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 Introduction

In a classic paper [18] of 1922 R. Nevanlinna solved the problem of the determinacy 
 solutions of the Stieltjes moment problem. En route he proved several other theorems 
at have since been influential; in particular, the following theorem, which characterizes 
e Cauchy transforms of positive finite measures μ on R, has had a profound impact 
 the development of modern analysis. Let P denote the Pick class, that is, the set of 
alytic functions on the upper half-plane,

Π def= {z ∈ C : Im z > 0},

at have non-negative imaginary part on Π.

heorem 1.1 (Nevanlinna’s Representation). Let h be a function defined on Π. There 
ists a finite positive measure μ on R such that

h(z) =
∫ dμ

t − z
(1.1)

 and only if h ∈ P and

lim inf
y→∞

y |h(iy)| < ∞. (1.2)

A closely related theorem, also referred to in the literature as Nevanlinna’s Represen-
tion, provides an integral representation for a general element of P.

heorem 1.2. A function h : Π → C belongs to the Pick class P if and only if there exist 
∈ R, b ≥ 0 and a finite positive Borel measure μ on R such that

h(z) = a + bz +
∫ 1 + tz

t − z
dμ(t) (1.3)

r all z ∈ Π. Moreover, for any h ∈ P, the numbers a ∈ R, b ≥ 0 and the measure μ ≥ 0
 the representation (1.3) are uniquely determined.

What are the several-variable analogs of Nevanlinna’s theorems? In this paper we shall 
opose four types of Nevanlinna representation for various subclasses of the n-variable 
ick class Pn, where Pn is defined to be the set of analytic functions h on the polyhalf-
ane Πn such that Im h ≥ 0. In addition, we shall present necessary and sufficient 
nditions for a function defined on Πn to possess a representation of a given type in 
rms of asymptotic growth conditions at ∞.
The integral representation (1.1) of those functions in the Pick class that satisfy 

ndition (1.2) can be written in the form
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h(z) =
〈
(A − z)−11, 1

〉
L2(μ) ,

here A is the operation of multiplication by the independent variable on L2(μ) and 
is the constant function 1. We propose that an appropriate n-variable analog of the 
auchy transform is the formula

h(z1, . . . , zn) =
〈
(A − z1Y1 − · · · − znYn)−1v, v

〉
H for z1, . . . , zn ∈ Π, (1.4)

here H is a Hilbert space, A is a densely defined self-adjoint operator on H, Y1, . . . , Yn

e positive contractions on H summing to 1 and v is a vector in H.
Theorem 1.6 below characterizes those functions on Πn that have a representation of 
e form (1.4). To state this theorem we require a notion based on the following classical 
sult of Pick [20].

heorem 1.3. A function h defined on Π belongs to P if and only if the function A defined 
 Π × Π by

A(z, w) = h(z) − h(w)
z − w̄

 positive semidefinite, that is, for all n ≥ 1, z1, . . . , zn ∈ Π, c1, . . . , cn ∈ C,
∑

A(zj , zi)cicj ≥ 0.

The following theorem, proved in [2], leads to a generalization of Theorem 1.3 to two 
riables. The Schur class of the polydisc, denoted by Sn, is the set of analytic functions 
 the polydisc Dn that are bounded by 1 in modulus.

heorem 1.4. A function ϕ defined on D2 belongs to S2 if and only if there exist positive 
midefinite functions A1 and A2 on D2 × D

2 such that

1 − ϕ(μ)ϕ(λ) = (1 − μ1λ1)A1(λ, μ) + (1 − μ2λ2)A2(λ, μ). (1.5)

By way of the transformations

z = i
1 + λ

1 − λ
, λ = z − i

z + i
, (1.6)

d

h(z) = i
1 + ϕ(λ)
1 − ϕ(λ) , ϕ(λ) = h(z) − i

h(z) + i
, (1.7)

ere is a one-to-one correspondence between functions in the Schur and Pick classes. 
nder these transformations, Theorem 1.4 becomes the following generalization of Pick’s 

eorem to two variables.
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heorem 1.5. A function h defined on Π2 belongs to P2 if and only if there exist positive 
midefinite functions A1 and A2 on Π2 × Π2 such that

h(z) − h(w) = (z1 − w1)A1(z, w) + (z2 − w2)A2(z, w).

In the light of Theorems 1.3 and 1.5 we define the Loewner class Ln to be the set 
 analytic functions h on Πn with the property that there exist n positive semidefinite 
nctions A1, . . . , An on Πn such that

h(z) − h(w) =
n∑

j=1
(zj − wj)Aj(z, w) (1.8)

r all z, w ∈ Πn. The Loewner class Ln played a key role in [4], which gave a 
neralization to several variables of Loewner’s characterization of the one-variable 
erator-monotone functions [17]. As the following theorem makes clear, Ln also has 

fundamental role to play in the understanding of Nevanlinna representations in several 
riables.

heorem 1.6. A function h defined on Πn has a representation of the form (1.4) if and 
ly if h ∈ Ln and

lim inf
y→∞

y|h(iy, . . . , iy)| < ∞. (1.9)

In the cases when n = 1 and n = 2, Theorems 1.3 and 1.5 assert that Ln = Pn, 
d so for n = 1, Theorem 1.6 is Nevanlinna’s classical Theorem 1.1, and when n = 2, 

heorem 1.6 is a straightforward generalization of that result to two variables. When 
ere are more than two variables, it is known that the Loewner class is a proper subset of 
e Pick class, Ln �= Pn [19,22]. Nevertheless, Nevanlinna’s result survives as a theorem 
out the representation of elements of Ln. Other than the work in [11] very little is 
own about the representation of functions in Pn for three or more variables.
For a function h on Πn, we call the formula (1.4) a Nevanlinna representation of 

pe 1. Thus, Theorem 1.6 can be rephrased as the assertion that h has a Nevanlinna 
presentation of type 1 if and only if h ∈ Ln and h satisfies condition (1.9). Somewhat 
ore complicated representation formulae are needed to generalize Theorem 1.2. We 
entify three further representation formulae, of increasing generality, and show that 
ery function in Ln has a representation of one or more of the four types.
For a function h defined on Πn, we refer to a formula

h(z1, . . . , zn) = a +
〈
(A − z1Y1 − · · · − znYn)−1v, v

〉
H

for z1, . . . , zn ∈ Π, (1.10)
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here a is a constant, H is a Hilbert space, A is a densely defined self-adjoint operator 
 H, Y1, . . . , Yn are positive contractions on H summing to 1 and v is a vector in H, as 
Nevanlinna representation of type 2.

heorem 1.7. A function h defined on Πn has a Nevanlinna representation of type 2 if 
d only if h ∈ Ln and

lim inf
y→∞

y Im h(iy, . . . , iy) < ∞. (1.11)

A Nevanlinna representation of type 3 of a function h defined on Πn is of the form

h(z) = a +
〈
(1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1v, v

〉
for all z ∈ Πn

r some real a, some self-adjoint operator A and some vector v, where Y1, . . . , Yn are 
erators as in equation (1.4) above and zY = z1Y1 + · · · + znYn.

heorem 1.8. A function h defined on Πn has a Nevanlinna representation of type 3 if 
d only if h ∈ Ln and

lim inf
y→∞

1
y

Im h(iy, . . . , iy) = 0.

Finally, Nevanlinna representations of type 4 are given by the formula

h(z) = a + 〈M(z)v, v〉 , (1.12)

here a ∈ R and M(z) is an operator of the form

−i 0
0 1 − iA

] ([
1 0
0 A

]
− zP

[
0 0
0 1

])−1 (
zP

[
1 0
0 A

]
+

[
0 0
0 1

]) [
−i 0
0 1 − iA

]−1

,

(1.13)

ting on an orthogonal direct sum of Hilbert spaces N ⊕ M. In equation (1.12), v is a 
ctor in N ⊕ M. In equation (1.13), A is a densely-defined self-adjoint operator acting 
 M and zP is the operator acting on N ⊕ M via the formula

zP =
∑

ziPi

here P1, . . . , Pn are pairwise orthogonal projections acting on N ⊕ M that sum to 1.

heorem 1.9. Let h be a function defined on Πn. Then h has a Nevanlinna representation 

 type 4 if and only if h ∈ Ln.
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A weaker, “generic” version of Theorem 1.9 appeared in [4, Theorem 6.9], where it 
as used to show that elements in Ln are locally operator-monotone.
It turns out that for 1 ≤ k ≤ 4, if h is a function on Πn and h has a Nevanlinna 

presentation of type k, then for k ≤ j ≤ 4, h also has a Nevanlinna representation of 
pe j. Thus, it is natural to define the type of a function in Ln to be the smallest k such 
at h has a Nevanlinna representation of type k.
For h ∈ Ln the type of h can be characterized in function-theoretic terms through the 
e of a geometric idea due to Carathéodory. A carapoint for a function ϕ in the Schur 
ass Sn is a point τ ∈ T such that

lim inf
λ→τ

1 − |ϕ(λ)|
1 − ‖λ‖∞

< ∞,

here

‖λ‖∞ = max
1≤i≤n

|λi| .

arathéodory introduced this notion in one variable in [9], along the way to refining 
rlier results of Julia [14]. The following was Carathéodory’s main result; the notation 

 nt→ τ means that λ tends nontangentially to τ .

heorem 1.10. Let ϕ ∈ S1, τ ∈ T. If τ is a carapoint for ϕ, then ϕ is nontangentially 
fferentiable at τ , that is, there exist values ϕ(τ) and ϕ′(τ) such that

lim
λ

nt→τ

ϕ(λ) − ϕ(τ) − ϕ′(τ)(λ − τ)
λ − τ

= 0.

 particular, if τ is a carapoint for ϕ then there exists a unique point ϕ(τ) ∈ T such 

at ϕ(λ) → ϕ(τ) as λ nt→ τ .

In several variables, carapoints have been studied in [1,13,3]. The strong conclusion 
 nontangential differentiability is lost in several variables; however, at a carapoint τ , 
ere still exists a unimodular nontangential limit ϕ(τ).
As the point χ = (1, . . . , 1) is transformed to the point ∞ = (∞, . . . , ∞) by equa-

on (1.6), it is natural to say that a function h ∈ Ln has a carapoint at ∞ if the associated 
hur function ϕ, given by the transformation in equation (1.7), has a carapoint at χ, 
d in that case to define h(∞) by

h(∞) = i
1 + ϕ(χ)
1 − ϕ(χ) . (1.14)

The connection between carapoints and function types is given in the following theo-

m.
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heorem 1.11. For a function h ∈ Ln,

) h is of type 1 if and only if ∞ is a carapoint of h and h(∞) = 0;
) h is of type 2 if and only if ∞ is a carapoint of h and h(∞) ∈ R \ {0};
) h is of type 3 if and only if ∞ is not a carapoint of h;
) h is of type 4 if and only if ∞ is a carapoint of h and h(∞) = ∞.

The paper is structured as follows. As is clear from the formulae used to define the 
rious Nevanlinna representations, Nevanlinna representations are generalizations of 
e resolvent of a self-adjoint operator. These structured resolvents, studied in Sections 2
d 3, are analytic operator-valued functions on the polyhalf-plane Πn with non-negative 
aginary part, fully analogous to the familiar resolvent operator. There are also struc-
red resolvent identities for them, studied in Section 10 of the paper.
In modern texts Nevanlinna’s representation is derived from the Herglotz Representa-

on with the aid of the Cayley transform [16,10]. In Section 4 we introduce the n-variable 
rong Herglotz class and then prove Theorem 1.9 by applying the Cayley transform to 
heorem 1.8 of [2].
In Section 5 we derive the Nevanlinna representations of types 3, 2, and 1, we show 

ow they arise naturally from the underlying Hilbert space geometry and we prove slight 
rengthenings of Theorems 1.6, 1.7 and 1.8. In Section 6 we give function-theoretic 
nditions for a function h ∈ Ln to possess a representation of a given type.
In Section 7 we introduce the notion of carapoints for functions in the Pick class and 

 Section 8 we establish the criteria in Theorem 1.11 for the type of a function using 
e language of carapoints.
In Section 9 we give the growth estimates for functions in Ln that flow from our 
alysis of structured resolvents, and in Section 10 we present resolvent identities for 
ructured resolvents.
Results related to ours from a system-theoretic perspective have been obtained in 

cent works of J.A. Ball and D. Kalyuzhnyi-Verbovetzkyi [6,7]. See also [8], where Krein 
ace methods are applied to similar problems.

 Structured resolvents of operators

The resolvent operator (A − z)−1 of a densely defined self-adjoint operator A on a 
ilbert space plays a prominent role in spectral theory. It has the following properties.

) It is an analytic bounded operator-valued function of z in the upper half-plane Π;
) it satisfies the growth estimate ‖(A − z)−1‖ ≤ 1/ Im z for z ∈ Π;
) (A − z)−1 has non-negative imaginary part for all z ∈ Π;
) it satisfies the “resolvent identity”.

ere we are interested in several-variable analogs of the resolvent. These will again 

e operator-valued analytic functions with non-negative imaginary part, but now on 
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e polyhalf-plane Πn. Because of the additional complexities in several variables we 
counter three different types of resolvent; all of them have the four listed properties, 

ith very slight modifications, and therefore deserve the name structured resolvent.
For any Hilbert space H, a positive decomposition of H will mean an n-tuple Y =

1, . . . , Yn) of positive contractions on H that sum to the identity operator. For any 
= (z1, . . . , zn) ∈ C

n and any n-tuple T = (T1, . . . , Tn) of bounded operators we denote 
 zT the operator 

∑
j zjTj . Here each Tj is a bounded operator from H1 to H2, for 

me Hilbert spaces H1, H2, so that zT is also a bounded operator from H1 to H2.

efinition 2.1. Let A be a closed densely defined self-adjoint operator on a Hilbert 
ace H and let Y be a positive decomposition of H. The structured resolvent of A

 type 2 corresponding to Y is the operator-valued function

z �→ (A − zY )−1 : Πn → L(H).

The following observation is essentially [4, Lemma 6.25].

roposition 2.2. For A and Y as in Definition 2.1 the structured resolvent (A − zY )−1

 well defined on Πn and satisfies, for all z ∈ Πn,

‖(A − zY )−1‖ ≤ 1
minj Im zj

. (2.1)

oreover

Im
(
(A − zY )−1)

= (A − z∗
Y )−1 (Im zY ) (A − zY )−1

= (A − zY )−1 (Im zY ) (A − z∗
Y )−1

≥ 0. (2.2)

The range of the bounded operator (A − zY )−1 is of course D(A), the domain of A.

roof of Proposition 2.2. For any vector ξ in the domain of A,

‖(A − zY )ξ‖ ‖ξ‖ ≥ | 〈(A − zY )ξ, ξ〉 |
≥ | Im 〈(A − zY )ξ, ξ〉 |
= 〈(Im zY )ξ, ξ〉

=
∑

j

(Im zj) 〈Yjξ, ξ〉

≥ (min
j

Im zj)
〈∑

j

Yjξ, ξ

〉

2
= (min
j

Im zj)‖ξ‖ .
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hus A −zY has lower bound minj Im zj > 0, and so has a bounded left inverse. A similar 
gument with z replaced by z̄ shows that (A − zY )∗ also has a bounded left inverse, 
d so A − zY has a bounded inverse and the inequality (2.1) holds.
The identities (2.2) are easy. �
Resolvents of type 2 are the simplest several-variable analogues of the familiar one-
riable resolvent but they are not sufficient for the analysis of the several-variable Pick 
ass. To this end we introduce two further generalizations. Let us first recall some basic 
cts about closed unbounded operators.

emma 2.3. Let T be a closed densely defined operator on a Hilbert space H, with domain 
(T ). The operator 1 + T ∗T is a bijection from D(T ∗T ) to H, and the operators

B
def= (1 + T ∗T )−1, C

def= T (1 + T ∗T )−1

e everywhere defined and contractive on H. Moreover B is self-adjoint and positive, 
d ran C ⊂ D(T ∗).

roof. All these statements are proved in [21, Sections 118, 119], although the final 
atement about ran C is not explicitly stated. We must show that for all v ∈ H there 
ists y ∈ H such that, for all h ∈ H,

〈Th, Cv〉 = 〈h, y〉 .

 is straightforward to check that this relation holds for y = v − Bv, and so ran C ⊂
(T ∗). �
efinition 2.4. Let A be a closed densely defined self-adjoint operator on a Hilbert space 
and let Y be a positive decomposition of H. The structured resolvent of A of type 3
rresponding to Y is the operator-valued function M : Πn → L(H) given by

M(z) = (1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1. (2.3)

We denote the �1 norm on Cn by ‖ · ‖1. Note that ‖zY ‖ ≤ ‖z‖1 for all z ∈ C
n and all 

ositive decompositions Y .

roposition 2.5. For A and Y as in Definition 2.4 the structured resolvent M(z) of type 3
ven by equation (2.3) is well defined as a bounded operator on H for all z ∈ Πn and 
tisfies

‖M(z)‖ ≤ (1 + 2‖z‖1)
(

1 + 1 + ‖z‖1
)

. (2.4)
minj Im zj
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roof. Since

1 + zY A = 1 − izY + izY (1 − iA) : D(A) → H

d (1 − iA)−1 is a contraction on all of H, with range D(A), the operator (1 +zY A)(1 −
)−1 is well defined as an operator on H and

‖(1 + zY A)(1 − iA)−1‖ = ‖(1 − izY )(1 − iA)−1 + izY ‖

≤ ‖1 − izY ‖ + ‖zY ‖

≤ 1 + 2‖zY ‖

≤ 1 + 2‖z‖1. (2.5)

milarly (1 − iA)(A − zY )−1 is well defined on H, and since

i(A − zY ) = −(1 − iA) + (1 − izY ) : D(A) → H

e have

i = −(1 − iA)(A − zY )−1 + (1 − izY )(A − zY )−1 : H → H.

hus, by virtue of the bound (2.1),

‖(1 − iA)(A − zY )−1‖ = ‖i − (1 − izY )(A − zY )−1‖

≤ 1 + ‖1 − izY ‖ ‖(A − zY )−1‖

≤ 1 + 1 + ‖z‖1

minj Im zj
. (2.6)

n combining the estimates (2.6) and (2.5) we obtain the bound (2.4). �
The following alternative formula for the structured resolvent of type 3, valid on the 
nse subspace D(A) of H, allows us to show that Im M(z) ≥ 0.

roposition 2.6. For A and Y as in Definition 2.4 and z ∈ Πn

M(z)|D(A) = (1 − iA)
{

(A − zY )−1 − A(1 + A2)−1}
(1 + iA) (2.7)

= (1 − iA)(A − zY )−1(1 + iA) − A : D(A) → H. (2.8)

oreover, for every v ∈ D(A),

〈 ∗ −1 −1 〉

Im 〈M(z)v, v〉 = (1 − iA)(A − zY ) (Im zY )(A − zY ) (1 + iA)v, v ≥ 0. (2.9)
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roof. By Lemma 2.3 the operator A(1 + A2)−1 is contractive on H and has range 
ntained in D(A). On D(A2) we have the identity

1 + zY A = 1 + A2 − (A − zY )A.

ince (1 + A2)−1 maps H into D(A2) we have

(1 + zY A)(1 + A2)−1 = 1 − (A − zY )A(1 + A2)−1 : H → H,

d therefore

(A − zY )−1(1 + zY A)(1 + A2)−1 = (A − zY )−1 − A(1 + A2)−1 : H → D(A).

(2.10)

learly

(1 + A2)−1(1 + iA) = (1 − iA)−1 on D(A)

d so, on multiplying equation (2.10) fore-and-aft by 1 ±iA, we deduce that, as operators 
om D(A) to H,

M(z)|D(A) = (1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1

= (1 − iA)(A − zY )−1(1 + zY A)(1 + A2)−1(1 + iA)

= (1 − iA)
{

(A − zY )−1 − A(1 + A2)−1}
(1 + iA).

his establishes equation (2.7).
The expression (2.8) follows from equation (2.7) since

(1 − iA)A(1 + A2)−1(1 + iA) = A on D(A).

By equation (2.8) we have, for any z ∈ Πn and v ∈ D(A),

Im 〈M(z)v, v〉 = Im
〈
(1 − iA)(A − zY )−1(1 + iA)v, v

〉
− Im 〈Av, v〉

= Im
〈
(A − zY )−1(1 + iA)v, (1 + iA)v

〉
d hence, by equation (2.2),

Im 〈M(z)v, v〉 =
〈
(A − z∗

Y )−1(Im zY )(A − zY )−1(1 + iA)v, (1 + iA)v
〉

,

d so equation (2.9) holds. �
orollary 2.7. For A and Y as in Definition 2.4 the structured resolvent M(z) given by 

uation (2.3) satisfies Im M(z) ≥ 0 for all z ∈ Πn.
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For, by Propositions 2.5 and 2.6, M(z) is a bounded operator on H, and
〈M(z)v, v〉 ≥ 0 for v ∈ D(A). The conclusion follows by the density of D(A) and 
ntinuity.
In the case of bounded A there is yet another expression for the structured resolvent 

 type 3.

roposition 2.8. If A is a bounded self-adjoint operator on H and Y is a positive de-
mposition of H then, for z ∈ Πn,

M(z) = (1 + iA)−1(1 + AzY )(A − zY )−1(1 + iA). (2.11)

roof. Since A is bounded it is defined on all of H. We have

1 + AzY = 1 + A2 − A(A − zY )

d hence

(1 + AzY )(A − zY )−1 = (1 + A2)(A − zY )−1 − A.

hus

(1 + iA)−1(1 + AzY )(A − zY )−1(1 + iA) = (1 − iA)(A − zY )−1(1 + iA) − A

= M(z)

 equation (2.8). �
emark 2.9. In the case of unbounded A the expression (2.11) for M(z) is valid wherever 
 is defined, but it is not to be expected that this will be a dense subspace of H in general.

Here are two examples of structured resolvents of type 3, one on C2 and one on an 
finite-dimensional space.

xample 2.10. Let

H = C
2, A =

[
1 0
0 −1

]
, Y1 = 1

2

[
1 1
1 1

]
, Y2 = 1 − Y1, Y = (Y1, Y2).

hen

M(z) = (1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1

= 1
[

(1 + z1)(1 + z2) −i(z1 − z2)
]

.
1 − z1z2 i(z1 − z2) −(1 − z1)(1 − z2)
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Example 2.11. Let H = L2(R), let A be the operation of multiplication by the indepen-
dent variable t and let Y = (P, Q) where P , Q are the orthogonal projection operators 
onto the subspaces of even and odd functions respectively in L2. Thus

Pf(t) = 1
2 {f(t) + f(−t)} , Qf(t) = 1

2 {f(t) − f(−t)} .

Let Y ′ = (Q, P ). Note that

PA = AQ, QA = AP

and hence

zY A = AzY ′ , zY ′A = AzY , zY zY ′ = z1z2 = zY ′zY .

It follows that zY and zY ′ commute with A2, and it may be checked that

(A − zY )−1 = (A2 − z1z2)−1(zY ′ + A) = (zY ′ + A)(A2 − z1z2)−1

and hence

(A − zY )−1(1 + zY A) = (A2 − z1z2)−1 (
(1 + A2)zY ′ + (1 + z1z2)A

)
.

A straightforward calculation now shows that the structured resolvent M(z) of A corre-
sponding to Y is given by

(M(z)f)(t) =
( 1

2 (z1 + z2)(1 + t2) + (1 + z1z2)t
)

f(t) + 1
2 (z2 − z1)(1 − it)2f(−t)

t2 − z1z2

for all z ∈ Π2, f ∈ L2(R) and t ∈ R. In particular, we note for future use that if f is an 
even function,

(M(z)f)(t) = t(1 + z1z2) + (1 − it)(itz1 + z2)
t2 − z1z2

f(t). (2.12)

3. The matricial resolvent

The third and last form of structured resolvent that we consider has a 2 × 2 matricial 
form. As will become clear, this extra complication is needed for the description of the 
most general type of function in the several-variable Loewner class.

By an orthogonal decomposition of a Hilbert space H we shall mean an n-tuple P =
(P1, . . . , Pn) of orthogonal projection operators with pairwise orthogonal ranges such 
that 

∑n
j=1 Pj is the identity operator.
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roposition 3.1. Let H be the orthogonal direct sum of Hilbert spaces N , M, let A be a 
nsely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal 
composition of H. For every z ∈ Πn the operator on H given with respect to the 
composition N ⊕ M by the matricial formula

M(z) =
[

−i 0
0 1 − iA

] ([
1 0
0 A

]
− zP

[
0 0
0 1

])−1

×
(

zP

[
1 0
0 A

]
+

[
0 0
0 1

]) [
−i 0
0 1 − iA

]−1

(3.1)

 a bounded operator defined on all of H, and

‖M(z)‖ ≤ (1 +
√

10‖z‖1)
(

1 + 1 +
√

2‖z‖1

minj Im zj

)
. (3.2)

roof. Let z ∈ Πn. Let the projection Pj have operator matrix

Pj =
[

Xj Bj

B∗
j Yj

]
(3.3)

ith respect to the decomposition H = N ⊕ M. Then

X = (X1, . . . , Xn), Y = (Y1, . . . , Yn)

e positive decompositions of N , M respectively, and

B = (B1, . . . , Bn), B∗ = (B∗
1 , . . . , B∗

n)

e n-tuples of contractions summing to 0, from M to N and from N to M respectively. 
nce the Bj are contractions we have

‖zB‖ ≤ ‖z‖1.

or any z ∈ C
n,

zP =
[

zX zB

zB∗ zY

]
. (3.4)

Consider the third and fourth factors in the product on the right hand side of equation 
.1); the product of these two factors is well defined as an operator on H since (1 −iA)−1

aps M to D(A). It is even a bounded operator, since, by virtue of equation (3.4),

(
zP

[
1 0
0 A

]
+

[
0 0
0 1

]) [
−i 0
0 1 − iA

]−1

=
[

izX zBA(1 − iA)−1

izB∗ (1 + zY A)(1 − iA)−1

]
.

(3.5)
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‖A(1 − iA)−1‖ = ‖i
(
1 − (1 − iA)−1)

‖ ≤ 2

e can immediately see that the operator (3.5) is bounded. We can get an estimate of 
e norm of the operator matrix (3.5) if we replace each of the four operator entries by 
 upper bound for its norm. We find that

∥∥∥∥∥
(

zP

[
1 0
0 A

]
+

[
0 0
0 1

]) [
−i 0
0 1 − iA

]−1
∥∥∥∥∥ ≤

∥∥∥∥
[

‖z‖1 2‖z‖1
‖z‖1 1 + 2‖z‖1

]∥∥∥∥
≤ 1 + ‖z‖1

∥∥∥∥
[

1 2
1 2

]∥∥∥∥
= 1 +

√
10‖z‖1. (3.6)

Now consider the second factor in the definition (3.1) of M(z). We find that

([
1 0
0 A

]
− zP

[
0 0
0 1

])−1

=
[

1 −zB

0 A − zY

]−1

=
[

1 zB(A − zY )−1

0 (A − zY )−1

]
, (3.7)

hich maps H into N ⊕ D(A). Hence the product of the first two factors in the product 
 the right hand side of equation (3.1) is

[
−i 0
0 1 − iA

] ([
1 0
0 A

]
− zP

[
0 0
0 1

])−1

=
[

−i −izB(A − zY )−1

0 (1 − iA)(A − zY )−1

]
. (3.8)

ince

‖(1 − iA)(A − zY )−1‖ = ‖(1 − izY )(A − zY )−1 − i‖
≤ 1 + ‖1 − izY ‖ ‖(A − zY )−1‖

≤ 1 + 1 + ‖z‖1

minj Im zj

e deduce from equation (3.8) that
∥∥∥∥∥
[

−i 0
0 1 − iA

] ([
1 0
0 A

]
− zP

[
0 0
0 1

])−1
∥∥∥∥∥

≤
∥∥∥∥
[

1 ‖z‖1 ‖(A − zY )−1‖
0 1 + (1 + ‖z‖1)‖(A − zY )‖−1

]∥∥∥∥∥∥[
0 ‖z‖1

] [
0 0

]∥∥

≤ 1 + ∥∥ 0 1 + ‖z‖1 0 ‖(A − zY )−1‖

∥∥
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≤ 1 + 1 +
√

2‖z‖1

minj Im zj
. (3.9)

n combining the estimates (3.9) and (3.6) we obtain the bound (3.2) for ‖M(z)‖. �
emark 3.2. On multiplying together the expressions (3.8) and (3.5) we obtain the 
rmula

M(z) =
[

zX + zB(A − zY )−1zB∗ −izB(A − zY )−1(1 + iA)
i(1 − iA)(A − zY )−1zB∗ (1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1

]
.

otice in particular that the (2, 2) entry (that is, the compression of M(z) to M) is the 
ructured resolvent of A of type 3 corresponding to Y , the compression of P to M, as 
 equation (2.3).

efinition 3.3. Let H be the orthogonal direct sum of Hilbert spaces N , M, let A be a 
nsely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal 
composition of H. The structured resolvent of A of type 4 corresponding to P is the 
erator-valued function M : Πn → L(H) given by equation (3.1).

We shall also refer to M(z) as the matricial resolvent of A with respect to P . The 
portant property that Im M(z) ≥ 0 is not at once apparent from the formula (3.1); 
 with structured resolvents of type 3, there are alternative formulae from which this 
operty is more easily shown. Once again the alternatives suffer the minor drawback 
at they give M(z) only on a dense subspace of H.

roposition 3.4. With the notation of Definition 3.3, as operators on N ⊕ D(A),

(z) =
[

−i 0
0 1 − iA

] ([
1 0
0 A(1 + A2)−1

]
zP +

[
0 0
0 (1 + A2)−1

])
×

([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]
(3.10)

=
[

−i 0
0 1 − iA

] ([
1 0
0 0

]
zP +

[
0 0
0 1

]) ([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]

−
[

0 0
0 A

]
(3.11)

=
[

−i 0
0 1 − iA

] ([
1 0
0 A

]
− zP

[
0 0
0 1

])−1 (
zP

[
1 0
0 0

]
+

[
0 0
0 1

]) [
i 0
0 1 + iA

]

−
[

0 0
0 A

]
(3.12)
r all z ∈ Πn. Moreover, for all z, w ∈ Πn,
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M(z) − M(w)∗ =
[

−i 0
0 1 − iA

] ([
1 0
0 A

]
− w∗

P

[
0 0
0 1

])−1

×

(zP − w∗
P )

([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]
(3.13)

 N ⊕ D(A).

roof. By Lemma 2.3 the operators (1 + A2)−1 and

C
def= Im(1 − iA)−1 = A(1 + A2)−1

e self-adjoint contractions defined on all of M. Furthermore,

ran(1 + A2)−1 = D(A2), ran C ⊂ D(A).

We claim that, as operators on N ⊕ D(A),

([
1 0
0 A

]
−zP

[
0 0
0 1

])−1 (
zP

[
1 0
0 A

]
+

[
0 0
0 1

])
=

([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

]) ([
1 0
0 C

]
−

[
0 0
0 (1 + A2)−1

]
zP

)−1

.

(3.14)

e have

zP

[
1 0
0 A

]
+

[
0 0
0 1

]) ([
1 0
0 C

]
−

[
0 0
0 (1 + A2)−1

]
zP

)

=
[

0 0
0 C

]
+ zP

[
1 0
0 AC

]
−

[
0 0
0 (1 + A2)−1

]
zP − zP

[
0 0
0 C

]
zP

=
[

0 0
0 C

]
+ zP

([
1 0
0 AC

]
− 1

)
+

(
1 −

[
0 0
0 (1 + A2)−1

])
zP − zP

[
0 0
0 C

]
zP

=
[

0 0
0 C

]
− zP

[
0 0
0 (1 + A2)−1

]
+

[
1 0
0 AC

]
zP − zP

[
0 0
0 C

]
zP

=
([

1 0
0 A

]
− zP

[
0 0
0 1

]) ([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

])
.

his is an identity between operators on H, in both cases a composition H → N ⊕
(A) → H, and moreover the first factor on the left hand side and the second factor 
 the right hand side are invertible, from N ⊕ D(A) to H and from H to N ⊕ D(A)
spectively. We may pre- and post-multiply appropriately to obtain equation (3.14), but 
ote that the equation is then only valid as an identity between operators on N ⊕ D(A).
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On combining equations (3.1) and (3.14) we deduce that

M(z) =
[

−i 0
0 1 − iA

] ([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

])
×

([
1 0
0 C

]
−

[
0 0
0 (1 + A2)−1

]
zP

)−1 [
−i 0
0 1 − iA

]−1

.

nce
[

−i 0
0 1 − iA

]−1

=
[

1 0
0 1 + A2

]−1 [
i 0
0 1 + iA

]

d [
1 0
0 1 + A2

] ([
1 0
0 C

]
−

[
0 0
0 (1 + A2)−1

]
zP

)
=

[
1 0
0 A

]
−

[
0 0
0 1

]
zP ,

e deduce further that

M(z) =
[

−i 0
0 1 − iA

] ([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

])
×

([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]
, (3.15)

hich proves equation (3.10). It is straightforward to verify that

([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

]) ([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1

(3.16)

=
([

1 0
0 0

]
zP +

[
0 0
0 1

]) ([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1

−
[

0 0
0 A(1 + A2)−1

]
.

(3.17)

learly
[

−i 0
0 1 − iA

] [
0 0
0 A(1 + A2)−1

] [
i 0
0 1 + iA

]
=

[
0 0
0 A

]
,

d so on suitably pre- and post-multiplying equation (3.16), we obtain equation (3.11).
To prove equation (3.12), check first that

([
1 0
0 A

]
− zP

[
0 0
0 1

]) ([
1 0
0 0

]
zP +

[
0 0
0 1

])
=

( [
1 0

] [
0 0

]) ([
1 0

] [
0 0

] )

zP 0 0 + 0 1 0 A

− 0 1 zP



3018 J. Agler et al. / Journal of Functional Analysis 270 (2016) 3000–3046

as

as
d

an

on

an

W
on

H

H

 operators on N ⊕ D(A). It follows that

([
1 0
0 0

]
zP +

[
0 0
0 1

]) ([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1

=

([
1 0
0 A

]
− zP

[
0 0
0 1

])−1 (
zP

[
1 0
0 0

]
+

[
0 0
0 1

])

 operators from H to N ⊕ D(A). On combining this relation with equation (3.11) we 
erive the expression (3.12) for M(z)|N ⊕ D(A).

We now derive the identity (3.13). Let

D =
[

i 0
0 1 + iA

]

d consider z, w ∈ Πn. By equation (3.10)

M(z) = D∗W (z)D (3.18)

 N ⊕ D(A), where

W (z) = R(z)S(z)−1 −
[

0 0
0 A(1 + A2)−1

]
(3.19)

d

R(z) =
[

1 0
0 0

]
zP +

[
0 0
0 1

]
, S(z) =

[
1 0
0 A

]
−

[
0 0
0 1

]
zP .

e have seen that S(z) is invertible for any z ∈ Πn, so that W (z) is a bounded operator 
 H. Clearly

M(z) − M(w)∗ = D∗ (
R(z)S(z)−1 − S(w)∗−1R(w)∗)

D

= D∗S(w)∗−1 (S(w)∗R(z) − R(w)∗S(z)) S(z)−1D.

ere

S(w)∗R(z) − R(w)∗S(z) =
[

1 0
0 0

]
zP +

[
0 0
0 A

]
− w∗

P

[
0 0
0 1

]
−

(
w∗

P

[
1 0
0 0

]
+

[
0 0
0 A

]
−

[
0 0
0 1

]
zP

)
= zP − w∗

P .
ence
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M(z) − M(w)∗ = D∗S(w)∗−1(zP − w∗
P )S(z)−1D,

hich is equation (3.13). �
The next result shows that the matricial resolvent belongs not just to the operator 

ick class, but to the smaller operator Loewner class.

roposition 3.5. With the notation of Definition 3.3, there exists an analytic operator-
lued function F : Πn → L(H) such that for all z, w ∈ Πn,

M(z) − M(w)∗ = F (w)∗(z − w̄)P F (z) (3.20)

 H.

roof. The identity (3.13) shows that such a relation holds on N ⊕ D(A); we must 
tend it to all of H. Write Pj as an operator matrix with respect to the decomposition 
= N ⊕M, as in equation (3.3). Then zP has the matricial expression (3.4). For z ∈ Πn

t

F �(z) =
([

1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]
.

hen F �(z) is an operator from N ⊕ D(A) to H, and we find that

F �(z) =
[

1 0
−zB∗ A − zY

]−1 [
i 0
0 1 + iA

]

=
[

i 0
i(A − zY )−1zB∗ (A − zY )−1(1 + iA)

]
: N ⊕ D(A) → H.

et

F (z) =
[

i 0
i(A − zY )−1zB∗ i + (A − zY )−1(1 + izY )

]
: N ⊕ M → H. (3.21)

nce

(A − zY )−1(1 + iA) = i + (A − zY )−1(1 + izY )

 N ⊕ D(A) and the right hand side of the last equation is a bounded operator on all 
 H, it is clear that, for every z ∈ Πn, F (z) is a continuous extension to H of F �(z) and 
 a bounded operator. Furthermore F is analytic on Πn.
By Proposition 3.4, equation (3.13), the relation (3.20) holds on the dense subspace 
⊕ D(A) of H for every z, w ∈ Πn. Since the operators on both sides of equation (3.20)

e continuous on H, the equation holds throughout H. �
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orollary 3.6. A matricial resolvent has a non-negative imaginary part at every point 
Πn.

roof. In the notation of Proposition 3.5, on choosing w = z in equation (3.20) and 
ividing by 2i we obtain the relation

Im M(z) = F (z)∗(Im zP )F (z)

 H. We have

Im zP =
∑

j

(Im zj)Pj ≥ 0,

d so Im M(z) ≥ 0 on H for all z ∈ Πn. �
Here is a concrete example of a matricial resolvent.

xample 3.7. The function

M(z) = 1
z1 + z2

[
2z1z2 i(z1 − z2)

−i(z1 − z2) −2

]
(3.22)

 the matricial resolvent corresponding to

H = C
2, N = M = C, A = 0 on C, P1 = 1

2

[
1 1
1 1

]
, P2 = 1 − P1.

 Nevanlinna representations of type 4

In this section we derive a multivariable analog of the most general form of Nevanlinna 
presentation for functions in the one-variable Pick class (Theorem 1.2). We start with a 
ultivariable Herglotz theorem [2, Theorem 1.8]. We shall say (following G. Herglotz [12]) 
at an analytic operator-valued function F on Dn is a Herglotz function if Re F (λ) ≥ 0
r all λ ∈ D

n. For present purposes we need the following modification of the notion.

efinition 4.1. An analytic function F : Dn → L(K), where K is a Hilbert space, is a 
rong Herglotz function if, for every commuting n-tuple T = (T1, . . . , Tn) of operators 
 a Hilbert space and for 0 ≤ r < 1, Re F (rT ) ≥ 0.

In [2] these functions were called Fn-Herglotz functions. The class of strong Herglotz 
nctions has also been called the Herglotz–Agler class (for example [15,7]). It is clear 
at every strong Herglotz function is a Herglotz function, and in the cases n = 1 and 2

e converse is also true [2].
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heorem 4.2. Let K be a Hilbert space and let F : D
2 → L(K) be a strong Herglotz 

nction such that F (0) = 1. There exist a Hilbert space H, an orthogonal decomposition 
of H, an isometric linear operator V : K → H and a unitary operator U on H such 

at, for all λ ∈ D
n,

F (λ) = V ∗ 1 + UλP

1 − UλP
V. (4.1)

Conversely, every function F : D
n → L(K) expressible in the form (4.1) for some 

, P , V and U with the stated properties is a strong Herglotz function and satisfies 
(0) = 1.

Note that λP =
∑

j λjPj has operator norm at most ‖λ‖∞ < 1 for λ ∈ D
n, and hence 

uation (4.1) does define F as an analytic operator-valued function on Dn.
On specializing to scalar-valued functions in the n-variable Herglotz class we obtain 
e following consequence.

orollary 4.3. Let f be a scalar-valued strong Herglotz function on Dn. There exists a 
ilbert space H, a unitary operator L on H, an orthogonal decomposition P of H, a real 
umber a and a vector v ∈ H such that, for all λ ∈ D

n,

f(λ) = −ia +
〈
(L − λP )−1(L + λP )v, v

〉
. (4.2)

onversely, for any H, L, P , a and v with the properties described, equation (4.2) defines 
as an n-variable strong Herglotz function.

Again, the right hand side of equation (4.2) is an analytic function of λ ∈ D
n since

(L − λP )−1 = L−1(1 − λP L−1)−1

 a bounded operator and is analytic in λ.

efinition 4.4. A Nevanlinna representation of type 4 of a function h : Πn → C consists 
 an orthogonally decomposed Hilbert space H = N ⊕ M, a self-adjoint densely defined 
erator A on M, an orthogonal decomposition P of H, a real number a and a vector 

∈ H such that

h(z) = a + 〈M(z)v, v〉 (4.3)

r all z ∈ Πn, where M(z) is the structured resolvent of A of type 4 corresponding to P

iven by the formula (3.1)).

We wish to convert Corollary 4.3 to a representation theorem for suitable analytic 

nctions on Πn. The fact that the corollary only applies to strong Herglotz functions 
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sults in representation theorems for a subclass of the Pick class Pn. Recall from the 
troduction:

efinition 4.5. The Loewner class Ln is the set of analytic functions h on Πn with 
e property that there exist n positive semi-definite functions A1, . . . , An on Πn × Πn, 
alytic in the first argument, such that

h(z) − h(w) =
n∑

j=1
(zj − wj)Aj(z, w)

r all z, w ∈ Πn.

A function h on Πn belongs to Ln if and only if it corresponds under conjugation by the 
ayley transform to a function in the Schur–Agler class of the polydisc [4, Lemma 2.13]. 
nother characterization: h ∈ Ln if and only if, for every commuting n-tuple T of 
ounded operators with strictly positive imaginary parts, h(T ) has positive imaginary 
art.

We can now prove Theorem 1.9 from the introduction: a function h defined on Πn

s a Nevanlinna representation of type 4 if and only if h ∈ Ln.

roof of Theorem 1.9. Let h ∈ Ln. Define an n-variable Herglotz function f : Dn → C

y

f(λ) = −ih(z) (4.4)

here

zj = i
1 + λj

1 − λj
for j = 1, . . . , n. (4.5)

hen λ ∈ D
n the point z belongs to Πn, and so f(λ) is well defined, and since Im h(z) ≥ 0

e have Re f(λ) ≥ 0, so that f is indeed a Herglotz function. In fact f is even a strong 
erglotz function: since h ∈ Ln, the function ϕ ∈ Sn corresponding to h lies in the 
chur–Agler class of the polydisc, and so f = (1 + ϕ)/(1 − ϕ) is a strong Herglotz 
nction.
By Corollary 4.3 there exist a real number a, a Hilbert space H, a vector v ∈ H, 

unitary operator L on H and an orthogonal decomposition P on H such that, for all 
∈ Πn,

h(z) = if(λ) = a +
〈
i(L − λ)−1(L + λ)v, v

〉
= a +

〈
i[L − (z − i)(z + i)−1]−1[L + (z − i)(z + i)−1]v, v

〉
. (4.6)

ere and in the rest of this section z, λ are identified with the operators zP , λP on H, 

d in consequence the relation
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λ = z − i

z + i

 meaningful and valid.
For z ∈ Πn let

M(z) = i (L − λ)−1 (L + λ) = i

(
L − z − i

z + i

)−1 (
L + z − i

z + i

)
. (4.7)

nce L is unitary on H and λ ∈ D
n, the operator M(z) is bounded on H for every 

∈ Πn and, by equation (4.6), we have

h(z) = a + 〈M(z)v, v〉 (4.8)

r all z ∈ Π2. Theorem 1.9 will follow provided we can show that M(z) is given by 
uation (3.1) for a suitable self-adjoint operator A.
Observe that

M(z) = i((z + i)L − (z − i))−1((z + i)L + (z − i))

= i (z(L − 1) + i(L + 1))−1 (z(L + 1) + i(L − 1)) . (4.9)

e wish to take out a factor 1 − L from both factors in equation (4.9), but this may 
e impossible since 1 − L can have a nonzero kernel. Accordingly we decompose H into 

⊕ M where N = ker(1 − L), M = N ⊥. With respect to this decomposition we can 
rite L as an operator matrix

L =
[

1 0
0 L0

]
,

here L0 is unitary and ker(1 − L0) = {0}. Substituting into equation (4.9) we have

(z) = i

(
z

[
0 0
0 L0 − 1

]
+ i

[
2 0
0 L0 + 1

])−1 (
z

[
2 0
0 L0 + 1

]
+ i

[
0 0
0 L0 − 1

]
z

)

=
(

−z

[
0 0
0 1 − L0

]
+

[
2i 0
0 i(1 + L0)

])−1 (
z

[
2i 0
0 i(1 + L0)

]
+

[
0 0
0 1 − L0

])
(4.10)

ormally we may now write

M(z) =
[

− 1
2 i 0
0 (1 − L0)−1

] (
−z

[
0 0
0 1

]
+

[
1 0
0 i 1+L0

1−L0

])−1

×
( [

1 0
] [

0 0
]) [

2i 0
]

z 0 i 1+L0
1−L0

+ 0 1 0 1 − L0
, (4.11)
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ut whereas equation (4.10) is a relation between bounded operators defined on all of H, 
uation (4.11) involves unbounded, partially defined operators and we must verify that 
e product of operators on the right hand side is meaningful.
Let

A = i
1 + L0

1 − L0
.

ince L0 is unitary on M and ker(1 − L0) = {0}, the operator A is self-adjoint and 
ensely defined on M [21, Section 121]. The domain D(A) of A is the dense subspace 
n(1 − L0) of M. It follows from the definition of A that

(1 − L0)−1 = 1
2 (1 − iA), (4.12)

hich is an equation between bijective operators from D(A) to M. Likewise

1 + L0 = −2iA(1 − iA)−1 : M → D(A) (4.13)

e bounded operators.
Let us continue the calculation from the first factor on the right hand side of equation 

.10). Since ker(1 − L0) = {0}, the right hand side of the relation

−z

[
0 0
0 1 − L0

]
+

[
2i 0
0 i(1 + L0)

]
=

(
−z

[
0 0
0 1

]
+

[
1 0
0 A

]) [
2i 0
0 1 − L0

]

mprises a bijective map from H to N ⊕ D(A) followed by a bijection from N ⊕ D(A)
H (recall the equation (3.7)). We may therefore take inverses in the equation to obtain

(
−z

[
0 0
0 1 − L0

]
+

[
2i 0
0 i(1 + L0)

])−1

=
[

−1
2 i 0
0 (1 − L0)−1

] ([
1 0
0 A

]
− z

[
0 0
0 1

])−1

=
[

−1
2 i 0
0 1

2 (1 − iA)

] ([
1 0
0 A

]
− z

[
0 0
0 1

])−1

(4.14)

 operators on N ⊕ D(A).
Similar reasoning applies to the equation

z

[
2i 0
0 i(1 + L0)

]
+

[
0 0
0 1 − L0

]

=
(

z

[
1 0
0 A

]
+

[
0 0
0 1

]) [
2i 0
0 1 − L0

]
( [

1 0
] [

0 0
]) [

−1 i 0
]−1
= z 0 A
+ 0 1

2
0 1

2 (1 − iA) ; (4.15)
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 is valid as an equation between operators on H. The right hand side comprises an 
erator from H to N ⊕ D(A) followed by an operator from N ⊕ D(A) to H, and so 

oth sides of the equation denote an operator on H.
On combining equations (4.10), (4.14) and (4.15) we obtain

M(z) =
[

− 1
2 i 0
0 1

2 (1 − iA)

] ([
1 0
0 A

]
− z

[
0 0
0 1

])−1

×
(

z

[
1 0
0 A

]
+

[
0 0
0 1

]) [
−1

2 i 0
0 1

2 (1 − iA)

]−1

.

re-multiply this equation by 2 and post-multiply by 1
2 to deduce that M(z) is indeed 

e structured resolvent of A of type 4 corresponding to P , as defined in equation (3.1). 
hus the formula (4.8) is a Nevanlinna representation of h of type 4.
Conversely, let h ∈ Ln have a type 4 representation (4.3). By Proposition 3.5 there 
ists an analytic operator-valued function F : Πn → L(H) such that, for all z, w ∈ Πn,

M(z) − M(w)∗ = F (w)∗(z − w̄)P F (z) (4.16)

 H. Hence

h(z) − h(w) = 〈(M(z) − M(w)∗)v, v〉
= 〈F (w)∗(z − w̄)P F (z)v, v〉

=
n∑

j=1
(zj − w̄j)Aj(z, w)

r all z, w ∈ Πn, where

Aj(z, w) = 〈PjF (z)v, F (w)v〉 .

he Aj are clearly positive semidefinite on Πn, and hence h belongs to the Loewner 
ass Ln. �
 Nevanlinna representations of types 3, 2 and 1

Nevanlinna representations of type 4 have the virtue of being general for functions 
Ln, but they are undeniably cumbersome. In this section we shall show that there are 
ree simpler representation formulae, corresponding to increasingly stringent growth 
nditions on h ∈ Ln.
In Nevanlinna’s one-variable representation formula of Theorem 1.2,

∫ 1 + tz

h(z) = a + bz +

t − z
dμ(t), (5.1)
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 may be the case for a particular h ∈ P that the bz term is absent. The analogous 
tuation in two variables is that the space N in a type 4 representation may be zero. 
quivalently, in the corresponding Herglotz representation, the unitary operator L does 
ot have 1 as an eigenvalue. This suggests the following notion.

efinition 5.1. A Nevanlinna representation of type 3 of a function h on Πn consists of a 
ilbert space H, a self-adjoint densely defined operator A on H, a positive decomposition 
of H, a real number a and a vector v ∈ H such that, for all z ∈ Πn,

h(z) = a +
〈
(1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1v, v

〉
. (5.2)

Thus h has a type 3 representation if h(z) = a + 〈M(z)v, v〉 where M(z) is the 
ructured resolvent of A of type 3 corresponding to Y , as given by equation (2.3).
In [5] the authors derived a somewhat simpler representation which can also be re-
rded as an analog of the case b = 0 of Nevanlinna’s one-variable formula (5.1).

efinition 5.2. A Nevanlinna representation of type 2 of a function h on Πn consists of a 
ilbert space H, a self-adjoint densely defined operator A on H, a positive decomposition 
of H, a real number a and a vector α ∈ H such that, for all z ∈ Πn

h(z) = a +
〈
(A − zY )−1α, α

〉
. (5.3)

This means of course that, for all z ∈ Πn,

h(z) = a + 〈M(z)α, α〉

here M(z) is the structured resolvent of A of type 2 corresponding to Y (compare 
uation (2.1)).
We wish to understand the relationship between type 3 and type 2 representations.

roposition 5.3. If h ∈ Pn has a type 2 representation then h has a type 3 representation. 
onversely, if h ∈ Pn has a type 3 representation as in equation (5.2) with the additional 
operty that v ∈ D(A) then h has a type 2 representation.

roof. Suppose that h ∈ Pn has the type 2 representation

h(z) = a0 +
〈
(A − zY )−1α, α

〉
r some a0 ∈ R, positive decomposition Y and α ∈ H. We must show that h has a 
presentation of the form (5.2) for some a ∈ R and v ∈ H. By Proposition 2.6, it 
ffices to find a ∈ R and v ∈ D(A) such that

h(z) = a +
〈
(1 − iA)

{
(A − zY )−1 − A(1 + A2)−1}

(1 + iA)v, v
〉

r all z ∈ Πn.
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To this end, let C = A(1 + A2)−1 and let

a = a0 + 〈Cα, α〉 . (5.4)

nce 1 + iA is invertible on H and ran(1 + iA)−1 ⊂ D(A) we may define

v = (1 + iA)−1α ∈ D(A). (5.5)

Then

h(z) = a0 +
〈
(A − zY )−1α, α

〉
= a − 〈Cα, α〉 +

〈
(A − zY )−1α, α

〉
= a +

〈{
(A − zY )−1 − C

}
(1 + iA)v, (1 + iA)v

〉
= a +

〈
(1 − iA)

{
(A − zY )−1 − C

}
(1 + iA)v, v

〉
 required. Thus h has a type 3 representation.
Conversely, let h have a type 3 representation (5.2) such that v ∈ D(A), that is

h(z) = a + 〈M(z)v, v〉

here a ∈ R and M is the structured resolvent of A of type 3 corresponding to Y , as 
 equation (2.3). Since v ∈ D(A) we may define the vector α def= (1 + iA)v ∈ H, and 
rthermore, by Proposition 2.6,

h(z) = a +
〈
(1 − iA)

{
(A − zY )−1 − C

}
(1 + iA)v, v

〉
= a +

〈{
(A − zY )−1 − C

}
α, α

〉
= a − 〈Cα, α〉 +

〈
(A − zY )−1α, α

〉
= a0 +

〈
(A − zY )−1α, α

〉
,

here a0 ∈ R is given by equation (5.4). Thus h has a representation of type 2. �
A special case of a type 2 representation occurs when the constant term a in equation 

.3) is 0. In one variable, this corresponds to Nevanlinna’s characterization of the Cauchy 
ansforms of positive finite measures on R. Accordingly we define a type 1 representation
 h ∈ Ln to be the special case of a type 2 representation of h in which a = 0 in 
uation (5.3).

efinition 5.4. An analytic function h on Πn has a Nevanlinna representation of type 1 if 
ere exist a Hilbert space H, a densely defined self-adjoint operator A on H, a positive 
composition Y of H and a vector α ∈ H such that, for all z ∈ Πn,

〈 −1 〉

h(z) = (A − zY ) α, α . (5.6)
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A representation of type 1 is obviously a representation of type 2. The following 
roposition is an immediate corollary of Proposition 5.3.

roposition 5.5. A function h ∈ Ln has a type 1 representation if and only if h has a 
pe 3 representation as in equation (5.2) with the additional properties that v ∈ D(A)
d

a −
〈
A(1 + A2)−1α, α

〉
= 0.

For consistency with our earlier terminology for structured resolvents and represen-
tions we should have to define a structured resolvent of type 1 to be the same as a 
ructured resolvent of type 2. We refrain from making such a confusing definition.
We conclude this section by giving examples of the four types of Nevanlinna repre-

ntation in two variables.

xample 5.6. (1) The formula

h(z) = − 1
z1 + z2

=
〈
(0 − zY )−1v, v

〉
C

,

here Y = (1
2 , 12 ) and v = 1/

√
2, exhibits a representation of type 1, with A = 0.

) Likewise

h(z) = 1 − 1
z1 + z2

= 1 +
〈
(0 − zY )−1v, v

〉
C

 a representation of type 2.

) Let

h(z) =

⎧⎪⎨
⎪⎩

1
1 + z1z2

(
z1 − z2 + iz2(1 + z2

1)√
z1z2

)
if z1z2 �= −1

1
2 (z1 + z2) if z1z2 = −1

(5.7)

here we take the branch of the square root that is analytic in C \ [0, ∞) with range Π. 
e claim that h ∈ P2 and that h has the type 3 representation

h(z) = 〈M(z)v, v〉L2(R) , (5.8)

here M(z) is the structured resolvent of type 3 given in Example 2.11 and v(t) =√
π(1 + t2). To see this, let h be temporarily defined by equation (5.8). Since v is an 
en function in L2(R), equation (2.12) tells us that
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h(z) =
∞∫

−∞

t(1 + z1z2) + (1 − it)(itz1 + z2)
π(t2 − z1z2)(1 + t2) dt.

nce the denominator is an even function of t, the integrals of all the odd powers of t
 the numerator vanish, and we have, provided z1z2 �= −1,

h(z) = 2
π

∞∫
0

z2 + t2z1

(t2 − z1z2)(1 + t2) dt

= 2
π

∞∫
0

z2(1 + z2
1)

1 + z1z2

1
t2 − z1z2

+ z1 − z2

1 + z1z2

1
1 + t2 dt.

ow, for w ∈ Π,

∞∫
0

dt

t2 − w2 = iπ

2w
,

d so we find that h is indeed given by equation (5.7) in the case that z1z2 �= −1. When 
z2 = −1 we have

h(z) = 2
π

∞∫
0

z2 + z1t2

(1 + t2)2 dt

= 2
π

∞∫
0

z1

1 + t2 + z2 − z1

(1 + t2)2 dt

= 1
2 (z1 + z2).

hus equation (5.8) is a type 3 representation of the function h given by equation (5.7). 
his function is constant and equal to i on the diagonal z1 = z2.

) The function

h(z) = z1z2

z1 + z2
= −

(
− 1

z1
− 1

z2

)−1

early belongs to P2. It has the representation of type 4

h(z) = 〈M(z)v, v〉
C2

here M(z) is the matricial resolvent given in Example 3.7 and

v = 1√
(

1
)

.

2 0



3030 J. Agler et al. / Journal of Functional Analysis 270 (2016) 3000–3046

th
li
b
se

6.

a 
b

th
of

T

(1
(2

(3

P

fo

w

S

We claim that each of the above representations is of the simplest available type for 
e function in question; for example, the function h in part (4) does not have a Nevan-

nna representation of type 3. To prove this claim (which we shall do in Example 8.2
elow) we need characterizations of the types of functions – the subject of the next two 
ctions.

 Asymptotic behavior and types of representations

In this section we shall give function-theoretic conditions for a function in Ln to have 
representation of a given type. These conditions will be in terms of the asymptotic 

ehavior of the function at ∞.
Every function in Ln has a type 4 representation, by Theorem 1.9. Let us characterize 
e functions that possess a type 3 representation. We denote by χ the vector (1, . . . , 1)
 ones in Cn. The following statement contains Theorem 1.8.

heorem 6.1. The following three conditions are equivalent for a function h ∈ Ln.

) The function h has a Nevanlinna representation of type 3;
)

lim inf
s→∞

1
s

Im h(isχ) = 0; (6.1)

)

lim
s→∞

1
s

Im h(isχ) = 0. (6.2)

roof. (1)⇒(3) Suppose that h has a Nevanlinna representation of type 3:

h(z) = a +
〈
(1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1v, v

〉
(6.3)

r suitable a ∈ R, H, A, Y and v ∈ H. Since

(isχ)Y =
∑

j

isYj = is

e have

h(isχ) = a +
〈
(1 − iA)(A − is)−1(1 + isA)(1 − iA)−1v, v

〉
.

Let ν be the scalar spectral measure for A corresponding to the vector v ∈ H. By the 

pectral Theorem
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h(isχ) = a +
∫

(1 − it)(t − is)−1(1 + ist)(1 − it)−1 dν(t)

= a +
∫ 1 + ist

t − is
dν(t).

nce

Im 1 + ist

t − is
= s(1 + t2)

s2 + t2 ,

e have

1
s

Im h(isχ) =
∫ 1 + t2

s2 + t2 dν(t).

he integrand decreases monotonically to 0 as s → ∞ and so, by the Monotone Conver-
nce Theorem, equation (6.2) holds.
(3)⇒(2) is trivial.
(2)⇒(1) Now suppose that h ∈ Ln and

lim inf
s→∞

1
s

Im h(isχ) = 0.

y Theorem 1.9, h has a Nevanlinna representation of type 4: that is, there exist a, H, 
⊂ H, operators A, Y on N ⊥ and a vector v ∈ H with the properties described in 

efinition 5.1 such that

h(z) = a + 〈M(z)v, v〉

r all z ∈ Πn, where

M(z) =
[

−i 0
0 1 − iA

] ([
1 0
0 A

]
− zP

[
0 0
0 1

])−1

×
(

zP

[
1 0
0 A

]
+

[
0 0
0 1

]) [
−i 0
0 1 − iA

]−1

. (6.4)

hus, for s > 0, since once again (isχ)P = is,

M(isχ) =
[

−i 0
0 1 − iA

] [
1 0
0 (A − is)−1

] [
is 0
0 1 + isA

] [
i 0
0 (1 − iA)−1

]

=
[

is 0
0 (1 − iA)(A − is)−1(1 + isA)(1 − iA)−1

]
.

Let the projections of v onto N , N ⊥ be v1, v2 respectively. Then
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(1
(2
h(isχ) = a + 〈M(isχ)v, v〉
= a + is ‖v1‖2 +

〈
(1 − iA)(A − is)−1(1 + isA)(1 − iA)−1v2, v2

〉
d therefore

1
s

Im h(isχ) = ‖v1‖2 + 1
s

Im
〈
(1 − iA)(A − is)−1(1 + isA)(1 − iA)−1v2, v2

〉
≥ ‖v1‖2

y Corollary 2.7. Hence

0 = lim inf
s→∞

1
s

Im h(isχ)

≥ ‖v1‖2
.

 follows that v1 = 0.
Let the compression of the projection Pj to N ⊥ be Yj : then Y = (Y1, . . . , Yn) is a 

ositive decomposition of N ⊥, and the compression of zP to N ⊥ is zY . By Remark 3.2
e (2, 2) block M22(z) in M(z) is

M22(z) = (1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1.

ince v1 = 0 it follows that

h(z) = a + 〈M(z)v, v〉
= a + 〈M22(z)v2, v2〉
= a +

〈
(1 − iA)(A − zY )−1(1 + zY A)(1 − iA)−1v2, v2

〉
,

hich is the desired type 3 representation of h. Hence (2)⇒(1). �
In [7] it is shown that condition (3) in the above theorem is also a necessary and 
fficient condition that −ih have a Πn-impedance-conservative realization.
Type 2 representations were characterized by the following theorem in [5] in the case 

 two variables. The following result, which contains Theorem 1.7, shows that the result 
olds generally.

heorem 6.2. The following three conditions are equivalent for a function h ∈ Ln.

) The function h has a Nevanlinna representation of type 2;
)

lim inf s Im h(isχ) < ∞; (6.5)

s→∞
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lim
s→∞

s Im h(isχ) < ∞. (6.6)

roof. (1)⇒(3) Suppose that h has the type 2 representation h(z) = a +
〈
(A − zY )−1v, v

〉
r a suitable real a, self-adjoint A, positive decomposition Y and vector v. Let ν be the 
alar spectral measure for A corresponding to the vector v. Then, for s > 0, A −(isχ)Y =
 − is and so

s Im h(isχ) = s Im
∫ dν(t)

t − is

=
∫

s2 dν(t)
t2 + s2 .

he integrand is positive and increases monotonically to 1 as s → ∞. Hence, by the 
ominated Convergence Theorem

lim
s→∞

s Im h(isχ) = ν(R) = ‖v‖2 < ∞.

ence (1)⇒(3).
)⇒(2) is trivial.
)⇒(1) Suppose (2) holds. A fortiori,

lim inf
s→∞

1
s

Im h(isχ) = 0.

y Theorem 6.1 h has a type 3 representation (6.3) for suitable a ∈ R, H, A, Y and 
∈ H. Let ν be the scalar spectral measure for A corresponding to the vector v. Then 
r s > 0

s Im h(isχ) = s Im
∫ 1 + ist

t − is
dν(t)

=
∫

s2(1 + t2)
t2 + s2 dν(t).

s s → ∞ the integrand increases monotonically to 1 + t2. Condition (2) now implies 
at ∫

1 + t2 dν(t) < ∞.

 follows that v ∈ D(A). Hence, by Proposition 5.3, h has a representation of type 2. �
In [5] we proved Theorem 6.2 for n = 2 using a different approach from the present 

e.
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From this theorem the characterization of type 1 representations follows just as in the 
e-variable case. We obtain a strengthening of Theorem 1.6.

heorem 6.3. The following three conditions are equivalent for a function h ∈ Ln.

) The function h has a Nevanlinna representation of type 1;
)

lim inf
s→∞

s |h(isχ)| < ∞;

)

lim
s→∞

s |h(isχ)| < ∞. (6.7)

roof. We follow Lax’s treatment [16] of the one-variable Nevanlinna theorem.
(1)⇒(3) Suppose that h has a type 1 representation as in equation (5.6) for some H, 

, Y and v. Then

h(isχ) =
〈
(A − is)−1α, α

〉
=

〈
(A + is)(A2 + s2)−1α, α

〉
,

d so

Re sh(isχ) =
〈
sA(A2 + s2)−1α, α

〉
, Im sh(isχ) =

〈
s2(A2 + s2)−1α, α

〉
.

et ν be the scalar spectral measure for A corresponding to the vector α ∈ H. Then

Re sh(isχ) =
∫

st

t2 + s2 dν(t), Im sh(isχ) =
∫

s2

t2 + s2 dν(t).

he integrand in the first integral tends pointwise in t to 0 as s → ∞, and by the 
equality of the means it is no greater than 1

2 ; thus the integral tends to 0 as s → ∞
y the Dominated Convergence Theorem. The integrand in the second integral increases 
onotonically to 1 as s → ∞. Thus

Re sh(isχ) → 0, Im sh(isχ) → ‖α‖2 as s → ∞.

ence the inequality (6.7) holds. Thus (1)⇒(3).
(3)⇒(2) is trivial.
(2)⇒(1) Suppose that
lim inf
s→∞

s |h(isχ)| < ∞. (6.8)
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lim inf
s→∞

s Im h(isχ) ≤ lim inf
s→∞

s |h(isχ)| < ∞,

satisfies condition (6.5) of Theorem 6.2. Therefore h has a representation of type 2, 
y

h(z) = a +
〈
(A − zY )−1α, α

〉
.

 remains to show that a = 0. The inequality (6.8) implies that there exists a sequence 

j) tending to ∞ such that h(isjχ) → 0. But

Re h(isjχ) = a +
〈
A(A2 + s2

n)−1α, α
〉

→ a.

ence a = 0 and h has a type 1 representation. This establishes (2)⇒(1). �
 Carapoints at infinity

How can we recognize from function-theoretic properties whether a given function in 
e n-variable Loewner class admits a Nevanlinna representation of a given type? In the 
eceding section it was shown that it depends on growth along a single ray through the 
igin. In this section we describe the notion of carapoints at infinity for a function in 
e Pick class, and in the next section we shall give succinct criteria for the four types 
 the language of carapoints.
Carapoints (though not with this nomenclature) were first introduced by Carathéo-
ry in 1929 [9] for a function ϕ on the unit disc, as a hypothesis in the “Julia–Carathéo-
ry Lemma”. For any τ ∈ T, a function ϕ in the Schur class satisfies the Carathéodory 
ndition at τ if

lim inf
λ→τ

1 − |ϕ(λ)|
1 − |λ| < ∞. (7.1)

he notion has been generalized to other domains by many authors. Consider domains 
⊂ C

n and V ⊂ C
m and an analytic function ϕ from U to the closure of V . The 

nction ϕ is said to satisfy Carathéodory’s condition at τ ∈ ∂U if

lim inf
λ→τ

dist(ϕ(λ), ∂V )
dist(λ, ∂U) < ∞.

hus, for example, when U = Πn, V = Π, a function h ∈ Pn satisfies Carathéodory’s 
ndition at the point x ∈ R

n if

Im h(z)
lim inf
z→x minj Im zj

< ∞. (7.2)
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his definition works well for finite points in ∂U , but for our present purpose we need to 
nsider points at infinity in the boundaries of Πn and Π. We shall introduce a variant 
 Carathéodory’s condition for the class Pn with the aid of the Cayley transform

z = i
1 + λ

1 − λ
, λ = z − i

z + i
, (7.3)

hich furnishes a conformal map between D and Π, and hence a biholomorphic map 
etween Dn and Πn by coordinatewise action. We obtain a one-to-one correspondence 
etween Sn \ {1} and Pn via the formulae

h(z) = i
1 + ϕ(λ)
1 − ϕ(λ) , ϕ(λ) = h(z) − i

h(z) + i
(7.4)

here 1 is the constant function equal to 1 and λ, z are related by equations (7.3). For 
 ∈ Sn we define τ ∈ T

n to be a carapoint of ϕ if

lim inf
λ→τ

1 − |ϕ(λ)|
1 − ‖λ‖∞

< ∞. (7.5)

e can now extend the notion of carapoints to points at infinity. The point (∞, . . . , ∞)
 the boundary of Πn corresponds to the point χ in the closed unit polydisc; as in the 
st section, χ denotes the point (1, . . . , 1) ∈ C

n.

efinition 7.1. Let h be a function in the Pick class Pn with associated function ϕ in the 
chur class Sn given by equation (7.4). Let τ ∈ T

n, x ∈ (R ∪ ∞)n be related by

xj = i
1 + τj

1 − τj
for j = 1, . . . , n. (7.6)

e say that x is a carapoint for h if τ is a carapoint for ϕ. We say that h has a carapoint 
∞ if h has a carapoint at (∞, . . . , ∞), that is, if ϕ has a carapoint at χ.

Note that, for a point x ∈ R
n, to say that x is a carapoint of h is not the same 

 saying that h satisfies the Carathéodory condition (7.2) at x. Consider the function 
(z) = −1/z1 in Pn. Clearly h does not satisfy Carathéodory’s condition at 0 ∈ R

n. 
owever, the function ϕ in Sn corresponding to h is ϕ(λ) = −λ1, which does have a 
rapoint at −χ, the point in Tn corresponding to 0 ∈ R

n. Hence h has a carapoint at 0.
We shall be mainly concerned with carapoints at 0 and ∞. The following observation 

ill help us identify them. For any h ∈ Pn we define h� ∈ Pn by

h�(z) = h

(
− 1

z1
, . . . , − 1

zn

)
for z ∈ Πn.
or ϕ ∈ Sn we define
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ϕ�(λ) = ϕ(−λ).

 h and ϕ are corresponding functions, as in equations (7.4), then so are h� and ϕ�.

roposition 7.2. The following conditions are equivalent for a function h ∈ Pn.

) ∞ is a carapoint for h;
) 0 is a carapoint for h�;
)

lim inf
y→0+

Im h�(iyχ)
y|h�(iyχ) + i|2 < ∞;

)

lim inf
y→∞

y Im h(iyχ)
|h(iyχ) + i|2 < ∞.

roof. (1)⇔(2) Since −χ ∈ T
n corresponds under the Cayley transform to 0 ∈ R

n, we 
ve

∞ is a carapoint of h ⇔ χ is a carapoint of ϕ

⇔ −χ is a carapoint of ϕ�

⇔ 0 is a carapoint of h�.

)⇔(3) A consequence of the n-variable Julia–Carathéodory Theorem [13,1], is that 
∈ T

n is a carapoint of ϕ ∈ Sn if and only if

lim inf
r→1−

1 − |ϕ(rτ)|
1 − r

< ∞.

 follows that

0 is a carapoint for h� ⇔ −χ is a carapoint for ϕ�

⇔ lim inf
r→1−

1 − |ϕ�(−rχ)|
1 − r

< ∞

⇔ lim inf
r→1−

1 − |ϕ�(−r, −r)|2
1 − r2 < ∞.

et iy ∈ Π be the Cayley transform of −r ∈ (−1, 0), so that y → 0+ as r → 1−. In view 
 the identity

1 − |ϕ(λ)|2
1 − ‖λ‖2

∞
=

(
max

j

|zj + i|2
Im zj

)
Im h(z)

|h(z) + i|2 (7.7)
e have
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0 is a carapoint for h� ⇔ lim inf
y→0+

|iy + i|2
y

Im h�(iyχ)
|h�(iyχ) + i|2 < ∞

⇔ lim inf
y→0+

Im h�(iyχ)
y|h�(iyχ) + i|2 < ∞.

)⇔(4) Replace y by 1/y. �
orollary 7.3. If f ∈ Pn satisfies Carathéodory’s condition

lim inf
z→x

Im f(z)
Im z

< ∞ (7.8)

 x ∈ R
n then x is a carapoint for f . If

lim inf
y→∞

y Im f(iyχ) < ∞

en ∞ is a carapoint for f .

roof. Let h = f � ∈ Pn. Clearly |h�(z) + i| ≥ 1 for all z ∈ Πn. If the condition (7.8)
olds for x = 0 then

lim inf
z→0

Im h�(z)
|h�(z) + i|2 minj Im zj

≤ lim inf
z→0

Im h�(z)
minj Im zj

< ∞

d hence, by (2)⇔(3) of Proposition 7.2, 0 is a carapoint for h� = f . The case of a 
neral x ∈ R

n follows by translation. �
If h ∈ Pn has a carapoint at x ∈ (R ∪ ∞)n then it has a value at x in a natural sense. 

 ϕ ∈ Sn has a carapoint at τ ∈ T
n, then by [13] there exists a unimodular constant 

(τ) such that

lim
λ

nt→τ

ϕ(λ) = ϕ(τ). (7.9)

ere λ nt→ τ means that λ tends nontangentially to τ in Dn.

efinition 7.4. If h ∈ Pn has a carapoint at x ∈ (R ∪ ∞)n then we define

h(x) =

⎧⎪⎨
⎪⎩

∞ if ϕ(τ) = 1

i
1 + ϕ(τ)
1 − ϕ(τ) if ϕ(τ) �= 1

here τ ∈ T
n corresponds to x as in equation (7.6).
Thus h(∞) ∈ R ∪ {∞} when ∞ is a carapoint of h.
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In the example h(z) = −1/z1, since the value of ϕ(−λ) at −χ is 1, we have h(0) = ∞.
Although the value of h(∞) is defined in terms of the Schur class function ϕ, it can 

e expressed more directly in terms of h.

roposition 7.5. If ∞ is a carapoint of h then

h(∞) = h�(0) = lim
z

nt→∞
h(z). (7.10)

Here we say that z
nt→ ∞ if z → (∞, ..., ∞) in the set {z ∈ Πn : (−1/z1, . . . ,

1/zn) ∈ S} for some set S ⊂ Πn that approaches 0 nontangentially, or equivalently, if 
→ (∞, . . . , ∞) in a set on which ‖z‖∞/ minj Im zj is bounded.

roof of Proposition 7.5. Clearly

h(∞) = ∞ ⇔ ϕ(χ) = 1 ⇔ ϕ�(−χ) = 1 ⇔ h�(0) = ∞.

milarly, for ξ ∈ R,

h(∞) = ξ ⇔ ϕ(χ) = ξ − i

ξ + i
⇔ ϕ�(−χ) = ξ − i

ξ + i
⇔ h�(0) = ξ.

hus, whether h(∞) is finite or infinite, h(∞) = h�(0). Equation (7.10) follows from the 
lation (7.9). �
 Types of functions in the Loewner class

In this section we shall show that the type of a function h ∈ Ln is entirely determined 
 whether or not ∞ is a carapoint of h and by the value of h(∞). Let us make precise 
e notion of the type of a function in Ln.

efinition 8.1. A function h ∈ Ln is of type 1 if it has a Nevanlinna representation of 
pe 1. For n = 2, 3 or 4 we say that h is of type n if h has a Nevanlinna representation 
 type n but has no representation of type n − 1.

Clearly every function in Ln is of exactly one of the types 1 to 4. We shall now prove 
heorem 1.11. Recall that it states the following, for any function h ∈ Ln.

) h is of type 1 if and only if ∞ is a carapoint of h and h(∞) = 0;
) h is of type 2 if and only if ∞ is a carapoint of h and h(∞) ∈ R \ {0};
) h is of type 3 if and only if ∞ is not a carapoint of h;
) h is of type 4 if and only if ∞ is a carapoint of h and h(∞) = ∞.

roof of Theorem 1.11. (2) Let h ∈ Ln have a type 2 representation h(z) = a +〉

A − zY )−1v, v with a �= 0. By Theorem 6.2,
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lim inf
y→∞

y Im h(iyχ) < ∞.

y Corollary 7.3, ∞ is a carapoint for h. Furthermore, by Proposition 7.5

h(∞) = lim
y→∞

h(iyχ) = a ∈ R \ {0}.

Conversely, suppose that ∞ is a carapoint for h and h(∞) ∈ R \ {0}. By Proposi-
on 7.2

lim inf
y→∞

y Im h(iyχ)
|h(iyχ) + i|2 < ∞

hile by Proposition 7.5

lim
y→∞

|h(iyχ) + i|2 = h(∞)2 + 1 ∈ (1, ∞).

n combining these two limits we find that

lim inf
y→∞

y Im h(iyχ) < ∞,

d so, by Theorem 6.2, h has a representation of type 2. Since h(∞) �= 0 it is clear that 
does not have a representation of type 1. Thus (2) holds.
A trivial modification of the above argument proves that (1) is also true.

) Let h be of type 4. Then h has no type 3 representation, and so, by Theorem 6.1, 
ere exists δ > 0 and a sequence (sn) of positive numbers tending to ∞ such that

1
sn

Im h(isnχ) ≥ δ > 0.

et yn = 1/sn; then −1/(isn) = iyn, and we have

yn Im h�(iynχ) ≥ δ for all n ≥ 1. (8.1)

ince |h�(z) + i| > Im h�(z) for all z, we have

lim inf
z→0

Im h�(z)
|h�(z) + i|2 minj Im zj

≤ lim inf
z→0

1
Im h�(z) minj Im zj

≤ lim inf
n→∞

1
yn Im h�(iynχ)

≤ 1/δ.
ence (0, 0) is a carapoint of h�, and so ∞ is a carapoint of h.
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Since yn → 0 it follows from the inequality (8.1) that Im h�(iynχ) → ∞, hence that 
�(0) = ∞, and therefore that h(∞) = ∞.

Conversely, suppose that ∞ is a carapoint of h and that h(∞) = ∞. We shall show 
at

lim
s→∞

1
s

Im h(isχ) �= 0, (8.2)

d it will follow from Theorem 6.1 that h does not have a representation of type 3, that 
, h is of type 4.
Let ϕ ∈ Sn correspond to h and let r ∈ (0, 1) correspond to is ∈ Π. Then

1
s

Im h(isχ) = 1 − r

1 + r

1 − |ϕ(rχ)|2
|1 − ϕ(rχ)|2

= 1 − |ϕ(rχ)|2
1 − r2

(1 − r)2

|1 − ϕ(rχ)|2 . (8.3)

y hypothesis, χ is a carapoint for ϕ and ϕ(χ) = 1. By definition of carapoint,

lim inf
z→χ

1 − |ϕ(z)|2
1 − ‖z‖2

∞
= α < ∞ for all s > 0.

he n-variable Julia–Carathéodory Lemma (see [13,1]) now tells us that α > 0 and

|1 − ϕ(rχ)|2
|1 − r|2 ≤ α

1 − |ϕ(rχ)|2
1 − r2 for all r ∈ (0, 1). (8.4)

n combining equations (8.3) and (8.4) we obtain

1
s

Im h(isχ) ≥ 1
α

> 0 for all s > 0.

hus the relation (8.2) is true, and so, by Theorem 6.1, h is of type 4.
Statement (3) now follows easily. The function h ∈ Ln is of type 3 if and only if it is 
t of types 1, 2 or 4, hence if and only if it is not the case that ∞ is a carapoint for h
d h(∞) ∈ R ∪ {∞}, hence if and only if ∞ is not a carapoint of h. �
We now show that there are functions in the Pick class P2 of all four types. We return 

 Example 5.6 and show that the functions in P2 which we presented there are indeed 
 the stated types.

xample 8.2. (1) The function

1 〈 −1 〉

h(z) = −

z1 + z2
= (0 − zY ) v, v

C
,
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here Y = 1
2 and v = 1/

√
2, is obviously of type 1. Let us nevertheless check that ∞ is a 

rapoint of h and h(∞) = 0, in accordance with Theorem 1.11. We have h(iy, iy) = 1
2 i/y

d hence

lim inf
y→0+

y Im h(iy, iy) = 1
2 .

hus ∞ is a carapoint for h by Proposition 7.2. Moreover h(iy, iy) → 0 as y → ∞, and 
erefore h(∞) = 0.

) It is immediate that the function 1 + h, with h as in (1), is of type 2, and that ∞ is 
carapoint of 1 + h with value 1.

) We have seen that the function

h(z) =

⎧⎪⎨
⎪⎩

1
1 + z1z2

(
z1 − z2 + iz2(1 + z2

1)√
z1z2

)
if z1z2 �= −1

1
2 (z1 + z2) if z1z2 = −1

(8.5)

as a representation of type 3. To show that h is indeed of type 3 we must prove that 
is not a carapoint of h.
For all y > 0 we have h(iy, iy) = i. Hence

lim inf
y→∞

y Im h(iy, iy)
|h(iy, iy) + i|2 = lim inf

y→∞
y

4 = ∞.

y Proposition 7.2, ∞ is not a carapoint for h. Thus h is of type 3.

) The function

h(z) = z1z2

z1 + z2
= −1

/(
− 1

z1
− 1

z2

)

 clearly in P2. We gave a type 4 representation of h in Example 5.6. We claim that ∞
 a carapoint of h. We have h(iy, iy) = 1

2 iy, and thus

lim inf
y→∞

y Im h(iy, iy)
|h(iy, iy) + i|2 = lim inf

y→∞

1
2y2

|1
2 iy + i|2

= 2.

ence ∞ is a carapoint for h. Furthermore h(iy, iy) = 1
2 iy → ∞ as y → ∞, and so 

(∞) = ∞. Thus h is of type 4.

√
Another example of a function of type 4 is h(z) = z1z2.
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 Rates of growth in the Loewner class

The Nevanlinna representation formulae give rise to growth estimates for functions in 
e n-variable Loewner class. It turns out that growth is mild, both at infinity and close 
 the real axis. Even though the type of a function is determined by its growth on the 
ngle ray {iyχ : y > 0}, in turn the growth of the function on the entire polyhalf-plane
 constrained by its type.
Consider first the one-variable case. If h is the Cauchy transform of a finite positive 

easure μ then

|h(z)| ≤
∫ dμ(t)

|t − z| ≤
∫ dμ(t)

Im z
= C

Im z

r some C > 0 and for all z ∈ Π. For a general function h in the Pick class, by 
evanlinna’s representation (Theorem 1.2) there exist a ∈ R, b ≥ 0 and a finite positive 
easure μ on R such that, for all z ∈ Π,

h(z) = a + bz +
∫ 1 + tz

t − z
dμ(t)

= a + bz +
∫ 1 + z2

t − z
+ z dμ(t)

d therefore

|h(z)| ≤ |a| + b|z| +
(

1 + |z|2
Im z

+ |z|
)

μ(R)

≤ C

(
1 + |z| + 1 + |z|2

Im z

)

r some C > 0.
Similar estimates hold for the Loewner class.

roposition 9.1. For any function h ∈ Ln there exists a non-negative number C such 
at, for all z ∈ Πn,

|h(z)| ≤ C

(
1 + ‖z‖1 + 1 + ‖z‖2

1
minj Im zj

)
. (9.1)

For any function h ∈ Ln of type 2 there exists a non-negative number C such that, 
r all z ∈ Πn,

(
1

)

|h(z)| ≤ C 1 + minj Im zj

. (9.2)
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For any function h ∈ Ln of type 1 there exists a non-negative number C such that, 
r all z ∈ Πn,

|h(z)| ≤ C

minj Im zj
. (9.3)

roof. Let h ∈ Ln. Let N , M, A, P , a and v be as in Theorem 1.9, so that

h(z) = a + 〈M(z)v, v〉

r all z ∈ Πn, where M(z) is the matricial resolvent given by equation (3.1). By Propo-
tion 3.1 we have, for all z ∈ Πn,

‖M(z)‖ ≤ (1 +
√

10‖z‖1)
(

1 + 1 +
√

2‖z‖1

minj Im zj

)

≤ 1 +
√

10‖z‖1 + B
1 + ‖z‖1 + ‖z‖2

1
minj Im zj

r a suitable choice of B ≥ 0. Hence

|h(z)| ≤ |a| + ‖M(z)‖‖v‖2

≤ |a| +
(

1 +
√

10‖z‖1 + B
1 + ‖z‖1 + ‖z‖2

1
minj Im zj

)
‖v‖2.

ince

1 + ‖z‖1 + ‖z‖2
1 ≤ 3

2(1 + ‖z1‖2),

e have

|h(z)| ≤ C

(
1 + ‖z‖1 + 1 + ‖z‖2

1
minj Im zj

)

r some choice of C > 0 and for all z ∈ Πn. Thus the estimate (9.1) holds.
Similarly, the estimates (9.2) and (9.3) follow easily from the simple resolvent estimate 

.1). �
. Structured resolvent identities

To conclude the paper we point out that there are structured analogs of the classical 
solvent identity

(A − z)−1 − (A − w)−1 = (z − w)(A − z)−1(A − w)−1
r any z, w in the resolvent set of an operator A.
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roposition 10.1. Let A be a densely defined self-adjoint operator on a Hilbert space H
d let Y be a positive decomposition of H. For all z, w ∈ Πn

(A − zY )−1 − (A − wY )−1 = (A − zY )−1(z − w)Y (A − wY )−1. (10.1)

 M(z) is the structured resolvent of type 3 corresponding to A and Y then

M(z) − M(w) |D(A) = (1 − iA)(A − zY )−1(z − w)Y (A − wY )−1(1 + iA). (10.2)

roof. The first of these identities is immediate. For the second, by equation (2.8),

M(z) − M(w) |D(A) = (1 − iA)
(
(A − zY )−1 − (A − wY )−1)

(1 + iA),

d the identity (10.2) follows from equation (10.1). �
roposition 10.2. Let H be the orthogonal direct sum of Hilbert spaces N , M, let A be a 
nsely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal 
composition of H. For every z, w ∈ Πn, as operators on N ⊕ D(A),

M(z) − M(w) =
[

−i 0
0 1 − iA

] ([
1 0
0 A

]
− zP

[
0 1
0 0

])−1

(z − w)P

×
([

1 0
0 A

]
−

[
0 0
0 1

]
wP

)−1 [
i 0
0 1 + iA

]
. (10.3)

roof. Let

D =
[

i 0
0 1 + iA

]
: N ⊕ D(A) → H.

y equations (3.11) and (3.12) we have

(z) − M(w) |N ⊕ D(A)

= D∗

{([
1 0
0 A

]
− zP

[
0 1
0 0

])−1 (
zP

[
0 0
0 1

]
+

[
0 0
0 1

])

−
([

1 0
0 0

]
wP +

[
0 0
0 1

]) ([
1 0
0 A

]
−

[
0 0
0 1

]
wP

)−1
}

D

= D∗
([

1 0
0 A

]
− zP

[
0 1
0 0

])−1
{(

zP

[
0 0
0 1

]
+

[
0 0
0 1

]) ([
1 0
0 A

]
−

[
0 0
0 1

]
wP

)

−
([

1 0
0 A

]
− zP

[
0 1
0 0

]) ([
1 0
0 0

]
wP +

[
0 0
0 1

])}
([

1 0
] [

0 0
] )−1
× 0 A
− 0 1 wP D.
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[2
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[2
he term in braces in the last expression reduces to (z − w)P , and the identity (10.3)
llows. �
orollary 10.3. With the assumptions of Proposition 10.2, there exists an analytic func-
on F : Πn → L(H) such that, for all z, w ∈ Πn,

M(z) − M(w) = F (z̄)∗(z − w)P F (w). (10.4)

The statement follows from Proposition 10.2 just as Proposition 3.5 follows from 
roposition 3.4. If F is defined by equation (3.21) then F (z) is a bounded operator 
 H, F is analytic on Πn and Proposition 10.2 states that equation (10.4) holds on 
⊕ D(A). It follows by continuity that equation (10.4) holds on H.
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