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1. Introduction

In a classic paper [18] of 1922 R. Nevanlinna solved the problem of the determinacy
of solutions of the Stieltjes moment problem. En route he proved several other theorems
that have since been influential; in particular, the following theorem, which characterizes
the Cauchy transforms of positive finite measures p on R, has had a profound impact
on the development of modern analysis. Let P denote the Pick class, that is, the set of
analytic functions on the upper half-plane,

Hdéf{ze(C:Imz>0},

that have non-negative imaginary part on II.

Theorem 1.1 (Nevanlinna’s Representation). Let h be a function defined on II. There
exists a finite positive measure p on R such that

h(z) = / td_“z (1.1)

if and only if h € P and
liminf y |h(iy)| < co. (1.2)
Yy—r00

A closely related theorem, also referred to in the literature as Nevanlinna’s Represen-
tation, provides an integral representation for a general element of P.

Theorem 1.2. A function h : II — C belongs to the Pick class P if and only if there exist
a € R, b>0 and a finite positive Borel measure pn on R such that

14tz

h(z):a+bz+/ 7

dp(t) (1.3)
—z
for all z € I1. Moreover, for any h € P, the numbers a € R, b > 0 and the measure p > 0
in the representation (1.3) are uniquely determined.

What are the several-variable analogs of Nevanlinna’s theorems? In this paper we shall
propose four types of Nevanlinna representation for various subclasses of the n-variable
Pick class P,,, where P, is defined to be the set of analytic functions i on the polyhalf-
plane II"™ such that Imh > 0. In addition, we shall present necessary and sufficient
conditions for a function defined on II"™ to possess a representation of a given type in
terms of asymptotic growth conditions at oo.

The integral representation (1.1) of those functions in the Pick class that satisfy
condition (1.2) can be written in the form
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-1
W) = ((A-2) L),
where A is the operation of multiplication by the independent variable on L?(u) and
1 is the constant function 1. We propose that an appropriate n-variable analog of the
Cauchy transform is the formula

h(z1,. . 2n) = <(A — 2] — - — ann)*lv,v> for z1,...,2, €I, (1.4)

H

where H is a Hilbert space, A is a densely defined self-adjoint operator on H, Y7,...,Y,
are positive contractions on H summing to 1 and v is a vector in H.

Theorem 1.6 below characterizes those functions on II" that have a representation of
the form (1.4). To state this theorem we require a notion based on the following classical
result of Pick [20].

Theorem 1.3. A function h defined on I1 belongs to P if and only if the function A defined
on II x I by

3\
\-/

h(z) -

A(z,w) = P

S I

is positive semidefinite, that is, for allm > 1, z1,...,2, €11, ¢1,...,¢, € C,

Z A(Zj, Zi)aCj > 0.

The following theorem, proved in [2], leads to a generalization of Theorem 1.3 to two
variables. The Schur class of the polydisc, denoted by S,,, is the set of analytic functions
on the polydisc D™ that are bounded by 1 in modulus.

Theorem 1.4. A function ¢ defined on D? belongs to Sy if and only if there exist positive
semidefinite functions A1 and Ay on D? x D? such that

L—o(u)p\) = (1 =T A1) Ar (A, ) + (1 = fiad2) A2 (A, ). (1.5)

By way of the transformations

and

149N h(z) —i

there is a one-to-one correspondence between functions in the Schur and Pick classes.
Under these transformations, Theorem 1.4 becomes the following generalization of Pick’s
theorem to two variables.
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Theorem 1.5. A function h defined on I1? belongs to P if and only if there exist positive
semidefinite functions A1 and Ay on II2 x II? such that

h(z) — h(w) = (21 — w1)A1(z,w) + (22 — W3)Az(z, w).

In the light of Theorems 1.3 and 1.5 we define the Loewner class L, to be the set
of analytic functions h on II"™ with the property that there exist n positive semidefinite
functions Ay, ..., A, on II" such that

h() = R(w) = D () = W) A,z ) (19)

for all z,w € II". The Loewner class £, played a key role in [4], which gave a
generalization to several variables of Loewner’s characterization of the one-variable
operator-monotone functions [17]. As the following theorem makes clear, £, also has
a fundamental role to play in the understanding of Nevanlinna representations in several
variables.

Theorem 1.6. A function h defined on II"™ has a representation of the form (1.4) if and
only if h € L,, and

lim inf y|h(iy, . .., iy)| < oo. (1.9)
Y—00

In the cases when n = 1 and n = 2, Theorems 1.3 and 1.5 assert that £, = P,,
and so for n = 1, Theorem 1.6 is Nevanlinna’s classical Theorem 1.1, and when n = 2,
Theorem 1.6 is a straightforward generalization of that result to two variables. When
there are more than two variables, it is known that the Loewner class is a proper subset of
the Pick class, £, # P, [19,22]. Nevertheless, Nevanlinna’s result survives as a theorem
about the representation of elements of £,,. Other than the work in [11] very little is
known about the representation of functions in P,, for three or more variables.

For a function h on II"”, we call the formula (1.4) a Nevanlinna representation of
type 1. Thus, Theorem 1.6 can be rephrased as the assertion that h has a Nevanlinna
representation of type 1 if and only if A € £,, and h satisfies condition (1.9). Somewhat
more complicated representation formulae are needed to generalize Theorem 1.2. We
identify three further representation formulae, of increasing generality, and show that
every function in £,, has a representation of one or more of the four types.

For a function A defined on II", we refer to a formula

hz1y.oyzn) =a+ <(A —2Y] — - — ann)_lv,v>H

for z1,...,2, € 11, (1.10)
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where a is a constant, H is a Hilbert space, A is a densely defined self-adjoint operator
on H, Y1,...,Y, are positive contractions on H summing to 1 and v is a vector in H, as
a Nevanlinna representation of type 2.

Theorem 1.7. A function h defined on II"™ has a Nevanlinna representation of type 2 if
and only if h € L,, and

lim inf y Im h(iy, . .., iy) < co. (1.11)

Y—>00

A Nevanlinna representation of type 3 of a function h defined on II" is of the form
h(z) =a+ ((1 —iA)(A—2zy) " (14 2y A)(1 —iA)"'v,v)  for all z € II"

for some real a, some self-adjoint operator A and some vector v, where Y7,...,Y,, are
operators as in equation (1.4) above and zy = z1Y7 + -+ + 2, Y.

Theorem 1.8. A function h defined on II"™ has a Nevanlinna representation of type 3 if
and only if h € L,, and

1
lim inf — Im A(iy, ..., iy) = 0.

y—oo Y
Finally, Nevanlinna representations of type 4 are given by the formula
h(z) = a4+ (M(2)v,v), (1.12)
where a € R and M (z) is an operator of the form
. -1 , -1
—1i 0 1 0 0 0 1 0 0 0 —1i 0
0 1—ial\|o 4] ~*P|o 1 lo Al Tlo 1])]o0 1-iA|
(1.13)
acting on an orthogonal direct sum of Hilbert spaces N/ @& M. In equation (1.12), v is a

vector in N' @ M. In equation (1.13), A is a densely-defined self-adjoint operator acting
on M and zp is the operator acting on N & M via the formula

zp = Z 2 P
where Py, ..., P, are pairwise orthogonal projections acting on N’ @ M that sum to 1.

Theorem 1.9. Let h be a function defined on I1™. Then h has a Nevanlinna representation
of type 4 if and only if h € L,,.
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A weaker, “generic” version of Theorem 1.9 appeared in [4, Theorem 6.9], where it
was used to show that elements in £, are locally operator-monotone.

It turns out that for 1 < k < 4, if h is a function on II"™ and h has a Nevanlinna
representation of type k, then for k < j < 4, h also has a Nevanlinna representation of
type j. Thus, it is natural to define the type of a function in £, to be the smallest k such
that h has a Nevanlinna representation of type k.

For h € L,, the type of h can be characterized in function-theoretic terms through the
use of a geometric idea due to Carathéodory. A carapoint for a function ¢ in the Schur
class S, is a point 7 € T such that

1_
lim inf o) < 00,
= 1= |IM| o
where
Ao = max [As]

Carathéodory introduced this notion in one variable in [9], along the way to refining
earlier results of Julia [14]. The following was Carathéodory’s main result; the notation

A2 7 means that A tends nontangentially to 7.

Theorem 1.10. Let ¢ € S1, 7 € T. If 7 is a carapoint for ¢, then ¢ is nontangentially
differentiable at T, that is, there exist values ©(7) and ¢’ (1) such that

e e ==
praes A=T .

In particular, if T is a carapoint for ¢ then there exists a unique point (1) € T such
that p(\) = () as A 5 7.

In several variables, carapoints have been studied in [1,13,3]. The strong conclusion
of nontangential differentiability is lost in several variables; however, at a carapoint T,
there still exists a unimodular nontangential limit (7).

As the point x = (1,...,1) is transformed to the point co = (oo, ...,00) by equa-
tion (1.6), it is natural to say that a function h € £, has a carapoint at oo if the associated
Schur function ¢, given by the transformation in equation (1.7), has a carapoint at ¥,
and in that case to define h(oo) by

h(oo) = i%. (1.14)

The connection between carapoints and function types is given in the following theo-
rem.
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Theorem 1.11. For a function h € L,

(1) h is of type 1 if and only if co is a carapoint of h and h(co) = 0;

(2) h is of type 2 if and only if 0o is a carapoint of h and h(co) € R\ {0};
(3) h is of type 3 if and only if co is not a carapoint of h;

(4) h is of type 4 if and only if 0o is a carapoint of h and h(co) = oo.

The paper is structured as follows. As is clear from the formulae used to define the
various Nevanlinna representations, Nevanlinna representations are generalizations of
the resolvent of a self-adjoint operator. These structured resolvents, studied in Sections 2
and 3, are analytic operator-valued functions on the polyhalf-plane IT" with non-negative
imaginary part, fully analogous to the familiar resolvent operator. There are also struc-
tured resolvent identities for them, studied in Section 10 of the paper.

In modern texts Nevanlinna’s representation is derived from the Herglotz Representa-
tion with the aid of the Cayley transform [16,10]. In Section 4 we introduce the n-variable
strong Herglotz class and then prove Theorem 1.9 by applying the Cayley transform to
Theorem 1.8 of [2].

In Section 5 we derive the Nevanlinna representations of types 3, 2, and 1, we show
how they arise naturally from the underlying Hilbert space geometry and we prove slight
strengthenings of Theorems 1.6, 1.7 and 1.8. In Section 6 we give function-theoretic
conditions for a function h € L,, to possess a representation of a given type.

In Section 7 we introduce the notion of carapoints for functions in the Pick class and
in Section 8 we establish the criteria in Theorem 1.11 for the type of a function using
the language of carapoints.

In Section 9 we give the growth estimates for functions in £,, that flow from our
analysis of structured resolvents, and in Section 10 we present resolvent identities for
structured resolvents.

Results related to ours from a system-theoretic perspective have been obtained in
recent works of J.A. Ball and D. Kalyuzhnyi-Verbovetzkyi [6,7]. See also [8], where Krein
space methods are applied to similar problems.

2. Structured resolvents of operators

The resolvent operator (A — z)~! of a densely defined self-adjoint operator A on a
Hilbert space plays a prominent role in spectral theory. It has the following properties.

(1) Tt is an analytic bounded operator-valued function of z in the upper half-plane IT;
(2) it satisfies the growth estimate ||(A — 2)7!|| < 1/Imz for z € II;

(3)

(4)

(A — 2z)~! has non-negative imaginary part for all z € II;
it satisfies the “resolvent identity”.

Here we are interested in several-variable analogs of the resolvent. These will again
be operator-valued analytic functions with non-negative imaginary part, but now on
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the polyhalf-plane II". Because of the additional complexities in several variables we
encounter three different types of resolvent; all of them have the four listed properties,
with very slight modifications, and therefore deserve the name structured resolvent.

For any Hilbert space H, a positive decomposition of H will mean an n-tuple ¥ =
(Y1,...,Y,) of positive contractions on #H that sum to the identity operator. For any
z=(z1,...,2n) € C" and any n-tuple T' = (T1,...,T;) of bounded operators we denote
by zr the operator Zj 2;T;. Here each T} is a bounded operator from #H; to Ha, for
some Hilbert spaces H1, Hs, so that zp is also a bounded operator from H; to Hs.

Definition 2.1. Let A be a closed densely defined self-adjoint operator on a Hilbert
space H and let Y be a positive decomposition of H. The structured resolvent of A
of type 2 corresponding to Y is the operator-valued function

2 (A—zy) L T — L(H).
The following observation is essentially [4, Lemma 6.25].

Proposition 2.2. For A and Y as in Definition 2.1 the structured resolvent (A — zy )™t

is well defined on II™ and satisfies, for all z € 11",

4 = 2) 7 € e (21)
Moreover
Im ((A—2y)™ ") = (A—23)" " (Imay) (A—2y)""
=(A—zy) ' (Imzy) (A —25)7 "
> 0. (2.2)

The range of the bounded operator (A — 2y )~! is of course D(A), the domain of A.

Proof of Proposition 2.2. For any vector £ in the domain of A,

(A = 2y )EN NIEN > 1{(A = 2v)E,€) |
> |Im (A — 2y)&,6) |
= ((Im 2y)&, &)
=Y (Imz) (V;¢,€)

> mlnImz] <ZY§§>

— (min T ) ¢
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Thus A—zy has lower bound min; Im z; > 0, and so has a bounded left inverse. A similar
argument with z replaced by z shows that (A — zy)* also has a bounded left inverse,
and so A — zy has a bounded inverse and the inequality (2.1) holds.

The identities (2.2) are easy. O

Resolvents of type 2 are the simplest several-variable analogues of the familiar one-
variable resolvent but they are not sufficient for the analysis of the several-variable Pick
class. To this end we introduce two further generalizations. Let us first recall some basic
facts about closed unbounded operators.

Lemma 2.3. Let T be a closed densely defined operator on a Hilbert space H, with domain
D(T). The operator 1+ T*T is a bijection from D(T*T) to H, and the operators

BYa+rnt,  oc¥ra+rm)t

are everywhere defined and contractive on H. Moreover B is self-adjoint and positive,
and ran C C D(T™).

Proof. All these statements are proved in [21, Sections 118, 119], although the final
statement about ran C' is not explicitly stated. We must show that for all v € H there
exists y € H such that, for all h € H,

(Th,Cv) = (h,y) .

It is straightforward to check that this relation holds for y = v — Bv, and so ranC' C
D(T*). O

Definition 2.4. Let A be a closed densely defined self-adjoint operator on a Hilbert space
‘H and let Y be a positive decomposition of H. The structured resolvent of A of type 3
corresponding to Y is the operator-valued function M : 11" — L(#H) given by

M(z) = (1 —iA)(A—2y) ' (1 + 2y A)(1 —iA) L. (2.3)

We denote the ¢; norm on C™ by || - ||1. Note that ||zy] < ||z|]1 for all z € C™ and all
positive decompositions Y.

Proposition 2.5. For A and Y as in Definition 2.4 the structured resolvent M (z) of type 3
given by equation (2.3) is well defined as a bounded operator on H for all z € TI™ and
satisfies

M) < (142 (1 n ﬂ) | (2.4)

min; Im z;
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Proof. Since
1+ 2vA= 1—iZY+iZy(1—iA) D(A) —H

and (1—iA)~! is a contraction on all of H, with range D(A), the operator (1+zy A)(1—
iA)~! is well defined as an operator on H and

(1 + 2y A) (1 —iA) 7 = [[(1 —izy)(1 —iA) ™ +izy |
<1 —izy ||+ [lav
<1422y
<142zl (2.5)

Similarly (1 —iA)(A — zy)~! is well defined on H, and since
(A—2y)=—(1—-tA)+(1—izy): DA - H
we have
i=—(1—iA)(A—2y) '+ (1 —izy)(A—2y) ' H = H.
Thus, by virtue of the bound (2.1),

10— A)(A = 2y) M = i = (1= iz )(A = 2y) 7
<14t — ey [ (A= 2v) 7"

1+ ||zl

<1+ — .
min; Im z;

(2.6)

On combining the estimates (2.6) and (2.5) we obtain the bound (2.4). O

The following alternative formula for the structured resolvent of type 3, valid on the
dense subspace D(A) of H, allows us to show that Im M(z) > 0.

Proposition 2.6. For A and Y as in Definition 2.4 and z € TI™

M(2)|D(A) = (1 —iA) {(A—2y) ' — A1+ A*) 7'} (1 +iA) (2.7)
= (1 —iA)(A—2y) (1 +iA) — A:D(A) — H. (2.8)

Moreover, for every v € D(A),

Im (M (2)v,v) = (1 —iA)(A - 23) "(Imzy ) (A — 2zy) (1L +iA)v,v) > 0. (2.9)
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Proof. By Lemma 2.3 the operator A(1 + A%)~! is contractive on H and has range
contained in D(A). On D(A?) we have the identity

I+2yA=1+A% - (A—2y)A.
Since (1 + A?)~! maps H into D(A?) we have
(1+2yA) A+ A) P =1—(A—2y)AQL+ A" H = H,
and therefore

(A—2y) Y1+ 2y A) 1+ A2 = (A — 2y) "1 — A1+ A2~ . H — D(A).
(2.10)

Clearly
(1+A%)"114+4i4) =1 —-3iA)"" on D(A)

and so, on multiplying equation (2.10) fore-and-aft by 1+iA, we deduce that, as operators
from D(A) to H,

M(2)|D(A) = (1 —iA)(A — 2y) T (1 + 2y A)(1 — i4) !
(1 —3A)(A—2y) ' (1 + 2y A) (1 + A?) 711 4+ iA)

(1—iA) {(A—2zy) ' = A1+ A*) 7'} (1 +4A).

This establishes equation (2.7).
The expression (2.8) follows from equation (2.7) since

(1—iA)AQ+AH T 1 +id)=A on D(A).
By equation (2.8) we have, for any z € II" and v € D(A),

Im (M (2)v,v) = Im ((1 — iA)(A — zy) "' (1 + iA)v,v) — Im (Av, v)
=Im {((A—2y) (1 +iA)v, (1 +iA)v)

and hence, by equation (2.2),
Im (M (2)v,v) = ((A—25) "(Im 2y ) (A — 2y) " (1 + id)v, (1 +iA)v),
and so equation (2.9) holds. O

Corollary 2.7. For A and Y as in Definition 2.4 the structured resolvent M (z) given by
equation (2.3) satisfies Im M (z) > 0 for all z € TI"™.
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For, by Propositions 2.5 and 2.6, M(z) is a bounded operator on H, and
Im(M(z)v,v) > 0 for v € D(A). The conclusion follows by the density of D(A) and
continuity.

In the case of bounded A there is yet another expression for the structured resolvent
of type 3.

Proposition 2.8. If A is a bounded self-adjoint operator on H and Y is a positive de-
composition of H then, for z € TI",

M(z) = (1+3iA) " 1+ Azy)(A — 2y) (1 +iA). (2.11)
Proof. Since A is bounded it is defined on all of H. We have
1+ Azy =1+ A% — A(A - zy)
and hence
(1+Azy)(A—zy) ' =1+ A%)(A—2y) ' - A
Thus

(1+iA) M1+ Azy) (A —2y) H(1 +4i4) = (1 —iA)(A— 2y) 11 +iA) — A
= M(2)

by equation (2.8). O

Remark 2.9. In the case of unbounded A the expression (2.11) for M (z) is valid wherever
it is defined, but it is not to be expected that this will be a dense subspace of H in general.

Here are two examples of structured resolvents of type 3, one on C? and one on an
infinite-dimensional space.

Example 2.10. Let

Then

M(z) =1 —iA)(A—zy) "1+ 2y A)(1 —iA)~!

# [(1_&21)(1"‘22) —i(Zl —22)
1 —2z129 i(z1 — 22) —(1—=21)(1 —22)
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Example 2.11. Let H = L?(R), let A be the operation of multiplication by the indepen-
dent variable ¢ and let Y = (P, Q) where P, @ are the orthogonal projection operators
onto the subspaces of even and odd functions respectively in L?. Thus

Pit)=5{fO)+ (=0},  QfW)=5{ft) - f(-1)}.

Let Y/ = (Q, P). Note that
PA = AQ, QA=AP

and hence

2y A= Azys, 2y A = Azy, YRy = 2122 = 2y 2y .
It follows that zy and zys commute with A2, and it may be checked that

(A—2y) = (A% — 2120) M2y + A) = (2yr + A) (A% — 2129) 7!
and hence
(A= 2y) M1+ 2y A) = (A% — z120) 1 (1 + A%)zyr + (1 + 2120) A) .

A straightforward calculation now shows that the structured resolvent M (z) of A corre-
sponding to Y is given by

(%(Zl + 22)(1 + t2) + (1 + 2122)75) f(t) + %(2’2 — Zl)(l — it)zf(—t)
t2 — 2122

(M(2)f)(t) =

for all z € 12, f € L*(R) and t € R. In particular, we note for future use that if f is an
even function,

(M) = T2 O WL 5) g 212

t2 — 2122

3. The matricial resolvent

The third and last form of structured resolvent that we consider has a 2 x 2 matricial
form. As will become clear, this extra complication is needed for the description of the
most general type of function in the several-variable Loewner class.

By an orthogonal decomposition of a Hilbert space H we shall mean an n-tuple P =
(P1,...,P,) of orthogonal projection operators with pairwise orthogonal ranges such
that Z?Zl P; is the identity operator.
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Proposition 3.1. Let H be the orthogonal direct sum of Hilbert spaces N'y M, let A be a
densely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal
decomposition of H. For every z € II"™ the operator on H given with respect to the
decomposition N' & M by the matricial formula

wo-[3 2] (3 8 1)
O R ) |

s a bounded operator defined on all of H, and

14+2||z
M < @ VIO (14 YRR, (32
min; Im z;
Proof. Let z € II". Let the projection P; have operator matrix
_ X B
Pj—{B; yj} (3.3)

with respect to the decomposition H = N @& M. Then
X=(X1,...,X,), Y=M,...,Y,)

are positive decompositions of A/, M respectively, and
B=(By,...,B,), B"=(Bj,...,B})

are n-tuples of contractions summing to 0, from M to A and from N to M respectively.
Since the B; are contractions we have

lzall < =1
For any z € C*,
z ZB
2p = [Zg zy} : (3.4)

Consider the third and fourth factors in the product on the right hand side of equation
(3.1); the product of these two factors is well defined as an operator on H since (1—iA)~!
maps M to D(A). Tt is even a bounded operator, since, by virtue of equation (3.4),

oo A1 D[] = [ wimaian)

(3.5)
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Since
A=A =i (1 -1 —id)7h) [ <2

we can immediately see that the operator (3.5) is bounded. We can get an estimate of
the norm of the operator matrix (3.5) if we replace each of the four operator entries by
an upper bound for its norm. We find that

[CIERIR R IR

< {IIZHl 2|zl
=Ll T+2f

1 2
<14l [1 2”]
=1+ V10||2]1. (3.6)

Now consider the second factor in the definition (3.1) of M(z). We find that

(b a]-= ) - =)

-6 ) @

which maps H into N & D(A). Hence the product of the first two factors in the product
on the right hand side of equation (3.1) is

5t (][0 - ] e

Since

(1 =i A)(A = 2y) M = (1 = dzy (A= 2v) 7 =]
<1+ —dzy | (A= 2v) 7Y

L+ [zl

<1
=1+ min; Im z;

we deduce from equation (3.8) that

[ 2l (B8]0 )

<|[5 1 b

0 iz Ho 0 ]
<1 -
B +H[0 L+ z0 ] [0 [I(A = 2v) 7]




J. Agler et al. / Journal of Functional Analysis 270 (2016) 3000-3046 3015

n 14+ v2| 2|1

<1 - .
min; Im z;

(3.9)

On combining the estimates (3.9) and (3.6) we obtain the bound (3.2) for ||M(2)|. O

Remark 3.2. On multiplying together the expressions (3.8) and (3.5) we obtain the
formula

M(z) B Zx+ZB(A72’y)7IZB* 7752’3(1472}/)71(14*7;14)
i1 =AY (A= zy) g (1 —iA)(A—2y) Y14 2y A) (1 —iA) |

Notice in particular that the (2,2) entry (that is, the compression of M (z) to M) is the
structured resolvent of A of type 3 corresponding to Y, the compression of P to M, as
in equation (2.3).

Definition 3.3. Let # be the orthogonal direct sum of Hilbert spaces N', M, let A be a
densely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal
decomposition of H. The structured resolvent of A of type 4 corresponding to P is the
operator-valued function M : II" — L(H) given by equation (3.1).

We shall also refer to M (z) as the matricial resolvent of A with respect to P. The
important property that Im M (z) > 0 is not at once apparent from the formula (3.1);
as with structured resolvents of type 3, there are alternative formulae from which this
property is more easily shown. Once again the alternatives suffer the minor drawback
that they give M (z) only on a dense subspace of H.

Proposition 3.4. With the notation of Definition 3.3, as operators on N & D(A),

w5 3] (b ot ) s te])
(IR IS I EREN @10

-7 2 (o E%TB DG B ) [0l
-0t (o E}T[S DGl el ol

for all z € II"™. Moreover, for all z,w € 11",
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—i 0 10 0o o]\
er -t = [ P (0 2] e o 3])

e ([5 8]-[0 9=) [5 1l
(3.13)

on N @& D(A).

Proof. By Lemma 2.3 the operators (1 4+ A2)~! and

C Y Im(1 —iA)"t = A1+ A2

are self-adjoint contractions defined on all of M. Furthermore,
ran(1 + A?)~! = D(A4?), ranC C D(A).

We claim that, as operators on N & D(A4),
(5 5] =5 3T) (oo 8]+[5 ¥])-
(b elorly ol D) (b &)= [0 st ]r)

(3.14)
(8B DE 2B ar ]
[0 8]+ 6 |- [0 aileyi|m-ae [y O]
8 o5 )+ (- st e 8o
::g o1 - [8 (H?@)_l}[}) AC}ZP - [O C]zp

(R [ S )

This is an identity between operators on H, in both cases a composition H — N @
D(A) — H, and moreover the first factor on the left hand side and the second factor
on the right hand side are invertible, from N @ D(A) to H and from H to N @ D(A)
respectively. We may pre- and post-multiply appropriately to obtain equation (3.14), but
note that the equation is then only valid as an identity between operators on N ¢ D(A).
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On combining equations (3.1) and (3.14) we deduce that
—i 0 1 0 0 0
M(z) = {0 1—iA} <[0 C} ZP+[0 (1+A2)1DX
1 0] o 0 I
0 C 0 (1+4+A%)-1|*P 0 1-4A| -
Since
— 0 17V [t 0 17 o
0 1—-iA |0 1+ A2 0 1434
and
1 0 1 0 0 0 |11 0 0 0
0 1+42[ (|0 | o a+4)~|*P) "o A| |0 1|*"
we deduce further that
—i 0 1 0 0 0
M(Z):{o 1—1'4 ({o C’} ZP+[O (1+A2)—1D x
—1
1 0 0 0 i 0
({0 A}_{O 1]21’) [0 1+iA}’ (3.15)
which proves equation (3.10). It is straightforward to verify that
-1
1 0 0 0 10 0 0
(o elore o o) (5 415 3] ) 519
_([r 0], . [oo 1 0] fo o] \ ' Jo 0
“\lo o[*”T]0 1 0 A 0 1|°° 0 A1+ A% |-

(3.17)

Clearly

[oi 1—01'A} [8 A(l +OA2)1} [8 l—fiA} - [8 91]’

and so on suitably pre- and post-multiplying equation (3.16), we obtain equation (3.11).
To prove equation (3.12), check first that

(o 4] == 5D (o o)+ o 31) -
(e o+ 55D (415 9]=)

[a—y
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as operators on N @ D(A). It follows that
L o]_ oo 1 0] fo o] \'_
0 0/ "o 1 0 Al |0 1|*") =
1 0] _ fo o]\ 1 0], o o
0 Al o 1 1o o] "o 1
as operators from H to N’ & D(A). On combining this relation with equation (3.11) we

derive the expression (3.12) for M (z)|N @& D(A).
We now derive the identity (3.13). Let

i 0
D= {o 1+iA}

and consider z,w € II". By equation (3.10)

M(z) = D*W(2)D (3.18)
on N @ D(A), where
W(z) = R(2)S(z)"" — {8 AQ +OA2>—1] (3.19)

and

R =5 0|+ [0 1) so=[o &[0 1=

We have seen that S(z) is invertible for any z € II", so that W(z) is a bounded operator
on H. Clearly

M(2) — M(w)* = D* (R(2)S(2) ™" — S(w)* " R(w)*) D
= D*S(w)! (S(w)*R(z) — R(w)*S(2)) S(z)~'D.

Here
S(w)*R(z)R(w)*S(z)[(l) 8} ZP+[8 fﬂw} [8 (1)]
(o5 o]+ [0 3]~ 5 3]=)
—ip—wh.

Hence
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M(z2) — M(w)* = D*S(w)* ! (zp — wp)S(2) "D,
which is equation (3.13). O

The next result shows that the matricial resolvent belongs not just to the operator
Pick class, but to the smaller operator Loecwner class.

Proposition 3.5. With the notation of Definition 3.3, there exists an analytic operator-
valued function F : TI™ — L(H) such that for all z,w € TI",

M(z) = M(w)" = F(w)"(z — w)pF(z) (3.20)
on H.

Proof. The identity (3.13) shows that such a relation holds on N & D(A); we must
extend it to all of H. Write P; as an operator matrix with respect to the decomposition
H = N®M, as in equation (3.3). Then zp has the matricial expression (3.4). For z € 11"

let
ro=([3 2 U)o vl

Then F¥(z) is an operator from N @ D(A) to H, and we find that

71 .
# o 1 0 1 0
F(Z)—{—ZB* A—Zy:| [0 1+z’A]
i 0

- |:i(AZy)123* (AZY)1(1+Z'A):| 1/\/@D(A) — H.

Let

0
F(2) = [i(A_Zy)qu* H(A_Zy)_l(lﬂzy)] NeM—H.  (3.21)

Since
(A — Zy)il(l + ZA) =1+ (A — Zy)71(1 + iZY)

on NV & D(A) and the right hand side of the last equation is a bounded operator on all
of H, it is clear that, for every z € II", F(2) is a continuous extension to H of F*(z) and
is a bounded operator. Furthermore F' is analytic on II".

By Proposition 3.4, equation (3.13), the relation (3.20) holds on the dense subspace
N @& D(A) of H for every z,w € II". Since the operators on both sides of equation (3.20)
are continuous on H, the equation holds throughout H. O
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Corollary 3.6. A matricial resolvent has a non-negative imaginary part at every point
of TI"™.

Proof. In the notation of Proposition 3.5, on choosing w = z in equation (3.20) and
dividing by 2¢ we obtain the relation

ImM(z) = F(2)*(Imzp)F(z)
on H. We have

Imzp = Z(Imzj)Pj >0,

J
and so ImM(z) > 0on H for all z € II". O

Here is a concrete example of a matricial resolvent.

Example 3.7. The function

_ 1 22122 i(Zl — 22)
M(Z) o 21 + 22 _i(zl - Z2) -2 (3.22)

is the matricial resolvent corresponding to

H=C> N=M=C, A=0onC, PIZ%E }] Py=1-P.

4. Nevanlinna representations of type 4

In this section we derive a multivariable analog of the most general form of Nevanlinna
representation for functions in the one-variable Pick class (Theorem 1.2). We start with a
multivariable Herglotz theorem [2, Theorem 1.8]. We shall say (following G. Herglotz [12])
that an analytic operator-valued function F on D" is a Herglotz function if Re F(\) > 0
for all A € D™. For present purposes we need the following modification of the notion.

Definition 4.1. An analytic function F : D™ — L(K), where K is a Hilbert space, is a
strong Herglotz function if, for every commuting n-tuple 7' = (13, ...,T,) of operators
on a Hilbert space and for 0 <r < 1, Re F(+T) > 0.

In [2] these functions were called F,,-Herglotz functions. The class of strong Herglotz
functions has also been called the Herglotz—Agler class (for example [15.7]). It is clear
that every strong Herglotz function is a Herglotz function, and in the cases n =1 and 2
the converse is also true [2].
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Theorem 4.2. Let K be a Hilbert space and let F : D* — L(K) be a strong Herglotz
function such that F(0) = 1. There exist a Hilbert space H, an orthogonal decomposition
P of H, an isometric linear operator V : K — H and a unitary operator U on H such
that, for all A € D™,

A+ UM

FaN=V T Unp

V. (4.1)
Conversely, every function F : D™ — L(K) expressible in the form (4.1) for some

H, P, V and U with the stated properties is a strong Herglotz function and satisfies
F(0)=1.

Note that Ap = >, A; P; has operator norm at most [|Al| < 1 for A € D", and hence
equation (4.1) does define F' as an analytic operator-valued function on D™.

On specializing to scalar-valued functions in the n-variable Herglotz class we obtain
the following consequence.

Corollary 4.3. Let f be a scalar-valued strong Herglotz function on D™. There exists a
Hilbert space H, a unitary operator L on H, an orthogonal decomposition P of H, a real
number a and a vector v € H such that, for all A € D",

fN) = —ia+ (L —Ap) (L +Ap)v,v). (4.2)

Conversely, for any H, L, P, a and v with the properties described, equation (4.2) defines
f as an n-variable strong Herglotz function.

Again, the right hand side of equation (4.2) is an analytic function of A € D™ since
(L—Xp) ' =L7'1-XpL™ Y !
is a bounded operator and is analytic in A.

Definition 4.4. A Nevanlinna representation of type 4 of a function h : II" — C consists
of an orthogonally decomposed Hilbert space H = N & M, a self-adjoint densely defined
operator A on M, an orthogonal decomposition P of H, a real number a and a vector
v € ‘H such that

h(z) =a+ (M(2)v,v) (4.3)

for all z € II", where M (z) is the structured resolvent of A of type 4 corresponding to P
(given by the formula (3.1)).

We wish to convert Corollary 4.3 to a representation theorem for suitable analytic
functions on II"™. The fact that the corollary only applies to strong Herglotz functions
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results in representation theorems for a subclass of the Pick class P,,. Recall from the
introduction:

Definition 4.5. The Loewner class L, is the set of analytic functions h on II" with
the property that there exist n positive semi-definite functions Aq,..., A, on II" x II",
analytic in the first argument, such that

h(z) = h(w) = (2 — W) A; (2, w)

j=1
for all z,w € II"™.

A function h on II" belongs to £, if and only if it corresponds under conjugation by the
Cayley transform to a function in the Schur—Agler class of the polydisc [4, Lemma 2.13].
Another characterization: h € L, if and only if, for every commuting n-tuple T of
bounded operators with strictly positive imaginary parts, h(T') has positive imaginary
part.

We can now prove Theorem 1.9 from the introduction: a function h defined on II"
has a Nevanlinna representation of type 4 if and only if h € L,,.

Proof of Theorem 1.9. Let h € L,,. Define an n-variable Herglotz function f : D® — C

by
f(A) = —ih(z) (4.4)
where
A4 .
Zj:ll—)\j» forj=1,...,n. (4.5)

When A € D" the point 2z belongs to 11", and so f()) is well defined, and since Im h(z) > 0
we have Re f(\) > 0, so that f is indeed a Herglotz function. In fact f is even a strong
Herglotz function: since h € L,,, the function ¢ € §,, corresponding to h lies in the
Schur—Agler class of the polydisc, and so f = (1 4+ ¢)/(1 — ¢) is a strong Herglotz
function.

By Corollary 4.3 there exist a real number a, a Hilbert space H, a vector v € H,
a unitary operator L on H and an orthogonal decomposition P on H such that, for all
z eIl

h(z) =if(\) =a+ (i(L— X)L+ \v,v)
=a+(i[L—(z=9)(z+0)" "L+ (z —i)(z+1i) v, v). (4.6)

Here and in the rest of this section z, A are identified with the operators zp, Ap on H,
and in consequence the relation
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oz
o2+
is meaningful and valid.
For z € II"™ let
z—i\ " z—1
MGz)=i(L-N""(L+)N)=i(L- L . 4.7
@=i@w-n"@en=i(z-20) (2 i) (47)

Since L is unitary on H and A € D", the operator M(z) is bounded on H for every
z € II"™ and, by equation (4.6), we have

h(z) =a+ (M(2)v,v) (4.8)
for all z € TI2. Theorem 1.9 will follow provided we can show that M(z) is given by

equation (3.1) for a suitable self-adjoint operator A.
Observe that

M(z)=i((z+i)L — (z— 1) " ((z+ )L+ (z — 1))
=i(z2(L—=1)+i(L+1)"" (2(L+1)+i(L—1)). (4.9)
We wish to take out a factor 1 — L from both factors in equation (4.9), but this may
be impossible since 1 — L can have a nonzero kernel. Accordingly we decompose H into

N @ M where N = ker(1 — L), M = N'*. With respect to this decomposition we can
write L as an operator matrix

1o
L= [0 LJ :
where Ly is unitary and ker(1 — Lg) = {0}. Substituting into equation (4.9) we have
-1
. 0 0 |2 0 2 0 .10 0
M(Z):Z<Z {0 Lo—l] t {0 LOHD (Z [o L0+1} “[0 L0—1]2>

- (‘Z {8 1—0L0] + [%Z i(lJ(r)Lo)Dl (z [Zol i(1+OLO)} + {8 1OLOD
(4.10)

Formally we may now write

o[ 0 (o 80 )

<Z [é Z}g—fﬁ] - [8 (1)D [%Z 1—0L0]’ (4.11)
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but whereas equation (4.10) is a relation between bounded operators defined on all of H,
equation (4.11) involves unbounded, partially defined operators and we must verify that
the product of operators on the right hand side is meaningful.

Let

1+ Ly
A= .
"T- 1L,

Since Lo is unitary on M and ker(1 — Ly) = {0}, the operator A is self-adjoint and
densely defined on M [21, Section 121]. The domain D(A) of A is the dense subspace
ran(l — L) of M. It follows from the definition of A that

(1-Lo) ' =1(1-iA), (4.12)
which is an equation between bijective operators from D(A) to M. Likewise
1+ Lo =—2iA(1 —iA)™' : M — D(A) (4.13)
are bounded operators.

Let us continue the calculation from the first factor on the right hand side of equation
(4.10). Since ker(1 — Lg) = {0}, the right hand side of the relation

|0 0 n 2 0 _({ .10 0 " 10 2i 0
1o 1-1Lo 0 il+Ly)| — \7%]0 1 0 A 0 1—1Lg
comprises a bijective map from H to N @ D(A) followed by a bijection from N @& D(A)
to H (recall the equation (3.7)). We may therefore take inverses in the equation to obtain

<_Z [8 1 —OLO} + ﬁ)z i(l—i(—)Lo)D_l

o] (B8R0

_O%i %(19@4)} ([(1) ,91} _2[8 (1)]>_1 (4.14)
as operators on N @ D(A).

Similar reasoning applies to the equation

2’[20Z i(l—i(—)Lo)} + {8 1—0L0]

- (z [é 91] + [8 ?D {0;2 %(18“1)]_1; (4.15)
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it is valid as an equation between operators on H. The right hand side comprises an
operator from H to N @ D(A) followed by an operator from N @& D(A) to H, and so
both sides of the equation denote an operator on H.

On combining equations (4.10), (4.14) and (4.15) we obtain

o [ yutial (5 20 8)°
G B D

Pre-multiply this equation by 2 and post-multiply by % to deduce that M (z) is indeed
the structured resolvent of A of type 4 corresponding to P, as defined in equation (3.1).

Ol\’)l»—t

Thus the formula (4.8) is a Nevanlinna representation of h of type 4.
Conversely, let h € L, have a type 4 representation (4.3). By Proposition 3.5 there
exists an analytic operator-valued function F : II" — L(H) such that, for all z,w € II",

M(z) = M(w)" = F(w)"(z —w)pF(z) (4.16)
on H. Hence

h(z) = h(w) = (M(2) — M (w)")v, v)
= (F(w)"(z —w)pF(2)v,v)

D (25— ) A;(z,w)

=1

for all z,w € II", where
Aj(z,w) = (P;F(z)v, F(w)v) .

The A; are clearly positive semidefinite on II", and hence h belongs to the Loewner
class £,. O

5. Nevanlinna representations of types 3, 2 and 1

Nevanlinna representations of type 4 have the virtue of being general for functions
in £, but they are undeniably cumbersome. In this section we shall show that there are
three simpler representation formulae, corresponding to increasingly stringent growth
conditions on h € L,,.

In Nevanlinna’s one-variable representation formula of Theorem 1.2,

1
h(z):a—i—bz—i—/ t+tz

du(t), (5.1)

—Z
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it may be the case for a particular h € P that the bz term is absent. The analogous
situation in two variables is that the space N in a type 4 representation may be zero.
Equivalently, in the corresponding Herglotz representation, the unitary operator L does
not have 1 as an eigenvalue. This suggests the following notion.

Definition 5.1. A Nevanlinna representation of type 3 of a function h on II" consists of a
Hilbert space H, a self-adjoint densely defined operator A on H, a positive decomposition
Y of H, a real number a and a vector v € H such that, for all z € II"™,

h(z) =a+ <(1 —iA)(A—zy) M1+ 2y A)(1 — z'A)_lv,v> . (5.2)

Thus h has a type 3 representation if h(z) = a + (M(z)v,v) where M(z) is the
structured resolvent of A of type 3 corresponding to Y, as given by equation (2.3).

In [5] the authors derived a somewhat simpler representation which can also be re-
garded as an analog of the case b = 0 of Nevanlinna’s one-variable formula (5.1).

Definition 5.2. A Nevanlinna representation of type 2 of a function h on II" consists of a
Hilbert space H, a self-adjoint densely defined operator A on H, a positive decomposition
Y of H, a real number a and a vector o € H such that, for all z € II"

h(z)=a+ ((A—2y) 'o,a). (5.3)
This means of course that, for all z € II",
h(z) =a+ (M(2)a, a)

where M(z) is the structured resolvent of A of type 2 corresponding to Y (compare
equation (2.1)).
We wish to understand the relationship between type 3 and type 2 representations.

Proposition 5.3. If h € P,, has a type 2 representation then h has a type 3 representation.
Conwersely, if h € Py, has a type 3 representation as in equation (5.2) with the additional
property that v € D(A) then h has a type 2 representation.

Proof. Suppose that h € P,, has the type 2 representation
h(z) = ag + ((A — zY)_la,a>

for some ag € R, positive decomposition ¥ and o € H. We must show that h has a
representation of the form (5.2) for some a € R and v € H. By Proposition 2.6, it
suffices to find a € R and v € D(A) such that

h(z)=a+ <(1 —iA) {(A —zy) t— A+ A2)*1} (1+ iA)v,v>

for all z € II"™.
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To this end, let C = A(1 + A?)~! and let
a=a9+ (Ca,a). (5.4)
Since 1 +4A is invertible on H and ran(1 +iA)~! C D(A) we may define
v=(1+iA)"ta € D(A). (5.5)
Then

h(z) =ao+ ((A—2y) "o, )
=a—(Ca,a)+ ((A—zy) o, )
—a-+ <{(A —z2y) t = C’} (I1+iA)v, (14 iA)U>
=a+ {((1—id) {(A—2y)"' = C} (1 +iA)v,v)

as required. Thus h has a type 3 representation.
Conversely, let h have a type 3 representation (5.2) such that v € D(A), that is

h(z) = a4+ (M(2)v,v)

where @ € R and M is the structured resolvent of A of type 3 corresponding to Y, as

in equation (2.3). Since v € D(A) we may define the vector « def (I1+iA)v € H, and

furthermore, by Proposition 2.6,

h(z) =a+ ((1 —iA){(A—2y) ' = C} (1 +iA)v,v)
=a+{({(A-2y)'=C}la,a)
=a—(Ca,a) + ((A— zY)fla,oc>

=ao+ ((A—2y) 'a,a),

where ag € R is given by equation (5.4). Thus h has a representation of type 2. 0O

A special case of a type 2 representation occurs when the constant term a in equation
(5.3) is 0. In one variable, this corresponds to Nevanlinna’s characterization of the Cauchy
transforms of positive finite measures on R. Accordingly we define a type 1 representation
of h € L, to be the special case of a type 2 representation of h in which a = 0 in
equation (5.3).

Definition 5.4. An analytic function h on II" has a Nevanlinna representation of type 1 if
there exist a Hilbert space H, a densely defined self-adjoint operator A on H, a positive
decomposition Y of H and a vector o € H such that, for all z € 11",

h(z) = (A= zy) 'a,a). (5.6)
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A representation of type 1 is obviously a representation of type 2. The following
proposition is an immediate corollary of Proposition 5.3.

Proposition 5.5. A function h € L, has a type 1 representation if and only if h has a
type 3 representation as in equation (5.2) with the additional properties that v € D(A)
and

a—(A(1+ A% 'a,a) =0.

For consistency with our earlier terminology for structured resolvents and represen-
tations we should have to define a structured resolvent of type 1 to be the same as a
structured resolvent of type 2. We refrain from making such a confusing definition.

We conclude this section by giving examples of the four types of Nevanlinna repre-
sentation in two variables.

Example 5.6. (1) The formula

1

h(z) = i a ((0— Zy)*lv,’U>C,

where Y = (%, %) and v = 1//2, exhibits a representation of type 1, with A = 0.

(2) Likewise

h(z)=1-— = 1—&—<(0—z:y)_1v,v>(C
is a representation of type 2.
(3) Let

1 z'zg(l—i-z%)) ,
— | 21 — 20 + ——= if 212 -1
h(z) = 1+212 ( e V2172 172 7

%(214-22) if zZ122 =-1

(5.7)

where we take the branch of the square root that is analytic in C\ [0, co) with range II.
We claim that h € Py and that h has the type 3 representation

h(z) = (M(2)v,0) L2 (g) » (5:8)

where M(z) is the structured resolvent of type 3 given in Example 2.11 and v(t) =
1/4/m(1 + 2). To see this, let h be temporarily defined by equation (5.8). Since v is an
even function in L?(R), equation (2.12) tells us that
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h(z) = dt.

(o9}
/ t(l + 2122) + (1 — it)(itzl + Z2)
7T(t2 — 2122)(1 + t2)
—oo
Since the denominator is an even function of ¢, the integrals of all the odd powers of ¢
in the numerator vanish, and we have, provided z129 # —1,

dt.

o0
2 29 + 1221
h(z) = — dt
(2) w/kﬁfzwﬂ@+ﬁ%
0
/ 2o(1 + 23) 1 21—z 1
0

4
14+ 2120 12— 2129 1+ 2120 1412

Now, for w € II,

o0

/ dt  am
22— w2 2w’

0

and so we find that h is indeed given by equation (5.7) in the case that z129 # —1. When
z122 = —1 we have

oo

2 29 + th2
=5 | e

200 z1 22 — 21
= — dt
w/1+ﬂ+a+ﬁv

0

= %(zl + 23).

Thus equation (5.8) is a type 3 representation of the function h given by equation (5.7).
This function is constant and equal to ¢ on the diagonal z; = z5.

(4) The function

hz) = 22— <_i_i>_l

21+ 29

clearly belongs to Ps. It has the representation of type 4
h(z) = (M(2)v,v) 2

where M (z) is the matricial resolvent given in Example 3.7 and

-5 (0)
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We claim that each of the above representations is of the simplest available type for
the function in question; for example, the function i in part (4) does not have a Nevan-
linna representation of type 3. To prove this claim (which we shall do in Example 8.2
below) we need characterizations of the types of functions — the subject of the next two
sections.

6. Asymptotic behavior and types of representations

In this section we shall give function-theoretic conditions for a function in £,, to have
a representation of a given type. These conditions will be in terms of the asymptotic
behavior of the function at co.

Every function in £,, has a type 4 representation, by Theorem 1.9. Let us characterize
the functions that possess a type 3 representation. We denote by x the vector (1,...,1)
of ones in C™. The following statement contains Theorem 1.8.

Theorem 6.1. The following three conditions are equivalent for a function h € L,,.

(1) The function h has a Nevanlinna representation of type 3;

(2)

o1 N

hsrgggfglm h(isx) = 0; (6.1)
3)

li 11 h(i =0 6.2

Jim —Imh(isx) =0. (6.2)

Proof. (1)=-(3) Suppose that h has a Nevanlinna representation of type 3:
h(z) =a+ ((1 —iA)(A—2zy) (14 2y A)(1 — iA) "o, 0) (6.3)
for suitable a € R, H, A, Y and v € H. Since
(isx)y = Zst] =is
J
we have
h(isy) = a+ ((1 —iA)(A —is) (1 +isA)(1 —iA) 'v,v).

Let v be the scalar spectral measure for A corresponding to the vector v € H. By the
Spectral Theorem
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h(isy) = a + /(1 i) (t—is)" (14 ist) (1 — it) " du(t)

= a—|—/1+28t du(t).

t—1s

Since

1+ist  s(1+1t2)
- _

I —
t—is s2 2

we have

1+ ¢2
s2 4+ ¢2

élm h(isx) = / dv(t).

The integrand decreases monotonically to 0 as s — oo and so, by the Monotone Conver-
gence Theorem, equation (6.2) holds.

(3)=(2) is trivial.
(2)=(1) Now suppose that h € L,, and

1
liminf — Im h(isx) = 0.
s—oo 8§

By Theorem 1.9, h has a Nevanlinna representation of type 4: that is, there exist a, H,
N C H, operators A, Y on N+ and a vector v € H with the properties described in
Definition 5.1 such that

v ol (8- 9)
G IR )] A R
A NN | A [ SN [ AP
= [Zos (1= i) (A — i) (1 + isA) —iA)‘l} |

Let the projections of v onto N/, N be vy, vy respectively. Then
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h(isx) = a+ (M (isx)v,v)
=a+is|v|*+ ((1—iA)(A—is) ' (1 +isA)(1 —iA)  va,v0)
and therefore
élm hisx) = |v1]* + % Im ((1 — iA)(A —is) " (1 4+ isA)(1 — iA) 'va, v2)
> o ||”

by Corollary 2.7. Hence

L de el

1
0 = liminf — Im A(isy)
s
2
> Jloa ]|

It follows that v, = 0.

Let the compression of the projection P; to Nt be Yj: then Y = (V1,...,Y,) is a
positive decomposition of N'*, and the compression of zp to N+ is zy. By Remark 3.2
the (2,2) block Mas(z) in M(z) is

Mag(2) = (1 —iA) (A — 2zy) (1 + 2y A) (1 —iA) "L

Since v1 = 0 it follows that

= a + (Mas(2)va, va)
=a+((1—iA)(A—2y) (1 + 2y A)(1 — iA) g, v0),

which is the desired type 3 representation of h. Hence (2)=(1). O

In [7] it is shown that condition (3) in the above theorem is also a necessary and
sufficient condition that —ih have a II"-impedance-conservative realization.

Type 2 representations were characterized by the following theorem in [5] in the case
of two variables. The following result, which contains Theorem 1.7, shows that the result
holds generally.

Theorem 6.2. The following three conditions are equivalent for a function h € L,,.

(1) The function h has a Nevanlinna representation of type 2;

(2)

lim inf s Im h(isx) < oo; (6.5)

S5— 00
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lim sImh(isy) < oo. (6.6)
S§—00
Proof. (1)=(3) Suppose that h has the type 2 representation h(z) = a+((4 — 2y ) ~'v,v)
for a suitable real a, self-adjoint A, positive decomposition Y and vector v. Let v be the
scalar spectral measure for A corresponding to the vector v. Then, for s > 0, A—(isx)y =
A —is and so

sImh(isy) = sIm/dV—(t_)
t—1is

B / s? du(t)
) 24827
The integrand is positive and increases monotonically to 1 as s — oo. Hence, by the
Dominated Convergence Theorem
lim sIm h(isy) = ¥(R) = ||Jv]|* < cc.
S§—>00
Hence (1)=(3).
(3)=(2) is trivial.
(2)=-(1) Suppose (2) holds. A fortiori,

1
lim inf — Im A(isx) = 0.

s—00 8

By Theorem 6.1 h has a type 3 representation (6.3) for suitable a € R, H, A, Y and
v € H. Let v be the scalar spectral measure for A corresponding to the vector v. Then
for s >0

14 st
sImh(isy) = sIm/ * Z.S
t—1is

[+
7/—t2+82 du(t).

dv(t)

As s — 0o the integrand increases monotonically to 1 + ¢2. Condition (2) now implies
that

/1 + % du(t) < .
It follows that v € D(A). Hence, by Proposition 5.3, h has a representation of type 2. O

In [5] we proved Theorem 6.2 for n = 2 using a different approach from the present
one.
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From this theorem the characterization of type 1 representations follows just as in the
one-variable case. We obtain a strengthening of Theorem 1.6.

Theorem 6.3. The following three conditions are equivalent for a function h € L,,.

(1) The function h has a Nevanlinna representation of type 1;

(2)

liminf s|h(isx)| < oo;
S5— 00

ILm s|h(isx)| < oo. (6.7)

Proof. We follow Lax’s treatment [16] of the one-variable Nevanlinna theorem.
(1)=-(3) Suppose that h has a type 1 representation as in equation (5.6) for some H,
A, Y and v. Then

h(isy) = ((A—is) 'a, a)
= ((A+is)(A* + s°) o, ),
and so
Resh(isx) = (sA(A* + s*) ', o), Imsh(isx) = (s*(A*+s*)'a,a).
Let v be the scalar spectral measure for A corresponding to the vector a € H. Then

s2

12 + 52

st
t2 + 52

Resh(isx) = / dv(t), Imsh(isy) = / du(t).

The integrand in the first integral tends pointwise in ¢ to 0 as s — oo, and by the
inequality of the means it is no greater than %; thus the integral tends to 0 as s — oo
by the Dominated Convergence Theorem. The integrand in the second integral increases

monotonically to 1 as s — oo. Thus
Re sh(isx) — 0, Im sh(isx) — |la||*> as s — occ.
Hence the inequality (6.7) holds. Thus (1)=-(3).
(3)=(2) is trivial.

(2)=-(1) Suppose that

lin_1>inf s |h(isx)| < oo. (6.8)
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As

liminf s Im A(isy) < liminf s [h(isx)| < oo,
S§— 00 S— 00

h satisfies condition (6.5) of Theorem 6.2. Therefore h has a representation of type 2,

say

h(z)=a+ ((A—2zy) "o, a).

It remains to show that ¢ = 0. The inequality (6.8) implies that there exists a sequence
(s;) tending to oo such that h(is;x) — 0. But

Reh(is;x) = a+ (A(A* + s2) o, a) — a.
Hence a = 0 and h has a type 1 representation. This establishes (2)=(1). O
7. Carapoints at infinity

How can we recognize from function-theoretic properties whether a given function in
the n-variable Loewner class admits a Nevanlinna representation of a given type? In the
preceding section it was shown that it depends on growth along a single ray through the
origin. In this section we describe the notion of carapoints at infinity for a function in
the Pick class, and in the next section we shall give succinct criteria for the four types
in the language of carapoints.

Carapoints (though not with this nomenclature) were first introduced by Carathéo-
dory in 1929 [9] for a function ¢ on the unit disc, as a hypothesis in the “Julia-Carathéo-
dory Lemma”. For any 7 € T, a function ¢ in the Schur class satisfies the Carathéodory
condition at T if

oyl

hf\njEf T < 0. (7.1)
The notion has been generalized to other domains by many authors. Consider domains
U C C"and V C C™ and an analytic function ¢ from U to the closure of V. The
function ¢ is said to satisfy Carathéodory’s condition at 7 € oU if

.. dist(e(X),0V)
i inf =t On, 00

Thus, for example, when U = II"", V = II, a function h € P, satisfies Carathéodory’s
condition at the point x € R™ if
Tm h(z)

lim inf ———— < o0. (7.2)
z—z  min; Im z;



3036 J. Agler et al. / Journal of Functional Analysis 270 (2016) 3000-3046

This definition works well for finite points in OU, but for our present purpose we need to
consider points at infinity in the boundaries of II" and II. We shall introduce a variant
of Carathéodory’s condition for the class P,, with the aid of the Cayley transform

1+ A z—1

—i A= 7.3
T Pt (7:3)

which furnishes a conformal map between D and II, and hence a biholomorphic map
between D™ and II"™ by coordinatewise action. We obtain a one-to-one correspondence
between S, \ {1} and P,, via the formulae

P(A) = Mz) —i (7.4)

1+ p(N)
=) h(z)+i

Ty

where 1 is the constant function equal to 1 and A, z are related by equations (7.3). For
p € S, we define 7 € T™ to be a carapoint of ¢ if

1— (A
tim inf L 1PV (7.5)
Ao T—[Al o
We can now extend the notion of carapoints to points at infinity. The point (oo, ..., 00)

in the boundary of II"™ corresponds to the point x in the closed unit polydisc; as in the
last section, y denotes the point (1,...,1) € C™.

Definition 7.1. Let h be a function in the Pick class P,, with associated function ¢ in the
Schur class S, given by equation (7.4). Let 7 € T", 2 € (R U 0o)™ be related by

1+Tj
177']'

xj=1 forj=1,...,n. (7.6)
We say that x is a carapoint for h if 7 is a carapoint for . We say that h has a carapoint
at oo if h has a carapoint at (oo, ...,00), that is, if ¢ has a carapoint at x.

Note that, for a point x € R™, to say that = is a carapoint of h is not the same
as saying that h satisfies the Carathéodory condition (7.2) at x. Consider the function
h(z) = —1/z in Py. Clearly h does not satisfy Carathéodory’s condition at 0 € R™.
However, the function ¢ in S,, corresponding to h is ¢(\) = —A1, which does have a
carapoint at —y, the point in T™ corresponding to 0 € R™. Hence h has a carapoint at 0.

We shall be mainly concerned with carapoints at 0 and co. The following observation
will help us identify them. For any h € P,, we define h’ € P,, by

1 1
hb(z):h<——,...,——) for z € II".

Z1 Zn

For ¢ € §,, we define
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If h and ¢ are corresponding functions, as in equations (7.4), then so are h” and ¢”.
Proposition 7.2. The following conditions are equivalent for a function h € P,,.

(1) oo is a carapoint for h;

(2) 0 is a carapoint for h’;
3)

o Im hb(iyx)
liminf ———— 222
y=0+ y|h* (iyx) + if?

.. yImh(iyx)
liminf ¥——22%
y—oo |h(iyx) + i[?

Proof. (1)<(2) Since —x € T™ corresponds under the Cayley transform to 0 € R™, we
have
oo is a carapoint of h < x is a carapoint of ¢
& —x is a carapoint of <pb
& 0 is a carapoint of h’.

(2)<(3) A consequence of the n-variable Julia—Carathéodory Theorem [13.1], is that
7 € T™ is a carapoint of ¢ € S, if and only if

1—
lim inf M < o0
r—1-— 1—r
It follows that
0 is a carapoint for > <  —x is a carapoint for ¢’
1— (=
< liminf M < 00
r—1— 1—r
1— b o )2
& liminf (=, =1)| < 00.
r—1— 1-— 7"2

Let iy € II be the Cayley transform of —r € (—1,0), so that y — 0+ as r — 1—. In view
of the identity

1—¢<A>|2_( |zj+z'|2> T (2)

=z~ U5 Tz ) )+

(7.7)

we have
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0 is a carapoint for R’ & liminf [y + 1 m. (lyx?
v=0t oy R (iyx) +if?

Im A°(i
& liminf —Ibn (ZyX)‘
y=0+ ylh (iyx) +i[?

(3)=(4) Replace y by 1/y. O

Corollary 7.3. If f € P,, satisfies Carathéodory’s condition

lim inf M < 00
z—x Im 2

(7.8)
at x € R™ then x is a carapoint for f. If

lim inf y Im f(iyx) < oo

Y—00

then oo is a carapoint for f.

Proof. Let h = f° € P,. Clearly |h’(z) +i| > 1 for all z € TI". If the condition (7.8)
holds for z = 0 then

Im 7’ Im h°
lim inf m (Z) < liminf —m (2) < 00
2=0  |h?(2) + i|? min,; Im z; 20 min; Im z;

and hence, by (2)<(3) of Proposition 7.2, 0 is a carapoint for k> = f. The case of a
general x € R™ follows by translation. O

If h € P, has a carapoint at x € (RUo00)™ then it has a value at = in a natural sense.
If p € S, has a carapoint at 7 € T", then by [13] there exists a unimodular constant
(1) such that

lim () = (7). (7.9)

A2,
Here A 2% 7 means that A tends nontangentially to 7 in D™.

Definition 7.4. If h € P,, has a carapoint at € (R U 0c0)” then we define

00 if o(r)=1
h(z) =19 1+ (1) :
Tt fo(r)#1

where 7 € T™ corresponds to x as in equation (7.6).

Thus h(oco) € RU {00} when oo is a carapoint of h.
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In the example h(z) = —1/21, since the value of p(—A) at —x is 1, we have h(0) = oco.
Although the value of h(c0) is defined in terms of the Schur class function ¢, it can
be expressed more directly in terms of h.

Proposition 7.5. If 0o is a carapoint of h then

h(co) = h*(0) = lim h(2). (7.10)

nt
Z— 00

Here we say that z 25 oo if z — (00,..,00) in the set {z € II" : (=1/z,...
—1/z,) € S} for some set S C II" that approaches 0 nontangentially, or equivalently, if
z — (00,...,00) in a set on which |||/ min; Im z; is bounded.

)

Proof of Proposition 7.5. Clearly
ho) =00 & ox)=1 & ¢(-x)=1 & h(0)=o0.
Similarly, for £ € R,

_ &
e+

_ &
4

& (=)

hoo) =6 & w(x) s W0)=¢
Thus, whether h(c0) is finite or infinite, h(co) = h’(0). Equation (7.10) follows from the
relation (7.9). O

8. Types of functions in the Loewner class

In this section we shall show that the type of a function h € L,, is entirely determined
by whether or not co is a carapoint of h and by the value of h(co). Let us make precise
the notion of the type of a function in L,,.

Definition 8.1. A function h € L, is of type 1 if it has a Nevanlinna representation of
type 1. For n = 2,3 or 4 we say that h is of type n if h has a Nevanlinna representation
of type n but has no representation of type n — 1.

Clearly every function in £, is of exactly one of the types 1 to 4. We shall now prove
Theorem 1.11. Recall that it states the following, for any function h € L,,.

(1) his of type 1 if and only if co is a carapoint of A and h(co) = 0;

(2) his of type 2 if and only if co is a carapoint of h and h(occ) € R\ {0};
(3) his of type 3 if and only if co is not a carapoint of h;

(4) h is of type 4 if and only if co is a carapoint of A and h(oo) = co.

Proof of Theorem 1.11. (2) Let h € L, have a type 2 representation h(z) = a +
((A = zy)"'v,v) with a # 0. By Theorem 6.2,
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lim inf y Im h(iyx) < occ.
Yy—00

By Corollary 7.3, oo is a carapoint for h. Furthermore, by Proposition 7.5
h(oo) = lim h(iyx) =a € R\ {0}.
Y—00

Conversely, suppose that oo is a carapoint for h and h(co) € R\ {0}. By Proposi-
tion 7.2

o yImh(iyx)
liminf =——2252
y—oo |h(iyx) + if?

while by Proposition 7.5
lim |h(iyx) + i]* = h(c0)* + 1 € (1, 00).
Y—00

On combining these two limits we find that

lim inf y Im A(iyx) < oo,

Y—0o0

and so, by Theorem 6.2, h has a representation of type 2. Since h(co) # 0 it is clear that
h does not have a representation of type 1. Thus (2) holds.
A trivial modification of the above argument proves that (1) is also true.

(4) Let h be of type 4. Then h has no type 3 representation, and so, by Theorem 6.1,
there exists § > 0 and a sequence (s,,) of positive numbers tending to oo such that

1
. Imh(ispx) > 6 > 0.

Let y, = 1/s,; then —1/(is,) = iy,, and we have
Yo Im B (iynx) > 6 foralln > 1. (8.1)

Since |h®(z) +i| > Im h*(2) for all z, we have

L Im hb(z) L 1
lim inf - - < lim inf -
z—0  |h’(2) + i|? min; Im z; z—0 Imh°(z) min; Im z;
< liminf —
n—=oo gy Im AP (iy, x)
<1/6.

Hence (0,0) is a carapoint of h’, and so oo is a carapoint of h.
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Since y, — 0 it follows from the inequality (8.1) that Im h”(iy,x) — oo, hence that
Rh°(0) = oo, and therefore that h(co) = oo.

Conversely, suppose that co is a carapoint of h and that h(co) = co. We shall show
that

o1 .
Sl;rgo B Im h(isx) # 0, (8.2)
and it will follow from Theorem 6.1 that h does not have a representation of type 3, that
is, h is of type 4.

Let ¢ € S,, correspond to h and let r € (0, 1) correspond to is € II. Then

L—r 1—p(rx)?
L+r  [L—p(rx)?
_ e (1—r)?
1—7r2  [1—p(rx)P

1
B Imh(isx) =

(8.3)

By hypothesis, x is a carapoint for ¢ and ¢(x) = 1. By definition of carapoint,

1— 2
liminfM =a<oo foralls>D0.
=x o 1—|l2]l%

The n-variable Julia—Carathéodory Lemma (see [13,1]) now tells us that a > 0 and

1=l o L= le(rP
1-r2 - 1—r2

for all r € (0,1). (8.4)
On combining equations (8.3) and (8.4) we obtain

1
—Imh(isx) > — >0 forall s > 0.
s

1
a
Thus the relation (8.2) is true, and so, by Theorem 6.1, h is of type 4.

Statement (3) now follows easily. The function h € £,, is of type 3 if and only if it is
not of types 1, 2 or 4, hence if and only if it is not the case that oo is a carapoint for h
and h(oo) € RU {oo}, hence if and only if oo is not a carapoint of h. O

We now show that there are functions in the Pick class P5 of all four types. We return
to Example 5.6 and show that the functions in Py which we presented there are indeed
of the stated types.

Example 8.2. (1) The function
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where Y = % and v = 1//2, is obviously of type 1. Let us nevertheless check that oo is a
carapoint of h and h(co) = 0, in accordance with Theorem 1.11. We have h(iy, iy) = 3i/y
and hence

lim inf y Im h(iy, iy) = L.
im inf y Im (iy,iy) = 3
Thus oo is a carapoint for h by Proposition 7.2. Moreover h(iy,iy) — 0 as y — oo, and

therefore h(co) = 0.

(2) It is immediate that the function 1+ h, with h as in (1), is of type 2, and that co is
a carapoint of 1 4+ h with value 1.

(3) We have seen that the function

1 z'zg(l—l—z%)) _
— |z —zm+ —— | ifzz#£ -1
W) = Tt arm ( 1~ 22 s 122 7

%(21 + 22) if 2129 = —1

(8.5)

has a representation of type 3. To show that h is indeed of type 3 we must prove that
oo is not a carapoint of h.
For all y > 0 we have h(iy,iy) = i. Hence

T h(iu. i
lim inf LERPOR ) e
y—oo |h(iy,iy) + 4| y—oo

By Proposition 7.2, oo is not a carapoint for h. Thus & is of type 3.

(4) The function

1 1
e
21 + 29 21 22

is clearly in Ps. We gave a type 4 representation of h in Example 5.6. We claim that oo
is a carapoint of h. We have h(iy,iy) = 3iy, and thus

o 1,2
limint YO0 ) e YT

Voo Th(iyiy) +7 v [Tiy + P

Hence oo is a carapoint for h. Furthermore h(iy,iy) = %@y — o0 as y — oo, and so
h(oo) = oo. Thus h is of type 4.

Another example of a function of type 4 is h(z) = \/z122.
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9. Rates of growth in the Loewner class

The Nevanlinna representation formulae give rise to growth estimates for functions in
the n-variable Loewner class. It turns out that growth is mild, both at infinity and close
to the real axis. Even though the type of a function is determined by its growth on the
single ray {iyx : y > 0}, in turn the growth of the function on the entire polyhalf-plane
is constrained by its type.

Consider first the one-variable case. If h is the Cauchy transform of a finite positive
measure g then

Ih(2) S/ dp(t) </du(t) _C

t—2 =) Imz Imz

for some C' > 0 and for all z € II. For a general function h in the Pick class, by
Nevanlinna’s representation (Theorem 1.2) there exist a € R, b > 0 and a finite positive
measure g on R such that, for all z € II,

1+1¢
h(z):a+bz+/ t+ -

1 2
:a+bz+/ t+z + z du(t)

and therefore

1+ |2]?
< R
A1 < ol + 0]+ (Fl 2 + 1) iR
1 2
SC(1H2+ +V>
Imz

for some C' > 0.
Similar estimates hold for the Loewner class.

Proposition 9.1. For any function h € L,, there exists a non-negative number C such
that, for all z € 11",

|n(z)] < C <1 + [2][1 + 1Jr;'“’”l) . (9.1)

min; Im z;

For any function h € L, of type 2 there exists a non-negative number C such that,
for all z € 11",

|h(2)| < C <1 + ;> . (9.2)

min; Im z;
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For any function h € L,, of type 1 there exists a non-negative number C such that,
for all z e 11",

C

h < " 9.3
L (0.3)

Proof. Let h € £,,. Let N, M, A, P, a and v be as in Theorem 1.9, so that

for all z € IT", where M (z) is the matricial resolvent given by equation (3.1). By Propo-
sition 3.1 we have, for all z € II",

IM(2)] < (14 V10]|z]) (l N m)

min; Im z;

1+ [l + N2

<14++v10|z|1 + B -
min; Im z;

for a suitable choice of B > 0. Hence
h(2)] < lal + [ M (2)][]]v]1?

1+ ||zl + ||2]1?
<la| + (1+ V10|21 +B.1””1> l|lv|?.
min; Im z;

Since
1+ 2l + 1217 < 31+ lz1]?),

we have

1422
Ihz)] sc(1+||z||1+¢)

min; Im z;

for some choice of C' > 0 and for all z € II". Thus the estimate (9.1) holds.
Similarly, the estimates (9.2) and (9.3) follow easily from the simple resolvent estimate
(2.1). O

10. Structured resolvent identities

To conclude the paper we point out that there are structured analogs of the classical
resolvent identity

(A=2)" —(A-w) " =(-w)(A-2) " (Ad-w)™

for any z, w in the resolvent set of an operator A.
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Proposition 10.1. Let A be a densely defined self-adjoint operator on a Hilbert space H
and let'Y be a positive decomposition of H. For all z,w € II"

(A—zy) ' —(A—wy) ' = (A—2y) 2z —w)y(A —wy) L (10.1)
If M (2) is the structured resolvent of type 3 corresponding to A and 'Y then
M(2) — M(w) |[D(A) = (1 —iA)(A - 2y) (z —w)y (A —wy) (1 +iA4). (10.2)
Proof. The first of these identities is immediate. For the second, by equation (2.8),
M(2) = M(w) [D(A) = (1 — i) (A= 2v) "' — (A — wy) ) (1 +1A),
and the identity (10.2) follows from equation (10.1). O

Proposition 10.2. Let H be the orthogonal direct sum of Hilbert spaces N'y M, let A be a
densely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal
decomposition of H. For every z,w € 11", as operators on N' & D(A),

me) - = |l (16 4] - |0 5])_1<z—w>P

x <[é 2] - “% ?}1”P>l{é 1+?u4}' (10.3)

Proof. Let

i 0
D_h1+MyN@mMﬁH.

By equations (3.11) and (3.12) we have
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The term in braces in the last expression reduces to (z — w)p, and the identity (10.3)
follows. O

Corollary 10.3. With the assumptions of Proposition 10.2, there exists an analytic func-
tion F : 11" — L(H) such that, for all z,w € 11",

M(z) — M(w) = F(2)"(z — w)pF(w). (10.4)

The statement follows from Proposition 10.2 just as Proposition 3.5 follows from
Proposition 3.4. If F' is defined by equation (3.21) then F(z) is a bounded operator
on H, F is analytic on II"™ and Proposition 10.2 states that equation (10.4) holds on
N @ D(A). Tt follows by continuity that equation (10.4) holds on H.
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