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1 Motivation

A non-commutative polynomial is an element of the algebra over a free monoid; an example is
p(x,y) = 2x% 4+ 3xy —4yx + 5x%y + 6xyx. €))

Non-commutative function theory is the study of functions of non-commuting variables, which may be more general
than non-commutative polynomials. It is based on the observation that matrices are natural objects on which to
evaluate an expression like (1).

1.1 LMI’s

A linear matrix inequality (LMI) is an inequality of the form

M
Ao+ Y xi4; = 0. )
i=1
The A; are given self-adjoint n-by-n matrices, and the object is to find x € R such that (2) is satisfied (or to show
that it is never satisfied). LMI’s are very important in control theory, and there are efficient algorithms for finding
solutions. See for example the book [9].
Often, the stability of a system is equivalent to whether a certain matrix valued function F(x) is positive semi-
definite; but the function F may be non-linear. A big question is when the inequality

F(x) >0

can be reduced to an LMI. This has been studied, for example, in [15, 16, 18, 19]. Let us consider a simple example,
the Riccati matrix inequality:
AX + XA* —XBB*X +C*C > 0. 3)

All the matrices in (3) are real, and A, B, C are known. The self-adjoint matrix X is unknown. The quadratic
inequality (3) can be transformed into the following LMI:

3k 3k
AX—{—Xzilk +C*C XB -0 @
B*X 1
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Suppose each matrix A, B, C, X is 3-by-3. Then, in terms of the matrix entries of X, (4) is an LMI in 6 variables.
If one uses Sylvester’s criterion to determine positive definiteness, one gets that (4) is equivalent to the positivity
of 6 polynomials, of degrees 1 through 6, in these 6 variables. This could then become a question in real algebraic
geometry.

However, this approach has two obvious flaws: it loses the matrix structure, and the complexity increases rapidly
with the dimension. Can one study inequalities like (4) in a dimension independent way?

1.2 Non-commutative sums of squares

Hilbert’s seventeenth problem asked whether a non-negative polynomial in real variables could be written as a sum
of squares of rational functions (Hilbert knew that a sum of squares of polynomials did not in general suffice).
Although the answer was proved to be yes by E. Artin in 1927, such problems are still an active area of research in
real algebraic geometry today, and operator theory and functional analysis have played a rdle in this field [30, 31].

Let M, denote the n-by-n matrices. J.W. Helton asked whether a non-commutative polynomial p in the 2d
variables x1,...,xg,x7,..., x; that is formally self-adjoint, and has the property that

p(xX1,....xg,x{,...,x3) =0 Vn Vxi,...,xqg €M,

must have a representation
) =Y qi(x1.....xa)qj (x1..... x0)*
J

as a (finite) sum of squares, where each ¢; is a non-commutative polynomial in d variables. He and S. McCullough
proved [12, 20] that the answer is yes.

This illustrates an important theme: if something is true at all matrix levels (a strong assumption), it is true for
obvious algebraic reasons (a strong conclusion), and the proof is often easier than in the scalar case.

1.3 Implicit Function Theorem

Consider the matrix equation
X3 4+2X2Y +3YX +4X +5Y +6 = 0. ®)

If X is similar to a diagonal matrix, it is obvious that one can find solutions Y to (5) that commute with it. What is
perhaps surprising is that generically, this is all that happens:

Proposition 1.6. For a generic choice of X € M, the only Y ’s that satisfy (5) commute with X .

To see why this is true (and what we mean by generic) let p(X,Y) = X3 +2X2Y +3YX +4X +5Y + 6, and
consider the partial derivative of p w.r.t. Y in the direction H. This is

d 1
—p(X,Y)[H] = lim = [p(X,Y +tH) — p(X,Y)] =2X?>H + 3HX + 5H.
Y t—0t

An implicit function theorem would say that we can write Y locally as a function of X (and therefore as a matrix that

d
commutes with X)) provided — p(X,Y) is full rank. Ontologically, the partial derivative is a linear map from M,

to M. It is therefore full rank if and only if it has no kernel. We can analyze this case using the following theorem
of Sylvester from 1884 [32]:

Theorem 1.7. Let A, B be in Ml,,. There is a non-zero matrix H satisfying the equation AH — HB = 0 if and only
if 0(A) N o (B) is non-empty.
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a
So ﬁp(X, Y) is full rank if and only if

oc(2X?>) No(=3X —51) = 0. (®)

Condition (8) in turn is generically true, so for such X Proposition 1.6 will follow from a non-commutative implicit
function, such as Theorem 3.7 below.

1.4 Functional Calculus

If T is a single operator on a Banach space E, the functional calculus is an extension of the evaluation map

w:Cl[z] — L(E)
p — p(T)

to a larger algebra than the polynomials. The Riesz-Dunford functional calculus gives the unique extension to
the algebra of all functions that are holomorphic on a neighborhood of o(T). If now T = (T',...,T%) is a
commuting d-tuple of operators, then the Taylor functional calculus extends the evaluation map from polynomials
(in d commuting variables) to functions holomorphic on a neighborhood of the Taylor spectrum of T [33, 34].

What about the case that T is a d -tuple of non-commuting operators on X ? Two distinct questions arise.

(i) What should play the réle of holomorphic functions in the non-commutative setting?

(ii) How can they be applied to elements of £(E)%?

The answers to both questions have their roots in work of Taylor shortly after he completed his work on
commuting operators [35, 36]. The answer to the first question is nc-functions, which we shall discuss in Section 2,
and is the subject of the recent book [21] by D. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. The second question is
discussed in Section 4.

1.5 Other motivations

There has been an upwelling of interest in non-commutative function theory recently. In addition to the motivations
above, let us mention the work of Voiculescu [37], in the context of free probability; Popescu [26-29], in the context
of extending classical function theory to d-tuples of bounded operators; Ball, Groenewald and Malakorn [8], in the
context of extending realization formulas from functions of commuting operators to functions of non-commuting
operators; Alpay and Kalyuzhnyi-Verbovetzkii [5] in the context of realization formulas for rational functions that are
J -unitary on the boundary of the domain; and Helton, Klep and McCullough [13, 14] and Helton and McCullough
[18] in the context of developing a descriptive theory of the domains on which LMI and semi-definite programming
apply; Muhly and Solel [23], in the context of tensorial function theory; Cimpric, Helton, McCullough and Nelson
[10] in the context of non-commutative real Nullstellensitze; the second author and Timoney [22] and of Helton,
Klep, McCullough and Slinglend, in [17] on non commutative automorphisms; and the work of Pascoe and Tully-
Doyle [25] on non-commutative operator monotonicity.

The book [21] by D. Kaliuzhnyi-Verbovetskyi and V. Vinnikov is a much more comprehensive treatment of the
subject than we can give here, and also contains extensive historical references.

2 NC-functions

We want to evaluate functions on d-tuples of matrices, where all the matrices in a given d-tuple are the same
dimension, but we want to allow this dimension to vary. So our universe becomes

d d
Ml = use M4,
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We shall call a function f defined on a subset of M{?] graded if, whenever x € M¢, then f(x) € M,,. If x € M?
and y € Mf;z, we shall let x @ y denote the d-tuple in M, 4,

Definition 2.1. An nc-function f on a set @ < MY is a graded function that respects direct sums and joint
similiarities, i.e.

fx®y) = fx)@ f(y)
F7xs) = fs7 I xts s xYs) = 5T f(x)s,

where the equations are only required to hold when the arguments on both sides are in 2.

Notice that every non-commutative polynomial is an nc-function on M1 To get utility from the definition, one
needs 2 to have some structure.

Definition 2.2. A set Q@ € M9 is an nc-set if
1) Ifx,yeQthenx @y € Q.
(i) Foreveryn e N, Q N Mg is open in Mg.
(iii) Ifx e 2N M,‘f and u is an n-by-n unitary, then u*xu € Q.

The algebraic properties of being nc on an nc-set have analytic consequences. For example, J.W. Helton, 1. Klep
and S. McCullough in [14] proved that continuity implies analyticity (continuity can actually be weakened to local
boundedness).

Theorem 2.3. Letr Q2 be an nc-set, let f be an nc-function on 2, and assume f is locally bounded on 2 N Mfi for
every n. Then f is an analytic function of the entries of the matrices at each level n.

Lemma 2.4 (Lemma 2.6 in [14]). Let 2 be an nc-domain in M[d], and let f be an nc-function on Q. Fixn > 1
andv € M. If x,y € QN MY and

Yy yv—vx d
|: i|eQﬂM2n,

0 X
then
yyv—uvx| _ [ ) fO)v—vf(x)
e =1 o).
Proof. Let
_|iden W

ST 0 iden

so that

Since f is nc,

f([ﬁ a ”x} = ST e V)

=57 (f() @ f(x)s

id(cn —v f(y) 0 id@n v
0 iden 0 f(x) || 0 iden

F) fv—vf(x) 0
0 J(x) '
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Proof of Theorem 2.3. First, we show that local boundedness implies continuity. Fix x € 2 N Mﬂ and let ¢ > 0.
Choose r > 0 so that the ball

x 0 d
B ,r) CQNMS, .
(|:0xi| r) S 2n

If r1 is chosen with 0 < r1 < r then as B(x & x,r)~ is a compact subset of 2 N Mgn and f is assumed locally
bounded, there exists a constant C such that

ze B{g fjm = If@l <C. ©)

Choose § sufficiently small so that § < min{r;e/2C,r;/2} and B(x,§) € Q. That f is continuous at x follows
from the following claim.
y € B(x,8) = f(y) € B(f(x).e). (M

To prove the claim fix y € Mﬁ with ||y — x| < 8. Then ||y — x| < r1/2 and ||(C/e)(y — x)|| < r1/2. Hence by

the triangle inequality,
ye(y—x) x 0
[ - [ <rr.
0 X 0x

IIf([y (/o= ﬂ)” <c

Hence, by (6),

0

y ey —x)

But x, y, and
ut x, y, an |:0

i| are in €2, so by Lemma 2.4,
f([y (C/e)y — x)} _ [f(y) (C/e)(f(y) - f(X))]
0 x 0 f(x)

In particular, we see that ||(C/e)(f(y) — f(x))|| < C, or equivalently, f(y) € B(f(x),¢). This proves (7).
To see that f is holomorphic, fix x € 2 N Mﬁ Ifh e MZ is selected sufficiently small, then

X+ Ahh
[ 0 X}GQOM‘{H

for all sufficiently small A € C. But

x4 | [x +Ar (12)((x + Ak) — x)
0 x| 0 X '

Hence, Lemma 2.4 implies that

Ax+Ahh Fx+Ah) (1/A)(f(x + Ah) — f(x))
S ) = : . ®)
0 x 0 f(x)
As the left hand side of (8) is continuous at A = 0, it follows that the 1-2 entry of the right hand side of (8) must
converge. As h is arbitrary after scaling, this implies that f is holomorphic. O

3 z-holomorphic functions

The theory of holomorphic functions on infinite dimensional spaces depends heavily on the topologies chosen —
see e.g. [11]. For nc-functions too, the topology matters.

Definition 3.1. A topology t on MY is called admissible if it has a basis of bounded nc sets.
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Definition 3.2. Let t be an admissible topology. A T-holomorphic function is an nc function on a T open set that is
T locally bounded.

By Theorem 2.3, every t-holomorphic function on €2 is, at each level 1, an analytic function from & N MZ to M.

Example 3.3. The fine topology is the admissible topology generated by all nc-sets. Since this is the largest
admissible topology, for any admissible topology t, any t-holomorphic function is automatically fine holomorphic.
The class of nc functions considered in [14, 24] is the fine holomorphic functions.

J. Pascoe proved the following inverse function theorem in [24]. The equivalence of (i) and (iii) is due to Helton,
Klep and McCullough [14].

Theorem 3.4. Let @ € M) be an ne domain. Let ® be a fine holomorphic map on 2. Then the following are
equivalent:
(1) & is injective on Q2.
(i) D®(a) is non-singular for every a € Q.
(iii) The function ®~" exists and is a fine holomorphic map.

Example 3.5. Let Rt = {r e R|r > 0}. Forn € N,a € M?, and r € RT, we let Dy (a,r) € M? be the matrix
polydisc defined by
Dy(a,r)y={x¢€ Mfll | max |x; —a;i| <r}.
l<i=d

Ifa e Mjf, r € RT, we define D(a,r) € M9 by

o0
D@a,r)= | Dkn@®,r),
k=1

where a'® denotes the direct sum of k copies of a. Finally, ifa € M9, r € R, we define F(a,r) € M4 by

F(a,r)= U U u_l(D(a,r) ﬂMfln) u, 6)

m=1 ucly,

where Uy, denotes the set of m X m unitary matrices. It can be shown [4] that the sets F(a,r) are nc sets that form
the basis for a topology. We call this topology the fat topology.

There is an implicit function theorem for both the fine and fat topologies. The hypotheses require the derivative to
be full rank on a neighborhood of the point; the advantage of the fat topology is that if the derivative is full rank at
one point, it is automatically full rank on a neighborhood [4, Thm. 5.5].

Theorem 3.7. Let Q an nc domain. Let f = (f1...., fx)! be a vector of k fine holomorphic function on Q, for
some 1 <k <d — 1 (equivalently, a £(C, CX) valued fine holomorphic function). Suppose

VneN, VaeQnM?,

YheMA\ {0}, Df(@IO,...,0,h¢=k+T1  hd)] £0. )

Let W be the projection onto the first d — k coordinates of Zy N Q. Then there is an L(C,CKY-valued fine
holomorphic function g on W such that

ZynQ = {(y.gy) : y e W}
Moreover, if f is fat holomorphic, then g can also be taken to be fat holomorphic.
Example 3.8. The third example of an admissible topology is the free topology. A basic free open set in M4l s g

set of the form
Gs = {x e MM |I5(x)| < 1.
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where 8 is a J-by-J matrix with entries in P2. We define the free topology to be the topology on M1 which has
as a basis all the sets Gg, as J ranges over the positive integers, and the entries of § range over all polynomials in
P4 (Notice that Gs, N G, = Gs, @8, S0 these sets do form the basis of a topology). The free topology is a natural
topology when considering semi-algebraic sets.

Example 3.9. Another admissible topology is the Zariski free topology, which is generated by sets of the form

{xeGs: filx) #0Vi,

where { f; } are free holomorphic functions on Gsg.

There is no Goldilocks topology. The free topology has good polynomial approximation properties - not only is every
free holomorphic function pointwise approximable by free polynomials, there is an Oka-Weil theorem which says
that on sets of the form Gg, bounded free holomorphic functions are uniformly approximable on compact sets by
free polynomials [2]. In contrast, neither the fine nor fat topology admit even pointwise polynomial approximation.
Indeed, one cannot have an admissible topology for which there is both an implicit function theorem and pointwise
approximation by polynomials, as the following example shows (a formal statement is in [4]).

o= [ )
2= (70):

pP(X.Y.Z) = (2> +XZ+ZX+YZ 1. (11)

Example 3.10. Let xo € M3 be

and let zo € M? be

Define p by
If xo = (X,Y) and zo = Z are substituted in (11), we get p(xo,z0) = 0. Let
4= 01 ’ 10 00 ’ (12)
00 00 10

ip(a)[h] = hi1 4+ hia +ho1 h11 +hi2 + hoo

We can calculate

13)

It is immediate from (13) that %p(a) : M — M) is onto, and so has a right inverse. By [4, Thm 5.5], there is
a fat domain Q > a such that 3% p(A) is non-singular for all A € Q. So by the Implicit Function Theorem 3.7,
if W is the projection onto the first two coordinates of €2, then W is a fat domain containing xo and there is a fat
holomorphic function g defined on W such that g(xo) = zo. Since zg is not in the algebra generated by xg, we
cannot approximate g pointwise by free polynomials.

4 Free holomorphic functions

We shall let H°°(Gg) denote the bounded free holomorphic functions on the polynomial polyhedron Gg. Just as in
the commutative case [6, 7], there is a realization formula for these functions.

Theorem 4.1 ([2, Thm. 8.1]). Let § be an I-by-J matrix of free polynomials, and let f be an nc-function on Gg
that is bounded by 1. There exists an auxiliary Hilbert space L and an isometry

« B I J
|:C D:| CoL -Coh L
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so that for x € Gg N B(K)?,

f() = alx + (Ix ® BYEW) ® Ie)[Ix ® 1o — (Ix ® D)) ® I£)] (I ® C). 2

An immediate corollary is that if one truncates the Neumann series of [I Kk®I, —(UIx®D)S(x)® 1 /;)]_l one
gets a sequence of free polynomials that converges to f uniformly on G;g for every ¢ > 1.

The space KC that appears in (2) is finite dimensional, but the formula would make sense even it were not. Let us
fix an infinite dimensional separable Hilbert space #. Let us define Gg by

Gi = {x e LD 8|l < 1.
If one extends formula (2) to G, what sort of functions does one get?

Definition 4.3. Ler Q@ € L(H)9, and let F : 2 — L(H). We say that F is intertwining preserving (IP) if-
(1) Whenever x,y € Q and there exists some bounded linear operator T € L(H) such that Tx = yT, then
TF(x)=F()T.
(ii) Whenever (x;,) is a bounded sequence in 2, and there exists some invertible bounded linear operator s : H —
@DH such that
x1 0 ---
s 0 x| seq,

then
x1 0 - F(x1) O

F(S_l 0 X2 - S) — s—l 0 F(xz) s

Definition 4.4. Let F : B(H)d — B(H). We say F is sequentially strong operator continuous (SSOC) if, whenever
Xn — X in the strong operator topology on B(’H)d, then F(xp) tends to F(x) in the strong operator topology on
B(H).

Since multiplication is sequentially strong operator continuous, it follows that every free polynomial is SSOC, and
this property is also inherited by limits on sets that are closed w.r.t. direct sums. The following theorem from [3]
characterizes what functions arise in (2):

Theorem 4.5. Assume that Gg is connected and contains 0. Let F : Gg — L1(H) be sequentially strong operator
continuous. Then the following are equivalent:
(1) The function F is intertwining preserving.
(ii) For eacht > 1, the function F is uniformly approximable by free polynomials on Gfs.
(iii) There exists an auxiliary Hilbert space L and an isometry

o B| 1 J
|:C D] CorL' -CoL

so that for x € Gg,

F(x) = aly + (Ix @ B)(6(x) ® ]g)[lq.[ ®I,7 — (I ® D)(5(x) ® Ig)]_l(l’;-[ ® C). (6)

It could be the case that a free holomorphic function on G could have more than one extension to Gg. For example,
if §(x!, x?) = x1x2 — x2x! — 1, then G5 is empty, but Gg is not. The following theorem is from [3].

Theorem 4.7. Assume that Gg is connected and contains 0. Then every bounded free holomorphic function on Gg

has a unique extension to an IP SSOC function on Gg.
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What about applying free holomorphic functions to d-tuples of operators on a Banach space, £(X)? This would
allow the development of a non-commutative functional calculus. This is considered in [1]. The basic idea is to take
a reasonable cross-norm / defined on X ® K for every Hilbert space K. Let (T') = (7;;) be an /-by-J matrix of
elements of £(X). Let E;; : C7 — C’ be the matrix with 1 in the (i, j) entry and zero elsewhere. Then we get a
norm on (7T') by
1Tl = sup| Y T ®n (Eij ®idi)| ®)
i.Jj

where the ® without a subscript means the Hilbert space tensor product. We define
1) o == inf[|(T) 5.

Then provided ||6(T)|le < 1, we can evaluate f(7T), when f is in H°°(Gs), by a formula like (2) (or (6)). Since
tensor products need not be associative, we do all the Hilbert space tensor products first, and then tensor with the
L(X) operator. Here is one theorem from [1].

Theorem 4.9. Suppose §(0) = 0, and that T € L(X)? has

sup ||[6(rT)|le < 1.

o<r<l1

Then there exists a unique completely bounded homomorphism 7t : H°°(Gg) — L(X) that extends the evaluation
map on free polynomials p — p(T).
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