
Evolving Event-driven Programs with SignalGP

Alexander Lalejini
BEACON Center for the Study of Evolution in Action

Michigan State University, USA
lalejini@msu.edu

Charles Ofria
BEACON Center for the Study of Evolution in Action

Michigan State University, USA
ofria@msu.edu

ABSTRACT

We present SignalGP, a new genetic programming (GP) technique

designed to incorporate the event-driven programming paradigm

into computational evolution’s toolbox. Event-driven programming

is a software design philosophy that simplifies the development of

reactive programs by automatically triggering program modules

(event-handlers) in response to external events, such as signals

from the environment or messages from other programs. SignalGP

incorporates these concepts by extending existing tag-based refer-

encing techniques into an event-driven context. Both events and

functions are labeled with evolvable tags; when an event occurs,

the function with the closest matching tag is triggered. In this

work, we apply SignalGP in the context of linear GP. We demon-

strate the value of the event-driven paradigm using two distinct test

problems (an environment coordination problem and a distributed

leader election problem) by comparing SignalGP to variants that

are otherwise identical, but must actively use sensors to process

events or messages. In each of these problems, rapid interaction

with the environment or other agents is critical for maximizing

fitness. We also discuss ways in which SignalGP can be generalized

beyond our linear GP implementation.

CCS CONCEPTS

· Computing methodologies → Genetic programming;

KEYWORDS

SignalGP, genetic programming, event-driven programming, event-

driven computation, linear genetic programming, tags

ACM Reference Format:

Alexander Lalejini and Charles Ofria. 2018. Evolving Event-driven Pro-

grams with SignalGP. In GECCO ’18: Genetic and Evolutionary Compu-

tation Conference, July 15ś19, 2018, Kyoto, Japan, Jennifer B. Sartor, Theo

D’Hondt, andWolfgang DeMeuter (Eds.). ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3205455.3205523

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’18, July 15ś19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205523

1 INTRODUCTION

Here, we introduce SignalGP, a new genetic programming (GP)

technique designed to provide evolution direct access to the event-

driven programming paradigm, allowing evolved programs to han-

dle signals from the environment or from other agents in a more

biologically inspired way than traditional GP approaches. In Sig-

nalGP, signals (e.g. from the environment or from other agents)

direct computation by triggering the execution of program mod-

ules (i.e. functions). SignalGP augments the tag-based referencing

techniques demonstrated by Spector et al. [29ś31] to specify which

function is triggered by a signal, allowing the relationships between

signals and functions to evolve over time. The SignalGP implemen-

tation presented here is demonstrated in the context of linear GP,

wherein programs are represented as linear sequences of instruc-

tions; however, the ideas underpinning SignalGP are generalizable

across a variety of genetic programming representations.

Linear genetic programs generally follow an imperative pro-

gramming paradigm where computation is driven procedurally.

Execution often starts at the top of a program and proceeds in

sequence, instruction-by-instruction, jumping or branching as dic-

tated by executed instructions [3, 21]. In contrast to the imperative

programming paradigm, program execution in event-driven com-

puting is directed primarily by signals (i.e. events), easing the design

and development of programs that, much like biological organisms,

must react on-the-fly to signals in the environment or from other

agents. Is it possible to provide similarly useful abstractions to

evolution in genetic programming?

Different types of programs are more or less challenging to

evolve depending on how they are represented and interpreted. By

capturing the event-driven programming paradigm, SignalGP tar-

gets problem domains where agent-agent and agent-environment

interactions are crucial, such as in robotics or distributed systems.

In the following sections, we provide a broad overview of the

event-driven paradigm, discussing it in the context of an existing

event-driven software framework, cell signal transduction, and an

evolutionary computation system for evolving robot controllers.

Next, we discuss our implementation of SignalGP in detail. Then,

we use SignalGP to demonstrate the value of capturing event-driven

programming in GP with two test problems: an environment coor-

dination problem and a distributed leader election problem. Finally,

we conclude with planned extensions, including how SignalGP can

be generalized beyond our linear GP implementation to other forms

of GP.

2 THE EVENT-DRIVEN PARADIGM

The event-driven programming paradigm is a software design phi-

losophy where the central focus of development is the processing

of events [6, 8, 9]. Events often represent messages from other

1135

GECCO ’18, July 15–19, 2018, Kyoto, Japan Alexander Lalejini and Charles Ofria

agents or processes, sensor readings, or user actions in the con-

text of interactive software applications. Events are processed by

callback functions (i.e. event-handlers) where the appropriate event-

handler is determined by an identifying characteristic associated

with the event, often the event’s name or type. In this way, events

can act as remote function calls, allowing external signals to direct

computation.

Software development environments that support the event-

driven paradigm often abstract away the logistics of monitoring

for events and triggering event-handlers, simplifying the code that

must be designed and implemented by the programmer and eas-

ing the development of reactive programs. Thus, the event-driven

paradigm is especially useful when developing software where com-

putation is most appropriately directed by external stimuli, which

is often the case in domains such as robotics, embedded systems,

distributed systems, and web applications.

For any event-driven system, we can address the following three

questions: What are events? How are event-handlers represented?

And, how does the system determine the most appropriate event-

handler to trigger in response to an event? Crosbie and Spafford [7]

have addressed why answering such questions can be challenging

in genetic programming; thus, it is useful to look to how existing

event-driven systems address them. While many systems that ex-

hibit event-driven characteristics exist, we restrict our attention

to three: the Robot Operating System (ROS) [25], the biological

process of signal transduction, and Byers et al.’s digital enzymes

robot controller [4, 5].

ROS is a popular robotics software development framework that

provides standardized communication protocols to independently

running programs referred to as nodes. While the ROS framework

provides a variety of tools and other conveniences to robotics soft-

ware developers, we focus on ROS’s publish-subscribe communi-

cation protocol, framing it under the event-driven paradigm. ROS

nodes can communicate by passing strictly typed messages over

named channels (topics). Nodes send messages by publishing them

over topics, and nodes receive messages from a particular topic by

subscribing to that topic. A node subscribes to a topic by registering

a callback function that takes the appropriate message type as an

argument. Anytime a message is sent over a topic, all callback func-

tions registered with the topic are triggered, allowing subscribed

nodes to react to published messages. Topics can have any number

of publishers and subscribers, all agnostic to one another [25]. In

ROS’s publish-subscribe system, events are represented as strictly

typed messages, event-handlers are callback functions that take

event information as input, and named channels (topics) determine

which event-handlers an event triggers.

The behavior of many natural systems can be interpreted as us-

ing the event-driven paradigm. In cell biology, signal transduction is

the process by which a cell transforms an extracellular signal into a

response, often in the form of cascading biochemical reactions that

alter the cell’s behavior. Cells respond to signaling molecules via re-

ceptors, which bind specifically to nearby signaling molecules and

initiate the cell’s response [1]. The process of cell signal transduc-

tion can be viewed as a form of event-driven computation: signaling

molecules are like events, receptors are event-handlers, and the

chemical and physical properties of signaling molecules determine

with which receptors they are able to bind.

Evolutionary computation researchers have also made use of the

event-driven paradigm; for example, Byers et al. [4, 5] demonstrated

virtual robot controllers that operate using a digital model of signal

transduction, and like biological signal transduction, these con-

trollers follow an event-driven paradigm. Byers et al.’s virtual robot

controllers have digital stimuli receptors, which bind to nearby

łsignaling moleculesž represented as bit strings. Different bit strings

represent different signals in the environment (e.g. the presence

of nearby obstacles). Once a signaling molecule binds to a digi-

tal receptor, a digital enzyme (program) processes the signaling

molecule and influences the controller’s behavior. In a single con-

troller, there are many digital enzymes (not all of the same type)

processing signaling molecules in parallel, all vying to influence the

controller’s actions; in this way, virtual robot behavior emerges. As

in cell signal transduction, signaling molecules are events, digital

stimuli receptors and digital enzymes act as event-handlers, and

events are paired with handlers based on signal type and signal

location.

3 SIGNALGP

As with other tag-based systems, SignalGP agents (programs) are

defined by a set of functions (modules) where each function is re-

ferred to using a tag and contains a linear sequence of instructions.

To augment this framework, SignalGP also makes explicit the con-

cept of events where event-specific data is associated with a tag

that agents can use to specify how that event should be handled.

In this work, we arbitrarily chose to represent tags as fixed-length

bit strings. Agents may both generate internal events and be sub-

jected to events generated by the environment or by other agents.

Events trigger functions based on the similarity of their tags. When

an event triggers a function, the function is run with the event’s

associated data as input. SignalGP agents handle many events si-

multaneously by processing them in parallel. Figure 1 shows a

high-level overview of SignalGP.

3.1 Tag-based Referencing

Incorporating modules (e.g. functions, subroutines, macros, etc.)

into genetic programming has been extensively explored, and the

benefits of modules in GP have been well documented (e.g. [2, 15,

18, 19, 27, 28, 32]). The main purpose of SignalGP functions are

to act as event-handlers Ð computations triggered in response to

signals. However, they have the additional benefit of providing ex-

plicit architectural support for program modularity, bestowing the

boon of reusable code. As with any reusable code block in GP, the

question remains: how should the code be referenced? The answer

to this question can be reused to answer the following question:

how should we determine which event-handlers are triggered by

events?

Inspired by John Holland’s concept of a łtagž ([11ś14]) as a mech-

anism for matching, binding, and aggregation, Spector et al. [29ś31]

introduced and demonstrated the value of tag-based referencing

in the context of GP. In this context, a tag-based reference always

links to a tagged entity with its closest match. These tagged entities

include instructions and sequences of code (i.e.modules), providing

an evolvable mechanism for code referencing.

1136

GECCO ’18, July 15–19, 2018, Kyoto, Japan Alexander Lalejini and Charles Ofria

In passive initialization, computation takes place only in response

to external events. In the work presented here, we use only active

initialization and automatically reset the main thread if it would

have otherwise terminated.

While executing, the SignalGP virtual hardware advances on

each time step in three phases: (1) All events in the event queue are

dispatched, with each triggering a function via tag-based referenc-

ing. (2) Each thread processes a single instruction. (3) Any threads

done processing are removed. Phases occur serially and in order.

Executed instructions may call functions, manipulate local and

shared memory, generate events, perform basic computations, con-

trol execution flow, et cetera (see supplementary material for details

on all instructions used in this work). Instructions in SignalGP are

guaranteed to always be syntactically valid, but may be functionally

useless. Every instruction has three associated arguments and an

associated tag. Not all instructions make use of their three argu-

ments or their tag; unused arguments and tags are not under direct

selection and may drift until a mutation to the operand reveals

them.

Instruction-triggered Function Calls

Functions in SignalGP may be triggered by either instruction calls

or events. When a Call is executed, the function in program mem-

ory with the most similar tag to the Call instruction’s tag (above

a similarity threshold) is triggered; in this work, ties are broken

by a random draw (though any tie-breaking procedure could be

used). Tag similarity is calculated as the proportion of matching

bits between two bit strings (simple matching coefficient).

When a function is triggered by a Call instruction, a new call

state is created and pushed onto that thread’s call stack. The work-

ing memory of the caller state is copied as the input memory of the

new call state (i.e. the arguments to the called function are the full

contents of the previous working memory). The working memory

and the output memory of the new call state are initially empty. To

prevent unbounded recursion, we place limits on call stack depth;

if a function call would cause the call stack to exceed its depth limit,

the call instead behaves like a no-operation.

Instruction-triggered functions may return by either executing a

Return instruction or by reaching the end of the function’s instruc-

tion sequence. When an instruction-triggered function returns, its

call state is popped from its call stack, and anything stored in the

output memory of the returning call state is copied to the work-

ing memory of the caller state (otherwise leaving the caller state’s

working memory unchanged). In this way, instruction-triggered

function calls can be thought of as operations over the caller’s

working memory.

Event-triggered Function Calls

Events in SignalGP are analogous to external function calls. When

an event is dispatched from the event queue, the virtual hardware

chooses the function with the highest tag similarity score (above

a similarity threshold) to handle the event; in this work, ties are

broken by a random draw (though any tie-breaking procedure could

be used).

Once a function is selected to handle an event, it is called on a

newly-created execution thread, initializing the thread’s call stack

with a new call state. The input memory of the new call state

is populated with the event’s data. In this way, events can pass

information to the function that handles them. When the function

has been processed (i.e. all of the active calls on the thread’s call

stack have returned), the thread is removed. To prevent unbounded

parallelism, we place a limit on the allowed number of concurrently

executing threads; if the creation of a new thread would cause the

number of threads to exceed this limit, thread creation is prevented.

3.4 Evolution

Evolution in SignalGP proceeds similarly to that of typical lin-

ear GP systems. Because function referencing is done via tags,

changes can be made to program architecture (e.g. inserting new

or removing existing functions) while still guaranteeing syntac-

tic correctness. Thus, modular program architectures can evolve

dynamically through whole-function duplication and deletion op-

erators or through function-level crossover techniques.

In the studies presented in this paper, we evolve SignalGP pro-

grams directly (as opposed to using indirect program encodings),

which requires SignalGP-aware mutation operators. We propagated

SignalGP programs asexually and applied mutations to offspring.

We used whole-function duplication and deletion operators (ap-

plied at a per-function rate of 0.05) to allow evolution to tune the

number or functions in programs. We mutated tags for instructions

and functions at a per-bit mutation rate (0.05). We applied instruc-

tion and argument substitutions at a per-instruction rate (0.005).

Instruction sequences could be inserted or deleted via slip-mutation

operators [20], which facilitate the duplication or deletion of se-

quences of instructions; we applied slip-mutations at a per-function

rate (0.05).

SignalGP is under active development as part of the Empirical

library (https://github.com/devosoft/Empirical).

4 TEST PROBLEMS

We demonstrate the value of incorporating the event-driven pro-

gramming paradigm in GP using two distinct test problems: a chang-

ing environment problem and a distributed leader-election problem.

For both problems, we compared SignalGP performance to variants

that are otherwise identical, except for how they handle sensor

information. For example, our primary variant GP must actively

monitor sensors to process external signals (using the imperative

paradigm). For both test problems, a program’s capacity to react

efficiently to external events is crucial; thus, we hypothesized that

SignalGP should perform better than our imperative alternatives.

4.1 Changing Environment Problem

This first problem requires agents to coordinate their behavior

with a randomly changing environment. The environment can

be in one of K possible states; to maximize fitness, agents must

match their internal state to the current state of their environment.

The environment is initialized to a random state and has a 12.5%

chance of changing to a random state at every subsequent time

step. Successful agents must adjust their internal state whenever

an environmental change occurs.

We evolved agents to solve this problem at K equal to 2, 4, 8,

and 16 environmental states. The problem scales in difficulty as the

number of possible states that must be monitored increases. Agents

1138

Evolving Event-driven Programs with SignalGP GECCO ’18, July 15–19, 2018, Kyoto, Japan

adjust their internal state by executing one of K state-altering

instructions. For each possible environmental state, there is an as-

sociated SetState instruction (i.e. for K = 4, there are four instruc-

tions: SetState0, SetState1, SetState2, and SetState3). Being

required to execute a distinct instruction for each environment

represents performing a behavior unique to that environment.

We compared the performance of programs with three differ-

ent mechanisms to sense the environment: (1) an event-driven

treatment where environmental changes produce signals that have

environment-specific tags and can trigger functions; (2) an impera-

tive control treatment where programs needed to actively poll the

environment to determine its current state; and (3) a combined treat-

ment where agents are capable of using either option. Note that in

the imperative and combined treatments we added new instructions

to test each environmental state (i.e. for K = 4, there are four in-

structions: SenseEnvState0, SenseEnvState1, SenseEnvState2,

and SenseEnvState3). In preliminary experiments we had pro-

vided agents with a single instruction that returned the current

environmental state, but this mechanism proved more challeng-

ing for them to use effectively when there were too many states

(the environment ID returned by the single instruction needed

to be thresholded into a true/false value, whereas the individual

environment state tests directly returned a true/false value).

Across all treatments, we added a Fork instruction to the avail-

able instruction set. The Fork instruction generates an internally-

handled signal when executed, which provides an independent

mechanism to spawn parallel-executing threads. The Fork instruc-

tion ensures that programs in all treatments had trivial access to

parallelism. Because the SenseEnvState instructions in both the

imperative and combined treatments bloated the instruction set

relative to the event-driven treatment, we also added an equivalent

number of no-operation instructions in the event-driven treatment.

4.1.1 Hypotheses. For low values of K , we expected evolved

programs from all treatments to perform similarly. However, as

continuously polling the environment is cumbersome at higher

values of K , we expected fully event-driven SignalGP programs to

drastically outperform programs evolved in the imperative treat-

ment; further, we expected successful programs in the combined

treatment to favor the event-driven strategy.

4.1.2 Experimental Parameters. We ran 100 replicates of each

condition at K = 2, 4, 8, and 16. In all replicates and across all

treatments, we evolved populations of 1000 agents for 10,000 gen-

erations, starting from a simple ancestor program consisting of a

single function with eight no-operation instructions. Each genera-

tion, we evaluated all agents in the population individually three

times (three trials) where each trial comprised 256 time steps. For

a single trial, an agent’s fitness was equal to the number of time

steps in which its internal state matched the environment state

during evaluation. After three trials, an agent’s fitness was equal

to the minimum fitness value obtained across its three trials. We

used a combination of elite and tournament (size four) selection to

select which individuals reproduced asexually each generation. We

applied mutations to offspring as described in Section 3.4. Agents

were limited to a maximum of 32 parallel executing threads and a

maximum of 32 functions. Functions were limited to a maximum

length of 128 instructions. Agents were limited to 128 call states

per call stack. The minimum tag reference threshold was 50% (i.e.

tags must have at least 50% similarity to successfully reference). All

tags were represented as length 16 bit strings.

4.1.3 Statistical Methods. For every run, we extracted the pro-

gram with the highest fitness after 10,000 generations of evolution.

Because the sequence of environmental states experienced by an

agent during evaluation are highly variant, we tested each extracted

program in 100 trials, using a program’s average performance as

its fitness in our analyses. For each environment size, we compared

the performances of evolved programs across treatments. To deter-

mine if any of the treatments were significant (p < 0.05) within a

set, we performed a Kruskal-Wallis test. For an environment size

in which the Kruskal-Wallis test was significant, we performed a

post-hoc Dunn’s test, applying a Bonferroni correction for multiple

comparisons. All statistical analyses were conducted in R 3.3.2 [26],

and each Dunn’s test was done using the FSA package [24].

4.2 Distributed Leader Election Problem

In the distributed leader election problem, a network of agents must

unanimously designate a single agent as leader. Agents are each

given a unique identifier (UID). Initially, agents are only aware of

their own UID and must communicate to resolve the UIDs of other

agents. During an election, each agent may vote, and an election

is successful if all votes converge to a single, consensus UID. This

problem has been used to study the evolution of cooperation in

digital systems [16, 17] and as a benchmark problem to compare the

performance of different GP representations in evolving distributed

algorithms [33]. A common strategy for successfully electing a

leader begins with all agents voting for themselves. Then, agents

continuously broadcast their vote, changing it only when they

receive a message containing a UID greater than their current vote.

This process results in the largest UID propagating through the

distributed system as the consensus leader. Alternatively, a similar

strategy works for electing the agent with the smallest UID.

We evolved populations of homogeneous distributed systems of

SignalGP agents where networks were configured as 5x5 toroidal

grids, and agents could only interact with their four neighbors.

When evaluating a network, we initialized each agent in the net-

work with a random UID (a number between 1 and 1,000,000). We

evaluated distributed systems for 256 time steps. During an evalua-

tion, agents retrieve their UID by executing a GetUID instruction.

Agents vote with a SetOpinion instruction, which sets their opin-

ion (vote) to a value stored in memory, and agents may retrieve

their current vote by executing a GetOpinion instruction. Agents

communicate by exchanging messages, either by sending a message

to a single neighbor or by broadcasting a message to all neighboring

agents.

After an evaluation, we assigned fitness, F according to Equation

1 where V gives the number of valid votes at the end of evaluation,

Cmax gives the maximum consensus size at the end of evaluation,

Tconsensus gives the total number of time steps at full consensus,

and S gives the size of the distributed system.

F = V +Cmax + (Tconsensus × S) (1)

Distributed systems maximize their fitness by achieving con-

sensus as quickly as possible and maintaining consensus for the

1139

GECCO ’18, July 15–19, 2018, Kyoto, Japan Alexander Lalejini and Charles Ofria

duration of their evaluation. Our fitness function rewards partial

solutions by taking into account valid votes (i.e. votes that corre-

spond to a UID present in the network) and partial consensus at

the end of an evaluation.

We evolved distributed systems in three treatments: one with

event-driven messaging and two different imperative messaging

treatments. In the event-driven treatment, messages were events

that, when received, could trigger a function. In both imperative

treatments, messages did not automatically trigger functions; in-

stead, messages were sent to an inbox and needed to be retrieved via

a RetrieveMessage instruction. The difference between the two

imperative treatments was in how messages were handled once

retrieved. In the fork-on-retrieve imperative treatment, messages

act like an internally-generated event when retrieved from an in-

box, triggering the function with the closest (above a threshold)

matching tag on a new thread. In the copy-on-retrieve impera-

tive treatment, messages are not treated as internal events when

retrieved; instead, message contents are loaded into the input mem-

ory of the thread that retrieved the message. In the copy-on-retrieve

imperative treatment, we augmented the available instruction set

with the Fork instruction, allowing programs to trivially spawn

parallel-executing threads.

4.2.1 Hypothesis. Event-driven SignalGP agents do not need

to continuously poll a message inbox to receive messages from

neighboring agents, allowing event-driven programs to more effi-

ciently coordinate. Thus, we expected distributed systems evolved

in the event-driven treatment to outperform those evolved in the

two imperative treatments.

4.2.2 Experimental Parameters. We ran 100 replicates of each

treatment. In all replicates of all treatments, we evolved populations

of 400 homogeneous distributed systems for 50,000 generations. We

initialized populations with a simple ancestor program consisting of

a single functionwith eight no-operation instructions. Selection and

reproduction were identical to that of the changing environment

problem. Agents were limited to a maximum of 8 parallel executing

threads. Agents were limited to a maximum of 4 functions, and

function length was limited to a maximum 32 instructions. Agents

were limited to 128 call states per call stack. The minimum tag

reference threshold was 50%. All tags were represented as length 16

bit strings. The maximum inbox capacity was 8. If a message was

received and the inbox was full, the oldest message in the inbox

was deleted to make room for the new message.

4.2.3 Statistical Methods. For every replicate across all treat-

ments, we extracted the program that produces the most fit dis-

tributed system after 50,000 generations of evolution. As in the

changing environment problem, we compared treatments using a

Kruskal-Wallis test, and if significant (p < 0.05), we performed a

post-hoc Dunn’s test, applying a Bonferroni correction for multiple

comparisons.

5 RESULTS AND DISCUSSION

5.1 Changing Environment Problem

Event-driven strategies outperform imperative strategies.

Figure 2 shows results for all environment sizes (K = 2, 4, 8, and

16). Programs evolved in treatments with fully event-driven Sig-

nalGP significantly outperformed those evolved in the impera-

tive treatment across all environments: two-state (combined: p =

1.204471e-47; event-driven: p = 1.204471e-47), four-state (com-

bined: p = 1.204512e-47; event-driven: p = 1.204512e-47), eight-

state (combined: p = 1.283914e-46; event-driven: p = 2.170773e-

45), and sixteen-state (combined: p = 1.906603e-34; event-driven:

p = 2.318351e-33). Across all environments, therewas no significant

difference in final program performance between the event-driven

and combined treatment. See supplementary material for full details

on statistical test results.

Further, only treatments with fully event-driven SignalGP pro-

duced programs capable of achieving a perfect fitness of 256. This

result is not surprising: only programs that employ an entirely

event-driven strategy can achieve a perfect score in multi-state envi-

ronments. This is because imperative strategies must continuously

poll the environment for changes, which decreases the efficiency of

their response to an environmental change. This strategy becomes

increasingly cumbersome and inefficient as the complexity of the

environment increases. In contrast, event-driven responses are trig-

gered automatically via the SignalGP virtual hardware, facilitating

immediate reactions to environmental changes. This allows event-

driven strategies to more effectively scale with environment size

than imperative strategies.

Evolution favors event-driven strategies.

In the combined treatment, evolution had access to both the event-

driven (signal-based) strategy and the imperative (sensor-polling)

strategy. As shown in Figure 2, performance in the combined treat-

ment did not significantly differ from the event-driven treatment,

but significantly exceeded performance in the imperative treatment.

However, this result alone does not reveal what strategies were

favored in the combined treatment.

To tease this apart, we re-evaluated programs evolved under

the combined treatment in two distinct conditions: one in which

we deactivated sensors and one in which we deactivated external

events. In the deactivated sensors condition, SenseEnvState in-

structions behaved as no-operations, which eliminated the viability

of a sensor-based polling strategy. Likewise, the deactivated events

re-evaluation condition eliminated the viability of event-driven

strategies. Any loss of functionality by programs in these new envi-

ronments will tease apart the strategies that those programs must

have employed.

Figure 3 shows the results of our re-evaluations. Across all envi-

ronment sizes, there was no significant difference between program

performance in their original combined condition and the deacti-

vated sensors conditions. In contrast, program performances were

significantly worse in the deactivated events condition than in

the combined condition (two-state: p = 1.204228e-47; four-state:

p = 1.204106e-47; eight-state: p = 6.743368e-49 ; sixteen-state:

p = 3.695207e-35). These data indicate that programs evolved in

the combined condition primarily rely on event-driven strategies

for the changing environment problem.

1140

GECCO ’18, July 15–19, 2018, Kyoto, Japan Alexander Lalejini and Charles Ofria

resulting in higher performance on both the changing environ-

ment and distributed leader election problems. Deeper analyses are

needed to tease apart the effects of the event-driven programming

paradigm on the evolvability of solutions.

6.1 Beyond Linear GP

While this work presents SignalGP in the context of linear GP, the

ideas underpinning SignalGP are generalizable across a variety of

evolutionary computation systems.

We can imagine SignalGP functions to be black-box input-output

machines. Here, we have exclusively put linear sequences of in-

structions inside these black-boxes, but could have easily put other

representations capable of processing inputs (e.g. other forms of GP,

Markov brains [10], artificial neural networks, etc.). We could even

employ black-boxes with a variety of different contents within the

same agent. Encasing a variety of representations within a single

agent may complicate the virtual hardware, program evaluation,

and mutation operators, but also provides evolution with a toolbox

of diverse representations.

As we continue to explore the capabilities of SignalGP, we plan

to explore the evolvability of event-driven programs versus im-

perative programs across a wider set of problems and incorporate

comparisons to other GP representations. Further, we plan to extend

SignalGP to other representations beyond linear GP and compare

their relative capabilities and interactions.

ACKNOWLEDGMENTS

We extend our thanks to Wolfgang Banzhaf and the members of

the Digital Evolution Laboratory at Michigan State University for

thoughtful discussions and feedback. This research was supported

by the National Science Foundation (NSF) through the BEACON

Center (Cooperative Agreement DBI-0939454), a Graduate Research

Fellowship to AL (Grant No. DGE-1424871), and NSFGrant No. DEB-

1655715 to CO. Michigan State University provided computational

resources through the Institute for Cyber-Enabled Research. Any

opinion, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the NSF or MSU.

REFERENCES
[1] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and

Peter Walter. 2002. Molecular Biology of the Cell (4th ed.). New York: Garland
Science.

[2] Peter J Angeline and Jordan B Pollack. 1992. The evolutionary induction of
subroutines. In Proceedings of the fourteenth annual conference of the cognitive
science society. Bloomington, Indiana, 236ś241.

[3] Markus F Brameier and Wolfgang Banzhaf. 2007. Linear genetic programming.
Springer Science & Business Media.

[4] Chad M Byers, Betty HC Cheng, and Philip K McKinley. 2011. Digital enzymes:
agents of reaction inside robotic controllers for the foraging problem. In Proceed-
ings of the 13th annual conference on Genetic and evolutionary computation. ACM,
243ś250.

[5] Chad M Byers, Betty HC Cheng, and Philip K McKinley. 2012. Exploring the
evolution of internal control structure using digital enzymes. In Proceedings of
the 14th annual conference companion on Genetic and evolutionary computation.
ACM, 1407ś1408.

[6] Christos G Cassandras. 2014. The event-driven paradigm for control, communi-
cation and optimization. Journal of Control and Decision 1, 1 (2014), 3ś17.

[7] Mark Crosbie and Eugene H Spafford. 1996. Evolving event-driven programs.
In Proceedings of the 1st annual conference on genetic programming. MIT Press,
273ś278.

[8] Opher Etzion, Peter Niblett, and David C Luckham. 2011. Event processing in
action. Manning Greenwich.

[9] Maurice Heemels, Karl H Johansson, and Paulo Tabuada. 2012. An introduction
to event-triggered and self-triggered control. In 2012 IEEE 51st Annual Conference
on Decision and Control (CDC). IEEE, 3270ś3285.

[10] Arend Hintze, Jeffrey A Edlund, Randal S Olson, David B Knoester, Jory Schossau,
Larissa Albantakis, Ali Tehrani-Saleh, Peter Kvam, Leigh Sheneman, Heather
Goldsby, et al. 2017. Markov brains: A technical introduction. arXiv preprint
arXiv:1709.05601 (2017).

[11] John H Holland. 1987. Genetic algorithms and classifier systems: foundations and
future directions. Technical Report. Michigan Univ., Ann Arbor (USA).

[12] John H Holland. 1990. Concerning the emergence of tag-mediated lookahead in
classifier systems. Physica D: Nonlinear Phenomena 42, 1-3 (1990), 188ś201.

[13] John H Holland. 1993. The effect of labels (tags) on social interactions. Technical
Report. Santa Fe Institute Working Paper 93-10-064. Santa Fe, NM.

[14] John H Holland. 2006. Studying complex adaptive systems. Journal of Systems
Science and Complexity 19, 1 (2006), 1ś8.

[15] Maarten Keijzer, Conor Ryan, Gearoid Murphy, and Mike Cattolico. 2005. Undi-
rected Training of Run Transferable Libraries.. In EuroGP. Springer, 361ś370.

[16] David B Knoester, Heather J Goldsby, and Philip K McKinley. 2013. Genetic
variation and the evolution of consensus in digital organisms. IEEE Transactions
on Evolutionary Computation 17, 3 (2013), 403ś417.

[17] David B Knoester, Philip K McKinley, and Charles A Ofria. 2007. Using group
selection to evolve leadership in populations of self-replicating digital organ-
isms. In Proceedings of the 9th annual conference on Genetic and evolutionary
computation. ACM, 293ś300.

[18] John R Koza. 1992. Genetic programming: on the programming of computers by
means of natural selection. Vol. 1. MIT press.

[19] John R Koza. 1994. Genetic programming II: Automatic discovery of reusable
subprograms. Cambridge, MA, USA (1994).

[20] Alexander Lalejini, Michael J Wiser, and Charles Ofria. 2017. Gene Duplications
Drive the Evolution of Complex Traits and Regulation. In European Conference
on Artificial Life 2017 (ECAL). 257ś264.

[21] James McDermott and Una-May O’Reilly. 2015. Genetic Programming. In
Springer Handbook of Computational Intelligence, J Kacprzyk and W Pedrycz
(Eds.). Springer.

[22] Nicholas Freitag McPhee, Riccardo Poli, and William B Langdon. 2008. Field
guide to genetic programming. (2008).

[23] Charles Ofria, David M. Bryson, and Claus O. Wilke. 2009. Avida: A Software
Platform for Research in Computational Evolutionary Biology. In Artificial Life
Models in Software. Springer, 3ś35.

[24] Derek H. Ogle. 2017. FSA: Fisheries Stock Analysis. R package version 0.8.17.
[25] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, 5.

[26] R Core Team. 2016. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[27] Simon Roberts, Daniel Howard, and John Koza. 2001. Evolving modules in genetic
programming by subtree encapsulation. Genetic Programming (2001), 160ś175.

[28] Lee Spector. 1996. Simultaneous evolution of programs and their control struc-
tures. Advances in genetic programming 2 (1996), 137ś154.

[29] Lee Spector, Kyle Harrington, and Thomas Helmuth. 2012. Tag-based modularity
in tree-based genetic programming. In Proceedings of the 14th annual conference
on Genetic and evolutionary computation. ACM, 815ś822.

[30] Lee Spector, Kyle Harrington, Brian Martin, and Thomas Helmuth. 2011. What’s
in an evolved name? the evolution of modularity via tag-based reference. In
Genetic Programming Theory and Practice IX. Springer, 1ś16.

[31] Lee Spector, Brian Martin, Kyle Harrington, and Thomas Helmuth. 2011. Tag-
based modules in genetic programming. In Proceedings of the 13th annual confer-
ence on Genetic and evolutionary computation. ACM, 1419ś1426.

[32] James A Walker and Julian F Miller. 2008. The automatic acquisition, evolution
and reuse of modules in cartesian genetic programming. IEEE Transactions on
Evolutionary Computation 12, 4 (2008), 397ś417.

[33] Thomas Weise and Ke Tang. 2012. Evolving distributed algorithms with genetic
programming. IEEE Transactions on Evolutionary Computation 16, 2 (2012), 242ś
265.

1142

