
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Distributed Graph Routing and Scheduling for
Industrial Wireless Sensor-Actuator Networks

Junyang Shi, Student Member, IEEE, Mo Sha , Member, IEEE, and Zhicheng Yang

Abstract— Wireless sensor-actuator networks (WSANs) tech-
nology is appealing for use in the industrial Internet of
Things (IoT) applications because it does not require wired
infrastructure. Battery-powered wireless modules easily and inex-
pensively retrofit existing sensors and actuators in the industrial
facilities without running cabling for communication and power.
The IEEE 802.15.4-based WSANs operate at low-power and can
be manufactured inexpensively, which makes them ideal where
battery lifetime and costs are important. Almost, a decade of real-
world deployments of WirelessHART standard has demonstrated
the feasibility of using its core techniques including reliable graph
routing and time slotted channel hopping (TSCH) to achieve
reliable low-power wireless communication in the industrial
facilities. Today, we are facing the fourth Industrial Revolution as
proclaimed by political statements related to the Industry 4.0 Ini-
tiative of the German Government. There exists an emerging
demand for deploying a large number of field devices in an indus-
trial facility and connecting them through the WSAN. However,
a major limitation of current WSAN standards is their limited
scalability due to their centralized routing and scheduling that
enhance the predictability and visibility of network operations
at the cost of scalability. This paper decentralizes the network
management in WirelessHART and presents the first Distributed
Graph routing and autonomous Scheduling (DiGS) solution that
allows the field devices to compute their own graph routes
and transmission schedules. The experimental results from two
physical testbeds and a simulation study shows our approaches
can significantly improve the network reliability, latency, and
energy efficiency under dynamics.

Index Terms— Wireless sensor-actuator networks, Industrial
Internet of Things, graph routing, transmission scheduling.

I. INTRODUCTION

THE Internet of Things (IoT) refers to a broad vision
whereby things such as everyday objects, places, and

environments are interconnected with one another via the
Internet [1]. Until recently, most of the IoT infrastructure and
applications development work by businesses have focused
on smart homes and wearables. However, it is “production
and manufacturing” cyber-physical system (CPS), underlying
the 4th generation of industrial revolution (or Industry 4.0),
that presents one of the largest economic impact potential
of IoT [2] – up to $47 trillion in added value globally by

Manuscript received September 21, 2018; revised April 5, 2019 and
June 11, 2019; accepted June 24, 2019; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor G. Paschos. This work was supported by the
NSF under Grant CRII-1657275 (NeTS). (Corresponding author: Mo Sha.)

J. Shi and M. Sha are with the Department of Computer Science, State
University of New York at Binghamton, Binghamton, NY 13902 USA
(e-mail: jshi28@binghamton.edu; msha@binghamton.edu).

Z. Yang is with the Department of Computer Science, University of
California, Davis, CA 95616 USA (e-mail: zcyang@ucdavis.edu).

Digital Object Identifier 10.1109/TNET.2019.2925816

2025 (according to McKinsey’s report on future disruptive
technologies) [3].

Industrial networks, the underlying support of Industrial
IoT (IIoT), typically connect hundreds or thousands of sensors
and actuators in industrial facilities, such as steel mills, oil
refineries, chemical plants, and infrastructures implement-
ing complex monitoring and control processes. Although
the typical process applications have low data rates, they
pose unique challenges because of their critical demands
for reliable and real-time communication in harsh industrial
environments. Failing to achieve such performance can lead
to production inefficiency, safety threats, and financial loss.
These requirements have been traditionally met by specifically
chosen wired solutions, e.g., Highway Addressable Remote
Transducer (HART) [4], where cables connect sensors and
forward sensor readings to a control room where a controller
sends commands to actuators. However, wired networks are
often costly to deploy and maintain in industrial environments
and difficult to reconfigure to accommodate new production
process requirements.

Wireless sensor-actuator networks (WSANs) technology is
appealing for use in industrial process applications because it
does not require wired infrastructure. Battery-powered wire-
less modules easily and inexpensively retrofit existing sensors
and actuators in industrial facilities without running cabling
for communication and power. IEEE 802.15.4-based WSANs
operate at low-power and can be manufactured inexpensively,
which makes them ideal where battery lifetime and costs
are important. Almost a decade of real-world deployments of
WirelessHART standard [5] has demonstrated the feasibility of
using its core techniques including reliable graph routing and
Time Slotted Channel Hopping (TSCH) to achieve reliable
low-power wireless communication in industrial facilities.
Under graph routing, a packet is scheduled to reach its desti-
nation through multiple redundant paths to enhanced end-to-
end reliability. TSCH requires that all devices in the network
are time synchronized and hop channels to exploit frequency
diversity.

Today we are facing the 4th Industrial Revolution as
proclaimed by political statements related to the Industry
4.0 Initiative of the German Government [6]. There exists
an emerging demand for deploying a large number of field
devices in an industrial facility, e.g., hundreds of devices over
an oil field, and connecting them through a WSAN. However,
a major limitation of current WSAN standards such as Wire-
lessHART is their limited scalability due to their centralized
routing and scheduling that enhance the predictability and
visibility of network operations at the cost of scalability. For
instance, when encountering network dynamics (e.g., node

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2701-0159

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

or link failure, topology change), the centralized Network
Manager (a software module) in a WirelessHART network
has to regenerate the routes and transmission schedule and
then distribute them to all devices, introducing long delay and
large overhead.

Recently, there has been an increasing interest in developing
new distributed scheduling approaches, which run on top
of the distributed routing protocols developed for wireless
sensor networks (WSNs), such as the Collection Tree Protocol
(CTP) [7] and the IPv6 Routing Protocol for Low-Power and
Lossy Networks (RPL) [8], to replace the centralized routing
and scheduling in industrial WSANs. For instance, the IETF
created the 6TiSCH working group to standardize how to
use an IPv6-enabled upper stack on top of IEEE 802.15.4e
TSCH networks [9]. Duquennoy et al. developed the Orchestra
that allows nodes in the RPL networks to compute their
own schedules [10]. Unfortunately, the stringent reliability and
real-time requirements of industrial applications distinguish
traditional WSNs from industrial WSANs, that packet lost
must become an exception and redundant routes between a
source and a destination are essential to meet with guaranteed
service. Our study shows that the networks relying on the tree-
based routing suffer long repair time and insufficient reliability
when encountering external interference and node failure.

This paper aims to address the abovementioned scalability
and reliability challenges; to our knowledge, it represents
the first Distributed Graph routing and autonomous Schedul-

ing (DiGS) solution that allows the field devices to compute
their own graph routes and transmission schedules in a dis-
tributed fashion. Specifically, this paper makes the following
contributions:

• We develop a distributed routing protocol that gen-
erates and operates with graph routes by extending
RPL, the routing protocol for low-power IPv6 networks
standardized by the IETF ROLL working group, with
minimal changes;

• We design two autonomous scheduling approaches that
allow the field devices to compute their own transmission
schedule autonomously based on the graph routes; the
first approach provides shorter end-to-end latency, while
the later completely eliminates the scheduling conflicts
among different types of traffic;

• We implement our proposed solution and evaluate it on
two physical testbeds located in different cities as well
as a simulator. Experimental results show our approaches
can significantly improve the network reliability and
latency under dynamics.

The remainder of the paper is organized as follows.
Section II reviews related work and Section III introduces the
background of WirelessHART networks. Section IV presents
our empirical study and Sections V and VI describe the
design of DiGS. Section VII introduces our conflict deferral
scheduling approach. Section VIII presents the evaluation and
Section IX concludes the paper.

II. RELATED WORKS

Routing for wireless mesh networks and WSNs have been
studied extensively in the literature. CTP is a routing protocol
that computes anycast routes to a single or a small number of

designated sinks in a wireless sensor networkt [7]. CTP has
been used in research, teaching, and in commercial products.
Experiences with CTP have also informed the design of
RPL [8]. However, both CTP and RPL are tree-based routing
protocols and cannot generate graph routes which are specified
in WirelessHART to achieve high reliability. Thus, they are
not suitable for those mission-critical industrial applications,
where packet lost must become an exception. In contrast,
multipath routing protocols (e.g., [11]–[15]) are proposed to
enhance reliability by providing a few either node-disjoint or
link-disjoint paths between source and destination. There also
exist RPL based multipath routing protocols (e.g, [16]–[20]),
which are designed to balance the traffic load and energy
consumption among nodes in the network. Comparing to these
protocols, the graph routing specified in WirelessHART is
designed to achieve high reliability by providing a high degree
of routing redundancy to the TSCH networks. Its real-world
deployments during the last decade have demonstrated the
feasibility of achieving reliable low-power wireless communi-
cation in industrial facilities. Han et al. [21] and Wu et al. [22]
developed two algorithms to generate graph routes in a cen-
tralized fashion, while Modekurthy et al. proposed to use the
Bellman-Ford algorithm to generate the graph routes [23] in a
distributed fashion. Comparing to these efforts, we developed
the first RPL-based distributed routing protocol that generates
and operates with graph routes. More important, we devel-
oped two transmission scheduling approaches, which run on
top of our proposed routing protocol, providing a complete
networking solution.

There has been increasing interest in studying transmission
scheduling for time-critical process monitoring and control
applications over WirelessHART networks [24]–[27]. All these
scheduling solutions designed to work with graph routing are
centralized solutions which are designed to run on the central-
ized Network Manager. There also exists research on develop-
ing distributed scheduling for RPL networks [10], [27]–[32].
For instance, Duquennoy et al. developed the Orchestra that
allows nodes in the RPL networks to compute their own
schedules [10]. The IETF created the 6TiSCH working group
to standardize how to use an IPv6-enabled upper stack on top
of IEEE 802.15.4e TSCH networks [9]. However, our study
shows that the network running RPL suffers long repair time
and unsatisfactory reliability when encountering external inter-
ference and node failure. Another recent research direction is
synchronous transmissions [33]–[37]. However, synchronous
transmissions always require a centralized node to manage the
synchronous transmissions. In contrast to the existing work,
this paper presents the first autonomous scheduling approach
that allows the field devices to compute their own schedule
autonomously based on the graph routes.

III. BACKGROUND OF WIRELESSHART NETWORKS

A WirelessHART network consists of a gateway, multiple
access points, and a set of field devices (i.e., sensors and actua-
tors) forming a multi-hop mesh network. The access points and
field devices are equipped with half-duplex omnidirectional
radio transceivers compatible with the IEEE 802.15.4 physical
layer [38]. The multiple access points are wired to the gateway
and provide redundant paths between the wireless network and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: DISTRIBUTED GRAPH ROUTING AND SCHEDULING FOR INDUSTRIAL WSANs 3

Fig. 1. A graph routing example. The solid lines represent the primary paths
and the dashed lines represent the backup paths.

the gateway. A WirelessHART network is managed by a cen-
tralized Network Manager. The Network Manager, a software
module running on the gateway, is responsible for collecting
the topology information from the devices, determining the
routes and transmission schedule of the network, and dissem-
inating them to all devices. WirelessHART adopts the central-
ized routing and scheduling that enhance the predictability and
visibility of network operations at the cost of scalability. When
encountering dynamics (e.g., node or link failure, topology
change), the Network Manager must regenerate the routes and
transmission schedule and then distribute them to all devices,
which introduce long delay and large overhead. To address this
problem, our work is to develop a distributed graph routing
and autonomous scheduling to enhance the scalability of the
network.

Graph Routing: WirelessHART adopts graph routing to
enhance end-to-end reliability by taking advantage of the route
diversity. Graph routing involves a routing graph consisting of
a directed list of paths between the field devices and access
points. Graph routing consists of a single primary path and
a backup path for each node. As illustrated in Figure 1,
the packet may take backup routes (through node C, D, or E)
to reach the access points (AP1 and AP2) if the links on
the primary path (through nodes A and B) fail to deliver a
packet. The graph routing specified by WirelessHART requires
each node to have at least two outgoing paths. Based on the
graph routes, the Network Manager allocates the time slots
and channels to the devices to assure the packet deliveries.

TSCH MAC and Transmission Scheduling: TSCH technol-
ogy inherits from WirelessHART and has been implemented
as a MAC protocol, and was introduced as part of the IEEE
802.15.4e standard in 2012 for the industrial process control
and automation [39]. WirelessHART employs the TSCH MAC
that offers deterministic and collision-free communication.
Based on TSCH MAC, all nodes need to be globally time
synchronized by exchanging the Enhanced Beacons (EBs) and
the time synchronization trickles from the access points to
the leaf nodes. Time is divided into 10 ms time slots, which
are long enough for packet transmission and its acknowledg-
ment (ACK); several time slots are grouped into one slotframe
which appears periodically in every node. A TSCH schedule
determines a node what to do in each time slot: transmit,
receive, or sleep, and a time slot can either be dedicated or
shared. In a dedicated slot, only one transmission is allowed in
each channel which is fully contention free, while in a shared
slot, two or more senders compete for a transmission in a
CSMA/CA fashion. According to the time slot offset in one
slotframe, the TSCH scheduling entity (Network Manager in
WirelessHART) can determine whether to transmit a packet,

Fig. 2. Time consumed by the Network Manager in WirelessHART to update
routes and transmission schedule.

receive a packet, or synchronize nodes to global time, etc.
With our solution, the network no longer needs a centralized
Network Manager to determine the functionality of every time
slot. Each node computes its own primary and backup paths
toward its destination based on its local topology information
and the transmission schedule is automatically determined and
updated once the network topology changes.

IV. EMPIRICAL STUDY

In this section, we present our empirical studies on the
impact of interference and node failure on the performance
of state of the art WSAN solutions (i.e., WirelessHART1

and Orchestra2). Our empirical studies are conducted on two
physical testbeds located in different cities: (1) Testbed A

consisting of 50 TelosB motes [42] deployed in the second
floor of a building in the campus of the State University
of New York at Binghamton and (2) Testbed B featuring
44 TelosB motes spanning two floors of a building in the
campus of Washington University in St. Louis. To study
the impact at different scales, we perform the measurement
using four network topologies of different sizes and locations:
(1) Half Testbed A with 20 nodes; (2) Full Testbed A with
50 nodes; (3) Half Testbed B with 19 nodes in one floor;
and (4) Full Testbed B with 44 nodes spanning two floors.
We use graph routing and the rate monotonic scheduling [43]
to generate transmission schedules. We set up six data flows
for full Testbed A and B and three data flows for half Testbed
A and B with different sources, destinations, and data periods.
The data period of each data flow is selected within the range
of 20∼7 seconds. Priorities are assigned inversely to the period
of each data flow, giving higher priority to data flows with
shorter periods.

Figure 2 shows the time consumed by the Network Manager
in WirelessHART to collect topology information, regenerate
the routes and transmission schedule, and disseminate them
to all devices triggered by the events such as network topol-
ogy changes and node/link failure. As showed in Figure 2,
the Network Manager, running on a Dell Linux laptop with
a 2.8 GHz Intel Core E3-1505M, spends 203s and 506s for
Half Testbed A and Full Testbed A and 191s and 443s for
Half Testbed B and Full Testbed B on reacting to network
dynamics. These results illustrate the centralized routing and
scheduling adopted by WirelessHART are insufficient for fast
response to network dynamics since the network during the
update has to operate under compromised routes and schedule
leading to degraded performance.

1We use the WirelessHART implementation provided by Li et al. in our
experiments. The implementation is publicly accessible [40].

2We use the Orchestra implementation provided by Duquennoy et al. The
implementation is publicly accessible [41]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. CDF of repair time when the network encounters interference.

Fig. 4. PDR during the repair when the network encounters interference
with different number of jammers.

Orchestra runs on top of RPL and schedules the transmis-
sions in a distributed fashion. Figure 3 shows the cumula-
tive distribution function (CDF) of the repair time used by
Orchestra to update routes and transmission schedule when the
network encounters the controlled interference generated by
1∼4 jammers running JamLab [44]. We repeat the experiments
three times under each setting. The network repair time ranges
from 20s to 95s (median: 45s) when the jammers generate
signals emulating WiFi data streaming traffic.3 We use the end-
to-end packet delivery rate (PDR) as the metric for network
reliability. The PDR of a data flow is defined as the percentage
of packets that are successfully delivered to their destination.
Figure 4 shows the PDRs of 8 data flows during the repair
when 1∼4 jammers are present in the network. Low median
PDRs (0.9, 0.87, 0.845, and 0.825) and large variations are
observed in Figure 4. We observe similar results when using
JamLab to generate jamming signals emulating Bluetooth.
Orchestra requires much shorter repair time compared to
WirelessHART and achieves high averaged delivery rates
in clean environments [10], making it a good networking
solution for many real-time applications. However, the repair
time is still too long and its performance when encountering
interference needs to be enhanced for those reliability-critical
industrial WSANs that packet lost must become an exception
to meet with guaranteed service. Our work is therefore an
alternative approach that is complementary to Orchestra for
reliability-critical industrial WSANs and further enhances the
network reliability under network dynamics by developing
new distributed graph routing and autonomous scheduling
approaches.

V. DISTRIBUTED GRAPH ROUTING

In this section, we first describe some terminologies and
then introduce our distributed graph routing protocol that
generates and operates with graph routes. Our protocol is
extended from RPL [8], which is an oriented distance-vector
routing protocol developed for low-power IPv6 networks and
standardized by the IETF ROLL working group. Under RPL,

3Co-existence of WSAN devices and WiFi is common in industrial deploy-
ments since WiFi is often used as backhauls to connect multiple WSANs.

nodes are organized in a Destination-Oriented DAG (DODAG)
structure and the DODAG is rooted at the border router node
(Internet access point). Each node is attached a rank, i.e., its
distance to the root using a cost function (e.g., the expected
transmission count (ETX) metric), and sends a packet towards
the root by forwarding it to a neighbor node with a smaller
rank. The routes generated by RPL are not graph routes since
each node only has a single preferred parent in the parent set to
which it sends packets. It is to be noted that RPL also allows to
use multiple parents if those parents are equally preferred and
have identical rank, while our protocol assigns two preferred
parents to each node as default routes and builds the routing
graph following the specification of WirelessHART.4

Directed Acyclic Graph (DAG): In a DAG, all links are
oriented in such a way that no cycle exists. All links selected
for routing orient toward or terminate at the access points.
Basically the DAG begins at the leaf nodes and ends at
the access points which can ensure messages to be safely
delivered to the destination without any cycle. The graph
routes generated by our protocol form a DAG.

Best Parent and Second Best Parent: Each node has a best
parent and a second best parent. The best parent locates on
the primary path from the node to the access points with the
smallest accumulated ETX. The path through the second best
parent has the second smallest accumulated ETX and serves
as a backup route.

Rank: Each node has a rank. All access points set their
ranks to 1 and a field device sets its rank by increasing its
best parent’s rank by 1.

Weighted ETX: The weighted ETX (ETXw) of a node is
a cost function quantifying the distance to the access points
through two routes:

ETXw = ω1 ∗ ETXabp + ω2 ∗ ETXasbp (1)

where ETXabp is the accumulated ETX to the access point
through the best parent and ETXasbp is the accumulated ETX
through the second best parent. ω1 and ω2 are two weighting
factors defined as:

ω1 = 1 − (1 − 1/ETXbp)
2 (2)

ω2 = (1 − 1/ETXbp)
2 (3)

where ETXbp denotes the ETX between the node and its best
parent. According to WirelessHART, the transmission and first
retransmission of a packet are scheduled through the primary
route, while the second retransmission is scheduled through
the backup route. Therefore, ω1 represents the probability of
a successful packet delivery during the first two transmission
attempts and ω2 represents the probability of the first two
attempts fail.

Join-in Message: All nodes in the network broadcast the
join-in messages periodically allowing new nodes to join the
network. The join-in message contains the rank and ETXw

of the node.
Joined-callback Message: Once a node selects its best or

second best parent, it sends a joined-callback message to the
selected node to inform the selection.

4In this paper, we focus on illustrating the generation of the uplink graph
(from the field devices to the access points). Other graphs such as downlink
graph and broadcast graph can be generated following the same method.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: DISTRIBUTED GRAPH ROUTING AND SCHEDULING FOR INDUSTRIAL WSANs 5

Algorithm 1 Distributed Graph Routing Algorithm

//Table I shows the notations

Input : RootID, NodeID

Output: RouteTable

RouteTable ← NULL;

ETXw(NodeID) = Rank(NodeID) = ∞;

if NodeID == RootID then
//access point

Set Rank = 1 and ETXw = 0;

Broadcast join-in messages;
end

if Rank(NodeID) == ∞ and NodeID! = RootID
then

//field device receives the first join-in message from i
Set

ETXa(NodeID, i) = ETX(NodeID, i)+ETXw(i);
Set message sender as its best parent;

Set ETXmin = ETXa(NodeID, i);
Set Rank(NodeID) = Rank(i) + 1;

Send joined-callback messaget;
end

if Rank(NodeID)! = ∞ and NodeID! = RootID
then

//field device receives the non-first join-in message

from i
Set ETXa(NodeID, i) = ETX(NodeID, i) +
ETXw(i);
if ETXa(NodeID, i) < ETXmin then

Set its best parent as the second best parent;

Set message sender as its best parent;

Set ETXmin = ETXa(NodeID, i)
Set Rank(NodeID) = Rank(i) + 1;

Send joined-callback message;
end

if ETXa(NodeID, secondbestparent) >
ETXa(NodeID, i) >= ETXmin and

Rank(i) < Rank(NodeID) then
Set message sender as second best parent;

Send joined-callback message;
end

ETXw(NodeID) =
ω1 ∗ ETXa(NodeID, bestparent) + ω2 ∗
ETXa(NodeID, secondbestparent);
Broadcast join-in message;

end

if Receive joined-callback message then
Update RouteTable and add the message sender as a

child;
end

Our distributed graph routing algorithm is presented in
Algorithm 1 which runs on the access points and field devices
to construct the routing graph towards the access points. When
a network starts, all access points initialize their rank to 1
and ETXw to 0 and then begin to broadcast the join-in
messages. The rest nodes set their rank and ETXw to infinity.
When a node receives the join-in messages from other nodes,
it selects its best parent and second best parent based on the

TABLE I

NOTATIONS USED IN ALGORITHM 1

Fig. 5. Example of the route generation.

accumulated ETX values and then sets its rank by increasing
its best parent’s rank by 1. After joining the network, the node
begins to broadcast the join-in messages.

The routing graph building procedure begins from the access
points until reaching all leaf nodes. Each node selects its
best and second best parents, as required by WirelessHART,
towards the access points according to the accumulated ETX
values. It is important to note that the initialized ETX
between two nodes are determined by the Received Signal
Strength (RSS). We empirically set RSSmin = −90dBm
and RSSmax = −60dBm. If the RSS value is larger than
−60 dBm, the ETX is set to 1. If the RSS value is smaller than
−90 dBm, the ETX is set to 3. The ETX in between is scaled
proportionally between 1 and 3. The ETX value gets penalized
if a transmission error occurs (e.g., no ACK), as Eq. 4 shows.

ETX = ETXold ∗ α + P ∗ (1 − α) (4)

where ETXold is the ETX value before apply the penalty, P is
the penalty coefficient, and α is a weighting factor ranging
between 0 and 1. We use the values suggested by RPL for P
and α, where α equals to 10% and P equals to 16. A node
runs the Algorithm 1 when it receives a join-in message. The
Trickle algorithm [45] is used to control the generation of
the join-in messages. A timer varying from Imin to Imax is
used to control the internal between two consecutive join-in
messages. Specifically, the Trickle algorithm uses Imin as the
first interval and then doubles the size of the interval until
it reaches Imax. If a node detects a change of its own best
parent or second best parent, it resets its Trickle timer to
Imin to quickly update its ETXw and rank to its neighbors.
The Trickle algorithm dynamically scales the interval length
to enable fast yet low cost updates on ETXw and rank.

A. Routing Example

Figure 5 shows an example with two access points and
four field devices. The dash lines in Figure 5(a) denotes

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

the links with the ETX values. When the network starts,
AP1 and AP2 broadcast their rank and ETXw. #5 selects
AP1 as its best parent and AP2 as its second best parent since
ETXa(5, AP1) is smaller than ETXa(5, AP2). Similarly,
#6 selects AP2 as its best parent and AP1 as its second
best parent. Both #5 and #6 set their ranks to 2 and begin
to broadcast the join-in messages. The link between #5 and
#6 is not selected for routing since #5 and #6 have the same
rank. This design is used to avoid loops. #4 selects #6 as its
best parent since ETXa(4, 6) has the smallest value and sets
its rank to 3. #3 compares ETXa(3, 4) with ETXa(3, 5) to
determine the best and second best parents. Figure 5(b) shows
the generated graph routes. The solid lines represents the
primary paths (#3→#4→#6→AP2 and #5→AP1) and the dash
lines represents the backup routes (#3→#5, #4→#5, #5→AP2,
and #6→AP1).

VI. AUTONOMOUS SCHEDULING

In this section, we introduce our autonomous transmission
scheduling approach that allows the field devices to com-
pute their own transmission schedule autonomously based on
the graph routing presented in Sections V. Our scheduling
approach has the salient feature that requires no schedule
negotiation or sharing among neighboring nodes, which sig-
nificantly reduces the communication overhead.

Following the suggestion in Orchestra, we separate the
network traffic into three types: synchronization traffic, routing
traffic, and application traffic. The EBs are used for time
synchronization thus belong to the synchronization traffic. The
join-in and joined-callback messages used to select parents are
part of the routing traffic. The packets containing application
data belong to the application traffic. Three slotframes with
different periods are designed to carry different types of traffic.
The synchronization slotframe period is determined by the
time drift of the device’s clock. The routing slotframe period
is determined by the intervals of routing updates which are
required by the routing protocol. The application slotframe
period is determined by the application traffic needs. Our
scheduling approach first assigns time slots in those three
slotframes for transmissions and then combines them into a
single one for runtime execution. Here are the key scheduling
rules of our approach:

Use of Dedicated and Shared Slots: To achieve determin-
istic behavior, the synchronization and application traffic uses
the contention-free dedicated slots, while the routing traffic
employs the shared slots to accommodate network topology
changes.

Assigning Slots for Synchronization: When a node attempts
to join the network, it first snoops the channel to capture an
EB from its neighbors. A captured EB allows a joining node
to synchronize its clock by using its carried timestamp and
learn the transmission schedule currently used in the network.
The APs in the network are wired to the gateway and time
synchronized through the gateway. After the synchronization,
the node selects its best and second best parents as presented
in Sections V. Under our scheduling approach, the node i uses
the ith slot in the synchronization slotframe to broadcast EB
and jth slot to receive EB from its best parent (node j).

Assigning Slots for Routing: A fixed, shared slot in the
routing slotframe is assigned for all nodes to exchange routing

Algorithm 2 Algorithm That Assigns Time Slots for the

Synchronization, Routing, and Application Traffic

Input : NodeID = i, NAP , A, p, transmission x
Output: Time slot assignments for three slotframes

if x belongs to synchronization traffic then
Assign ith slot in the synchronization slotframe to

send or receive x;
end

if x belongs to routing traffic then
Assign the first slot in the routing slotframe to send or

receive x;
end

if x belongs to application traffic then
Assign sth slot in the application slotframe to send or

receive x (s is computed by Eq.5);
end

related packets including the join-in and joined-callback mes-
sages. All nodes in the network use the same time slot offset
for the routing traffic and compete the slot in a CSMA fashion.
In our implementation, we use the first time slot in the routing
slotframe to exchange routing packets.

Assigning Slots for Application: According to Wire-
lessHART, multiple transmission attempts are scheduled for
each packet through its primary and backup routes. The node’s
packet transmission and reception schedules are determined by
its unique node id (NodeID.5) and parent-child relationship.
Under our scheduling approach, a node uses the sth time slot
in the application slotframe for the pth transmission attempt:

s = A ∗ (NodeID − NAP) − A + p (5)

where A denotes the total number of transmission attempts
for each packet and NAP denotes the number of access points.
Each node can learn its neighbors’ NodeIDs from the routing
table and NAP and A are global information shared by all
nodes in the network and can be carried by EBs.

Algorithm 2 shows the pseudocode on how a node assigns
time slots for the synchronization, routing, and application
traffic. Based on the abovementioned policy, the node i uses
the dedicated ith slot in the synchronization slotframe to
exchange EBs and uses the first time slot (shared) in the
routing slotframe to exchange routing information. The node i
uses sth slot (according to Eq. 5) in the application slotframe
to send or receive application traffic.

Schedule Combination: After assigning time slots in those
three slotframes, the node combines them to a single schedule
for runtime execution. To resolve slot assignment conflict dur-
ing the combination, we assign different priorities to different
types of traffic. The most critical synchronization traffic has
the highest priority, while the application traffic has the lowest
priority. The slotframe for traffic with lower priority gives
up its transmission in the slot in which a scheduling conflict
happens during the combination and the schedule for traffic
with higher priority occupies the slot. It is important to note

5A lookup table is used to map the MAC address of a node to its node id.
We use one byte integer to store the node ID, which supports up to 255 devices
in the network. More bytes can be used to store the node id if there are more
devices.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: DISTRIBUTED GRAPH ROUTING AND SCHEDULING FOR INDUSTRIAL WSANs 7

Fig. 6. Three schedules for different traffic and combined schedule.

that no traffic is constantly blocked since the three slotframes
use different prime numbers as their lengths.

Section VI-A uses an example to illustrate the scheduling
process and Section VI-B analyzes the performance.

A. Scheduling Example

Figure 6 illustrates our scheduling approach. Figure 6(a)
shows the graph routes (primary paths: #3→#1, #4→#2;
backup paths: #3→#2, #4→#1). In the example, the periods
of the synchronization, routing, and application schedules
(slotframe lengths) are assumed to be 61, 11, and 7 time
slots, respectively. The combined schedule has 61 ∗ 11 ∗ 7 =
4697 time slots in total. As Figure 6(b) showed, node #3
uses the third time slot to transmit its EB and receive the
EB from its best parent in the first slot. Figure 6(c) shows the
routing schedule which assigns the first slot for routing and
Figure 6(d) shows the application schedule which delivers a
packet from #3 and a packet from #4 to the access points in
every 7 time slots. Figure 6(e) shows the combined sched-
ule. There exist conflicts during the combination. Each node
resolves the conflicts locally. For example, #1 and #3 use the

first slot for the synchronization traffic with highest priority
in their combined schedule, while #2 and #4 use the slot for
routing.6 It is important to note that each node generates its
combined schedule only based on local information requiring
no schedule negotiation or sharing from its neighbors, which
represents an important feature of our approach.

B. Performance Analysis

Under our scheduling approach, each slotframe repeats at
a constant period and the transmission behavior is equivalent
to Orchestra. The synchronization and application traffic using
dedicated slots is by design contention-free, while the routing
traffic utilizing shared slots has a contention probability:

pc(routing) =

{

1 − e−T∗L/N , if L ≥ N

1 − e−T , otherwise
(6)

where T , N , and L denotes the average traffic load on the
slot under a Poisson distribution, the number of nodes in
the network, and the slotframe length. Here, for simplicity,
we assume a simple network of N nodes, all connected to
each other, and a single slotframe.

Let us assume that the slotframe B has Blen slots and
Bslot slots among them are scheduled for transmissions. Let
confA,B denote the event of a given slot in the slotframe
A conflicting with any slot scheduled for transmission in the
slotframe B. The probability for the slot in the slotframe A to
conflict with the slotframe B is:

p(confA,B) =
1

Blen/Bslot
(7)

When such a slot scheduling conflict occurs, the slotframe
with higher priority takes precedence and all other slotframes
give up its transmissions. So the probability of a slot in the
slotframe A to be skipped due to a conflict with any other
slotframe during the combination is:

pskip(A) = 1 − (
∏

∀B∈SF,Bpri>Apri

(1 − p(confA,B))) (8)

where SF denotes the set of all slotframes in the network
and Bpri denotes the priority of B. The multiplication of
(1 − p(confA,B)) denotes the probability of lower priority
traffic A without any conflict when it is combined with
higher priority traffic. Based on the multiplication of (1 −
p(confA,B)), we can calculate the pskip(A). As reported in
Orchestra, the probability of an application or routing slot-
frame to be skipped is expected to be low in practice since
the synchronization period determined by the hardware clock
drift is much longer than the routing and application periods
and the routing traffic is actually controlled by the Trickle
algorithm. Our experimental results also confirm this and show
high PDRs.

VII. CONFLICT DEFERRAL SCHEDULING

DiGS assigns different priorities to different types of traffic
and forces the traffic with lower priority to give up its
transmission when any scheduling conflict happens during the

6Although the slot is assigned for routing, whether using it or not at runtime
is controlled by the Trickle algorithm as discussed in Section V.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. Average PDR of eight data flows.

combination of individual schedules. This design simplifies
the scheduling process at the cost of a potential risk of
performance deterioration caused by the scheduling conflicts
(as the probability analysis in Section VI-B shows).

The potential risk of performance deterioration is not
acceptable to some mission-critical industrial applications,
especially when operating in the presence of external interfer-
ence and node failure. We perform an empirical study using
the Cooja simulator [46] to investigate the effect of scheduling
conflicts in a worst-case scenario. We place 50 TelosB motes
in a 150mX150m area in Cooja based on the deployment
of Testbed A and randomly deploy 4 jammers to generate
inconstant interference, causing frequent routing updates in
the network. We conduct two sets of experiments: one set
under DiGS and the other under Orchestra. In each set, we run
experiments with 300 flow sets, each of which contains 8 data
flows that have different sources and destinations. Figure 7
shows the average PDRs of 8 data flows when the network
runs DiGS and Orchestra. 87.5% and 100% of data flows have
average PDRs lower than 90% under DiGS and Orchestra,
respectively. While Figure 7 shows promising results (DiGS
significantly outperforming Orchestra), it also highlights the
significant performance deterioration caused by the scheduling
conflicts.

To address this issue, we enhance DiGS (reported in our
conference paper [47]) by introducing a conflict deferral
scheduling policy that defers the traffic with lower priority at
conflict instead of forcing it to give up its slot. The enhanced
DiGS is named DiGS-CD, where “CD” stands for conflict
deferral. The design goal of DiGS-CD is to equip the network
devices with the capability of detecting scheduling conflicts
and deriving available future time slots for conflicted traffic
rapidly and autonomously without performing any handshake.
DiGS-CD completely eliminates the three different conflicts
(routing traffic blocked by synchronization traffic, application
traffic blocked by synchronization traffic, and application traf-
fic blocked by routing traffic) at the cost of slightly increasing
the latency. A node running DiGS-CD computes the available
future time slot for a deferred transmission completely based
on its local information such as its node id (NodeID),
the number of nodes in the network (Nnode), the number of
access points (NAP), the slotframe length of synchronization,
routing and application (Ls, Lr, La), and ASN . Those para-
meters (Nnode, NAP , Ls, Lr) are global information shared
by all nodes in the network and can be carried by the EBs.

A naive way to defer conflicts is to generate three
individual schedules first and then detect the conflicts
during combination. However, this method introduces signif-

Algorithm 3 Conflict Detection and Offset Calculation

Algorithm

//Table II shows the notations

Input : Nnode, ASNR, ASNA, ASNAf
, Ls, Lr, Pivot

Output: SOsync_routing, SOsync_app, SOrouting_app

SOsync_routing = SOsync_app = SOrouting_app = 0;

if 1 ≤ ASNR % Ls && ASNR % Ls ≤ Nnode then
SOsync_routing = Nnode − ASNR % Ls + 1;

//A Type 1 conflict detected
end

if ASNAf
% Ls ≤ Nnode|| ASNAf

% Ls >
Ls − 3 ∗ (Nnode − NAP) + 1 then

SOsync_app = Nnode − Pivot % Ls + 1;

//A Type 2 conflict detected
end

if ASNA % Lr == SOsync_routing + 1 then
SOrouting_app = 1;

//A Type 3 conflict detected
end

TABLE II

NOTATIONS USED IN ALGORITHM 3

icant computation overhead and memory usage, since each
node has to detect conflicts from the first slot to the least
common multiple (LCM) of three slotframe lengths (Ls, Lr,
and La) in order to detect all potential conflicts and then defer
the lower priority traffic. Each node also has to store the ASN
and the deferral offset after capturing a conflict. To reduce
the overhead, we develop a fast proactive conflict detection
and offset calculation algorithm that automatically captures
conflicts and computes offsets when generating the individual
schedules.

We define three types of slot usage conflicts: the conflict
between routing traffic and synchronization traffic (Type 1),
the conflict between application traffic and synchronization
traffic (Type 2), and the conflict between application traffic and
routing traffic (Type 3). Since the synchronization traffic has
the highest priority, the routing and application traffic needs to
yield to it when conflicting. Algorithm 3 presents our conflict
detection and offset calculation algorithm and Table II shows
the notations used in the algorithm. When a node is generating
the routing schedule at runtime, it checks whether there is any

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: DISTRIBUTED GRAPH ROUTING AND SCHEDULING FOR INDUSTRIAL WSANs 9

(Type 1) conflict between routing traffic and synchronization
traffic. A Type 1 conflict occurs when the following condition
is satisfied:

1 ≤ ASNR % Ls ≤ Nnode (9)

All nodes in the network transmit synchronization beacons
using the first Nnode slots in each synchronization slotframe
(see Section VI). When Condition 9 is satisfied, the routing
traffic uses a slot conflicting with the synchronization traffic.
After capturing a Type 1 conflict, the node computes the shift
offset (SOsync_routing) as below:

SOsync_routing = Nnode − ASNR % Ls + 1 (10)

The routing traffic is then deferred by SOsync_routing slots,
outside the block of slots ([1, Nnode]) scheduled for the
synchronization traffic. It also guarantees that the sender and
receiver will both move their schedule with the same offset
to prevent conflicts. Similarly, a Type 2 conflict occurs when
one of the following conditions is satisfied:

ASNAf
% Ls ≤ Nnode (11)

or

ASNAf
% Ls > Ls − 3 ∗ (Nnode − NAP) + 1 (12)

When Condition 11 or 12 is satisfied, the application traffic
uses a slot conflicting with the synchronization traffic. Please
note that the access points do not transmit any application
packet, so we deduct NAP in Condition 12. After capturing a
Type 2 conflict, the node computes the SOsync_app based on
the ASN of the first conflicted slot (Pivot) and the number
of nodes in the network:

SOsync_app = Nnode − Pivot % Ls + 1 (13)

The application traffic is then deferred by SOsync_app slots,
outside the block of slots ([1, Nnode]) scheduled for the
synchronization traffic. A Type 3 conflict occurs when the
following condition is satisfied:

ASNAi
% Lr = SOsyn_routing + 1 (14)

Since the routing traffic may have already been deferred by the
synchronization traffic, we add SOsyn_routing to Condition 14.
It should be noted that ASNAi

denotes one of the time
slot i for the application traffic in the following slotframe
which collides with routing traffic. After capturing a Type 3
conflict, the node defers the application traffic by one slot.
With SOsync_routing , SOsync_app, and SOrouting_app, each
node continues to assign slots.

Assigning Slots for Routing: A fixed, shared slot in the
routing slotframe is assigned for all nodes to exchange routing
related packets including the join-in and joined-callback mes-
sages. All nodes in the network use the same time slot offset
1 + SOsync_routing for the routing traffic.

Assigning Slots for Application: SOsync_app and
SOrouting_app are added into Eq. 5. Under DiGS-CD,
a node uses the sth time slot in the application slotframe for
the pth transmission attempt:

s = A ∗ (NodeID − NAP)− A + p

+ SOsync_app + SOrouting_app (15)

Fig. 8. Three schedules for different traffic and combined schedule.

where A denotes the total number of transmission attempts for
each packet and NAP denotes the number of access points.

Schedule Combination: After assigning time slots in those
three slotframes, the node combines them to a single conflict-
free schedule for runtime execution.

A. Scheduling Example

We again use the network presented in Figure 6(a) as an
example. The periods of the synchronization, routing, and
application schedules (slotframe length) are assumed to be
61, 11, and 12 time slots, respectively. The combined schedule
has 61 ∗ 11 ∗ 12 = 8052 time slots in total. Figure 8(a) shows
the first four slots scheduled for the synchronization traffic.
A Type 1 conflict is detected (according to Condition 9), since
1 % 61 is within the range of [1, 4]. So SOsync_routing =
4 − 1 % 61 + 1 = 4. As Figure 8(b) showed, all four node
defer their routing schedule from the first slot to the fifth slot
to resolve the Type 1 conflict. In the next routing cycle, there is
no conflict in the 12th slot, so the routing traffic is still sched-
uled on the 12th slot. Similarly, a Type 2 conflict is detected
(according to Condition 11), since 1 % 61 is within the range
of [1, 4] and Pivot = 1. So SOsync_app = 4−1 % 61+1 = 4.
A Type 3 conflict is also detected (according to Condition 14),
So SOrouting_app = 1. All four nodes defer their application
traffic by (SOsync_app +SOrouting_app = 5) slots. Figure 8(c)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

shows the application schedule and Figure 8(d) shows the
combined conflict-free schedule.

B. Delay Analysis

Under DiGS-CD scheduling approach, each slotframe
repeats at a constant period and defers its transmission when-
ever it detects a scheduling conflict with a slotframe with
higher priority. Here, for simplicity, we assume that the
packet can be delivered from the source to the destination
within a single application slotframe. The synchronization
and routing traffic may block the application traffic. The
maximum increase on the end-to-end latency caused by the
synchronization traffic (Dsync_app) is:

Dsync_app = Tslot ∗ Nnode (16)

where Tslot denotes the time duration of one time slot and
Nnode denotes the number of nodes in the network. The
maximum increase on the end-to-end latency caused by the
routing traffic (Drouting_app) is:

Drouting_app = Tslot ∗ 	
3Nnode

Lr

 (17)

where Lr is the length of the routing slotframe. So the
maximum increase on the end-to-end latency (LDiGS−CD) is:

LDiGS−CD = LDiGS + Tslot ∗ (Nnode + 	
3Nnode

Lr

) (18)

where LDiGS and LDiGS−CD denote the end-to-end latency
under DiGS and DiGS-CD, respectively.

DiGS-CD increases the end-to-end latency by [0, Tslot ∗
(Nnode + 	 3Nnode

Lr

)] compared to DiGS. Please note that

the synchronization slotframe period is much longer than the
application slotframe period in practice. Thus, the probability
of introducing significant latency increases is low. The average
latency differences between DiGS and DiGS-CD which we
observed in our experiments range between 3ms and 33ms
(see Section VIII-D).

VIII. EVALUATION

We have implemented our solution (DiGS) in Contiki [48],
an open source operating system for IoT, and evaluated it in
three aspects: end-to-end reliability, end-to-end latency, and
the energy consumption per received packet. To demonstrate
the feasibility of our solution, we repeat the experiments
on two physical testbeds located in the campuses of the
State University of New York at Binghamton and Washington
University in St. Louis: (1) Testbed A consisting 50 TelosB
motes deployed in the 2th floor of a building [49]; and (2)
Testbed B featuring 44 TelosB motes spanning two floors
of a building [50]. We run experiments on Testbed A with
300 flow sets, each of which contains 8 data flows that have
different sources and destinations and repeats the experiments
on Testbed B with 220 flow sets, each of which contains
6 flows. Two access points are configured on each testbed.
Each source node generates a packet in every 5 seconds.
We set the length of synchronization, routing, and application
slotframes to 557, 47, and 151 time slots, respectively, for all
experiments.

We observe that Orchestra significantly outperforms Wire-
lessHART under network dynamics (see Section IV), therefore
compare our solution against Orchestra7 instead of Wire-
lessHART and examine their performance under two scenar-
ios: one under interference (Section VIII-A) and the other with
node failure (Section VIII-B). JamLab is used to generate con-
trolled interference with different strength and pattern. We also
measure the efficiency of DiGS to initialize the network
(Section VIII-C), examine the effectiveness of conflict deferral
scheduling (Section VIII-D), and perform a simulation study
with 150 nodes in the Cooja simulator [46] (Section VIII-E).

A. Performance Under Interference

We configure three nodes to run JamLab and generate
signals emulating WiFi data streaming traffic. To create a
larger interference range and emulate the higher transmission
power employed by 802.11, we configure the nodes running
JamLab to transmit at higher transmission powers. Figure 9
shows the performance under DiGS and Orchestra when the
network encounters interference. Figure 9(a) plots the CDF
of PDR. On average, DiGS achieves 8.3% higher PDR than
Orchestra. In addition, 75.0% of the flow sets under DiGS
achieve PDRs higher than 95.0%, while only 12.5% under
Orchestra provide that. More importantly, DiGS delivers a
significant improvement over Orchestra in the worst-case PDR
(from 76.0% to 90.3%), which represents a significant advan-
tage in industrial applications that demand high reliability in
harsh industrial facilities. The higher PDRs provided by DiGS
under interference benefit from the route diversity offered by
the graph routing.

As Figure 9(b) showed, DiGS reduces the median latency
from 917.5ms to 601.3ms and averaged latency from 1214.1ms
to 649.5ms compared to Orchestra. The reduced latency pro-
vided by DiGS represents a significant advantage in industrial
applications allowing it to employ control loops with tighter
deadlines. Moreover, as shown in boxplots Figure 9(c) and
Figure 9(d), DiGS achieves a smaller variation of latency than
Orchestra, which represents another significant advantage in
industrial applications that demand predictable performance.
This result shows that DiGS employing the distributed graph
routing is indeed more resilient to interference thanks to route
diversity. Figure 9(e) shows the CDF of power consumption
per received packet under DiGS and Orchestra.8 DiGS pro-
vides an average of 0.056mW decrease in power consumption
per received packet compared to Orchestra. Although the
idle listening overhead introduced by DiGs leads to moderate
increases in total energy consumption, the slight increases in
power consumption are in exchange for a significant improve-
ment on reliability, resulting in an overall reduction on power
consumption per received packet. Figure 9(f) plots a micro-
benchmark measurement on the packet delivery success rate
among 8 data flows between the 74th and 84th packets are
forwarded in the network. When encountering the controlled
interference, 3 flows lose the 75th, 76th, and 77th packets

7We use the Orchestra implementation in Contiki provided by the authors
in [10].

8We only consider the power consumed by the radio and estimate it based
on the timestamps of radio activities and the radio’s power consumption in
each state according to the CC2420 data sheet [51]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: DISTRIBUTED GRAPH ROUTING AND SCHEDULING FOR INDUSTRIAL WSANs 11

Fig. 9. Performance under DiGS and Orchestra when the network encounters interference on Testbed A.

Fig. 10. Performance under DiGS and Orchestra when the network encounters interference on Testbed B.

Fig. 11. Performance under DiGS and Orchestra when the network encounters node failure on Testbed A.

when running Orchestra. Those flows recover from the packet
lost and successfully deliver the 78th, 80th, and 82th packets,
respectively. Orchestra consumes 35s to recover from inter-
ference by updating the routing and scheduling, while DiGS
provides seamlessly packet delivery during the process.

Similar gains are seen for DiGS on Testbed B. As Fig-
ure 10(a) showed, under the configuration of 6 data flows,
DiGS achieves a worst-case PDR of 93.2%, a median PDR
of 94.5%, and a 90th percentile PDR of 97.7%, outperforming
Orchestra by 7.6%, 5.2%, and 4.7%, respectively. As shown
in Figure 10(b), the improvements offered by DiGS in worst-
case latency and median latency are 213.0ms and 232.7ms,
respectively. As Figure 10(c) showed, DiGS also provides
higher energy efficiency when encountering interference over
Orchestra (i.e., 0.057mW decrease in the power consumption
per received packet), resulting from the significant improve-
ment on reliability.

Fig. 12. Network initialization time comparison between DiGS and
Orchestra.

B. Performance With Node Failure

We also explored DiGS’s performance with node failure
by randomly turning off four nodes located on the routing
graph one by one. We repeat the experiments for 34 times with
different set of failing nodes. Figure 11 shows the performance
comparison between DiGS and Orchestra when the network
encounters node failure on Testbed A. As Figure 11(a) showed,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 13. Performance comparison between DiGS-CD and DiGS when the network has different number of nodes.

6 of the total 8 data flows becomes completely disconnected
under Orchestra after the nodes fail, while all flows still
achieve a 100% PDR under DiGS. Figure 11(b) plots a micro-
benchmark measurement on the packet delivery success rate
among 8 data flows when a node suddenly fails. 6 data
flows are affected and lose the 34th packet and then recover
after 10s when running Orchestra, while DiGS successfully
delivers all packets through backup routes. As Figure 11(c)
showed, DiGS survives node failure without losing any packet
and achieves a 9.01mW decrease on power consumption per
received packet compared to Orchestra. As Figure 11 shows,
DiGS provides significant improvements on failure tolerance
and energy efficiency over Orchestra, which are critical prop-
erties for industrial applications.

C. Network Initialization

To study the efficiency of DiGS to initialize the network,
we measure the time duration of each node joining the network
(i.e., between the network start and each node synchronizing
with the network and setting its preferred parents). Figure 12
shows the CDF of joining time of 50 nodes on Testbed A under
DiGS and Orchestra. DiGS does result in a slight increase in
network initialization time (from 23.0s to 24.1s) compared to
Orchestra as a result of one more preferred parent selected by
each node to construct the network. The averaged joining times
of 50 nodes are 15.4s and 14.3s under DiGS and Orchestra,
respectively. The slight increases in network initialization
are in exchange for moderately enhancing the reliability and
latency when the network encounters interference and node
failure. This tradeoff makes DiGS well-suited for industrial
applications running in dynamic environments with critical
performance demands.

D. Conflict Deferral Scheduling

To examine the effectiveness of conflict deferral scheduling,
we run three sets of experiments to compare DiGS-CD against
DiGS under various operating conditions. We first evaluate
the performance of DiGS-CD and DiGS when operating in a
network with different size. Figure 13(a) shows the CDF of
scheduling conflict ratio of DiGS-CD and DiGS when the net-
work consists of 10, 20, 30, 40 and 50 nodes. The scheduling
conflict ratio under DiGS increases with the increasing number
of nodes in the network, while the ratio under DiGS-CD is
always zero. The median conflict ratios under DiGS are 0.44%,
0.49%, 0.54%, 0.59%, and 0.64% when the network has
10, 20, 30, 40, and 50 nodes. Figure 13(b) shows the histogram
of average latency with 95% confidence interval. DiGS-CD
increases the average latency by [3, 33]ms among eight data

Fig. 14. CDF of scheduling conflict ratio under DiGS-CD and DiGS with
different number of jammers. The network consists of 50 nodes.

flows, each of which delivers 300 packets. The confidence
interval half-width values are 6.79, 9.62, 5.09, 11.30, 6.79,
3.39, 3.42, and 4.87 under DiGS-CD, and 1.70, 3.39, 3.85,
5.09, 3.67, 1.70, 2.15, and 2.42 under DiGS, respectively.
The conflict deferral scheduling successfully mitigates the
scheduling conflict at the cost of slightly increasing the latency.

We then investigate the effect of interference on the schedul-
ing conflict ratio of DiGS-CD and DiGS. Figure 14 shows the
CDF of scheduling conflict ratio of a 50-node network when
1∼3 jammers exist in the network. The median conflict ratio
under DiGS increases from 1.01% to 1.39%, and then to 1.96%
when more jammers are introduced into the network. The
increase on the conflict ratio is caused by the more frequent
routing updates which aggravate the conflicts between rout-
ing traffic and application traffic. DiGS-CD always provides
conflict-free schedules.

Finally, we evaluate DiGS-CD and DiGS under different
data rates. Figure 15(a) shows the CDF of scheduling conflict
ratio of a 50-node network when the source nodes generate
packets with different intervals. The scheduling conflict ratio
under DiGS increases slowly when the data rates increase (the
packet interval decreases from 20s to 5s). The median conflict
ratios under DiGS are 0.59%, 0.62%, 0.63% and 0.64%
when the data generation intervals are 20s, 15s, 10s, and 5s,
respectively. This is because the conflicts mainly depend on
the frequency of routing updates. Figure 15(b) shows the
histogram of average latency with 95% confidence interval.
DiGS-CD increases the average latency by [7, 24]ms among
eight data flows, each of which delivers 300 packets. The
confidence interval half-width values are 3.96, 4.52, 8.09, 8.92,
10.05, 5.87, 6.73, and 5.92 under DiGS-CD, and 3.32, 4.11,
4.88, 4.76, 34.42, 5.67, 4.12, and 3.13 under DiGS, respec-
tively. From the above results, we conclude that DiGS-CD is
more suitable to operate in dynamic and noisy environments,
while DiGS is a better choice for clean environments.

E. Simulation Study With 150 Nodes

To explore DiGS’s performance at a larger scale, we per-
form a simulation study using the Cooja simulator. In the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: DISTRIBUTED GRAPH ROUTING AND SCHEDULING FOR INDUSTRIAL WSANs 13

Fig. 15. Performance comparison between DiGS-CD and DiGS when the data packets are generated at different rates. The network consists of 50 nodes.

Fig. 16. Simulation with 150 nodes in Cooja Simulator.

TABLE III

COMPARISON OF DiGS/DiGS-CD, WirelessHART AND ORCHESTRA

simulations, 150 nodes and two access points are placed in
a 300mX300m area. We run simulations with 300 flow sets,
each of which contains 20 data flows that have different
sources and destinations. Each source node generates a packet
in every 10 seconds. 5 Cooja disturber nodes are configured
to turn on and off in every 5 minutes to interfere nearby links.
Figure 16 shows the performance under DiGS and Orches-
tra when the network encounters interference. Figure 16(a)
presents the CDF of PDR. On average, DiGS achieves 16.3%
higher PDR than Orchestra. In addition, 53.0% of the flow
sets under DiGS achieve PDRs higher than 95.0%, while only
11.0% under Orchestra provide that. Moreover, DiGS delivers
a significant improvement over Orchestra in the worst-case
PDR (from 86.7% to 63.0%). As Figure 16(b) showed, DiGS
reduces the median latency from 1950.0ms to 1560.0ms and
averaged latency from 2068.6ms to 1565.7ms compared to
Orchestra. DiGS improves the reliability and latency under
interference at the cost of slight increases on the radio duty
cycle. As shown in Figure 16(c), DiGS suffers an average
of 0.056% increase on radio duty cycle per received packet
over Orchestra. The slight increases in duty cycle per received
packet are in exchange for a critical improvement on reliability
and latency.

IX. CONCLUSIONS

A major limitation of current WSAN standards is their lim-
ited scalability due to their centralized routing and scheduling
that enhance the predictability and visibility of network oper-
ations at the cost of scalability. This paper decentralizes the
network management in WirelessHART and presents the first
distributed graph routing and autonomous scheduling solution

that allows the field devices to compute their own graph routes
and transmission schedules. Table III illustrates the summary
of differences among DiGS/DiGS-CD, WirelessHART and
Orchestra. Experimental results from two physical testbeds and
a large-scale simulation show our solution provides significant
improvement on network reliability, latency, energy efficiency,
and failure tolerance under dynamics, critical properties for
industrial applications, over state of the art at the cost of
slightly higher power consumption and longer network ini-
tialization.

REFERENCES

[1] M. E. Porter and J. E. Heppelmann, “How smart, connected products
are transforming competition,” Harvard Bus. Rev., vol. 92, no. 11,
pp. 64–88, 2014.

[2] A. Thierer and A. Castillo. (Jun. 2015). Projecting the Growth and Eco-

nomic Impact of the Internet of Things. [Online]. Available: https://www.
mercatus.org/publication/projecting-growth-and-economic-impact-
internet-things

[3] J. Manyika et al. (May 2013). Disruptive Technologies: Advances That

Will Transform Life, Business, and The Global Economy. [Online].
Available: http://www.mckinsey.com/business-functions/digital-
mckinsey/our-insights/disruptive-technologies

[4] HART Communication Protocol and Foundation (Now Field-

Comm Group). Accessed: Jun. 12, 2019. [Online]. Available:
http://www.hartcomm.org/

[5] WirelessHART. Accessed: Jun. 12, 2019. [Online]. Available:
https://fieldcommgroup.org/technologies/hart

[6] H. Kagermann, W. Wahlster, and J. Helbig. (Apr. 2013).
Recommendations for Implementing the Strategic Initiative Industrie 4.0.
[Online]. Available: http://www.acatech.de/fileadmin/user%5fupload/
Baumstruktur%5fnach%5fWebsite/Acatech/root/de/Material%5ffuer%
5fSonderseiten/Industrie%5f4.0/Final%5freport%5f%5fIndustrie%
5f4.0%5faccessible.pdf

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proc. SenSys, 2009, pp. 1–14.

[8] T. Winter et al., RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks, document RFC 6550, 2012.
[9] IETF 6TiSCH Working Group. Accessed: Jun. 10, 2019. [Online].

Available: https://datatracker.ietf.org/wg/6tisch/
[10] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orches-

tra: Robust mesh networks through autonomously scheduled TSCH,”
in Proc. SenSys, 2015, pp. 337–350.

[11] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A framework for
reliable routing in mobile ad hoc networks,” in Proc. INFOCOM,
Mar./Apr. 2003, pp. 270–280.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[12] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient,
energy-efficient multipath routing in wireless sensor networks,” ACM

SIGMOBILE Mobile Comput. Commun. Rev., vol. 5, no. 4, pp. 11–25,
Oct. 2001.

[13] M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, and T. Hwee-Pink,
“IM2PR: Interference-minimized multipath routing protocol for wireless
sensor networks,” Wireless Netw., vol. 20, no. 7, pp. 1807–1823, 2014.

[14] K. X. J. Zhang and H. J. Chao, “Load balancing in IP networks using
generalized destination-based multipath routing,” IEEE/ACM Trans.

Netw., vol. 23, no. 6, pp. 1959–1969, 2015.
[15] H. Geng, X. Shi, X. Yin, Z. Wang, and H. Zhang, “Algebra and

algorithms for efficient and correct multipath QoS routing in link state
networks,” in Proc. IWQoS, Jun. 2015, pp. 261–266.

[16] Q. Le, T. Ngo-Quynh, and T. Magedanz, “RPL-based multipath routing
protocols for Internet of Things on wireless sensor networks,” in Proc.

Int. Conf. Adv. Technol. Commun., Oct. 2014, pp. 424–429.
[17] B. Pavkovi, F. Theoleyre, and A. Duda, “Multipath opportunistic RPL

routing over IEEE 802.15. 4,” in Proc. 14th ACM Int. Conf. Modeling,

Anal. Simulation Wireless Mobile Syst., 2011, pp. 179–186.
[18] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low

power, low delay: Opportunistic routing meets duty cycling,” in Proc.

ACM/IEEE 11th Int. Conf. Inf. Process. Sensor Netw., Apr. 2012,
pp. 185–196.

[19] O. Iova, F. Theoleyre, and T. Noel, “Exploiting multiple parents in RPL
to improve both the network lifetime and its stability,” in Proc. IEEE

Int. Conf. Commun., Jun. 2015, pp. 610–616.
[20] Z. Wang, L. Zhang, Z. Zheng, and J. Wang, “An optimized RPL protocol

for wireless sensor networks,” in Proc. IEEE 22nd Int. Conf. Parallel

Distrib. Syst. (ICPADS), Dec. 2016, pp. 294–299.
[21] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and

real-time communication in industrial wireless mesh networks,” in Proc.

RTAS, Apr. 2011, pp. 3–12.
[22] C. Wu et al., “Maximizing network lifetime of WirelessHART networks

under graph routing,” in Proc. IoTDI, Apr. 2016, pp. 176–186.
[23] V. Modekurthy, A. Saifullah, and S. Madria, “Distributed graph rout-

ing for wirelesshart networks,” in Proc. Int. Conf. Distrib. Comput.

Netw. (ICDCN), 2018, p. 24.
[24] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-end communication

delay analysis in industrial wireless networks,” IEEE Trans. Comput.,
vol. 64, no. 5, pp. 1361–1374, May 2014.

[25] C. Wu, M. Sha, D. Gunatilaka, A. Saifullah, C. Lu, and Y. Chen,
“Analysis of EDF scheduling for wireless sensor-actuator networks,”
in Proc. IWQoS, May 2014, pp. 31–40.

[26] S. Zhang, G. Zhang, A. Yan, Z. Xiang, and T. Ma, “A highly reliable
link scheduling strategy for WirelessHART networks,” in Proc. ATC,
Oct. 2013, pp. 39–43.

[27] X. Zhu, P. Huang, S. Han, A. K. Mok, D. Chen, and M. Nixon,
“RoamingHART: A collaborative localization system on
WirelessHART,” in Proc. RTAS, Apr. 2012, pp. 241–250.

[28] N. Burri, P. V. Rickenbach, and R. Wattenhofer, “Dozer: Ultra-low power
data gathering in sensor networks,” in Proc. IPSN, 2007, pp. 450–459.

[29] A. Tinka, T. Watteyne, K. S. J. Pister, and A. M. Bayen, “A decentralized
scheduling algorithm for time synchronized channel hopping,” EAI

Endorsed Trans. Mobile Commun. Appl., vol. 11, no. 1, pp. 1–13, 2011.
[30] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,

“Traffic aware scheduling algorithm for reliable low-power multi-hop
IEEE 802.15.4e networks,” in Proc. PIMRC, Sep. 2012, pp. 327–332.

[31] A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne, “Label
switching over IEEE802.15.4e networks,” Trans. Emerg. Telecommun.

Technol., vol. 24, no. 5, pp. 458–475, 2013.
[32] P. Zand, A. Dilo, and P. Havinga, “D-MSR: A distributed network

management scheme for real-time monitoring and process control appli-
cations in wireless industrial automation,” Sensors, vol. 13, no. 7,
pp. 8239–8284, 2013.

[33] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proc. SenSys, 2012, pp. 1–14.

[34] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient net-
work flooding and time synchronization with glossy,” in Proc. SenSys,
Apr. 2011, pp. 73–84.

[35] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale,”
in Proc. SenSys, 2013, p. 1.

[36] M. Doddavenkatappa, M. C. Chan, and B. Leong, “Splash: Fast data dis-
semination with constructive interference in wireless sensor networks,”
in Proc. NSDI, 2013, pp. 269–282.

[37] M. Doddavenkatappa and M. C. Chan, “P3: A practical packet pipeline
using synchronous transmissions for wireless sensor networks,” in Proc.

IPSN, 2014, pp. 203–214.

[38] Part 15.4: Wireless Medium Access Control (MAC) Physical Layer

(PHY) Specifications for Low-Rate Wireless Personal Area Networks

(WPANs), IEEE Standard 802.15.4-2006, 2006.
[39] IEEE 802.15.4e WPAN Task Group. Accessed: Jun. 12, 2019. [Online].

Available: http://www.ieee802.org/15/pub/TG4e.html
[40] WCPS Simulator. Accessed: Jun. 11, 2019. [Online]. Available:

http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-Physical
_Simulator

[41] Orchestra. Accessed: Jun. 12, 2019. [Online]. Available:
https://github.com/c ontiki-os/contiki/tree/master/apps/orchestra

[42] TelosB: Telosb Mote Platform, Datasheet Provided by MEMSIC Inc.

Accessed: Jun. 12, 2019. http://www.memsic.com/userfiles/files/Datashe
ets/WSN/telosb%5fdatasheet.pdf

[43] J. W. S. Liu, Real-Time Systems. Upper Saddle River, NJ, USA: Prentice-
Hall, 2000.

[44] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. Zúñiga, “JamLab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in Proc. IPSN, Apr. 2011, pp. 175–186.

[45] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, The Trickle

Algorithm, document RFC 6206, 2011.
[46] Cooja Simulator. Accessed: Jun. 12, 2019. [Online]. Available:

http://anrg.usc.edu/contiki/index.php/Cooja_Simulator
[47] J. Shi, M. Sha, and Z. Yang, “DiGS: Distributed graph rout-

ing and scheduling for industrial wireless sensor-actuator networks,”
in Proc. ICDCS, Jul. 2018, pp. 354–364.

[48] Contiki: The Open Source OS for the Internet of Things. Accessed:
Jun. 12, 2019. [Online]. Available: http://www.contiki-os.org/

[49] Testbed at the State University of New York at Bing-

hamton. Accessed: Jun. 11, 2019. [Online]. Available:
http://www.cs.binghamton.edu/%7emsha/testbed

[50] Testbed at the Washington University in St. Louis. Accessed:
Jun. 12, 2019. [Online]. Available: http://cps.cse.wustl.edu/index.php/Test
bed

[51] CC2420: 2.4 GHz IEEE 802.15.4 ZigBee-Ready RF Transceiver,

Datasheet Provided by TI Inc. Accessed: Jun. 12, 2019. [Online].
Available: http://www.ti.com/lit/ds/symlink/cc2420.pdf

Junyang Shi received the B.S. degree in electri-
cal and electronic engineering from the Huazhong
University of Science and Technology in 2016.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science, State University
of New York at Binghamton.

His research interests include industrial wireless
sensor-actuator networks and the Internet of Things.

Mo Sha received the B.Eng. degree from Beihang
University in 2007, the M.Phil. degree from the
City University of Hong Kong in 2009, and the
Ph.D. degree in computer science from Washington
University in St. Louis in 2014. He is currently an
Assistant Professor with the Department of Com-
puter Science, State University of New York at
Binghamton. His research interests include wireless
networks, the Internet of Things, embedded and real-
time systems, and cyber-physical systems.

Zhicheng Yang received the B.S. degree in informa-
tion engineering from the Beijing University of Posts
and Telecommunications, Beijing, China, the M.S.
degree in computer science from Washington Uni-
versity in Saint Louis, Saint Louis, MO, USA,
and the Ph.D. degree in computer science from
the University of California, Davis, CA, USA. His
current research interests include millimeter-wave
sensing/networks/communications, the Internet-of-
Things, and mobile computing related to health-care
and smart agriculture.

