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ABSTRACT

We present SignalGP, a new genetic programming (GP) technique
designed to incorporate the event-driven programming paradigm
into computational evolution’s toolbox. Event-driven programming
is a software design philosophy that simplifies the development of
reactive programs by automatically triggering program modules
(event-handlers) in response to external events, such as signals
from the environment or messages from other programs. SignalGP
incorporates these concepts by extending existing tag-based refer-
encing techniques into an event-driven context. Both events and
functions are labeled with evolvable tags; when an event occurs,
the function with the closest matching tag is triggered. In this
work, we apply SignalGP in the context of linear GP. We demon-
strate the value of the event-driven paradigm using two distinct test
problems (an environment coordination problem and a distributed
leader election problem) by comparing SignalGP to variants that
are otherwise identical, but must actively use sensors to process
events or messages. In each of these problems, rapid interaction
with the environment or other agents is critical for maximizing
fitness. We also discuss ways in which SignalGP can be generalized
beyond our linear GP implementation.
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1 INTRODUCTION

Here, we introduce SignalGP, a new genetic programming (GP)
technique designed to provide evolution direct access to the event-
driven programming paradigm, allowing evolved programs to han-
dle signals from the environment or from other agents in a more
biologically inspired way than traditional GP approaches. In Sig-
nalGP, signals (e.g. from the environment or from other agents)
direct computation by triggering the execution of program mod-
ules (i.e. functions). SignalGP augments the tag-based referencing
techniques demonstrated by Spector et al. [29-31] to specify which
function is triggered by a signal, allowing the relationships between
signals and functions to evolve over time. The SignalGP implemen-
tation presented here is demonstrated in the context of linear GP,
wherein programs are represented as linear sequences of instruc-
tions; however, the ideas underpinning SignalGP are generalizable
across a variety of genetic programming representations.

Linear genetic programs generally follow an imperative pro-
gramming paradigm where computation is driven procedurally.
Execution often starts at the top of a program and proceeds in
sequence, instruction-by-instruction, jumping or branching as dic-
tated by executed instructions [3, 21]. In contrast to the imperative
programming paradigm, program execution in event-driven com-
puting is directed primarily by signals (i.e. events), easing the design
and development of programs that, much like biological organisms,
must react on-the-fly to signals in the environment or from other
agents. Is it possible to provide similarly useful abstractions to
evolution in genetic programming?

Different types of programs are more or less challenging to
evolve depending on how they are represented and interpreted. By
capturing the event-driven programming paradigm, SignalGP tar-
gets problem domains where agent-agent and agent-environment
interactions are crucial, such as in robotics or distributed systems.

In the following sections, we provide a broad overview of the
event-driven paradigm, discussing it in the context of an existing
event-driven software framework, cell signal transduction, and an
evolutionary computation system for evolving robot controllers.
Next, we discuss our implementation of SignalGP in detail. Then,
we use SignalGP to demonstrate the value of capturing event-driven
programming in GP with two test problems: an environment coor-
dination problem and a distributed leader election problem. Finally,
we conclude with planned extensions, including how SignalGP can
be generalized beyond our linear GP implementation to other forms
of GP.

2 THE EVENT-DRIVEN PARADIGM

The event-driven programming paradigm is a software design phi-
losophy where the central focus of development is the processing
of events [6, 8, 9]. Events often represent messages from other
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agents or processes, sensor readings, or user actions in the con-
text of interactive software applications. Events are processed by
callback functions (i.e. event-handlers) where the appropriate event-
handler is determined by an identifying characteristic associated
with the event, often the event’s name or type. In this way, events
can act as remote function calls, allowing external signals to direct
computation.

Software development environments that support the event-
driven paradigm often abstract away the logistics of monitoring
for events and triggering event-handlers, simplifying the code that
must be designed and implemented by the programmer and eas-
ing the development of reactive programs. Thus, the event-driven
paradigm is especially useful when developing software where com-
putation is most appropriately directed by external stimuli, which
is often the case in domains such as robotics, embedded systems,
distributed systems, and web applications.

For any event-driven system, we can address the following three
questions: What are events? How are event-handlers represented?
And, how does the system determine the most appropriate event-
handler to trigger in response to an event? Crosbie and Spafford [7]
have addressed why answering such questions can be challenging
in genetic programming; thus, it is useful to look to how existing
event-driven systems address them. While many systems that ex-
hibit event-driven characteristics exist, we restrict our attention
to three: the Robot Operating System (ROS) [25], the biological
process of signal transduction, and Byers et al.’s digital enzymes
robot controller [4, 5].

ROS is a popular robotics software development framework that
provides standardized communication protocols to independently
running programs referred to as nodes. While the ROS framework
provides a variety of tools and other conveniences to robotics soft-
ware developers, we focus on ROS’s publish-subscribe communi-
cation protocol, framing it under the event-driven paradigm. ROS
nodes can communicate by passing strictly typed messages over
named channels (topics). Nodes send messages by publishing them
over topics, and nodes receive messages from a particular topic by
subscribing to that topic. A node subscribes to a topic by registering
a callback function that takes the appropriate message type as an
argument. Anytime a message is sent over a topic, all callback func-
tions registered with the topic are triggered, allowing subscribed
nodes to react to published messages. Topics can have any number
of publishers and subscribers, all agnostic to one another [25]. In
ROS’s publish-subscribe system, events are represented as strictly
typed messages, event-handlers are callback functions that take
event information as input, and named channels (topics) determine
which event-handlers an event triggers.

The behavior of many natural systems can be interpreted as us-
ing the event-driven paradigm. In cell biology, signal transduction is
the process by which a cell transforms an extracellular signal into a
response, often in the form of cascading biochemical reactions that
alter the cell’s behavior. Cells respond to signaling molecules via re-
ceptors, which bind specifically to nearby signaling molecules and
initiate the cell’s response [1]. The process of cell signal transduc-
tion can be viewed as a form of event-driven computation: signaling
molecules are like events, receptors are event-handlers, and the
chemical and physical properties of signaling molecules determine
with which receptors they are able to bind.
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Evolutionary computation researchers have also made use of the
event-driven paradigm; for example, Byers et al. [4, 5] demonstrated
virtual robot controllers that operate using a digital model of signal
transduction, and like biological signal transduction, these con-
trollers follow an event-driven paradigm. Byers et al.’s virtual robot
controllers have digital stimuli receptors, which bind to nearby
“signaling molecules” represented as bit strings. Different bit strings
represent different signals in the environment (e.g. the presence
of nearby obstacles). Once a signaling molecule binds to a digi-
tal receptor, a digital enzyme (program) processes the signaling
molecule and influences the controller’s behavior. In a single con-
troller, there are many digital enzymes (not all of the same type)
processing signaling molecules in parallel, all vying to influence the
controller’s actions; in this way, virtual robot behavior emerges. As
in cell signal transduction, signaling molecules are events, digital
stimuli receptors and digital enzymes act as event-handlers, and
events are paired with handlers based on signal type and signal
location.

3 SIGNALGP

As with other tag-based systems, SignalGP agents (programs) are
defined by a set of functions (modules) where each function is re-
ferred to using a tag and contains a linear sequence of instructions.
To augment this framework, SignalGP also makes explicit the con-
cept of events where event-specific data is associated with a tag
that agents can use to specify how that event should be handled.
In this work, we arbitrarily chose to represent tags as fixed-length
bit strings. Agents may both generate internal events and be sub-
jected to events generated by the environment or by other agents.
Events trigger functions based on the similarity of their tags. When
an event triggers a function, the function is run with the event’s
associated data as input. SignalGP agents handle many events si-
multaneously by processing them in parallel. Figure 1 shows a
high-level overview of SignalGP.

3.1 Tag-based Referencing

Incorporating modules (e.g. functions, subroutines, macros, etc.)
into genetic programming has been extensively explored, and the
benefits of modules in GP have been well documented (e.g. [2, 15,
18, 19, 27, 28, 32]). The main purpose of SignalGP functions are
to act as event-handlers — computations triggered in response to
signals. However, they have the additional benefit of providing ex-
plicit architectural support for program modularity, bestowing the
boon of reusable code. As with any reusable code block in GP, the
question remains: how should the code be referenced? The answer
to this question can be reused to answer the following question:
how should we determine which event-handlers are triggered by
events?

Inspired by John Holland’s concept of a “tag” ([11-14]) as a mech-
anism for matching, binding, and aggregation, Spector et al. [29-31]
introduced and demonstrated the value of tag-based referencing
in the context of GP. In this context, a tag-based reference always
links to a tagged entity with its closest match. These tagged entities
include instructions and sequences of code (i.e. modules), providing
an evolvable mechanism for code referencing.
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Events have two components:

GECCO 18, July 15-19, 2018, Kyoto, Japan

Functions have two components

— ta B
1) a tag (bit string) -[—g]-\ 1) a tag (bit string)
[tag] e [instruction] N
2) data [datal Signal 0100 2) a linear sequence of instructions
o/ [instruction] “\o
~ =
Where do events come from? [/ 2/s/5/= 2\%\:\"
S’ g é’ § . ?‘L % % \) Broadcast 0111
Signals generated by other agents. Sf€ ;‘3 SignalGP 2\2\>
= Program =
Signals in the environment. P & 0011
(/Q/Io “g\)\
Self-generated signals. N VS
N9 N7 N
% I&‘/y ,\oo\‘.‘ >
28, : 0\'\?0
Environment 000 & V Q‘&Q
(% N

Figure 1: A high-level overview of SignalGP. SignalGP programs are defined by a set of functions. Events trigger functions with the closest
matching tag, allowing SignalGP agents to respond to signals. SignalGP agents handle many events simultaneously by processing them in

parallel.

SignalGP shifts these ideas into a more fully event-driven context.
In SignalGP, sets of instructions are modularized into functions that
are labeled with tags. Events are made explicit and trigger those
functions with whose tags have the closest match. The underlying
instruction set is crafted to easily trigger internal events, broadcast
external events, and to otherwise work in a tag-based context.
Finally, SignalGP can be configured to only match tags that are
relatively close (within a threshold) allowing agents to ignore events
entirely by avoiding the use of similar tags.

3.2 Virtual Hardware

As in many GP representations, linear GP programs are often inter-
preted in the context of virtual hardware, which typically comprises
memory — usually in the form of registers or stacks — and other
problem-specific virtual hardware elements, allowing programs to
achieve complex functionality [21-23]. SignalGP programs are in-
terpreted by virtual hardware consisting of the following four major
components: program memory, an event queue, a set of execution
threads, and shared memory.

Program memory stores the SignalGP program currently exe-
cuting on the virtual hardware.

The event queue manages recently received events waiting
to be dispatched and processed by functions. The event queue
dispatches events in the order they are received.

The SignalGP virtual hardware supports an arbitrary number of
execution threads that run concurrently. Each thread processes a
single instruction every time step. In the same way that Byers et
al’s parallel-executing digital enzymes [4] allow a robot controller
to process many external stimuli simultaneously, parallel execution
allows SignalGP agents to handle many events at once.

Each thread maintains a call stack that stores state information
about the thread’s active function calls. The current state for any
given thread resides at the top of the thread’s call stack. Call states
maintain local state information for the function call they represent:
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a function pointer, an instruction pointer, input memory, working
memory, and output memory. A function pointer indicates the
current function being run. An instruction pointer indicates the
current instruction within that function. Input, working, and output
memory serve as local memory.

Working memory is used for performing local operations (e.g. ad-
dition, subtraction, multiplication, etc.). Input memory is analogous
to function arguments (i.e. function input), and output memory is
analogous to function return memory (i.e. what is returned when a
function call concludes). By convention, instructions can both read
from and write to working memory, input memory is read-only, and
output memory is write-only. To use an analogy, working memory,
input memory, and output memory are to SignalGP functions as
hidden nodes, input nodes, and output nodes are to conventional
artificial neural networks.

Shared memory serves as global memory. Shared memory is
accessible (i.e. readable and writable) by all threads, allowing them
to store and share information.

3.3 Program Evaluation

SignalGP programs are sets of functions where each function as-
sociates an evolvable tag with a linear sequence of instructions. In
our implementation of SignalGP, instructions are argument-based,
and in addition to evolvable arguments, each instruction has an
evolvable tag. Arguments modify the effect of the instruction, often
specifying memory locations or fixed values. Instruction tags may
also modify the effect of an instruction. For example, instructions
that refer to functions do so using tag-based referencing. Further,
instructions use their tag when generating events, either to be
broadcast to other SignalGP agents or to be handled internally for
their own use.

Program evaluation can be initialized either actively or passively.
During active initialization, the program will begin evaluation by
automatically calling a designated main function on a new thread.
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In passive initialization, computation takes place only in response
to external events. In the work presented here, we use only active
initialization and automatically reset the main thread if it would
have otherwise terminated.

While executing, the SignalGP virtual hardware advances on
each time step in three phases: (1) All events in the event queue are
dispatched, with each triggering a function via tag-based referenc-
ing. (2) Each thread processes a single instruction. (3) Any threads
done processing are removed. Phases occur serially and in order.

Executed instructions may call functions, manipulate local and
shared memory, generate events, perform basic computations, con-
trol execution flow, et cetera (see supplementary material for details
on all instructions used in this work). Instructions in SignalGP are
guaranteed to always be syntactically valid, but may be functionally
useless. Every instruction has three associated arguments and an
associated tag. Not all instructions make use of their three argu-
ments or their tag; unused arguments and tags are not under direct
selection and may drift until a mutation to the operand reveals
them.

Instruction-triggered Function Calls

Functions in SignalGP may be triggered by either instruction calls
or events. When a Call is executed, the function in program mem-
ory with the most similar tag to the Call instruction’s tag (above
a similarity threshold) is triggered; in this work, ties are broken
by a random draw (though any tie-breaking procedure could be
used). Tag similarity is calculated as the proportion of matching
bits between two bit strings (simple matching coefficient).

When a function is triggered by a Call instruction, a new call
state is created and pushed onto that thread’s call stack. The work-
ing memory of the caller state is copied as the input memory of the
new call state (i.e. the arguments to the called function are the full
contents of the previous working memory). The working memory
and the output memory of the new call state are initially empty. To
prevent unbounded recursion, we place limits on call stack depth;
if a function call would cause the call stack to exceed its depth limit,
the call instead behaves like a no-operation.

Instruction-triggered functions may return by either executing a
Return instruction or by reaching the end of the function’s instruc-
tion sequence. When an instruction-triggered function returns, its
call state is popped from its call stack, and anything stored in the
output memory of the returning call state is copied to the work-
ing memory of the caller state (otherwise leaving the caller state’s
working memory unchanged). In this way, instruction-triggered
function calls can be thought of as operations over the caller’s
working memory.

Event-triggered Function Calls
Events in SignalGP are analogous to external function calls. When
an event is dispatched from the event queue, the virtual hardware
chooses the function with the highest tag similarity score (above
a similarity threshold) to handle the event; in this work, ties are
broken by a random draw (though any tie-breaking procedure could
be used).

Once a function is selected to handle an event, it is called on a
newly-created execution thread, initializing the thread’s call stack
with a new call state. The input memory of the new call state
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is populated with the event’s data. In this way, events can pass
information to the function that handles them. When the function
has been processed (i.e. all of the active calls on the thread’s call
stack have returned), the thread is removed. To prevent unbounded
parallelism, we place a limit on the allowed number of concurrently
executing threads; if the creation of a new thread would cause the
number of threads to exceed this limit, thread creation is prevented.

3.4 Evolution

Evolution in SignalGP proceeds similarly to that of typical lin-
ear GP systems. Because function referencing is done via tags,
changes can be made to program architecture (e.g. inserting new
or removing existing functions) while still guaranteeing syntac-
tic correctness. Thus, modular program architectures can evolve
dynamically through whole-function duplication and deletion op-
erators or through function-level crossover techniques.

In the studies presented in this paper, we evolve SignalGP pro-
grams directly (as opposed to using indirect program encodings),
which requires Signal GP-aware mutation operators. We propagated
SignalGP programs asexually and applied mutations to offspring.
We used whole-function duplication and deletion operators (ap-
plied at a per-function rate of 0.05) to allow evolution to tune the
number or functions in programs. We mutated tags for instructions
and functions at a per-bit mutation rate (0.05). We applied instruc-
tion and argument substitutions at a per-instruction rate (0.005).
Instruction sequences could be inserted or deleted via slip-mutation
operators [20], which facilitate the duplication or deletion of se-
quences of instructions; we applied slip-mutations at a per-function
rate (0.05).

SignalGP is under active development as part of the Empirical
library (https://github.com/devosoft/Empirical).

4 TEST PROBLEMS

We demonstrate the value of incorporating the event-driven pro-
gramming paradigm in GP using two distinct test problems: a chang-
ing environment problem and a distributed leader-election problem.
For both problems, we compared SignalGP performance to variants
that are otherwise identical, except for how they handle sensor
information. For example, our primary variant GP must actively
monitor sensors to process external signals (using the imperative
paradigm). For both test problems, a program’s capacity to react
efficiently to external events is crucial; thus, we hypothesized that
SignalGP should perform better than our imperative alternatives.

4.1 Changing Environment Problem

This first problem requires agents to coordinate their behavior
with a randomly changing environment. The environment can
be in one of K possible states; to maximize fitness, agents must
match their internal state to the current state of their environment.
The environment is initialized to a random state and has a 12.5%
chance of changing to a random state at every subsequent time
step. Successful agents must adjust their internal state whenever
an environmental change occurs.

We evolved agents to solve this problem at K equal to 2, 4, 8,
and 16 environmental states. The problem scales in difficulty as the
number of possible states that must be monitored increases. Agents
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adjust their internal state by executing one of K state-altering
instructions. For each possible environmental state, there is an as-
sociated SetState instruction (i.e. for K = 4, there are four instruc-
tions: SetState®, SetStatel, SetState2, and SetState3). Being
required to execute a distinct instruction for each environment
represents performing a behavior unique to that environment.

We compared the performance of programs with three differ-
ent mechanisms to sense the environment: (1) an event-driven
treatment where environmental changes produce signals that have
environment-specific tags and can trigger functions; (2) an impera-
tive control treatment where programs needed to actively poll the
environment to determine its current state; and (3) a combined treat-
ment where agents are capable of using either option. Note that in
the imperative and combined treatments we added new instructions
to test each environmental state (i.e. for K = 4, there are four in-
structions: SenseEnvState®, SenseEnvStatel, SenseEnvState?2,
and SenseEnvState3). In preliminary experiments we had pro-
vided agents with a single instruction that returned the current
environmental state, but this mechanism proved more challeng-
ing for them to use effectively when there were too many states
(the environment ID returned by the single instruction needed
to be thresholded into a true/false value, whereas the individual
environment state tests directly returned a true/false value).

Across all treatments, we added a Fork instruction to the avail-
able instruction set. The Fork instruction generates an internally-
handled signal when executed, which provides an independent
mechanism to spawn parallel-executing threads. The Fork instruc-
tion ensures that programs in all treatments had trivial access to
parallelism. Because the SenseEnvState instructions in both the
imperative and combined treatments bloated the instruction set
relative to the event-driven treatment, we also added an equivalent
number of no-operation instructions in the event-driven treatment.

4.1.1 Hypotheses. For low values of K, we expected evolved
programs from all treatments to perform similarly. However, as
continuously polling the environment is cumbersome at higher
values of K, we expected fully event-driven SignalGP programs to
drastically outperform programs evolved in the imperative treat-
ment; further, we expected successful programs in the combined
treatment to favor the event-driven strategy.

4.1.2  Experimental Parameters. We ran 100 replicates of each
condition at K = 2, 4, 8, and 16. In all replicates and across all
treatments, we evolved populations of 1000 agents for 10,000 gen-
erations, starting from a simple ancestor program consisting of a
single function with eight no-operation instructions. Each genera-
tion, we evaluated all agents in the population individually three
times (three trials) where each trial comprised 256 time steps. For
a single trial, an agent’s fitness was equal to the number of time
steps in which its internal state matched the environment state
during evaluation. After three trials, an agent’s fitness was equal
to the minimum fitness value obtained across its three trials. We
used a combination of elite and tournament (size four) selection to
select which individuals reproduced asexually each generation. We
applied mutations to offspring as described in Section 3.4. Agents
were limited to a maximum of 32 parallel executing threads and a
maximum of 32 functions. Functions were limited to a maximum
length of 128 instructions. Agents were limited to 128 call states
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per call stack. The minimum tag reference threshold was 50% (i.e.
tags must have at least 50% similarity to successfully reference). All
tags were represented as length 16 bit strings.

4.1.3  Statistical Methods. For every run, we extracted the pro-
gram with the highest fitness after 10,000 generations of evolution.
Because the sequence of environmental states experienced by an
agent during evaluation are highly variant, we tested each extracted
program in 100 trials, using a program’s average performance as
its fitness in our analyses. For each environment size, we compared
the performances of evolved programs across treatments. To deter-
mine if any of the treatments were significant (p < 0.05) within a
set, we performed a Kruskal-Wallis test. For an environment size
in which the Kruskal-Wallis test was significant, we performed a
post-hoc Dunn’s test, applying a Bonferroni correction for multiple
comparisons. All statistical analyses were conducted in R 3.3.2 [26],
and each Dunn’s test was done using the FSA package [24].

4.2 Distributed Leader Election Problem

In the distributed leader election problem, a network of agents must
unanimously designate a single agent as leader. Agents are each
given a unique identifier (UID). Initially, agents are only aware of
their own UID and must communicate to resolve the UIDs of other
agents. During an election, each agent may vote, and an election
is successful if all votes converge to a single, consensus UID. This
problem has been used to study the evolution of cooperation in
digital systems [16, 17] and as a benchmark problem to compare the
performance of different GP representations in evolving distributed
algorithms [33]. A common strategy for successfully electing a
leader begins with all agents voting for themselves. Then, agents
continuously broadcast their vote, changing it only when they
receive a message containing a UID greater than their current vote.
This process results in the largest UID propagating through the
distributed system as the consensus leader. Alternatively, a similar
strategy works for electing the agent with the smallest UID.

We evolved populations of homogeneous distributed systems of
SignalGP agents where networks were configured as 5x5 toroidal
grids, and agents could only interact with their four neighbors.
When evaluating a network, we initialized each agent in the net-
work with a random UID (a number between 1 and 1,000,000). We
evaluated distributed systems for 256 time steps. During an evalua-
tion, agents retrieve their UID by executing a GetUID instruction.
Agents vote with a SetOpinion instruction, which sets their opin-
ion (vote) to a value stored in memory, and agents may retrieve
their current vote by executing a GetOpinion instruction. Agents
communicate by exchanging messages, either by sending a message
to a single neighbor or by broadcasting a message to all neighboring
agents.

After an evaluation, we assigned fitness, F according to Equation
1 where V gives the number of valid votes at the end of evaluation,
Cmax gives the maximum consensus size at the end of evaluation,
Tconsensus gives the total number of time steps at full consensus,
and S gives the size of the distributed system.

F =V + Cmax + (Tconsensus X S) (1)

Distributed systems maximize their fitness by achieving con-
sensus as quickly as possible and maintaining consensus for the



GECCO ’18, July 15-19, 2018, Kyoto, Japan

duration of their evaluation. Our fitness function rewards partial
solutions by taking into account valid votes (i.e. votes that corre-
spond to a UID present in the network) and partial consensus at
the end of an evaluation.

We evolved distributed systems in three treatments: one with
event-driven messaging and two different imperative messaging
treatments. In the event-driven treatment, messages were events
that, when received, could trigger a function. In both imperative
treatments, messages did not automatically trigger functions; in-
stead, messages were sent to an inbox and needed to be retrieved via
a RetrieveMessage instruction. The difference between the two
imperative treatments was in how messages were handled once
retrieved. In the fork-on-retrieve imperative treatment, messages
act like an internally-generated event when retrieved from an in-
box, triggering the function with the closest (above a threshold)
matching tag on a new thread. In the copy-on-retrieve impera-
tive treatment, messages are not treated as internal events when
retrieved; instead, message contents are loaded into the input mem-
ory of the thread that retrieved the message. In the copy-on-retrieve
imperative treatment, we augmented the available instruction set
with the Fork instruction, allowing programs to trivially spawn
parallel-executing threads.

4.2.1 Hypothesis. Event-driven SignalGP agents do not need
to continuously poll a message inbox to receive messages from
neighboring agents, allowing event-driven programs to more effi-
ciently coordinate. Thus, we expected distributed systems evolved
in the event-driven treatment to outperform those evolved in the
two imperative treatments.

4.2.2  Experimental Parameters. We ran 100 replicates of each
treatment. In all replicates of all treatments, we evolved populations
of 400 homogeneous distributed systems for 50,000 generations. We
initialized populations with a simple ancestor program consisting of
a single function with eight no-operation instructions. Selection and
reproduction were identical to that of the changing environment
problem. Agents were limited to a maximum of 8 parallel executing
threads. Agents were limited to a maximum of 4 functions, and
function length was limited to a maximum 32 instructions. Agents
were limited to 128 call states per call stack. The minimum tag
reference threshold was 50%. All tags were represented as length 16
bit strings. The maximum inbox capacity was 8. If a message was
received and the inbox was full, the oldest message in the inbox
was deleted to make room for the new message.

4.2.3 Statistical Methods. For every replicate across all treat-
ments, we extracted the program that produces the most fit dis-
tributed system after 50,000 generations of evolution. As in the
changing environment problem, we compared treatments using a
Kruskal-Wallis test, and if significant (p < 0.05), we performed a
post-hoc Dunn’s test, applying a Bonferroni correction for multiple
comparisons.

5 RESULTS AND DISCUSSION
5.1 Changing Environment Problem

Event-driven strategies outperform imperative strategies.
Figure 2 shows results for all environment sizes (K = 2, 4, 8, and
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16). Programs evolved in treatments with fully event-driven Sig-
nalGP significantly outperformed those evolved in the impera-
tive treatment across all environments: two-state (combined: p =
1.204471e-47; event-driven: p = 1.204471e-47), four-state (com-
bined: p = 1.204512e-47; event-driven: p = 1.204512e-47), eight-
state (combined: p = 1.283914e-46; event-driven: p = 2.170773e-
45), and sixteen-state (combined: p = 1.906603e-34; event-driven:
p = 2.318351e-33). Across all environments, there was no significant
difference in final program performance between the event-driven
and combined treatment. See supplementary material for full details
on statistical test results.

Further, only treatments with fully event-driven SignalGP pro-
duced programs capable of achieving a perfect fitness of 256. This
result is not surprising: only programs that employ an entirely
event-driven strategy can achieve a perfect score in multi-state envi-
ronments. This is because imperative strategies must continuously
poll the environment for changes, which decreases the efficiency of
their response to an environmental change. This strategy becomes
increasingly cumbersome and inefficient as the complexity of the
environment increases. In contrast, event-driven responses are trig-
gered automatically via the SignalGP virtual hardware, facilitating
immediate reactions to environmental changes. This allows event-
driven strategies to more effectively scale with environment size
than imperative strategies.

Evolution favors event-driven strategies.

In the combined treatment, evolution had access to both the event-
driven (signal-based) strategy and the imperative (sensor-polling)
strategy. As shown in Figure 2, performance in the combined treat-
ment did not significantly differ from the event-driven treatment,
but significantly exceeded performance in the imperative treatment.
However, this result alone does not reveal what strategies were
favored in the combined treatment.

To tease this apart, we re-evaluated programs evolved under
the combined treatment in two distinct conditions: one in which
we deactivated sensors and one in which we deactivated external
events. In the deactivated sensors condition, SenseEnvState in-
structions behaved as no-operations, which eliminated the viability
of a sensor-based polling strategy. Likewise, the deactivated events
re-evaluation condition eliminated the viability of event-driven
strategies. Any loss of functionality by programs in these new envi-
ronments will tease apart the strategies that those programs must
have employed.

Figure 3 shows the results of our re-evaluations. Across all envi-
ronment sizes, there was no significant difference between program
performance in their original combined condition and the deacti-
vated sensors conditions. In contrast, program performances were
significantly worse in the deactivated events condition than in
the combined condition (two-state: p = 1.204228e-47; four-state:
p = 1.204106e-47; eight—state: p = 6.743368e-49 ; sixteen-state:
p = 3.695207e-35). These data indicate that programs evolved in
the combined condition primarily rely on event-driven strategies
for the changing environment problem.
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Figure 2: Changing environment problem results across all environments: A) two-state environment, B) four-state environment, C) eight-
state environment, and D) sixteen-state environment. The box plots indicate the fitnesses (each an average over 100 trials) of best performing
programs from each replicate.
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Figure 3: Re-evaluation results for combined condition in the 0 — . -
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ronment, and D) sixteen-state environment. The box plots indicate

the fitnesses (each an average over 100 trials) of best performing

programs from each re-evaluation. Figure 4: Distributed leader election problem results. The box plots
indicate the fitnesses of best performing distributed systems from
each replicate. The time series gives average fitness over time during
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5.2 Distributed Leader Election Problem evolution. The colors in the time series correspond to the colors in
. . . the box plots. The shading on fitness trajectories in the time series
Event-driven networks outperform imperative networks. indicates a bootstrapped 95% confidence interval.

Figure 4 shows the results for the distributed leader election prob-

lem. Distributed systems evolved in the event-driven treatment

significantly outperformed those evolved in both imperative treat- than the imperative variants; however, deeper analyses are required
ments (fork-on-retrieval: p = 1.083074e-21; copy-on-retrieval: p = for confirmation.

1.741302e-13). See supplementary material for full details on statis-

tical test results. 6 CONCLUSION

All three conditions produced distributed systems capable of We introduced SignalGP, a new type of GP technique designed to
achieving election consensus. The difference in performances across provide evolution direct access to the event-driven programming
treatments primarily reflect how quickly consensus is able to be paradigm by augmenting Spector et al.’s [31] tag-based modular pro-
reached within a distributed system. The event-driven program- gram framework. We have described and demonstrated SignalGP
ming paradigm is able to more efficiently encode communication within the context of linear GP. Additionally, we used SignalGP to
between agents, as it does not require programs to continuously explore the value of capturing the event-driven paradigm on two
poll for new messages from other agents. Thus, the event-driven problems where the capacity to react to external signals is criti-
paradigm allows signals to propagate more quickly through a dis- cal: the changing environment problem, and the distributed leader
tributed system than the imperative paradigm. The time series election problem. At a minimum, our results show that access to
shown in Figure 4 hints that the event-driven SignalGP representa- the event-driven programming paradigm allows programs to more
tion evolves more rapidly for the distributed leader election problem efficiently encode agent-agent and agent-environment interactions,
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resulting in higher performance on both the changing environ-
ment and distributed leader election problems. Deeper analyses are
needed to tease apart the effects of the event-driven programming
paradigm on the evolvability of solutions.

6.1 Beyond Linear GP

While this work presents SignalGP in the context of linear GP, the
ideas underpinning SignalGP are generalizable across a variety of
evolutionary computation systems.

We can imagine Signal GP functions to be black-box input-output
machines. Here, we have exclusively put linear sequences of in-
structions inside these black-boxes, but could have easily put other
representations capable of processing inputs (e.g. other forms of GP,
Markov brains [10], artificial neural networks, etc.). We could even
employ black-boxes with a variety of different contents within the
same agent. Encasing a variety of representations within a single
agent may complicate the virtual hardware, program evaluation,
and mutation operators, but also provides evolution with a toolbox
of diverse representations.

As we continue to explore the capabilities of SignalGP, we plan
to explore the evolvability of event-driven programs versus im-
perative programs across a wider set of problems and incorporate
comparisons to other GP representations. Further, we plan to extend
SignalGP to other representations beyond linear GP and compare
their relative capabilities and interactions.
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