> norm, thus x € Qoeg(y). It
follows that

2
Fyeqe= d_12_£H(;L‘2“§d 6) >d 27 og (|:/ dxi| ) =Fye.
’ ®a(x)—yli<e
(71)
Thus, for any fixed dy, y € 84, and € > 0, the sequence F = Fykeq, 18 increasing.
Also, thanks to assumption (B), we have that

Vd,xeQue(y) = |x|<CVd(lyll+e),
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which implies that [Q; (y)| < |B4(~/d Ry)|. Therefore

Vd,F] <d log|Bs(VdRo)l,
and we verify from | By (R)| = 7557y R? that | By(v/d Ro)| = K? with K =

27 R}e, which shows that limg_,o d "' log | By (v/d Ro)| = log K and thus that the
entropy rate Fy is also upper bounded, and therefore its limit exists limg o F = F .
We shall see later that the limit does not depend upon the choice of dj.

Let us now prove the case when A > 1. The idea is to show that (70) is now
valid up to an error that becomes small as d increases, provided that the potential U
is Holder continuous.

Consider y € 8;. Given € > 0, we form

Wyeg (7) = (Que(1))®

as the Cartesian product of 2¢ copies of Q4.¢(y). When A = 1, we just saw that

Uorg e (¥) S Q2a2(y) (72)

with € = €, but when A > 1, let us see how to increase € so that (72) is verified.

Given x € Wy, (¥), we write x = (x1,. .., X,¢) to denote its projections into each
of the 2¢ subdomains Cy 4, ..., Cye 4 of size d. We have
> Ux(n)
Dpeq(x) = T alg
2t
=27ty d—l( Yo uxm+ Y. Ux(n)) , (73)
k=1 neCy , n€dCy q

where each C ,? 4 contains the interior of the domain that does not interact with the

other domains, and 0Cy g = Cy g \ C; ;. We have [0Cy 4| = d — (d't — 2A)€,
thus

(A
dY0Ck g =1— (1—2Ad71%)" <

S - (74)



Multiscale sparse microcanonical models 301

Since |Ux(n)| < BJ|x||* with @ < 2/£ by the Holder assumption, and ||x|| < C/d
by assumption (B), we have |Ux (n)| < B'd%/2. 1t follows from (73) and (74) that

2[
||q>zgd(x)—y||=H2—@Z[d—1( Yo uxm+ ). Ux(n))—y”‘
k=1

neCyg , n€dCxk g
2t
<2703 (19a ) =yl +2B'd°(1 = (1= 28d71)))
k=1

<e+ o(d%_%EA) .

Thus by taking € = € + o(d %_%KA) (72) is verified. By denoting v = § — %, it
follows that the entropy rate Fy ¢ satisfies

Fae = Fygeifav

with £ = CAL, and v < Osincea < 2 /£. By repeating the inequality for sufficiently

large d and k = 1,2, ... and € > 0 we have
Fd,é =< Fdzk( , €+Zdv Z]]:/=0 2k’ €v =< Fdee,Ze = c B (75)
and thus by defining
k
. : : 7 Lvk’
Fooc 1= lim Fyppue g, with e =€+ ldg k;‘o 2t (76)

we have shown that its entropy rate is well-defined for each € > 0 and d sufficiently
large.

It remains to be shown that this limit does not depend upon dy. Suppose Foo .0 7
Foo,e,1 Where Fy is associated with do and F; is associated with d;, and suppose
dy > do without loss of generality. Let r; = dil/ Yfori =0, 1.

Observe that an analogous argument to (73) shows that if r = r, + rp, then

Ta,

Ta Tp
Frf,'EZ 7F6e+7Fr£,e’ (77)
and Freyz > Fge forl=1,2,..., (78)

with € = € + 0 (d£A). Consider now large integers k and k ~ vk, and let q.9
denote respectively the quotient and residual such that

ri2k =re2%q +7
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with0 < g < r02E . Then, for any § > 0, by choosing k large enough we obtain from
(77) and (78) that

|Fgakez— F1| <68/4,

|Fd02£1?q£,g — Fo| <48/4,
and |Fayake g = Fyrege gl <8/4. (79)

with€ = € 4+ o(dVLA).

Finally, let us show that Fj . is continuous with respect to € for € > 0. Let us
denote Yz ¢ = lz—yll<e Ya(z)dz. Since Fy e = d™! log()/;,e) and y4(y) > 0 for
all y € & from the previous section, it is sufficient to show that y, ¢ is continuous
with respect to €. Let € = € 4+ § with € > 0, and suppose § > 0 without loss of
generality. By denoting Q(8,€,y) = {z; € < ||z — y| < € + 8}, we have

ez —vael = / ya(2)dz = / Ya () gGs.epy () dz
e<|z—y|<e+8

= [ vastzraz

For each z, y45(2) = ya(2)19s,e,y)(2) converges pointwise to 0 as § — 0, except
for a set of measure zero, {z; ||z — y|| = €}. Also, |yss| < ya, which is integrable
in ®(24) by part (i). We can thus apply the dominated convergence theorem, and
conclude that

li dz = li dz=0,
tim [ yas(eydz = [ (fim vas(2) =

which shows that y4 ¢ is continuous with respect to €.
It follows from (79) that

|Fayokez = F,

dozl?fqi,2| — 0 ask — o0,

but Fy oke z — Fy and Fdozl?ﬁqf - — Fo as k — oo, which is a contradiction with
the fact that Fy # F7. O

B. Proof of Corollary 3.2

We saw in Theorem 3.7 that the entropy rate of the microcanonical measure can
be measured with the co-area formula as d ~! H(Mﬁie) =d 'log f”Z_y”<e va(z)dz

and that 4 (z) > Ointhe interior of ®4(R?). Ase — 0, we can interpret the previous
formula in terms of an L!(RX) approximate identity /. (z) = Cxe X 1z)<e(2):

Cxe X /” HEEE = v k() = () ase 0
z—y|<e
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in L' (RX). One can verify that, by possibly reparametrising ¢, this implies pointwise
convergence for almost every y, so

} log (CKe_Ky;,E) — log yd(y)| e 0, a.e., (80)

which shows that d_lH(pZ )= _d—K loge ase — 0. 0

C. Proof of Proposition 3.3

Properties (A) and (B) are verified for (i)—(ii) because the potentials U are continuous
and the resulting features ® always include d ~!||x||? respectively. We thus focus on
proving property (C).

Part (i) is easily obtained, since the 1> wavelet model has a Jacobian J ®(x) that
is linear with respect to x, and therefore it has absolutely continuous density relative
to the Lebesgue measure.

Part (ii) is proved by directly controlling |J®4(x)|~!. A direct computation

shows that |[J®4(x)| = d~1,/d|x||> — || x||3, which only vanishes when |x| is a

constant vector. Therefore, for y # (o, Ag), @;’16 (y) does not contain those points
for sufficiently small €.
Let us now show part (iii). The Jacobian matrix in that case is given by

h.
J®g(x); = d"lRe{( allally ) *h;},

|x x hjl

with j < K. We proceed by induction over the scale K. Suppose first K = 1.
Since & ; has compact spatial support, its Fourier transform only contains a discrete
number of zeros. Denote by A ; the spatial support of /2 ;. We can thus generate all

but a zero-measure set of unitary signals z with zg = el s =1,...,A j from the

. . h; .
uniform measure over x using z = &:—h" In the uniform phase space defined by
J

1,...,0a;, the event |detJU(X1)| < y has a probability proportional to y, since it
is equivalent to

| D" cos(B)Re(r; (5)) = Y sin(B)Im(h5 ()| < v

Suppose now the result holds for the K — 1 filters in the family with smallest spatial
support, and let us show how to extend it to an extra filter 7 g with strictly larger
spatial support. Among the variables X € R22+!  a subset of them, say Rg, only
affect the K-th output corresponding to filter 4 g. It follows that a set S C RX with
shrinking measure necessarily introduces constraints on the variables in Rk, and
therefore P(Z € §) < |S|V/X. O
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D. Proof of Theorem 3.4

(i) Let us first prove that volume preserving symmetries of ®;(x) are symmetries of
the microcanonical maximum entropy measure. Ifforall x e R%, &4 (L' x) = g4 (x)
then a microcanonical set Q4 ¢ is invariant to the action of L and L™, Since L
preserves volume and hence the Lebesgue measure of a set, for any measurable
set A, since MZ“ . is supported over 24 and uniform relatively to the Lebesgue
measure, we have

Wae[LTIA] = pg [L7AN Qae]
= i [L7 (AN Q)]
= /‘Lrgl?:e['A’ N Qd,e] = Mr;:e[’A’]v

so L is a symmetry of ,u‘g‘l’ie.

(i) We prove that symmetries of ®;(x) and o are symmetries of i, by induction
on n. Itis trivially valid for n = 0. Suppose now by induction that w, is invariant to
the action of L which is a symmetry of ®;. From (31), itp+1 = @n #ftn, With

on(x) = x _Knjq)d(x)T(qu(x) _Y)-

Let us verify that ¢, is equivariant to the action of L: ¢, L™ 'x = L™ !¢, x for all x.
Since ®4(L~1x) = ®4(x), and since L is linear

JO (L' 0)T = L7 (J0g(L7'x)) = L7 (JDg(x)) 81)
SO

oL = L7 — iy J (L7 %) T (@y (L7 ) — y)
=L 1x— L_llanq)d(x)T(CDd(x) — y)
= L™ gux,
which proves that ¢, is equivariant to the action of L. Moreover, if ¢, is equivariant

to the action of L then we verify that it is equivariant to the action of L™!. Also,
observe that

9r (LTH(A) = {xi0n(x) € L7 A}
= {x;chn(x) € A}
= {x;gon(Lx) € A}
= L7 ' (A).
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Finally, using the definition of pushforward measure, (,4+1 = @n #Un, for any
measurable +4, the induction hypothesis yields

g1 [L71A] = puao, (L7 A)]
= tn[L™ 0y 1 (A)]
= fn[@n {(A)] = tnt1[A]
which proves that 1,4 is also invariant to the action of L.

(iii) We prove that an orthogonal operator which preserves a stationary mean is a
symmetry of a Gaussian measure jt¢ of d i.i.d Gaussian random variables. Applying
the statement (ii) then implies the statement (iii). Let m¢ be the mean of each of the d
Gaussian random variables. The Gaussian measure (¢ is uniform over all spheres
of R? centered over the stationary mean mo 1. An orthogonal operator L which
preserves the stationary mean leaves invariant all spheres centered in mo1 € R¥.
Indeed L(mg1) = mg1and || Lx|* = | x| so

ILx —mol|*> = | L(x —moD)||* = |lx — mol||?.

If S(m1, r) is asphere centered in m1 of radius r then R = U, ryerxr+S(m1,r).
So for any measurable set #

po[L™ Al = o[ LA N Uy pyerxr+S(m1, 7))
= /LO[ Um.r)eRxR+ L_l(‘A’ N S(ml, r))]
= o[ Ugn,ryerxr+ A N S(ml,r)] = po[A],

so L is a symmetry of . O

E. Proof of Theorem 3.7

E.1. Proof of Part (i). Let us first show how the strict saddle condition (33) implies
that the minimisation & (x) has no poor local minima. The statement follows directly
from [31], which shows that when the saddle points are strict, gradient descent does
not converge to those saddle points, up to a set of initialization values with Lebesgue
measure 0. Observe first that k, < 1! ensures that ¢,(x) = x — nVE(x) is a
diffeomorphism for each n. Observe also that a critical point x such that VE(x) =
J®4(x)T (®4(x)—y) = 0 necessarily falls into two categories. Either ®4(x) = y,
which implies that x is a global optimum, or x is such that J®;(x)Tv = 0 with
v =P (x) — y # 0. We verify that assumption (33) implies that in that case x is a
strict saddle point by observing that the Hessian of E satisfies

K
VZE(x) = ) VZOr(x)vx + JO(x)T JO(x).
k=1
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Since g is absolutely continuous with respect to the Lebesgue measure, we can
apply Theorem 2.1 from [38], and establish that gradient descent does not converge
to any saddle point with probability 1.

Let us now prove that the hypothesis that |J®4(x)| > 0 for x € CDgl(y) with
y € ®g(R%)°, together with the strict saddle condition, implies that the gradient
descent sequence X, has a limit lim, . x, (that may depend upon x¢). For that, we
will apply the following result from [1]:

Theorem E.1. If E(x) is twice differentiable, has compact sub-level sets, and the
Hessian V2 E(x) is non-degenerate on the normal space to the level set of local
minimisers, then x,, has a limit, denoted Xo := lim,_ o0 X5.

Indeed, since @, satisfies assumption (B), it follows that the sub-level sets of E,
{x; E(x) < t} are compact for each z. We need to show that the Hessian of E is
non-degenerate on the normal space of <I>;1(y). Since y4 > 0 for y € ®z(R%)°
for sufficiently large d from Theorem 3.1, CD;I (y) has positive d — K-dimensional
Hausdorff measure, hence it is sufficient to show that V2 E(x) has K strictly positive
eigenvalues when x € ®~!(y). But by definition,

VZE(x) = ) V2r(x)(hr (x) — yi) + T Pa ()" Ty (x)
k<K

thus
VZE(x) = JO,(x)T J®4(x) for x € @' (y). (82)

Therefore, if |J P (x)| > 0 for x € CD;l(y), we can apply Theorem E.1, and
conclude that the iterates x, from gradient descent have a limit, for each x¢ ~ .
We have just proved that

PMO{(xn)n is Cauchy} =1,

or, equivalently, that X, ~ pu, is almost surely Cauchy, which implies [42]
that p, converges almost surely to a certain measure [oo. Moreover, since
lim, 00 |VE (x5)] = 0, the strict saddle condition implies that x,, does not converge
to saddle points, so we conclude that necessarily

poo[ @7 (1] = Puo{ lim xu € @' (y)} = 1.

therefore that o, is supported in the microcanonical ensemble fbgl(y), which
finishes the proof. O]

E.2. Proof of Part (ii). We first compute how the entropy is modified at each gradient
step. By definition of the pushforward measure, for any diffeomorphism ¢ and any
measurable g

Exnpuug(x) = Ex~png(p(x)).
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Also, from a change of variables we have, by denoting & = @uu, H(x) =
|70~ (x) (e~ (x)) . and thus

log fi(x) = log ju(p ™" (x)) —log [ Jo(p ™' (1)) ]
It follows that
—Ex~plogji(x) = —Ex~y logu(x) + Ex~y log [Jo(x)]

and hence

H(pgp) = H(u) —Ey log|Jo(x)]. (83)

The change in entropy by applying the diffeomorphism is thus given by the term
E, log|J¢(x)|, and thus the entropy of u, is given by

H(ptn) = H(juo) — ) By, log | Jpn(x)]

n’'<n

By definition, the Jacobian of ¢, is

Jon) = 1= X V0eC00u6) ~ ) + 70 T0a()) . (59

k<K
We know that ® is Lipschitz, which implies that ||J®(x)|| < B, and that V&

is also Lipschitz, meaning that | V2@ (x)|| < n for all k. Applying the Cauchy—
Schwartz inequality, it follows that

” > V2 () (e (x) — yk)H <nKE(x).

k<K

We abuse notation and redefine n := nK since K is a constant. Also, the term
J®(x)T J®(x) is of rank at most K. We can thus write Jg, (x) as

Jon(x) = An(x) + Bp(x), (85)
with A, (x) full rank d and with singular values within the interval

(1 —YnV EX), 1+ yunvy E(x));

and — B, (x) positive semidefinite of rank K, with singular values bounded by y, 2.
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It follows that the singular values of J¢, (x), called A1, ..., Ay, satisfy

d
|log | T@n(x)|| < D |log A;]

i=1
d—K
< > max (|log(1 + yanvE@)|. [log (1 — yanVEX))|)
i=1 X
+ > log(1 = ya )|
i=1

< (d — K)log (1 + yanyvE(x)) + Klog(1 + yu ) + o(y;)

and thus up to second order terms we have

Ep, log [ Jon(x)] < (d — K)log (1 + yunE ., v E(x)) + K log(1 + yaB?),
< (d — K)ynnE, vVE(x) + Kyn . (86)

where we have used Jensen’s inequality on the concave function log(1 + x) and
log(1 + x) < x for x > 0 to obtain the inequality E log(1 + X) < log(l + EX).
Denoting by r, = E,,,, / E(x) the average distance to the microcanonical ensemble
at iteration n, it results from (86) that after n steps of gradient descent the entropy
rate has decreased at most

(1 —g)n > ywrw + gﬂz > yw . O

n'<n n’'<n

F. Proof of Corollary 3.8

The proof is a direct application of Theorem 3.7 and Sard’s theorem, that states
that if ®; is a C° Lipschitz function, then the image of its critical points
{x; |J®4(x)| =0} has zero measure. We can thus apply Theorem E.1 from Part (ii)
of the proof of Theorem 3.7 for almost every y. 0

G. Proof of Theorem 3.9

We show that ®4(x) = {d'||x » hg||3}x satisfies the strict saddle condition.
Here x € R?, and we recall that the Fourier transform is defined as X(w) =
Zux(u)e_iw“Z”/d, with w € (—d/2,d/2]. The gradient of the loss function
E(x) = 3l|d(x) — y||* is

VE(x) = J4(x)" (®a(x) = y),
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and its Hessian is

VZE() = ) V(v + T @a(x) T @a ().
k

where vy = ¢r(x) — yr. Expressing the gradient and the Hessian in the Fourier
domain yields

VER) =% - (kau?kﬁ) (87)
k

VZE®)(@.0) =Y vilhi(@)28(0 — o) + £(@) i (@) £ |7 @)
k
(88)

The Hessian thus contains a diagonal term and a rank-K term. We need to show that
a critical point x satisfying V E(X) = 0 with ||v|| > 0 has a Hessian matrix with at
least one negative eigenvalue. From (87), it follows that a critical point satisfies

Vo x(w)-(zvkmk(w)ﬁ) —0. (89)
k

Let C = {w ; X(w) # 0}. The Hessian is expressed in terms of block matrices
regrouping the frequencies in C as

VzE()?):(M S )
0| Véc

where M is the diagonal matrix of size (d —|C|) x (d —|C|) given by the frequencies
outside C, such that X(w) = O:

Moo =Y vilhi(@)?. o ¢ C.
k

We examine the diagonal block corresponding to M. The image of @ is the convex
cone € in RX determined by the directions 0, = (|21 (w)[%.. .., |hx(w;)|?) € RX,
o =1,...,d. Without loss of generality, we assume here that |o,| > 0 for all w,
since frequencies that are invisible to all the filters do not play any role in the gradient
descent. The target y is by hypothesis in the interior of €. Further, any two directions
0,0’ in € satisfy

(0.0') = > |he(@)P|he (@) > 0,
k

since the filters have compact spatial support.
If C is empty, then x = 0, which implies that v = ®(x) — y = —y has all its
entries negative, and therefore diag(}"; vk |hx(w)|?) < 0. We shall thus assume in
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the following that C is non-empty. Similarly, we verify that the space spanned by
04, w € C, cannot have full rank K. Indeed, if this was the case, the first order
optimality condition (89) reveals that v should be orthogonal to all directions 0,
w € C. Since this system has rank K, this contradicts the fact that v # 0.

We can thus write € as generated by directions Oc = {o0,;0 € C} and
O = {0w:w ¢ C}, with |Og| > 0, |Oc| > 0. Since y is in the interior, it follows
that

Y=Y Buowt Y Yw0w: PoYo >0V w. (90)

weC w¢C

We need to show that there exists at least one w ¢ C such that (v, 0,) < 0. Suppose
otherwise, i.e. that for all w ¢ C, (®4(x),0,) > (y,04). Since 0o, € Oc =

(®g(x),00) = (y,04) by the first order critical conditions, we have

(y,y) = Zlgw(oa)vY>+ ZVa)(Ow’y>

weC w¢C
< D Bulow Pa(¥) + Y Ve (0w, Pa(x)) . o1)
weC w¢C

On the other hand, from (90) we also have

(3. Pa()) = D Bol0w. (X)) + Y Vlow. Pa(x)), (92)

weC w¢C

and since ®(x) = ) cc Xw0o is a linear combination of vectors in Og, we also
have (®(x), y) = (P(x), P(x)). This implies from (91) that

(y.y) = (. @a(x)) = (Pg(x), Py (x)) . (93)

which leads to y = ®(x) and therefore v = 0, which is a contradiction.
Finally, if x € Cbgl(y) for y € ®4(R?)°, then y falls necessarily inside the

convex hull of €, which implies that {V¢ (x) = X(®) - |Ek |*(w)}k <k have rank K.
This concludes the proof. O

H. Proof of Proposition 4.1

If y = 0 then (39) proves that

log, d

B+ DD lx* vyl

j’=1 4

2
X1z = llx * ¥7.0
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If J = log, d then Yy o(u) = d '1a, and x * Y o(u) is the average of x over Ag4.
We thus get

log, d
2
113 = d= (3 x@) + 3 Dl w vyl (94)
u j’=1 q
Replacing x by |x * /4| gives
log, d
v * ¥jql3 = d 7 x x Yigli + D Dl x Vgl * ¥jrgr I3
j’=1 4

We finally prove (47) by decomposing each term |||x * ¥ 4| * ¥ o ||3 into an I!
norm plus a sum of I? norms, obtained replacing x by |[x * ¥ 4| * ¥ j7 o/| in (94). O

1. Proof of Theorem 5.1

Let us first prove property (i). Young’s inequality is proved by observing that

s gl = D2 | 30 %G wjgtn—u)

neAy ucly

< Y > ) g —wl = llxlh 1]

neAguely

1-

The inequality is an equality if and only if for any fixed n, the product x (u) ¥ ; 4 (n—u)
has a constant phase when u varies. Since x(u) is real, its phase is either 0 or 7. It
implies that ¥ ,(n — u) has a phase modulo = which does not depend upon u when
x(u)Y¥jq(n—u) # 0andhence x(u) # 0. Since the phase of V is ¢(§.u), the phase
of Yjq(u) = 275927 r . u) is (277 §g.u) with § = rgé so

YueAg, (277 6.(n—u)) = a2/ n) +kmwif x(u) Y q(n—u) # Owithk € Z.
(95)
Since ¢ is bi-Lipschitz, there exists 8 > 0 such that

Bl a—d'| < lgga) — ¢q(a)| < Bla—a'|. (96)

Since ¥4 (0) # 0 and ¥, is continuous, there exists o > 0 such that |y, (u)| > 0 for
u € [—a, ]t 277 |u—u'| <2 thenforn = (u+u')/2 wehave 2~/ |n —u| < «
and 27/ |n —u'| <a,s0 Y (n—u) #0and ¥ ,(n—u’) # 0. If the inner product
&,.(u — u’) is not zero then (96) implies that

(277 E1.(n =) — g (27 &g (n =) | > 0.
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Soif x (1) and x (u’) are non-zero (95) implies that

(78100 =) — 927y (1 =) | =

It follows from (96) that if 27/ |u — u’| < 2o then

27T Bleg.(u —1)| = .

which proves |£,.(u — u’)| > C 27 for C = min(zB7!, 2a|,|), and hence Part (i).

Let us now prove property (ii). Since v/, has a compact support it is included
in[—y, y]Z for y large enough. Since the support of x are points of distance at least A
it results that for any n € Z¢ and 2/ < A y~!, the product x(u)y jq(n —u)is
non-zero for at most one u € Z*. It results that

s gl = 30 | D2 ) yialn = w)
neAg uelhy
=D > @I Wi —w] =[x gl -
neAg uelhy
The hypothesis (60) implies that ||x'||; = |[|x" * ¥, 4]l for all ¢ < O and

2/ < A min(1,y~1). Applying Theorem 5.1 for 2/ > 27'A min(1, y~!) proves
that x"(«) and x’(u’) are non-zero only for all ¢ < Q we have §,.(u —u’) = 0
or [&.(u —u')| = C" A, where C’ does not depend upon x and x’.

Since the {£,},<0 are Q > { different rotations of a non-zero £ € R, they define
a frame of R, It results that there exists A and B such that for any v € R*

Al <> ugl < By (97)

q<0

This inequality applied to v = u — u’ # 0 proves that there exists ¢ < Q such that
&;.(u —u’) # 0. If x(u) # 0and x(u) # 0 then we proved that if &;,.(u —u’) # 0
then [§,.(u—u’)| > C’ A. The frame inequality (97) implies that [u—u'| > B~ C' A
which shows that any two points in the support of x” have a distance at least C A
with C = C'B™!.
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