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In Brief

Annotating the genome by demarcating
coordinates of gene structures,
sequences associated with methylation
marks, etc., is a fundamental problem in
biology. Annotated regions can be
abstracted as intervals on a line, and the
overlap between sets of intervals is often
used to establish correlation between
annotations and obtain biological
insights. Computing the statistical
significance of overlap between
annotations is a relatively unexplored
problem, often done using permutation
tests and assumptions on the null
distribution. We describe a tool for
efficiently computing the significance of
the overlap between two sets of intervals
using a dynamic programming approach.
The tool corrects the p values reported in
previous experiments by orders of
magnitude.
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SUMMARY

Genome annotation remains a fundamental effort in
modern biology. With reducing costs and new forms
of sequencing technologies, annotations specific to
tissue type and experimental conditions are con-
tinually being generated (e.g., histone methylation
marks). Computing the statistical significance of
overlap between two different annotations is key to
many biological findings but has not been systemat-
ically addressed previously. We formalize the prob-
lem as follows: let | and /I each describe a collection
of n and mintervals of a genome with particular anno-
tation. Under the null hypothesis that genomic inter-
vals in I are randomly arranged with respect to Iy,
what is the significance of k of m intervals of /; inter-
secting with intervals in I? We describe a tool iSTAT
that implements a combinatorial algorithm to accu-
rately compute p values. We applied iSTAT to simu-
lated and real datasets to obtain precise estimates
and contrasted them against previous results using
permutation or parametric tests.

INTRODUCTION

Annotating the genome is a central problem in biology. Subse-
quent to the sequencing and assembly of the human genome
and the development of deep sequencing technologies, re-
searchers have developed a number of technologies aimed at
identifying functional regions on the genome. Examples of anno-
tation include repeat elements (Jurka, 2000), protein-coding
genes (Venter et al., 2001), non-coding RNA (Bartel, 2009), reg-
ulatory regions (ENCODE Project Consortium, 2012), sites with
specific epigenetic modifications (ENCODE Project Consortium,
2007), transcription start sites ( ENCODE Project Consortium,
2012), ribosome initiation sites (Ingolia et al., 2009, 2012), and re-
gions relating to genome structure, such as the regions with a
change in copy number and other variation (Pinkel et al., 1998;
Feuk et al., 2006). With reducing costs and new forms of
sequencing technologies, annotations specific to tissue type
and experimental conditions are continually being generated.

In all of these examples, we implicitly represent the genome as
a line segment and an “annotation” as a collection of non-over-

lapping intervals on that line. Excessive overlap of the intervals in
a pair of annotations is indicative of a biological association and
is widely used to support hypotheses asserting biological princi-
ples. While studying the function of epigenetic modifications on
the genome, Guenther et al. (2007) observed that about 3/4 of all
known promoter regions overlapped with intervals highly en-
riched for the methylation of lysine 4 on histone H3 (H3K4me3)
including in genes without any detected transcript. Assuming
that the presence of histone H3K4me3 was correlated with tran-
scription initiation, they hypothesized that transcription initiation
occurs in all genes but was followed by transcriptional elonga-
tion only in active genes. In another example, Zarrei et al.
(2015) computed the association of the copy number variable
(CNV) genomic regions against each of the multiple annotations
such as protein-coding and non-coding genes, cancer genes,
lincRNAs, promoters, etc., to assess the variability of different
functional regions of the genome. Wu et al. (2003) studied viral
integration in the human genome finding that a large fraction of
HIV-1 and MLV integrations in H9 and Hela cells lay within the
start and end of transcription of a gene. In contrast, while
16.8% of the MLV integrations landed +1Kb from a CpG island,
only 2.1% of HIV-1 integrations landed near a CpG island. They
computed p values using permutation tests to assert the signif-
icance of these differential associations.

In experiments related to genome annotations, such questions
are ubiquitous, and they all distill down to the underlying statis-
tical question of significantly overlapping intervals. Hence, it
has been a standard practice to compute a p value using the
null distribution of overlaps against randomly located intervals.
Random annotations can be generated by randomizing the posi-
tion of intervals while preserving the coherence of each region
and provide exact answers when the space of all possible
random samples can be enumerated. However, in many real-
life examples including the above studies, the sample space is
enormous, and naive sampling-based methods cannot achieve
adequate resolution to distinguish between rare events in
feasible running times. On the other hand, while parametric tests
used in the literature are computationally efficient, they oversim-
plify the problem by casting intervals as points and ignore the
dimension of annotated regions on the genome, which often re-
sults in artificially low p values, thereby inflating apparent
significance.

In this paper, we introduce a tool, ISTaT, which can enumerate
over the space of all randomized samples in order to find the
exact null distribution, under the assumption that the order of in-
tervals is preserved when randomizing their position (see Box 1).

Cell Systems 8, 523-529, June 26, 2019 © 2019 Elsevier Inc. 523



CellPress

Box 1. Primer

Genome annotation, referring to the assignment of function to specific regions, remains a foundational effort of modern biology.
With reducing costs and new forms of sequencing technologies, annotations specific to tissue type and experimental conditions
are continually being generated (e.g., histone methylation marks, regions with high gene expression, and genomic copy number,).
Furthermore, excessive overlap of the intervals in a pair of annotations is indicative of a biological association and is widely used as
a basis for new biological insight, including examples such as the overlap of histone methylation sites and promoter activity,
targeted insertion of viral sequences into the human genome, and others. Computing the statistical significance of the overlap
between two different annotations is key to these experiments. However, the problem has not been systematically addressed pre-
viously. To the best of our knowledge, the p value computation for sets of overlapping intervals has been limited either to permu-
tation tests that do not scale to computation of small p values or simple parametric tests such as hypergeometric or binomial tests
that are based on simplifying assumptions about the length and structure of intervals. Our paper, however, formulates a null model
where the size of intervals and their relative arrangement are considered when the significance of overlap is evaluated.

We formalize the problem as follows: let / and /r each describe a collection of n and m intervals on a line segment of finite length.
Under the null hypothesis that intervals in / are randomly arranged w.r.t I, what is the significance of k of the m intervals of /s inter-
secting with some interval in /? We describe a tool ISTaT that implements a combinatorial algorithm to accurately compute p values
and also describe trade-offs that make the computation fast without losing accuracy. IStaT first computes k, the number of intervals
in Ir that have overlap with any interval in /. The significance of the overlap between reference and query intervals is measured by
sampling a random set of intervals, /,, where the positions of query intervals are randomized along the genomic region while retain-
ing the total number of intervals and their individual lengths same as the intervals in /. To reduce the combinatorial complexity of the
problem, we also assume that the order of intervals in / are preserved when sampling for /,, but we show through our simulations
that the impact of this additional assumption is negligible for a typical enrichment problem. The p value is computed by counting
the fraction of times when k or more overlaps occur between /s and /.. We applied 1STAT to simulated and real datasets to obtain
precise estimates. In many cases, the ISTAT estimates provided a significant correction to previous results obtained using permu-

tation tests or parametric tests.

Using simulated data, we show that the impact of our assump-
tion on p value calculation is limited. ISTAT also provides a fast
approximate solution based on Poisson binomial (PB) distribu-
tion, and using simulated data, we characterize its performance
in approximating the generic null distribution. Moreover, we
demonstrate the result of applying our methods to four examples
of interval overlap problem from previously published studies
and compare ISTAT results with the p values reported in those
studies.

RESULTS

We used the following notation throughout the paper. Let If
denote a “reference” collection of m intervals and / denote a
“query” collection of n intervals (Figure 1). Each interval is de-
noted by a pair of indices (u4, up) with 0 < uy <u» < g, where
g denotes the length of the genomic region of interest, for
example, a chromosome. ISTAT first computes k, the number of
intervals in I, which have overlap with any interval in /. The signif-
icance (p value) of the overlap between reference and query in-
tervals is measured by sampling a random set of intervals, /,,
where the positions of query intervals are randomized along
the genomic region while retaining the total number of intervals
and their individual lengths same as the intervals in / (Figure 1).
To reduce the combinatorial complexity of the problem, we
also assume that the order of intervals in /| are preserved when
sampling for /,, but we show through our simulations that the
impact of this additional assumption is negligible for a typical
enrichment problem. The p value is naturally defined as the prob-
ability of observing k or more overlaps between /s and /..

It is not feasible to count random sets one by one as the space
of all possible random intervals expands exponentially with the
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number of intervals. Instead, ISTAT uses a dynamic programming
(DP) algorithm. For each 0 < k < m, we recursively compute the
number of all distinct random sets resulting in k overlaps and
calculate the p value from the cumulative distribution of the over-
lap statistics (STAR Methods). In practice, to make the computa-
tion efficient for large genomes with large numbers of intervals,
we use a practical interval “scaling” option by considering
the natural partitioning of the genome into intervals and
the gaps amid them and scale each interval and gap in / and /¢
by a fraction ». The running time of ISTAT p value computation
is O(ngvm), and the memory usage scales as O(gvm), where
both can be controlled by choosing a proper scaling factor » < 1.

In 1ISTAT, we provide an even more efficient option to approxi-
mate the p value. Specifically, assuming that intervals in /r are
overlapped (by /, intervals) independently from each other, we
can show that the overlap statistics k follows a PB distribution
(STAR Methods). We characterize the impact of independence
assumption on the accuracy of computed p values by defining
a parameter n as a measure of “spread” of intervals in /s (STAR
Methods) and investigating the approximation for different
values of 5. We provide empirical bounds on n to guide the
user on how closely PB approximates the distribution of overlap
statistics, especially when annotations include a large number of
intervals.

Performance of Simulated Data

We simulated intervals in a randomly generated chromosome to
test the performance of 1STaT. To study the impact of scaling
and fixed-order assumption on the DP algorithm, we chose
g = 200Mbp, and the two sets of intervals / and /s withn =m =
100 intervals. The intervals in / and /s were generated with random
lengths /; and x; distributed uniformly over [1Kbp, 10Kbp]. The



Figure 1. A Schematic of Interval Overlap Problem

Ir denotes the reference collection of intervals and / represents the query
collection. The randomized set /, is generated by relocating the intervals in
I such that all possible non-overlapping random sets are equiprobable.

intervals in /s were placed uniformly at random along the chromo-
some, while ensuring no overlap between them. We bench-
marked ISTAT speed across a wide range of values for n, m,
and g. We also simulated intervals in /; distributed non-uniformly
to study how their positional distribution impacted the quality of
PB approximation.

The Impact of Scaling on p Value

The I1STaT algorithm has substantial demands on memory and
time. To allow it to work on the human genome, we scaled
down the intervals and the gaps between them by a fraction .
To test the impact of scaling, we considered the example of a
chromosome described above, with g = 200Mbp and n =m =
100. The impact on DP p values due to scaling with ve
{1,1071,1072,107%} is shown in Figure 2A. As can be observed,
scaling preserves the p values tightly. To further investigate
robustness of DP p value computation to the scaling, we also
considered an adversarial example where / and /s contain inter-
vals smaller than »~'. For that purpose, the interval lengths
were selected from a uniform distribution over [100bp, 4Kbp].
Thus, when we applied scaling factor » = 102, approximately
one-fourth of intervals were smaller than the resolution »~' and
become unit intervals. Nevertheless, p values obtained with » =
1073 tightly followed finer-scale p values (Figure 2B), validating
the use of scaling to make the computation efficient.

Effect of Order on p Value

To test the effect of fixed order on p value, we used a scaling
factor » = 1072 and applied the iStat DP method to 100 random
instances of simulated intervals described before, each with
a random permutation of /. In Figure 2C, we plotted the
mean p value for all k, as well as the standard error of the
mean. We observe that the standard error was distributed tightly
around the mean (at least an order of magnitude smaller
than the mean for all k), while its ratio to the mean increased
slightly for smaller p values. The mean p value range from
0.4320 £2.279-10 “ for k = 1 to 1.017 -10 269 +6.246-10 2"
for k = 100. The results suggest that fixing the order in DP algo-
rithm to compute the p value is an acceptable compromise for
many real datasets.

Running Time

Using a desktop PC with Intel Core i7-6700K CPU and 32 GB
DDR4 RAM, the running time of our DP algorithm (in a logarithmic
scale) versus the number of query intervals is plotted in Figure 2D
for a number of scaling factors. The running time scales almost

linearly with the number of query intervals n. It also scales linearly
with the number of reference intervals m (Figure 2E), the size of
chromosome g (Figure 2F), and when larger scaling factors
are used.

Poisson Binomial Approximation

To study the accuracy of using PB for the distribution of overlap
statistics, we simulated different cases by changing the number
of query and reference intervals as well as the spread of refer-
ence intervals over the genome. Although the closeness of PB
approximation is a complicated function of the distribution of in-
tervals and its exact characterization is hard, the parameter 7,
defined as the ratio of spread of reference intervals to the total
length of genomic region (STAR Methods), proved to be relevant,
yet simple to calculate. To test the role of n in p value estimation,
we compared the p values of the PB method against the DP
method for different values of n (Figure 3). Relative to the DP,
the PB approximation underestimates p values when
1n=0.005445 (Figure 3A) and overestimates for n=0.6197 (Fig-
ure 3C). However, this over-estimation is not as pronounced as
the underestimation in the case of clumping and reduces with
large n (Figures 3E and 3F). As a rule of thumb, we suggest using
DP (with the largest computationally feasible scaling ») when
1<0.06, to avoid inflating the significance of overlap. For the
case of multiple chromosomes, the minimum » among all chro-
mosomes is recommended as a conservative choice.

Enrichment Analysis on Real Data

To test our methods on interval data from previously published
studies, we applied ISTaT to four examples from the literature
and compared the results with the reported p values. The first
example comes from Deshpande et al. (2018), relating to match-
ing of focal copy number changes in tumor genomes. The sec-
ond dataset is from Zarrei et al. (2015), where a map of CNV in
the human genome is provided, and different genomic elements
are investigated for the presence or absence of CNVs. We also
ran ISTAT on an example from an epigenetics context (Guenther
et al., 2007), where the promoters are found to be enriched for
H3K4 methylation. The last example was extracted from an effort
to systematically annotate the genome by the means of charac-
terizing chromatin states (Ernst and Kellis, 2010).

TCGA-CNV Enrichment in Extra-chromosomal DNA
Focal copy number amplification (CNA) is central to the pathology
of many cancers (Davoli et al., 2017; Verhaak et al., 2019), but
its mechanistic origin is not well understood. Recent results
suggest that CNA can often be attributed to formation of indepen-
dently replicating extra-chromosomal DNA (ecDNA) elements
(Turner et al., 2017). This could be tested by measuring the
significance of the association of ecDNA regions obtained from
tumor-derived cell lines (/) against CNAs identified from array-
CGH data (denoted as /) from tumor genomes (TCGA: The Can-
cer Genome Atlas Program - National Cancer Institute, n.d.).
The number of intervals in query and reference sets were not
large, with n = 116 and m = 101, so we did not scale the inter-
vals, obtaining the p value 8.679-10-6 at the observed overlap
K = 54. For comparison, we got the same p value after scaling
with » = 10", As expected from 7 = 0.001, the PB approxima-
tion (p — value = 2.642-107'°) inflated the significance of the
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Figure 2. Testing DP Algorithm on Simulated Data

Impact of scaling parameter » on the DP p value when (A)/;,x; ~ U[1Kbp,10Kbp], and (B) /;,x; ~ ¢/[100bp,4Kbp]. (C) Impact of ordering on the DP p value, with » =
10 2. The mean of 100 p value computations for random orderings is plotted, and the error bars represent the standard error of the mean. Running time (in s) of the
DP algorithm: (D) as a function of n, with m = 100 and g = 200Mbp. (E) as a function of m, with n = 100, g = 200Mbp. (F) as a function of g, with n = m = 100.

association (Figure 4A). Overall, the ISTaT DP results were useful
in validating proposed mechanisms for the origin of focal CNA in
cancer.

Non-coding Genes Enrichment in CNVs

Zarrei et al. (2015) tested the overlap between n = 3132 regions
of copy number gains (/) against the location of m = 9058 non-
coding genes (/). Using a permutation test, they reported a
p value of 0.0001, showing the limited resolution of permutation
tests. In the supplementary data, they used a binomial distribu-
tion to report another estimate of p — value = 2.32.10-%4, point-
ing to the difficulty of getting an accurate estimate.

Using the scaling factor » = 10 2, with K =987 of intervals in I
overlapped, we computed p — value = 5.216-10~'8, confirming
high enrichment of non-coding genes in CNV gains. After
applying an order of magnitude smaller scaling factor v = 10 3,
we obtained a very similar estimate of p —value=2.532-10-18
providing confidence in our estimates using » =102 (Figure 4B).
The results also indicated that ~10'® randomized samples would
have been needed to get an accurate estimate using permuta-
tion tests.

For this data, we computed n=0.024 suggesting that the PB
estimates would inflate the p value. Indeed, the PB approxima-
tion gave an estimate of 1.370-10 %2, indirectly explaining how
the binomial distribution used by the authors also resulted in a
smaller p value and inflated the significance.
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Enrichment of H3K4me3 in Promoters

Guenther et al. (2007) found that 74% of all annotated promoters
were enriched for H3K4 tri-methylation, concluding that a large
fraction of genes with no detected transcript have promoter-
proximal nucleosomes enriched for H3K4me3 modification. To
evaluate the statistical significance of this observation, we took
the set of regions highly enriched for H3K4me3 in ES cells as
the query set (data provided as supplementary information in
their paper [Guenther et al., 2007]). However, they did not provide
coordinates for the promoters. Therefore, for the reference inter-
vals, we used the collection of all promoters (—5.5Kbp to 2.5 Kbp
relative to TSS-transcription initiation site-of all RefSeq genes) as
the reference set of intervals. Although with the /s that we used we
did not get the same ratio of overlap as reported in the paper
but still the p value was quite significant. At the observed overlap
of K =2642 out of m = 24889 reference intervals, the PB p value
was 1.775-10°7%, while the DP p value with »=10"2 is
2.734.1078. For this example, n=0.1 so PB approximation
gave a conservative p values as expected (Figure 4C).

Enrichment of Promoters in Promotor-Associated
Chromatin States

In a study by Ernst and Kellis (2010), among 51 identified
chromatin states, states 1 to 11 were referred to as promoter-
associated states because of high enrichment for promoter
regions. We tried to compute the p value of enrichment by
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Figure 3. Testing PB Approximation on Simulated Datasets

All simulations are run with g = 200 Mbp and m = 100. For (A)~(C), we setn = 100 and /;.x; ~ U[1Kbp,10Kbp], simulating different n values: (A) n = 0.0054, (B)n =
0.053, and (C) 7 = 0.62. For (D)—(F) we set n=1000 and /;,x; ~ U[1Kbp,2Kbp], with 5: (D) n = 0.0079, (E) n = 0.062, and (F) = 0.68.

considering the set of all promoter regions (within 2 Kbp of
RefSeq TSS) as the query set / and 200-bp intervals identified
with state 9 as the reference set Ir. From m = 4995 intervals in
I, K=344 are overlapped by the query intervals. The
p —value = 1.588-108 (using the scaling factor » = 1072) shows
that it would be very unlikely to observe such overlap only by
chance, yet it is much less significant than the p value reported
by the authors (<1072%%), computed using the hypergeometric
distribution. As n = 0.01, PB approximation expectedly gives
smaller p value (1.082-10~"3; Figure 4D).

DISCUSSION

Our results explore the statistics of interval overlaps. The ques-
tion is quite natural in the post-genomic era where annotating
the genome for function, structure, and variation and identifying
correlated annotations are key problems. While scientists have
used many different ways to compute the significance of overlap
between two sets of intervals, their computations often do not
explicitly state the assumptions on the null model or accurately
compute the p values given specific assumptions.

To the best of our knowledge, the p value computation for sets
of overlapping intervals has been limited to either permutation
tests, which do not scale to computation of small p values, or
simple parametric tests such as hypergeometric or binomial
tests, which are based on simplifying assumptions about the

length and structure of intervals. Our paper, however, formulates
a null model where the size of intervals and their relative arrange-
ment are considered when the significance of overlap is evalu-
ated. We explicitly state the assumptions that we have made in
our proposed model and assess the impact of our assumptions
thorough the experiments on simulated and real datasets.
Computation of exact p values may be necessary in some cases.
For example, p values can be used to compare the significance
of two “competing” annotations with different numbers of inter-
vals (n) and intersections (k). We develop a framework that
makes exact computation of p values possible, even for very
small p values.

The proposed DP method is able to compute very small
p values by efficiently counting the number of possible random
rearrangements of intervals resulting in a specific amount of
overlap. Although we assume that the order of intervals is not
changed and it may be possible to construct adversarial exam-
ples where changing the order has a material impact on p values,
but our simulation of typical examples of interval data show that
the resulting change in p values is not significant. Our experi-
ments on simulated and real datasets also suggest that to
improve the speed and memory usage, we can employ reason-
able scaling factors and still obtain accurate p values.

The PB approximation is very efficient to compute. However,
our results suggest that for typical values found in real-life exam-
ples, the independence assumption is too strong and might
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Figure 4. Enrichment Analysis on 4 Biological Datasets from Published Studies
The p value curve is plotted for a range of overlap statistics k, computed using two different scaling factors (shown in blue and green). The result of PB
approximation is also shown in orange. The dashed line shows the observed overlap K for each dataset. For datasets (A) and (B), the p values computed using

both scaling factors are almost identical.

(A) TCGA-CNV enrichment in extra-chromosomal amplified oncogenes; K = 54.

(B) Non-coding genes enrichment in CNVs; K = 987.
(C) Enrichment of H3K4me3 in promoters; K = 2642.

(D) Enrichment of promoters in promoter-associated chromatin states; K = 344.

result in underestimated p values or the false reporting of some
overlap as being significant. Nevertheless, we have introduced
parameter n, which can be readily computed from the data
before running the DP method, to estimate the accuracy of the
PB method compared to the DP algorithm results. Future work
should look into more systematic characterization of PB
approximation.

Throughout our experiments, we let the intervals be uniformly
distributed over the whole extent of the chromosomes. However,
one might be interested in a non-uniform distribution of intervals
under the null model, to account for confounding variables such
G/C content, sequence context, or intergenic-genic region. Our
methods can be used in such cases by confining the problem to
the specific regions of interest. Hence, only intervals falling into
such regions are considered, and g would be the total length
of the segments that intervals are allowed to be distributed there.
Moreover, we considered the overlap of two intervals as a binary
event and defined the statistic based on the number of overlap-
ping intervals. However, the DP method can be modified to
compute the p value when the overlap statistic is defined based
on the total amount of shared base pairs instead. Thus, we
provide this as an option in ISTAT software and give the user the

i-th interval in Iy

| c(i,n)=3

1 h g

Figure 5. lllustrating the Basics of the Dynamic Programming
Algorithm

How the functions c(j, h) and f(h) are evaluated. In this example, the i-th interval
in /., which ends at h, intersects 3 intervals in I, so c(i, h) = 3. Also, there is an
interval in /s spanning h, so f(h) = 1.
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flexibility of choosing the appropriate measure of overlap for their
specific application.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
® CONTACT FOR REAGENT AND RESOURCE SHARING
e METHOD DETAILS
O Problem Formulation
O Dynamic Programming Algorithm
O Time Complexity
O Multiple Chromosomes
O Poisson Binomial Approximation
o DATA AND SOFTWARE AVAILABILITY
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

TCGA-CNV enrichment in extra-chromosomal DNA Turner et al. (2017) Supplemental information

Non-coding genes enrichment in CNVs Zarrei et al. (2015) Table S9

Enrichment of H3K4me3 in promoters Guenther et al. (2007) Table S2

Enrichment of promoters in promoter-associated Ernst and Kellis (2010) http://compbio.mit.edu/ChromatinStates/

chromatin states

Software and Algorithms

iSTAT This paper https://github.com/shahab-sarmashghi/Skmer

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Vineet Bafna (vbafna@
cs.ucsd.edu).

METHOD DETAILS

We use the space-counted, zero-start convention for the genomic coordinates. Namely, we count the space between bases starting
from O (the one before the first base) up to g (the one after the last base), where g denotes the length of the genomic region of interest.
We use ‘I’ to index the intervals in query set /, which has total number of n intervals, and designate ‘j’ to index the intervals in reference
set I, which consists of m intervals in total. The length of i-th query interval and j-th reference interval are represented by /; and x;,
respectively. Two intervals (u+, uo) and (v4, vo) overlap iff they share common nucleotide(s). A collection of intervals is non-overlapping
if no pair of intervals in the collection overlap.

Problem Formulation
Let It =1 denote the subset of intervals in I that are hit (overlap with intervals in /). Suppose |l S/| = k. We measure the significance
(p value) of this observation by sampling a random set of intervals /, with the following properties

® |/-| = |l|. I, has exactly n elements.
® Intervals in /, have the same lengths as the intervals in /.
® The location of intervals in /, are drawn from a distribution (implicitly) such that all possible random sets are equally likely.

Let /, be drawn according to the process above, then p value is defined as
P —value(k) =Pr(|l:=I;| > k).

While the computational complexity of the problem is not known, we can argue that it is hard. Clearly, the number of possible

li

. . g+n->J o g+n—=> .

random sets is very large; ranging from ( 7 ) when all /s are identical, to < 7 )n! when all /; are distinct. For
n n
typical values of g =2+108 (length of a chromosome), n = 100 (number of annotated regions), and 3" /; = 10° (total length of regions
covered by an annotation), counting all possibilities naively to compute Pr(|/s =/| > k) is computationally intractable. Thus, we impose
the restriction that the intervals in /. must retain the same order as the intervals in / (i.e, if interval B starts after interval A in /, same
should happen in /), and present a dynamic programming (DP) algorithm to compute the number of distinct random sets with
[ls<1y| = k, forall k. In practice, to apply the algorithm to large genomes with abundant annotation, we use a practical interval ‘scaling’
scheme by considering the natural partitioning of the genome into intervals and the gaps amidst them, and scale each interval and
gap in / and /¢ by a fraction ». Ideally, we want to have » = 1, but large problems require smaller fractions to make the computation
feasible from both running time and memory usage aspects. Nevertheless, we show that the algorithm still yields a close approxi-
mation of p value.
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Dynamic Programming Algorithm
For interval i in I, genomic location h, (1 <h < g),0 < kK < m, ac0,1, let N(j h, k, a) denote the number of arrangements of the first i
intervals in /, such that (see Figure 5):

® The i-th interval ends exactly at location h.
® k intervals in I are hit by the first i intervals in /,.
e a = 0 if the interval from /; that spans h (if any) has not been counted earlier; a = 1 otherwise.

We also define N4(i, h, k, a) identically to N(i, h, k, a) with the exception that the i-th interval ends at or before location h. Note that if
the j-th interval in /rspans h, it is counted as a hit, but may have already been counted by some other interval in /,. Although a separate
function can be defined to store that information, we use a as an indicator in dynamic programming for the sake of brevity. In order to
compute N4(i, h, k, a), we must define some auxiliary functions. Let c(i, h) denote the number of intervals in /s which intersect with (h —
I;, h) in I,. While evaluating c(i, h), (j1, jo) in Iris counted as an intersecting interval with (h — I, h) if j; < h and j> > h — I;. We also define
binary functionf : (0,g] — {0, 1}, where f(h) = 1 if some interval in /s spans h, meaning that it starts before h and ends after it, and f(h) = 0
otherwise (Figure 5). For the simplicity of exposition, it is assumed that a single nucleotide overlap between two intervals from /. and /¢
is sufficient to count the reference interval as intersected. However, we can be more strict by accepting only the overlaps
which include z or more base pairs (units). In that case, we just need to generalize the definitions of c(i, h) and f(h). For c(i, h), the
intersection conditions should change to j; < h — zand j, > h — /; + z, which can be compressed into a single condition min{js,
h} — max{ji;,h— [} >z. Also, fl(hy =1ifj;s <h—-zandj, > h+z

To explain the recurrences, note that N4(i, h, k, a) can be computed by adding cases where the i-th interval ends exactly at h, and
cases where the i-th interval ends strictly before h. To compute N(, h, k, a) we need to consider all arrangements where the firstj — 1
intervals in /, ends before the start of the i-th interval at h — /.

N(i,h,k,a) h=1

N(i,h.k,a) + N1(i,h—1,k,min{a,f(h —1)}) Otherwise (Equation 1)

N1(i7h7k7a):{

i
0 h<}" I, or k<c(i,h) —a

x=1
1 i=1and k =c(i,h)—a
Ni(i—1,h—=li,k—c(i,h) + a,f(h—1;)) Otherwise

N(i,h,k,a) =

where
1<i<n, 1<h<g, 0<k<m, ae{0,1}.
The DP p value (Pr(|ls<I|>k)) can be computed using the ratio

_ ZT:kN1 (n797 K, 0)

P —value(k) = > Ni(n,g,x,0)

Recall that the total number of configurations is

m

n
ZN1(n,g,K,O): (g_zl':1l" + n).
k=0 n

which can be very large and surpass the upper limit of ordinary data types. Therefore, we perform all calculations using a logarithmic
scale. The multiplication and division can be done ftrivially in the logarithmic scale. For the addition and subtraction, we use the
following simple math trick. Let a = logA and b = logB. Then, ¢ = log(A + B) is calculated without explicitly converting a and b to their
intractably large counterparts, A and B, using

_Ja+log(1+expb—a)) ifb>a
~ | b +log(1 +exp(@a—>b)) ifa>b

As a matter of fact, this trick is useful when A and B are both large, but the ratio 4=exp(a — b) is computable, which is the case in
the recurrence relation given by Equation 1.

Time Complexity

The number of iterations to complete the table of values for N4(i, h, k, a) is O(ngm). The functions c(j, h) and f(h) can be pre-computed
(using a modified version of binary search algorithm), so each iteration is computed in a constant time. Therefore, the total time
complexity is O(ngm) which is pseudo-polynomial because the input size is O((n + m)log g). The running time can be reduced
to O(ngvm) by scaling the genome using scaling factor » < 1. We also use a number of tricks to improve the speed of computations,
including lowering memory usage from O(ngm) to O(gm). We should note that this time complexity is achieved under the assumption
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that the order of intervals in /, is same as I. In Results, we show that choosing different orders does not significantly change the
p value.

Multiple Chromosomes

In many cases of interest, the intervals reported are on multiple chromosomes, with a non-uniform distribution across chromosomes.
Therefore, the appropriate random interval set /', may only allow permutation of interval positions within the chromosome it is orig-
inally assigned to. For this alternative null model, the DP algorithm is applied to each chromosome to enumerate rearrangements of
intervals within each chromosome, and then the results are combined to compute the overall p value. Specifically, consider Q chro-
mosomes. For an arbitrary chromosome g, 1 < g < Q, let/; </ and Ir 4 </ denote the subsets of intervals paced on g, containing nq
and m, intervals, respectively. Similarly, we can define /., to be a random reordering of /; on chromosome q. Let N, (k) denote the
number of configurations of intervals in g s.t. |l g Slq| = k. Using dynamic programming on each of Q chromosomes, we can
obtain Ng(kg) 1 < g < Q, 0 < kg < mq. For ke [0, m] we define the p value to be

Q
P —value(k) = Pr(qu>k).
qg=1

With the equiprobability assumption and using simple arguments based on multiplication principle to count the number of desired
configurations, we can compute the p value as

Q
Z(kw.kg....,kQ)ETk q:1Nq(kq)
Q
Z(m Ka,...kq)eTo Hq: 1Nq(kq)

where Ty is the set of all Q-tuples (k1, ko, ..., kq) such that anz 1kq =k. While the denominator can be easily computed via the following
identity

P — value(k) =

N

Q Q Mmq
Z HNq(kq) = H Z N (kq) »
(ki ka,...kQ)eToq=1 q=1kq=0
it is not efficient to iterate over T, to compute the numerator for each k. Instead, we use a simple recursive procedure to compute it.
Let M(q, k) be the number of configurations that the first g chromosomes have k intersections. The p value can be expressed in terms
of M(q, k) as

SrM(Q, )
P —value(k) ===,
>-oM(Q; k)
The following recurrence relation lets us to efficiently compute the p value for all ke [0,m]
min{k,mq}

M(g.k)= Y M(@—1,k—=I)Ng()
1=0
q
M(q,0) = [[Nu(0), M(1,k) = N (k)

where the time complexity is O(Qm?). Nevertheless, in almost all practical cases, the total time complexity of calculating the p value is
dominated by the complexity of applying DP algorithm to each chromosome to compute all Ng(kg). As DP algorithm on each
chromosome is done independently, we can take advantage of parallel computing and the total running time would

be O(ml?x{nngmq})

Poisson Binomial Approximation

For the case that annotations contain too many intervals such that the processing resources to run DP algorithm cannot be afforded,
we provide an approximation which is reasonably close under certain condition. For simplicity, we remove the non-overlapping
assumption on /.. Thus, /, is a randomly located collection of n intervals of lengths /1,/5,1/3, ..., I, with arbitrary order. Let E; denote
the event that the j-th interval in I; is intersected by the i-th interval in /.. Then,

li+x;—1
pj: = Pr(Ej)="—"—

As before, we assumed that a single nucleotide overlap is sufficient. For the more strict overlap condition of at least z base pairs
overlap, p; is given by
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0 if z>min{x;,/;}
Pi=% [ 4x —
! M Otherwise

Now, let E,-,- be the event that the i-th interval in /, does not intersect the j-th interval in /1. In the absence of the non-overlapping
assumption on /,, the events E,-,-, i=1,2,...,n, are independent, and the probability of their intersection is given by the product of
individual probabilities. Therefore, the probability of £; = U7_,Ej, which is the event where interval je Iy is hit by /,, can be calculated as

n n
P;: = Pr(E)=Pr(UL,E;)=1—Pr(N_,E;)=1-[]Pr(E;)=1-]](1 - Pr(E))). (Equation 2)
i=1

i=1

Now consider the binary indicator variable Xj, where X; = 1 iff event E; occurs. We have m Bernoulli experiments with success
probabilities P1,Po, ...,Pn, and we are interested in computing Pr(ZX,- = k). In general, there are dependencies between E;’s
i

for different values of j. However, under certain condition where intervals are not too close or far away, we can approximately assume
independence between different intervals. The sum of m independent Bernoulli trials with different success probabilities is a Poisson
binomial (PB) distribution (Wang, 1993).

Pr<zm:X,-:k> = T[P.JT0-P) (Equation 3)
j=1 AeFueA  veA°

where Fy is the set of all subsets of {1,2,...,m} with k elements. Equation 3 allows us to compute the p value as

P —value(k) = Pr(ZX,- 2k>.
j=1

We cannot directly use Equation 3 by enumerating over all elements in Fj, but use a recursive approach to compute it, following
Hong (2013). It is reproduced here for completeness. Let my ;= Pr(Z{I:1Xu =k) denote the probability of getting k hits in the first j
intervals in /.. Our goal is to compute Pr(3"7_ X, = k) = @ m. All values m; can be computed in O(m?) time using

mj =P 1j 1+ (1 = Py)mej 1, 0<k<m, 0<j<m with the boundary conditions (Equation 4)
w_1j=7.1;=0,j=0,1,...,mand myo = 1. Other FFT based methods are also applicable (Hong, 2013).

With the above PB approximation, we assume that the event of an interval in /s being hit is independent of other intervals being hit,
greatly reducing the computational complexity of the problem. To understand the impact of this assumption, we introduce parameter
7. Recall that P; = Pr(E;) = Pr(X; = 1) is the probability that interval j (length x;) in I¢is hit by some interval in /.. Let d; denote the distance
of interval j from intervalj — 1. Define A: = (m — 1)-median{d,-|j =2,3,...m}andn: = ﬁ- Parameter n is a measure of the spread

of intervals in /. For n <« 1, and j’ sufficiently close to j, we expect to have
Pr(X;=1[X; =1)>Pr(X;=1) .

In other words, if intervals in Ir are clumped, then E;, E; are not statistically independent but positively correlated, and we will un-
derestimate the true p value. For larger values of 7, and j,j’ sufficiently distant,

PrX; =1|X; = 1)<Pr(X; = 1),
The negative correlation leads to an over-estimation of the p value. To better recognize this effect, imagine an extreme case where
n <mand due to the size and spread of intervals in /1, at most n intervals in /rcan be hit. Therefore,p — value(n + 1) = Pr <ZX,->n> =
0. The independence assumption in PB computation, though, will lead to a non-zero value (over-estimate) for p — valuej(n +1).

DATA AND SOFTWARE AVAILABILITY

The ISTAT software is made publicly available on https://github.com/shahab-sarmashghi/ISTAT.git
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