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Abstract

We describe a (1 + ε) approximation algorithm for
finding the minimum distortion embedding of an n-
point metric space, (X, dX), into a tree with ver-
tex set X. The running time of our algorithm is

n2 ·(∆/ε)(O(δopt/ε))
2λ+1

parameterized with respect to
the spread of X, denoted by ∆, the minimum possible
distortion for embedding X into any tree, denoted by
δopt, and the doubling dimension of X, denoted by
λ. Hence we obtain a PTAS, provided δopt is a con-
stant and X is a finite doubling metric space with
polynomially bounded spread, for example, a point
set with polynomially bounded spread in constant di-
mensional Euclidean space. Our algorithm implies a
constant factor approximation with the same running
time when Steiner vertices are allowed.

Moreover, we describe a similar (1 + ε) approxi-
mation algorithm for finding a tree spanner of (X, dX)
that minimizes the maximum stretch. The running
time of our algorithm stays the same, except that δopt
must be interpreted as the minimum stretch of any
spanning tree of X. Finally, we generalize our tree
spanner algorithm to a (1 + ε) approximation algo-
rithm for computing a minimum stretch tree span-
ner of a weighted graph, where the running time
is parameterized with respect to the maximum de-
gree, in addition to the other parameters above. In
particular, we obtain a PTAS for computing mini-
mum stretch tree spanners of weighted graphs, with
polynomially bounded spread, constant doubling di-
mension, and constant maximum degree, when a tree
spanner with constant stretch exists.
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1 Introduction

Given a general metric space (X, dX), consider the
problem of finding a host metric space from within
some class of “simple” metric spaces that (X, dX) can
be embedded into while preserving pairwise distances
as much as possible. This is a central problem in
the algorithmic study of metric spaces, as naturally
finding such a simpler metric can unlock a set of
efficient algorithmic tools which may be less effective
on more complex spaces.

To quantify the extent to which an embedding
preserves distances, we consider the (multiplicative)
distortion, which is a widely used and studied mea-
sure, having many nice properties such as scale in-
variance. Formally, given metric spaces (X, dX) and
(Y, dY ), an embedding of X into Y is an injective
map f : X → Y , with expansion ef and contraction
cf defined as

ef = max
x,x′∈X
x 6=x′

dY (f(x), f(x′))

dX(x, x′)
, cf = max

x,x′∈X
x6=x′

dX(x, x′)

dY (f(x), f(x′))

The distortion of f is then defined as δf = ef ·cf . Low
distortion embeddings have been extensively studied
and have been used in a variety of computer science
applications (see [IM04, Ind01,Mat13]).

Among alternatives, one of the most widely stud-
ied classes of simpler host metric spaces is the class
of weighted trees, whose structure is well understood
and readily allows one to apply tools such as dynamic
programming. Furthermore, such embeddings have
found natural applications, for example, in estimating
phylogenetic trees [KW99]. Closely related to mini-
mum distortion embeddings into trees is the prob-
lem of finding tree spanners with minimum stretch.
Given a graph G, a tree spanner with stretch δ is a
spanning tree of G preserving distances up to a multi-
plicative factor of δ, i.e. a δ distortion embedding into
a spanning tree of G. As minimal distance preserv-
ing structures, tree spanners have for example found
applications in distributed systems [DH98,PR01].

In this paper, we provide parameterized approx-
imation algorithms for minimum distortion embed-
dings into trees, and minimum stretch tree spanners.
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In other words, we seek to answer the fundamental
question, how well can a given metric space (or graph)
be represented by a tree?

Significance. Finding an approximate mini-
mum distortion embedding into a tree is a provably
hard problem, thus many previous works have fo-
cused on the simpler case when the input is the short-
est path metric of an unweighted graph (as discussed
in detail below). Here we consider the far more gen-
eral weighted case, i.e. the input is any finite met-
ric. In order to make such a large jump we must
parameterize our running times on certain quantita-
tive measures of the source metric, in particular, the
doubling dimension and spread.1 It is important to
note that our running time depends only polynomi-
ally on the spread, and thus is designed to handle
reasonably large ranges of distances. (Note for un-
weighted graphs the spread is trivially polynomially
bounded.) Our running time is also parameterized on
the optimal distortion, δopt. This is natural because
when δopt is large not only is the problem hard to ap-
proximate, but also a minimum distortion embedding
becomes less informative. Note that more generally
removing any of these parameterizations quickly ei-
ther leads to an open problem or a known hard case.
Moreover, whenever these parameters are bounded
we get a PTAS for finding the minimum distortion
embedding into a tree (or a PTAS for the minimum
stretch tree spanner). Thus as a natural example,
given a point set in low dimensional Euclidean space,
with up to polynomial spread, we can get a (1+ε)δopt
embedding in polynomial time if δopt is below some
constant threshold, and otherwise report that the in-
put metric cannot be well represented by a tree.

1.1 Previous Work
Embedding into trees. Nearly a half cen-

tury ago, Buneman studied the problem of recon-
structing trees from distance measures [Bun71]. He
showed that an embedding with distortion one can
be found in O(n4) time if it exists. Later, Agar-
wala et al. [ABF+99] showed that in the absence
of a perfect embedding, finding a minimum distor-
tion embedding is not only NP-complete, but actu-
ally APX-hard.2 Moreover, in certain cases much
stronger hardness results are known. For example,
finding the minimum distortion embedding into the
real line, that is a tree of maximum degree two,

1The spread is the ratio of the largest to smallest distance
in the metric, sometimes referred to as the aspect ratio.

2Note [ABF+99] states the additive distortion case is APX-

hard, however, Chepoi et al. [CDN+10] noted that the proof
also implies the same for the multiplicative distortion for a

smaller constant.

is hard to approximate within a polynomial factor
even when embedding from weighted tree metrics
with polynomial spread [BCIS05] (note the problem
is much easier for additive distortion, as there is
a 2-approximation [HIL98]). Thus it is natural to
consider restrictions on the source metric space. In
particular, Bădoiu et al. [BIS07] showed the min-
imum distortion embedding for unweighted graphs
into trees can be approximated within a constant fac-
tor in polynomial time. Their result leads to the
state of the art 6-approximation after a couple of
improvements [BDH+08, CDN+10]. In contrast to
unweighted graphs, far less is known about embed-
ding general metrics into trees. In fact, the only non-
trivial approximation, found by Bădoiu et al. [BIS07],

gives an embedding with distortion (δopt log n)
√

log ∆,
where δopt is the minimum distortion.3

Tree spanners. The history of tree spanner al-
gorithms is somewhat similar. Cai and Corneil initi-
ated the study of tree spanners [CC95], and showed
that the 1-tree spanner of a weighted graph, if it
exists, coincides with the minimum spanning tree,
and therefore can be computed efficiently. Neverthe-
less, computing t-tree-spanners is NP-complete for
t > 1. For unweighted graphs, in the same paper
it was shown that the situation is slightly better:
there are polynomial time algorithms to find 1-tree-
spanners or 2-tree spanners, if they exist, while find-
ing t-tree-spanners is NP-complete for t > 4. For un-
weighted graphs, Emek and Peleg [EP08] and Dragan
and Köhler [DK14] show O(log n)-approximation al-
gorithms for finding minimum stretch tree spanners.
More recently, Fomin et al. [FGvL11] showed that for
constants t and w, t-tree-spanners of treewidth w for
bounded degree graphs can be found in polynomial
time if they exist [FGvL11] (also see [Pap15]). To the
best of the authors’ knowledge no approximation al-
gorithm is known for general metric spaces for t > 1.

Geometric tree spanners are an interesting spe-
cial case, where the input is a weighted graph rep-
resenting the distances between points from a metric
space. Not much is known even for this special case.
(Note the significance of requiring that the spanner
is a tree, as there are many results when other sparse
graphs are allowed.) Eppstein [Epp00] asked whether
one can compute the minimum stretch geometric tree
spanner or the minimum stretch hamiltonian path for
a planar point set, either exactly or approximately, in

3There is a different line of research for embedding a graph
into a given tree (or graph), see for example [KRS04,FFL+13,

NR17]. We emphasize that the goal of this paper is different as

here we look for the best possible tree to embed into. Also, note
we focus on multiplicative distortion. See [HIL98,ABF+99] for

results on additive distortion.
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polynomial time. Cheon et al. [CHL07] partially an-
swers this question by showing NP-hardness for the
decision problem. Eppstein and Wortman [EW05]
give a nearly linear time algorithm to find the mini-
mum stretch star for a planar point set. As for ap-
proximation algorithms, prior to our work, no non-
trivial approximation was known even for the case
when the input is a planar point set. Our results im-
ply a PTAS for computing the minimum stretch span-
ning tree and the minimum stretch hamiltonian path
of a planar point set provided polynomially bounded
spread and constant stretch. (Here we seek tree span-
ners minimizing the maximum multiplicative stretch,
although different variants have been studied before.
We refer the reader to [LW08] for a list of different
tree spanner problems and a survey of corresponding
results.)

1.2 Our results In this paper, we consider the
problems of embedding a general metric space into a
tree, and finding the minimum stretch tree spanner.
We give approximation algorithms whose running
times are parameterized with respect to: δopt, the
minimum distortion (or stretch); ∆, the spread of
X; and λ, the doubling dimension of X. Our main
result is an algorithm to embed a general metric space
(X, dX) into a tree with vertex set X.4

Theorem 1.1. Let X be an n-point metric space,
with doubling dimension λ and spread ∆. Also, let
δopt be the minimum distortion of any embedding of
X into any tree with vertex set X. For any 0 < ε < 1,

there is an n2 · (∆/ε)(O(δopt/ε))
2λ+1

time algorithm to
compute a (1 + ε)δopt distortion embedding of X into
a tree with vertex set X.

To obtain the above result we first show how to
compute a (1+ε)-approximation to the minimum dis-
tortion embedding into a tree on vertex set X with
bounded degree (which may be of independent inter-
est). Then it is argued our bounded doubling dimen-
sion assumption implies that a tree with arbitrary
degree can be embedded into a tree with bounded
degree with distortion at most 1 + ε.

The result of Gupta [Gup01], which shows that
Steiner vertices can help only up to a factor of eight
in the distortion (see Lemma 2.3), implies that the
output of the algorithm of Theorem 1.1 is also a

4 For all our results we actually prove a stronger running
time bound. Namely the (O(δopt/ε))2λ+1 term in the exponent

can instead be written as log(1/ε)(1/ε)(O(δ2opt/ε))
λ. In the

theorem statements, however, we prefer a less cluttered form,
as it allows one to more clearly see the rough dependence on

each parameter.

constant factor approximation for embedding into a
tree when Steiner vertices are allowed.

Corollary 1.1. Let X be an n-point metric space,
with doubling dimension λ and spread ∆. Let δopt
be the minimum distortion of any embedding of X
into any tree. For any 0 < ε < 1, in n2 ·
(∆/ε)(O(δopt/ε))

2λ+1

time one can compute an (8 +
ε)δopt distortion embedding of X into a tree.

Our approach can also be adapted to compute
tree spanners for general weighted graphs, however,
the running time depends on the maximum allowable
degree for the tree spanner.

Theorem 1.2. Let G = (X,E,w) be a weighted
graph, and let (X, dX) be its shortest path metric
space. Let λ and ∆ denote the doubling dimension
and spread of (X, dX), respectively, and let deg > 0
be some integer. Let δopt be the minimum possible
stretch of any spanning tree of G of maximum degree
at most deg. For any 0 < ε < 1, there is an n2 ·
(∆/ε)log(deg)(O(δopt/ε))

2λ+1

time algorithm to compute
a (1 + ε)δopt-tree-spanner with maximum degree at
most deg.

To prove the above theorem we argue our ap-
proach can be modified to allow an additional weight
constraint function h : X × X → 2R

+

, which spec-
ifies the set of permitted weights for every pair of
vertices x, y ∈ X, if we choose to include (x, y) in
the tree. Thus the above theorems are special cases,
where Theorem 1.1 allows the weight to be any value
in R+, and Theorem 1.2 sets h(x, y) = {wG(x, y)} if
(x, y) ∈ E, and h(x, y) = ∅ otherwise.

The case of geometric tree spanners mentioned
above, is the special case when we restrict the permit-
ted weight for each pair to be the metric distance, i.e.
when G in the above theorem is the complete graph.
Similar to Theorem 1.1, in this case one can argue our
assumptions imply a tree with arbitrary degree em-
beds into a tree with bounded degree with distortion
≤ 1 + ε. Thus we get the following corollary, which
alternatively can be argued as a direct corollary of
Theorem 1.1. (See the full version for details.)

Corollary 1.2. Let X be a metric space with dou-
bling dimension λ and spread ∆. Let δopt be the min-
imum possible stretch of any spanning tree of X. For

any 0 < ε < 1, there is an n2 · (∆/ε)(O(δopt/ε))
2λ+1

time algorithm to compute a (1 + ε)δopt-tree-spanner.

Note that Theorem 1.1 gives a PTAS for the min-
imum distortion embedding of a finite metric space
(X, dX) into a tree on vertex set X, provided that
δopt and λ are constants, and that ∆ is polynomially
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bounded. Under the same set of conditions, Corol-
lary 1.1 gives a constant factor approximation algo-
rithm for embedding X into any tree. Again, under
the same conditions, Corollary 1.2 gives a PTAS for
computing the minimum stretch geometric tree span-
ner, and Theorem 1.2 gives a PTAS for computing
the minimum stretch bounded degree tree spanner of
a weighted graph.

Outline. After covering basic background in
Section 2, we give an overview of our approach in
Section 3. In Section 4 we present our main result
for approximating minimum distortion embeddings
of metric spaces into bounded degree trees. We then
show how to remove the bounded degree assumption
in Section 5, by proving that with (1 + ε) distortion,
any tree can be embedded into a tree whose degree is
bounded by a function only depending on ε and the
doubling dimension. Finally, in Section 6, we show
our algorithm can be adapted to find tree spanners
by formulating the problem in a more general setting.

2 Preliminaries

Graphs and metrics. We use G = (V,E,w) to
denote an undirected graph with vertex set V , edge
set E, and positive edge weight function w : E → R+.
The shortest path metric (V, dG) of a graph G is
defined by the distance function dG : V × V → R≥0,
where dG(u, v) is the length of the shortest u-to-v
path in G. For each u ∈ V , we define adjG(u) to be
a list of all incident edges to u in G.

Throughout the paper we use ∆ to denote the
spread of the given finite metric space (X, dX), that
is ∆ = (maxx6=y∈X dX(x, y))/(minx 6=y∈X dX(x, y)).
Given a metric space (X, dX), a point x ∈ X, and
a radius r ∈ R+ ∪ {0}, the ball B(x, r) is the subset
of all points of X whose distance to x is at most r.
The doubling dimension of a metric space (X, dX)
is the smallest λ ∈ R+ such that for any r ∈ R+, each
ball of radius r can be covered by at most 2λ balls
of radius r/2. A metric space is called doubling if
λ is bounded by a constant (independent of the size
of the metric). The following lemma of Gupta et
al. [GKL03] is helpful in the analysis in this paper.

Lemma 2.1. ([GKL03], Proposition 1.1) Let
(X, dX) be a metric with doubling dimension λ, and
let X ′ ⊆ X. If all pairwise distances in X ′ are at
least `, then any ball of radius R in X contains at

most
(

2R
`

)λ
points of X ′.5

Embeddings and distortion. An embedding
of a metric space (X, dX) to a metric space (Y, dY )

5Note that λ in their paper is the doubling constant,

whereas in this paper it denotes the doubling dimension.

is an injective map f : X → Y . The contraction cf
and the expansion ef of f are defined as

cf = max
x,y∈X
x6=y

dX(x, y)

dY (f(x), f(y))
, ef = max

x,y∈X
x 6=y

dY (f(x), f(y))

dX(x, y)

An embedding is called non-contracting if its con-
traction is at most one. The distortion of f is de-
fined as δ = cf · ef . Often in this paper we con-
sider the identity map as an embedding from a met-
ric space (X, dX) to the shortest path metric (X, dT )
of a tree T = (X,ET , wT ). To simplify notation, in
these cases, we drop f and compare x-to-y distance
in X, denoted by dX(x, y), with the x-to-y distance
in T , denoted by dT (x, y). Also to simplify, we re-
fer to the identity map (X, dX) to (X, dT ) as the
embedding defined by T . We use δopt(X) to re-
fer to the smallest possible distortion for embedding
X into any tree. When it is clear from the context we
use the same notation, δopt(X), to refer to the small-
est possible distortion for embedding X into any tree
with vertex set X. We use δopt(X, deg) to refer to the
smallest possible distortion for embedding X into any
tree of maximum degree at most deg. Since distor-
tion is scale invariant a non-contracting embedding
of expansion δopt(X) always exists, and throughout
the text we assume we are looking for a such an em-
bedding.

We found the following lemma helpful when
working with embeddings between shortest path met-
rics of graphs.

Lemma 2.2. ([KRS04], Proposition 2.3) Let
G = (VG, EG) and H = (VH , EH) be two positively
weighted undirected graphs, and let dG and dH
be their shortest path metrics, respectively. Let
f : VG → VH be a bijection. Then the expansion
of f is achieved by an adjacent pair u, v ∈ VG, and
the contraction of f (or the expansion of f−1) is
achieved by an adjacent pair x, y ∈ VH .

In this paper, we consider embedding into trees
both when Steiner vertices are allowed and when they
are not allowed. The following Lemma of Gupta,
ensures that the optimal tree metrics for these two
problems differ up to a factor of at most eight.

Lemma 2.3. ([Gup01], Theorem 1.1) Given a
tree T ′ = (V ′, E′, w′) with shortest path metric dT ′ ,
and a set of required vertices V ⊆ V ′ , there exists a
tree T = (V,E,w) with shortest path metric dT such

that for all x, y ∈ V , 1 ≤ dT (x,y)
dT ′ (x,y) ≤ 8. Moreover, T

can be computed in polynomial time.

Tree spanners. Let G = (V,EG, wG) be a
graph, and let T = (V,ET , wT ) be a spanning tree
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of G, where wT is the restriction of wG to ET . Let
e = (u, v) ∈ EG. The stretch (or dilation) of the
edge e is defined as strT (e) = dT (u, v)/dG(u, v). Note
that dT (u, v) ≥ dG(u, v). The stretch (or dilation) of
T is then defined as the maximum stretch of the edges
in EG, strT = maxe∈EG strT (e). By Lemma 2.2,
the identity map is a map of distortion strT from
(V, dG) to (V, dT ). If strT = t, we say that T is a t-
tree-spanner of G. Hence, finding the minimum
stretch spanning tree is equivalent to finding the
spanning tree into which the identity map has the
lowest distortion.

Consider the case when the input is instead a
metric space (X, dX). Let GX = (X,EX , dX) be the
complete graph over X, where for each x, x′ ∈ X,
the weight of edge (x, x′) is dX(x, x′). Then one can
analogously define the geometric stretch of a pair
in X and a geometric t-tree-spanner of X, by
using the graph GX in the above definitions.

3 Overview

Here we sketch our algorithm and its analysis for
embedding an n-point metric space (X, dX) into a
tree with vertex set X, which by Lemma 2.3 will also
serve as a sketch for the case when Steiner vertices
are allowed. Our algorithms for the tree spanner cases
follow a similar high level approach as sketched here,
but require enforcing a set of additional constraints
(on edge weights). The details of these constraints
and their enforcement can be found in Section 6.

Throughout, for any x ∈ X the term point is
used when referring to x in the metric space (X, dX),
and the term vertex when referring to x in the tree.
Here we assume we are given a value δ such that
δ ≥ δopt, where δopt is the minimum distortion of
any embedding of (X, dX) into a tree (with vertex
set X). Ultimately our actual algorithm performs an
exponential search to approximately find δopt, where
the procedure sketched below can be seen to fail and
hence return “false” if δ < δopt. Moreover, assume
the spread of (X, dX), denoted by ∆, is polynomially
bounded, that δ is a constant, and X is doubling.
Under these conditions, we describe a polynomial
time algorithm to compute an embedding of X into
a tree with O(δ) distortion. Our actual algorithm
achieves (1+ε)δ distortion, though for simplicity here
we are satisfied with this weaker guarantee.

As distortion is scale invariant, as remarked in
the previous section, we can restrict our attention to
non-contracting embeddings where the expansion is
at most δ. Moreover, scale invariance also implies
that we can assume the smallest distance in (X, dX)
is 1, and hence the largest distance is ∆. As the
expansion is at most δ, this implies we can restrict our

attention to trees with edge weights in the interval
[1, δ∆]. Finally, to make things simpler we assume
all edge weights are integers (which is valid since we
are only seeking a constant factor approximation).

We start by describing a more comprehendible
version of the algorithm containing many of the
key ideas, though with an exponential running time.
Then we modify the algorithm step by step to obtain
a polynomial running time.

Stitching local views. For each point x ∈ X,
our algorithm tries to enumerate all possible local
“views” of what a distortion at most δ embedding
could look like when standing at the vertex x (i.e.
the image of point x). Then, our algorithm tries
to stitch together these views (each containing only
partial information of the tree) into a tree T on X
with O(δ) distortion.

As a first attempt, we define a local view at a
vertex x to contain precise information about the
location of all other vertices relative to the vertex
x. Specifically, a view Vx at a vertex x includes the
following information (from the tree of an at most δ
distortion embedding):
(1) The degree of x.
(2) For each y ∈ X: (a) the branch of x leading to

y, and (b) the distance of x to y.
Figure 1-left shows a possible view at a vertex x and
a possible view at vertex y on a tree with vertex set
{a, b, . . . , h, i, x, y}. Note any embedding of X into a
tree T implies a view Vx at each vertex x. In this case,
we also say Vx extends to T . Note that a view can
extend to more than one tree, as the distance/branch
information at one vertex is not sufficient to uniquely
reconstruct a tree. Figure 1-right shows a tree that
is an extension of both of the views (at x and y) on
the left.

Figure 1: Top: views at x and y, Bottom: a tree that
is an extension of both views. To keep the figure
readable, unweighted distance are used, though in
general weights are allowed.

We now formalize the notion of stitching. For a
given view Vx at a vertex x, for every z ∈ X define (i)
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bx(z) to be the branch of x that leads to z according
to Vx, and (ii) dx(z) to be the x, z-distance according
to Vx. For a given view Vy at another vertex y,
similarly define by(z) and dy(z). Let b = bx(y) denote
the branch label of y in Vx, and let b′ = by(x) denote
the branch label of x in Vy. Intuitively, we say that
Vx and Vy are stitchable if when we identify the labels
b and b′, all pieces of information in Vx and Vy look
consistent. Specifically,

(1) dx(y) = dy(x). Call this value ` (i.e. the length
of the edge (x, y)).

(2) For any z ∈ X,

(a) bx(z) = b if and only if by(z) 6= b′, and

(b) if bx(z) = b then dx(z) = dy(z) + `,
otherwise dx(z) = dy(z)− `.

For example, the views in Figure 1 are stitchable, and
the stitched result is shown in Figure 2-left.

Figure 2: Top: stitching together a view at x and a
view at y (to build the edge (x, y)), Bottom: stitching
a view at e to the view at x (to build the subtree of
x, y, and e).

The stitching operation tells us how to build
one edge of our desired tree. Next, by stitching
another view to this “edge” one obtains a larger
subtree (see Figure 2-right). By continually stitching
together more and more views, our ultimate goal is
to obtain a full tree T on vertex set X. So suppose
we successfully stitched together views into such a
tree. What can be said about the resulting tree
this stitching produces? First, it is not hard to see
that requiring consistency of the branch information

implies the resulting tree defines a valid embedding
(i.e. a point cannot be mapped to two different
vertices). Second, observe that a view centered at
some vertex x records the distance from x to the
image of any other z ∈ X under this embedding, and
so requiring consistency of distances can be shown
to imply that the view at z must also record the
same distance to x. This implies that if for each
x ∈ X, if locally at the view of x no distance from
x was expanded by more than δ, then globally the
resulting tree defines an embedding with expansion
at most δ, and hence distortion at most δ by our
non-contracting assumption. Thus we restrict our
attention to plausible views, where a view at a vertex
x is plausible if for all z ∈ X, the x-z distance in the
view has a value between dX(x, z) and δdX(x, z).

There are many potential views at a vertex x
which are plausible. Though as described below, by
a number of careful summarization steps we can make
the view descriptions compact enough such that we
can enumerate all possible plausible views. However,
deciding which views to stitch together from these
lists is still a daunting task. Fortunately, dynamic
programming can be used to give an algorithm whose
running time is polynomial in the number of views.
Interestingly, while this dynamic programming ulti-
mately works because our goal is to stitch together
a tree (a structure amenable to dynamic program-
ming), the dynamic programming we now describe is
not actually done over a tree.

Assembling the tree. Provided the set of all
plausible views at every vertex, we now describe a
dynamic program which builds a tree T on vertex
set X by stitching together appropriate views. To
facilitate our dynamic program, we fix an arbitrary
point r ∈ X, and root all trees with vertex set X
at r. Fixing r allows us to uniquely define the set of
descendants for each view Vx (at a vertex x). Namely,
y ∈ X is a descendant of x in Vx if the branch of x
leading to y (according to Vx) is different from the
branch of x leading to r (according to Vx). In other
words, y is a descendant in Vx if for all extensions of
Vx to a tree T with root r, y is a descendant of x in
T . We denote the set of descendants of x according
to Vx by des(x, Vx). We emphasize it is possible a
vertex y is a descendant of x according to a view Vx
and not a descendant of x according to another view
V ′x.

Now we are ready to define our subproblems.
For any plausible view Vx at any x ∈ X, we say
Subtree(x, Vx) is true if and only if there is a set of
views V, one per vertex of des(x, Vx), such that

• V ∪{Vx} can be stitched together to build a tree
with vertex set des(x, Vx) ∪ {x} and root x.
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The definition of Subtree(·, ·) implies the following
recursive algorithm to check if Subtree(x, Vx) is true.
Let b0, b1, b2, . . . , bt be all the branches of x accord-
ing to Vx, and let b0 be the branch that leads to
r. Subtree(x, Vx) is true if and only if there are
y1, . . . , yt ∈ X and views Vy1 , . . . , Vyt such that for
every i ∈ {1, . . . , t} we have:

(1) bi is the branch of x that leads to yi (according
to Vx),

(2) Vx can be stitched to Vyi , and

(3) Subtree(yi, Vyi) is true.

Using this recursive relation we can build our dy-
namic programming table to check if there ex-
ists a plausible view Vr at the root r such that
Subtree(r, Vr) is true. If so, by tracing back through
the dynamic programming table, we can stitch to-
gether a set of plausible views to build a tree T with
distortion at most δ. (Note it is now easy to see that
if we had allowed δ < δopt, in this case the dynamic
program would fail, and hence we would know to re-
turn “false”.)

Observe that the running time of our dynamic
program is clearly polynomial in terms of n = |X|
and the maximum number of plausible views at any
vertex. Unfortunately however, with the current
definition of a view, the total number of plausible
views at a vertex can be exponentially large. A trivial
bound on the number of such views at a vertex x ∈ X
is,

n · (n)n · (δ∆)n,

as there are at most n choices for the degree of x, and
for any other y in X \{x} there are at most n choices
for its branch, and δ∆ choices for its distance. Recall
the δ∆ bound on the number of distances follows
since the maximum distance in (X, dX) was ∆, and
we are looking for an embedding of distortion at most
δ (and we assumed integral distances).

In Section 4 we prove that a doubling tree
metric embeds into a bounded degree tree metric
with constant distortion. Therefore, if our goal is to
achieve a constant factor approximation, then we can
assume that the degree of our target tree is bounded
by a constant. This reduces our bound on the number
of plausible views at any vertex to

O(1) · (O(1))n · (δ∆)n = (O(∆))n,

as we assumed δ is a constant. At this point the
number of views, and therefore the running time of
our dynamic program, is still exponential in n. Note
however that up until the point we assumed the tree
degree was constant, our algorithm had actually been
exact. Thus we can now take advantage of the extra

slack of moving to an approximation, to drastically
improve the running time.

Hierarchical nets. To reduce the above run-
ning time we have no choice but to make the views
more concise. To that end, for each point x ∈ X, we
choose a subset Ix ⊆ X, and include branch/distance
information only for the points of Ix (instead of all
of X) in any view at x. We say a vertex y is visible
from x if y ∈ Ix. We now argue that if one selects
the visible vertices for each view carefully, then only a
logarithmic number is sufficient to guarantee that the
resulting assembled tree of plausible views has O(δ)
distortion.6

Now lets figure out how to construct Ix. This
subset of X will still somehow need to approximately
capture the distance information from all y /∈ Ix to x.
Suppose that for any y /∈ Ix, we guarantee that there
is some z ∈ Ix such that dX(y, z) ≤ dX(x, y)/c for
some constant c > 1. Then in this case up to a con-
stant factor dX(x, z) ≈ dX(x, y), and so potentially
the information recorded for z can be used as a proxy
for that of y. (For example, if dX(y, z) ≤ dX(x, y)/2,
then by applying the triangle inequality (twice) we
have dX(x, z) ∈ [(1/2)dX(x, y), (3/2)dX(x, y)].) Ul-
timately, however, we need to approximate the dis-
tance from y to x in the tree, not in the input metric
space. Assuming that the x-z and y-z distances are
not contracted and expand by at most δ when going
from (X, dX) to the tree, then by simply changing
our requirement to dX(y, z) ≤ dX(x, y)/(cδ), we as-
sure only a constant factor distance error in the tree.
So how do we ensure that the x-z and y-z distances
are not contracted and expand by at most δ? Well,
since z is visible to x, the plausibility of our current
view at x ensures this for the x-z distance. For the
y-z distance we then should ensure z is also visible
from the view at y. In short, for any y /∈ Ix, we need
to guarantee there is a z ∈ Ix that is (i) sufficiently
close to y, and (ii) is visible from y. We now define
Ix sets which achieve this goal while being concise.

To construct the Ix we use r-nets, a standard
geometric tool, where an r-net is any subset of X
such that (i) pairs of net points are at least r apart
and (ii) every point in X has distance at most r
to its nearest net point. The above discussion then
implies that Ix should be constructed such that for
any y ∈ X it contains y’s nearest net point from an
r-net of X where (up to a constant) r = dX(x, y)/δ.
Now we want Ix to be small, so we cannot afford to
build a custom radius net for every possible distance

6 For our dynamic program to work, it is crucial these views
determine the branch information for all vertices. However, we

now focus only on preserving distances, as we can prove this
implies we can determine branches exactly.
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Figure 3: Left: hierarchical nets around x (net points
are red, x is blue), right: z is used to estimate the
distance to y in x’s view.

to x. Thus instead we bin distance by factors of
δ. Specifically, we construct a set of nested nets:
X = X≥0 ⊇ X≥1 ⊇ . . . ⊇ X≥logδ ∆, where X≥s is
a δs-net. (Note δlogδ ∆ = ∆ is the largest radius
we need to consider as ∆ is the largest distance in
(X, dX). Also, such a nested set of nets can be
easily computed with the standard greedy k-center
algorithm.) So consider any y ∈ X, where dX(y, x)
lies somewhere in the interval [δs+1, δs+2], for some
integer s. Then Ix should be constructed so that it
includes y’s nearest net point inX≥s (as dX(y, x) may
be as small as δs+1). All points whose distance to x
lie in this range are contained in the ball B(x, δs+2),
and hence their nearest X≥s net points are contained
in B(x, 2δs+2). Thus in general Ix is constructed
by including all net points from X≥s contained in
B(x, 2δs+2), for all values of s. Intuitively, Ix is thus
a net of points whose density exponentially decreases
with respect to the distance from x (see Figure 3).

Construct the Ix sets as described above for all
x ∈ X. Now fix some Ix, and for any y /∈ Ix,
consider its nearest neighbor in all different scale nets.
Specifically, let zs be the nearest neighbor of y in
X≥s. By construction all these nearest neighbors are
visible from y (i.e. are in Iy). Let t be the smallest
index such that zt is also visible from x. (Note t
is well defined as the points in X≥logδ ∆ are visible
to everyone.) It can be shown that for this choice
of zt (in particular, because zt−1 is not visible from
x), that zt is sufficiently close to y (relative to the
distance to x), and thus zt is the point we sought
above (visible to both x and y and) which guarantees
our desired properties.

The only question that remains, is how big is Ix?
SinceX is doubling and δ is a constant, there areO(1)
points from X≥s inside each ball B(x, 2δs+2). (This
follows from Lemma 2.1 and the packing property of
nets, i.e. property (i) above.) Therefore, the total
size of Ix is bounded by O(logδ ∆), the number of
concentric balls. (Note that logδ ∆ = O(log ∆) if
δ > 2, which we can assume as a constant factor
approximation suffices for the overview.) With these

conciser views, the number of plausible views per
vertex goes down to

(O(∆))O(log ∆) = ∆O(log ∆),

which readily implies an algorithm whose running is
polynomial in n and quasi-polynomial in ∆.

Anchors and mile markers. We managed to
reduce the number of visible vertices in each view
to O(log ∆), thus obtaining an algorithm with quasi-
polynomial dependence on the spread. Getting a
polynomial dependence on the spread by reducing the
number of visible vertices in each view to a constant
seems impossible. Thus alternatively, we now seek to
improve this dependence by storing less information
about the distances to each visible vertex.

At first blush, the solution may seem obvious.
Just record distances approximately rather than ex-
actly, since our solution is already approximate be-
cause instead of mapping each point we only mapped
its closest net point at an appropriate scale. Specif-
ically, if a view Vx is mapping a scale s net point y,
then record the distance from x to y in the image up
to a factor of roughly δs. This approach however has
a fatal flaw, as deciding whether views can stitch to-
gether becomes ambiguous, especially over relatively
short edges. Suppose the view at x claims the dis-
tance to y in the tree is in between 10δs and 11δs. As
we walk from x to y in the tree, at some point our esti-
mate of the distance to y in the current view will have
to be decreased (otherwise we never reach y). The is-
sue is that in our dynamic program as we stitch views,
since we don’t actually know the tree structure, there
is no way to know when this update should happen.
Specifically, our dynamic program must try both long
and short edges on this path. If it tries an edge that is
longer than δs, well then it knows the estimate must
be decreased at the next view. However, if the next
edge is much smaller than δs then knowing whether
to update or not means knowing where in the range
[10δs, 11δs] the distance to y lies, i.e. we are back
to needing to know the distance exactly. In other
words, if we walk down a long path with short edges,
the views across each edge look consistent, but by the
time we reach y something will have gone wrong.

To resolve this issue, rather than recording the
exact distance to the image of each net point, instead
we fix an arbitrary vertex a ∈ X, called the anchor,
and for any given view Vx centered at a vertex x we
only record the distance from x to a exactly. Note
that to check if two views across a given edge in the
tree are consistent with respect to the anchor, we
just verify that their claimed distances from the view
centers to the anchor differ by exactly the length of
the edge. (Note whether the distance should go up

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2387



a

Figure 4: Anchor (yellow square), beacon rings (blue
circles), and x-to-y mile marks (red triangles).

or down, depends on whether we are walking towards
or away from the anchor, and hence we also record
the branch of the anchor.)

Now consider a tree T , and for a given integer
s ≤ logδ ∆, imagine placing a set of concentric rings
around the anchor a, with radii iδs for all integers
i ≥ 0 (see Figure 4). Call these beacon rings of
scale s and consider the locations where these rings
cross T . For any vertices x, y we define their scale s
approximate distance to be the number scale s beacon
rings on the unique x, y-path in T . As a simple
analogy, when driving from point A to point B on the
highway, if one records the number of mile markers
that get passed, then one will know the distance
from A to B, at the resolution of a mile. Of course,
our algorithm does not know T a priori, but when
stitching together two views Vx and Vy, the number
of rings that cross the resulting edge (x, y) can be
computed from the exact distance of x and y to the
anchor (without knowing T ). Thus, we can achieve
an approximate version of our stitching definition.

In a view Vx at x, we therefore register the exact
distance to the anchor point, and for each visible
scale s net point we register its distance from x with
only δs accuracy (by recording the number of beacon
ring crossings of scale s on its path from x). Since
any visible scale s net point has distance O(δs+2)
from x, as δ is a constant, there are O(1) choices for
its distance estimate from x. As there are O(log ∆)
visible points from x, there are (O(1))O(log ∆) choices
for the branch/distance information of all visible
points from x. Moreover, there are O(∆) choices for
the branch/distance of the anchor point, and O(1)
choices for the degree of x. Overall, the number of
plausible views at vertex s is bounded by,

(O(1))O(log ∆) ·O(∆) ·O(1) = O(poly(∆)).

Recall that ultimately we list the set of all pos-
sible plausible views at each of the n vertices in
X, and then run a dynamic programming algorithm
whose running time is polynomial in the total num-
ber of views. Thus, overall our running time is

O(poly(n∆)).
Techniques of this paper. The idea of enu-

merating selected pieces of information about the em-
bedding and combining these pieces using dynamic
programming over an amenable structure such as
a tree or line, has a long tradition in the embed-
ding community. See for example [KRS04,BDG+05,
FFL+13,NR15,NR17], which includes previous works
by the authors. However, which pieces of information
to consider and how to apply the dynamic program-
ming is problem specific, and is what distinguishes
these result from one another. Thus it is important
to note that while for consistency we adopt the ter-
minology of “views” previously used by the authors
in [NR15, NR17], the information contained in these
views differs substantially. Moreover, the main idea
of defining approximate distance relative to anchor
points is new, and has the potential for future appli-
cations (as well as potentially improving/simplifying
previous results). Additionally, in these listed pre-
vious works the target structure (a tree or line) was
known and fixed (though which points map to which
vertices was not), and so the dynamic programming
was more natural. Interestingly in our case, as the
tree structure is not fixed in advance, our dynamic
programming is not done over the tree, though still
manages to compute it in the end.

4 Bijective embedding into trees

In this section, we consider the problem of embedding
a metric space (X, dX), with doubling dimension λ
and spread ∆ into a weighted tree T = (X,ET , wT )
with vertex set X (i.e. defining a bijection), and max-
imum degree deg. We use δopt(X, deg) to denote the
minimum achievable distortion of such an embedding.
We show a (1+ε)-approximation algorithm for finding
this optimal embedding (Theorem 4.1). Theorem 1.1
is then immediately implied from Theorem 4.1 and
Corollary 5.1.

4.1 Setup During this section assume that the
smallest distance in X is one, so the largest distance
is ∆. This can be ensured by scaling X. Let
δ ≥ δopt(X, deg), and let a be an arbitrary fixed point
of X, called the anchor. Let {x0} = X≥S+1 ⊆
X≥S ⊆ . . . ⊆ X≥0 = X, where X≥s is a maximal
subset of points with mutual distances at least δs,
S = dlogδ(∆)e, and x0 ∈ X is an arbitrary point. For
technical reasons we extend these sets to be defined
for negative values of s, where X≥s = X for any
negative value s. A point x ∈ X is called a scale
s point if X≥s is the sparsest net in the sequence
that contains x. The scale s nearest neighbor of
a point x ∈ X is denoted by nns(x), and is defined
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to be the closest point of X≥s to x. Note that by the
maximality of X≥s, we have that dX(x, nns(x)) < δs.
Therefore, for example, nns(x) = x for all x ∈ X and
for any s ≤ 0.

We build a tree into which X can be embedded
with nearly optimal distortion in this section. Part
of the process is to find the edge weights of this tree.
The following lemma limits the range of the search
space for the weight values, while ensuring a bounded
approximation factor.

Lemma 4.1. Let G = (V,E,w) be a graph with
minimum edge weight one, and let dG be the shortest
path metric of G. For any 0 < σ ≤ 1, G can
be embedded to a graph G′ = (V,E,w′) whose edge
weights are multiples of σ with distortion ≤ 1 + σ.

Proof. Let G′ = (V,E,w′) be the graph obtained
from G by setting the weight of each edge e to w′(e) =
dw(e)/σe ·σ. We bound the distortion of the identity
map from (V, dG) to (V, dG′). Since w′(e) ≥ w(e)
the map is non-contracting. Furthermore, for each
e = (x, y) ∈ E, we have

w′(e) ≤ w(e)+σ ≤ w(e)

(
1 +

σ

w(e)

)
≤ w(e) (1 + σ) ,

as w(e) is at least one. Hence, by Lemma 2.2, the
distortion is at most 1 + σ.

4.2 Views The key building blocks used in our
algorithm are views, which are collections of relevant
information about what the embedding looks like
around the images of points in X. This information
is limited in scope so that it can be guessed by
our algorithm. Specifically the view at a vertex x
(‘vertex’ signifying it is the image of the ‘point’ x),
specifies the degree of the image of x, the location
of the anchor vertex relative to the image of x, and
approximate relative locations of the images of all
scale s points that are at distance O(δs+2) from x in
the preimage. To describe the location of the anchor
vertex we specify the branch (edge) adjacent to vertex
x which leads to the anchor as well as the exact
distance to the anchor. Similarly, for each vertex y
which is the image of one of these scale s points, we
specify the branch, but rather than specifying the
distance to y exactly we just record the number of
beacon ring crossings (as described in the overview)
of the x-to-y path in the image.

Formally,Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S)

is a view at x ∈ X with parameters (deg, σ, c, δ)
where each component is defined as follows.

(1) An integer, degx ∈ {1, 2, . . . , deg}.
(2) (a) Abx ∈ {1, 2, . . . ,degx} ∪ {null}.

(b) Adx ∈ {0, σ, 2σ, . . . , bδ∆/σc · σ}.
(3) For each L ≤ s ≤ S

(a) bsx : X≥s ∩ B(x, c · δs+2) → {1, . . . , degx} ∪
{null}.

(b) rsx : X≥s∩B(x, c ·δs+2)→ {0, 1, . . . , bcδ3c}.
In the definition above we set L = b−(logδ c+ 3)c, as
the minimum distance inX is one, and soB(x, c·δs) is
empty for s ≤ L. Throughout the text c is considered
to be a sufficiently large value, which will be specified
later, and intuitively acts as a dial controlling the
approximation quality of the embedding. Whenever,
it is clear from the context, we drop the specification
of the parameters to simplify the explanation. We
say that a point y is visible under Vx at scale s, if it
is in the domain of bsx and rsx. We say that a point y
is visible under Vx if there exists an L ≤ s ≤ S such
that y is is visible under Vx at scale s.

The first step of our algorithm is to list the set
of possible views at every point of X. The following
lemma bounds the number of such views.

Lemma 4.2. There are at most

1

σ
· (c∆)O(logδ(c·deg))(2cδ2)λ

different views at any x ∈ X. Moreover, a list of
these views can be constructed in time linear in the
list size.

Proof. We enumerate all possibilities for a view Vx =
(degx, (A

b
x, A

d
x), {(bsx, rsx)}L≤s≤S) at x. For the first

parameter degx in the tuple, there are at most deg
possibilities. For (Abx, A

d
x) there are at most (deg +

1)(δ∆/σ + 1) possibilities.
So what remains is to bound the possibilities

for the bsx and rsx functions. For each point y ∈
X≥s ∩ B(x, c · δs+2) and for each scale L ≤ s ≤ S,
there are at most deg+1 possibilities for bsx(y), and at
most cδ3 + 1 possibilities for rsx(y). By Lemma 2.1,
there are at most (2cδs+2/δs)λ = (2cδ2)λ points in
X≥s ∩ B(x, c · δs+2). Therefore, for any L ≤ s ≤ S,

there are at most ((deg+ 1) · (cδ3 + 1))(2cδ2)λ number
of choices for bsx and rsx.

There are S − L + 1 scales overall, so the total
number of views at x is at most:

deg · (deg + 1) · (δ∆/σ + 1) ·(
((deg + 1)(cδ3 + 1))(2cδ2)λ

)dlogδ(∆)e−b−(logδ c+3)c+1

=
∆

σ

(
(deg · cδ)O(logδ(c∆))(2cδ2)λ

)
=

∆

σ

(
δO(logδ(c·deg) logδ(c∆))(2cδ2)λ

)
=

1

σ
(c∆)O(logδ(c·deg))(2cδ2)λ .
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Feasibility/Plausibility. From a list of views
generated by Lemma 4.2, we would like to only
keep the views that can be completed into feasible
trees on X, that is trees that define non-contracting
embeddings of expansion at most δ. To formally
describe our desired properties for such views, we
define restriction of embeddings, and extensions of
views as follows.

Let T = (X,ET , wT ) be a tree, and let x ∈ X.
We define the restricted view of T around x to
be the view Vx = (degx, (A

b
x, A

d
x), {(bsx, rsx)}L≤s≤S)

specified as follows.

(1) degx = degT (x), where degT (x) denotes the
degree of x in T .

(2) Adx = bdT (a, x)/σc · σ.

(3) Fix a global ordering on the edges of T , and let
` : adj(x) → {1, . . . ,degx} be the bijection that
(for every 1 ≤ i ≤ degx) assigns the ith element
of adj(x) to i. We have:

(a) If x = a then Abx = null, otherwise Abx =
`(e), where e is the first edge of the x-to-a
path in T .

(b) For each L ≤ s ≤ S and y ∈ X≥s ∩
B(x, cδs+2),

(i) If x = y then bsx(y) = null, otherwise
bsx(y) = `(e), where e is the first edge
of the x-to-y path in T .

(ii) rsx(y) = bdT (x, a)/δsc + bdT (y, a)/δsc
- 2bdT (u, a)/δsc, where u is the vertex
in T that is closest to a on the path
from x to y, i.e. u is the lowest common
ancestor of x and y if the root is a.
(Roughly speaking, up to the δs factors
this is the distance between x and y as
dT (x, u) + dT (y, u) = dT (x, y))

Note that the restricted view of T around x is
uniquely defined for fixed values of a, deg, δ, c, and
σ. If Vx is the restricted view of T around x, we
say that T is an extension of Vx. Note that a view
can possibly be extended to several different trees.
A view is called feasible if it can be extended to a
feasible tree. Such an extension is called a feasible
extension of the view.

Ideally, we would like to be able to disregard
all non-feasible views from the lists computed by
Lemma 4.2. However, it seems impossible to de-
termine feasibility by merely examining a view in
isolation from other views. Fortunately, the follow-
ing weaker condition on views, which can be tested
quickly, suffices for our algorithm. We say that a

view Vx is plausible if for any L ≤ s ≤ S and any
y ∈ Dom(rsx), we have

dX(x, y)− 2δs ≤ rsx(y) · δs ≤ δdX(x, y) + 2δs.

Note radii of successive beacon rings differ by δs,
and hence the need for the additive factor of 2δs,
as this is longest a shortest path can be without
crossing a beacon ring. Moreover, observe that at
a sufficiently small scale the additive error in the
above definition will become a multiplicative one.
Intuitively a view is plausible if non-feasibility of the
view cannot be concluded by examining it in isolation
from other views. The following lemma ensures that
the plausibility of a view can be checked efficiently.

Lemma 4.3. There is an O((2cδ2)λ · logδ(c∆)) time
algorithm to check the plausibility of a view.

Proof. Let Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S) be

a view at x ∈ X. For each L ≤ s ≤ S, we have
|Dom(rsx)| ≤ (2cδ2)λ (by Lemma 2.1). For each
element in Dom(rsx) the plausibility condition can
be checked in constant time. Therefore, the total
running time for checking plausibility is O((2cδ2)λ ·
(S − L)) = O((2cδ2)λ · logδ(c∆)).

The partition function. Although a view pro-
vides information only about the images of a rela-
tively small subset of X, more can be deduced from
it. Specifically, a view Vx at x uniquely determines
the connected components of T\{x} for every feasible
extension T of Vx (if any exists). Note that a priori
it is not even clear that these connected components
must be the same in different feasible extensions of
Vx.

Lemma 4.4. Let

Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S)

be any view at x ∈ X. There is an algorithm to
compute a partition P of X\{x} in O(n logδ(c∆))
time with the following property.
• For every feasible extension T of Vx, and any
y, z ∈ X\{x}, y and z belong the the same
connected component of T\{x} if and only if y
and z belong to the same set of P .

Proof. Let y ∈ X, and let s be the smallest scale such
that bsx and rsx act on nns(y), where s is well defined
as bSx acts on all X≥S . We show that y and nns(y)
must belong to the same connected component of
T\{x} in any feasible extension T of Vx. Note that
since bsx acts on nns(y), the connected component
containing nns(y) is specified by Vx, and so the
lemma statement will then follow.
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By the definition of nns(y) and the feasibility of
T , we have:

dX(y, nns(y)) ≤ δs ⇒ dT (y, nns(y)) ≤ δs+1.

Suppose, to derive a contradiction, that y and nns(y)
belong to different connected components of T\{x}.
That is, the path from y to nns(y) in T contains x.
Consequently,

dT (x, y) ≤ dT (y, nns(y)) ≤ δs+1.

As T is feasible, it defines a non-contracting embed-
ding. It follows that dX(x, y) ≤ δs+1. So, by the
triangle inequality, we have:

dX(x, nns−1(y)) ≤ dX(x, y) + dX(y, nns−1(y))

≤ δs+1 + δs−1 ≤ 2δs+1.

Therefore, bs−1
x must act on nns−1(y) (assuming c ≥

2), which is a contradiction with the assumption that
s is the smallest scale for which bsx acts on nns(y).

4.3 Consistency of views Ultimately we wish to
stitch together plausible views at different vertices to
yield a feasible tree. To this end, in order to stitch
together views they must have consistent descriptions
of that tree. As a first step, we define when two
plausible views can be stitched together over an edge.

Let x, y ∈ X. Let

Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S)

and

Vy = (degy, (A
b
y, A

d
y), {(bsy, rsy)}L≤s≤S)

be plausible views at x and y, respectively. Let
i ∈ {1, 2, . . . ,degx}, and j ∈ {1, 2, . . . ,degy}. We
say that Vx and Vy can be stitched together over
(i, j) if the following consistency conditions hold.

(1) Either Abx = i or Aby = j, but not both.

(2) For each L ≤ s ≤ S, and each z ∈ Dom(bsx) ∩
Dom(bsy) one of the following conditions hold

(a) Either bsx(z) = i or bsy(z) = j, but not both.

(b1) If bsx(z) = i and Abx 6= i then
rsx(z)− rsy(z) = bAdy/δsc − bAdx/δsc.

(b2) If bsx(z) = i and Abx = i then
rsx(z)− rsy(z) = bAdx/δsc − bAdy/δsc.

(b3) If bsx(z) 6= i and Abx = i then
rsy(z)− rsx(z) = bAdx/δsc − bAdy/δsc.

(b4) If bsx(z) 6= i and Abx 6= i then
rsy(z)− rsx(z) = bAdy/δsc − bAdx/δsc.

(b1) (b2)

(b3) (b4)

Figure 5: Consistency conditions (2)-(b1) to (2)-(b4).

The following lemma gives an algorithm to check
consistency conditions for given Vx, Vy, i, and j.

Lemma 4.5. Let

Vx = (degx, (A
b
x, A

d
x), {(bsx, rsx)}L≤s≤S)

and

Vy = (degy, (A
b
y, A

d
y), {(bsy, rsy)}L≤s≤S)

be plausible views at x and y, respectively. Let i ∈
{1, 2, . . . ,degx}, and j ∈ {1, 2, . . . ,degy}. There is

an O((2cδ2)2λ · logδ(c∆)) time algorithm to check if
Vx and Vy can be stitched together over (i, j).

Proof. Condition (1) can be checked in O(1) time.
For each L ≤ s ≤ S, we have |Dom(bsx)| ≤ (2cδ2)λ

and |Dom(bsy)| ≤ (2cδ2)λ. Therefore, their intersec-

tion can be computed in O((2cδ2)2λ) time. For each
element in the intersection, conditions (a) and (b1)
through (b4) can be checked in constant time. There-
fore, the total running time for checking condition (2)
is O((2cδ2)2λ · (S − L)) = O((2cδ2)2λ · logδ(c∆)).

Consistent set of views. The images of two
points x, y ∈ X can be adjacent in an optimal tree
only if there are plausible views at each of them that
can be stitched together. By stitching together pairs
of plausible views one at a time, our algorithm builds
a tree T over X, and an accompanying collection
of views for each vertex in X that can be stitched
together over the edges of T . We call such a collection
a consistent set over T , and formally define it as
follows.

Let V be a set of plausible views, one at each
vertex of X, and let T = (X,ET , wT ) be a tree. We
say that V is a consistent set of views over T if
there are bijections `x : adj(x)→ {1, 2, . . . ,degx} for
all x ∈ X with the following properties.

(1) For each e = (x, y) ∈ ET and the corresponding
views Vx, Vy ∈ V, we have that Vx and Vy
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are consistent over (`x(e), `y(e)), and wT (e) =
|Adx −Ady|.

(2) For each x and its corresponding view Vx =
(degx, (A

b
x, A

d
x), {(bsx, rsx)}L≤s≤S), the following

three conditions are equivalent (i) Abx = null,
(ii) Adx = 0, and (iii) x = a.

4.4 A consistent set is all we need Ultimately
our algorithm will attempt to grow a nearly optimal
tree from the anchor a using dynamic programming.
The space of possible trees over X is far too large
to be explored. Thus additionally we guess a view
at each vertex as we go, as this will severely limit
the possibilities for the subtrees. To this end, in
this section we show that limiting to the space of
trees with such views is valid. That is, if any set
of views with parameters (deg, σ, c, δ) are consistent
over a tree T then it implies the distortion of the
embedding defined by T is close to δ (how close
depends on c and σ, and is specified below). Thus
any set of consistent views will suffice. Moreover,
we first show, by considering the restriction of any
feasible embedding, that at least one consistent set
must exist.

Lemma 4.6. Let (X, dX) be a metric space, and let
δopt = δopt(X, deg) be the optimal distortion for
embedding X into a tree of max degree at most deg.
For any 0 < σ ≤ 1 and any c ≥ 1, there exists a set
of plausible views V with parameters (deg, σ, c, (1 +
σ)δopt), and a tree T = (X,ET , wT ) of maximum
degree deg such that V is consistent over T .

Proof. Let T ′ = (X,ET ′ , wT ′) be a tree, into which X
can be embedded with distortion δopt. By Lemma 4.1,
there is a tree T = (X,ET , wT ) whose edge weights
are multiples of σ, into which T ′ can be embedded
with distortion 1+σ. Therefore, X can be embedded
into T with distortion (1 + σ) · δopt. Suppose after
relabeling the vertices of T that the identity map
from (X, dX) to (X, dT ) has distortion (1 + σ) · δopt.
For each x ∈ X, let Vx be the restricted view of this
identity map at x in T with parameters deg, σ, c, and
δ = (1 + σ) · δopt. Let V =

⋃
x∈X Vx. We show that

V is a set of consistent views over T .
First, for any x, we show that Vx is plausible. By

the definition of restriction we have:

rsx(y) = bdT (x, a)/δsc+bdT (y, a)/δsc−2bdT (u, a)/δsc,

where u is the closest vertex to a on the x-to-y path.

Removing the floors we obtain:

dT (x, a) + dT (y, a)− 2dT (u, a)

δs
− 2

≤ rsx(y) ≤ dT (x, a) + dT (y, a)− 2dT (u, a)

δs
+ 2

The definition of u implies dT (x, y) = dT (x, a) +
dT (y, a)− 2dT (u, a), therefore, we obtain:

dT (x, y)− 2δs ≤ rsx(y) · δs ≤ dT (x, y) + 2δs.

Since the embedding into T is feasible, i.e. non-
contracting with expansion at most δ, we conclude

dX(x, y)− 2δs ≤ rsx(y) · δs ≤ δdX(x, y) + 2δs.

Next, we show the mutual consistency between
these sets of restricted views. Let x, y ∈ X, and
let Vx = (degx, (A

b
x, A

d
x), {(bsx, rsx)}L≤s≤S) and Vy =

(degy, (A
b
y, A

d
y), {(bsy, rsy)}L≤s≤S) be restricted views

of the identity map around x and y in T , respectively.
Also, let `x and `y be the labeling functions induced
by the restrictions to x and y. Suppose, e = (x, y) ∈
ET . We show that Vx and Vy can be stitched together
over `x(e) and `y(e) with weight wT (e). Condition (1)
and (2-a) of consistency are implied by the restriction
definition, items (3-a) and (3-b-i). It remains to show
that conditions (2-b1) through (2-b4) hold. For any
L ≤ s ≤ S and any z ∈ Dom(bsx)∩Dom(bsy), we have

rsx(z) = bdT (x, a)/δsc+bdT (z, a)/δsc−2bdT (ux,z, a)/δsc

and

rsy(z) = bdT (y, a)/δsc+bdT (z, a)/δsc−2bdT (uy,z, a)/δsc

where ux,z is the closest vertex of the x-to-z path to
a, and uy,z is the closest vertex of the y-to-z path
to a. We consider conditions (2-b1) through (2-b4)
(looking at Figure 5 while reading the following cases
may help the reader). Let i = `x(e) for the following
case analysis.

Case (2-b1) or (2-b3): We have bsx(z) = i and Abx 6=
i, or, bsx(z) 6= i and Abx = i. In both cases, we have
ux,z = x and uy,z = y. Therefore,

rsx(z)− rsy(z) = bdT (y, a)/δsc − bdT (x, a)/δsc
= bAdy/δsc − bAdx/δsc.

Case (2-b2) or (2-b4): we have bsx(z) = i and Abx = i,
or, bsx(z) 6= i and Abx 6= i. In both cases, it is
implied that ux,z = uy,z. Therefore,

rsx(z)− rsy(z) = bdT (x, a)/δsc − bdT (y, a)/δsc
= bAdx/δsc − bAdy/δsc.
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In both cases, the last equality holds because weights
of T are integer multiples of σ.

Next, we show that a consistent set over a tree
guarantees near optimal distortion. To that end, we
need a few definitions and helper lemmas.

Let T = (X,ET , wT ) be a tree, and let γ =
(v1, . . . , vk) be a path in T . We say that γ is
approaching if dT (v1, a) ≥ dT (v2, a) ≥ . . . ≥
dT (vk, a). We say that γ is departing if dT (v1, a) ≤
dT (v2, a) ≤ . . . ≤ dT (vk, a). Finally, we say that
γ is monotone if it is approaching or departing.
Note that any (simple) path γ can be decomposed
into γ− ◦ γ+, such that γ− is approaching and γ+ is
departing. We show that very accurate information
can be deduced from the views of two vertices x and
y if the path between them in T is approaching or
departing.

Lemma 4.7. Let V be a consistent set of views over
T = (X,ET , wT ). Let x, y ∈ X, and let Vx and Vy
be the views at x and y, respectively. Finally, let γ
be the unique x-to-y path in T . If γ is approaching
then dT (x, y) = Adx − Ady, and if γ is departing then

dT (x, y) = Ady −Adx.

Proof. Let γ = (x = v1, . . . , vk = y). Suppose γ
is approaching, the other case is similar. We use
induction on k to prove the statement. If k = 1 then
x = y, and the statement trivially holds. If k > 1,
let t = vk−1, and let Vt ∈ V be the view at t. By the
induction hypothesis, dT (x, t) = Adx − Adt . Since γ is
approaching, Abt points to the edge (t, y), and thus
since Vt and Vy are consistent over the edge (t, y)
in T , we have that dT (t, y) = wT (t, y) = Adt − Ady.
Overall,

dT (x, y) = dT (x, t) + wT (t, y)

= (Adx −Adt ) + (Adt −Ady) = Adx −Ady

Lemma 4.8. Let V be a consistent set of views over
T = (X,ET , wT ). Let x, y, z ∈ X, and let Vx and
Vy be the views at x and y, respectively. Finally,
let γ be the unique x-to-y path in T . Suppose γ is
monotone and z is in the same connected component
with either x or y in T\(γ\{x, y}). If a and z belong
to the same connected component of T\(γ\{x, y})
then rsx(z)− rsy(z) = bAdx/δsc − bAdy/δsc. Otherwise,

rsx(z)− rsy(z) = bAdy/δsc − bAdx/δsc.

Proof. Let γ = (x = v1, . . . , vk = y) . We use
induction on k to prove the statement. If k = 1
then x = y, and the statement trivially holds. If
k > 1, let t = vk−1, and let Vt ∈ V be the view at
t. Note that in the lemma statement we assume that

z is in the connected component of either x or y in
T\(γ\{x, y}), and so z is in the connected component
of x or t in T\(γ[x, t]\{x, t}) First, consider the case
that a and z belong to the same connected component
of T\(γ\{x, y}). By the induction hypothesis,

(4.1) rsx(z)− rst (z) = bAdx/δsc − bAdt /δsc.

Since Vt and Vy are consistent over the edge (t, y) in
T , and Abt and bst (z) are the same, one of conditions
(2-b2) or (2-b4) holds. In either case,

rst (z)− rsy(z) = bAdt /δsc − bAdy/δsc.

Substituting in Equation (4.1) we obtain the lemma
statement.

Next, consider the case that a and z belong to
different connected components of T\(γ\{x, y}). By
the induction hypothesis,

(4.2) rsx(z)− rst (z) = bAdt /δsc − bAdx/δsc.

Since Vt and Vy are consistent over the edge (t, y) in
T , and Abt and bst (z) are different, one of conditions
(2-b1) or (2-b3) holds. In either case,

rst (z)− rsy(z) = bAdy/δsc − bAdt /δsc.

Substituting in Equation (4.2) we obtain the lemma
statement.

Next, we show that the distance estimators in the
views provide relatively accurate estimations for the
distance of visible vertices in T .

Lemma 4.9. Let V be a consistent set of views over
T = (X,ET , wT ). Let x, z ∈ X, Vx ∈ V be the view
at x, and L ≤ s ≤ S. If z is visible in Vx at scale s
then

dT (x, z)− 4δs ≤ rsx(z) · δs ≤ dT (x, z) + 4δs

Proof. Let γ = (x = v1, . . . , vk = z) be the unique x-
to-z path in T . As noted above, γ can be decomposed
into two subpaths γ− = (v1, . . . , vj = y), and γ+ =
(y = vj , vj+1, . . . , vk) such that γ− is approaching,
and γ+ is departing. Thus y is the closest point of γ
to the anchor point in T . By Lemma 4.7, we have

dT (x, y) = Adx −Ady, & dT (y, z) = Adz −Ady.

Therefore,

(4.3) dT (x, z) = Adz +Adx − 2Ady.

On the other hand, by Lemma 4.8 we know

rsx(z)− rsy(z) = bAdx/δsc − bAdy/δsc,
& rsy(z)− rsz(z) = bAdz/δsc − bAdy/δsc.
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Consequently,

(4.4) rsx(z)−rsz(z) = bAdx/δsc+bAdz/δsc−2bAdy/δsc.

To obtain the desired statement, we com-
bine Equations (4.3) and (4.4), while noting that
the definition of plausible views implies rsz(z) ∈
{−2,−1, 0, 1, 2} (as dX(z, z) = 0). First we show the
upper bound for rsx(z) · δs.

rsx(z)δs=bAdx/δscδs+bAdz/δscδs−2bAdy/δscδs+rsz(z)δ
s

≤ (Adx/δ
s)δs + (Adz/δ

s)δs − 2(Ady/δ
s − 1)δs + 2δs

= Adx +Adz − 2Ady + 2δs + 2δs

≤ dT (x, z) + 4δs.

Next, we show the lower bound for rsx(z) · δs.

rsx(z)δs=bAdx/δscδs+bAdz/δscδs−2bAdy/δscδs+rsz(z)δ
s

≥ (Adx/δ
s−1)δs+(Adz/δ

s−1)δs−2(Ady/δ
s)δs−2δs

= Adx − δs +Adz − δs − 2Ady − 2δs

≥ dT (x, z)− 4δs

Now, we are ready to bound the distortion of dis-
tances on T . First, we show that this distortion is
bounded for a pair of vertices if one is visible under
the view at the other one.

Lemma 4.10. Let V be consistent set of views over
T = (X,ET , wT ), let x, z ∈ X, and let Vx ∈ V be the
view at x. If z is visible in Vx then(

1− 6

c

)
·dX(x, z) ≤ dT (x, z) ≤

(
1 +

6

c

)
·δ·dX(x, z).

Proof. Note that if x = z the lemma statement
trivially holds, thus, assume otherwise. Let L ≤ s ≤
S be the smallest scale such that z is visible at scale s
in Vx. Since z is visible, and Vx is plausible, we have

dX(x, z)− 2δs ≤ rsx(z) · δs ≤ δdX(x, z) + 2δs.

Also, by Lemma 4.9,

dT (x, z)− 4δs ≤ rsx(z) · δs ≤ dT (x, z) + 4δs.

Consequently, we have,

(4.5) dX(x, z)− 6δs ≤ dT (x, z) ≤ δdX(x, z) + 6δs.

On the other hand, since z is not visible at scale s−1,
we have

cδs+1 < dX(x, z)⇒ δs ≤ dX(x, z)

c
.

Substituting in Equation (4.5) we obtain(
1− 6

c

)
· dX(x, z) ≤ dX(x, z)− 6 · δs ≤ dT (x, z)

≤ δdX(x, z) + 6 · δs ≤
(

1 +
6

c

)
· δ · dX(x, z).

Finally, we bound the distortion for any pair of
vertices, even if they are not visible under each other’s
views.

Lemma 4.11. Let V be a consistent set of views over
T = (X,ET , wT ), and let x, z ∈ X. We have,(

1− 14

c−1

)
dX(x, z)≤dT (x, z)≤

(
1 +

20

c−1

)
δdX(x, z).

Proof. Note that if x = z the lemma statement
trivially holds, thus, assume otherwise. Let s be the
smallest scale such that nns(z) is visible at Vx, where
s is well defined as bSx acts on all X≥S . First, we show
that dX(z, nns(z)) is small compared to dX(x, z). By
the definition of the scale nearest neighbors we have,

(4.6) dX(z, nns(z))≤ δs & dX(z, nns−1(z))≤ δs−1.

Since nns−1(z) is not visible at Vx we have,

dX(x, nns−1(z)) ≥ c · δs+1,

and therefore,

dX(x, z) ≥ dX(x, nns−1(z))− dX(z, nns−1(z))

≥ cδs+1 − δs−1 ≥ (c− 1)δs+1.

Combining with (4.6) we obtain,

dX(z, nns(z))

dX(x, z)
≤ δs

(c− 1)δs+1

⇒ dX(z, nns(z)) ≤
dX(x, z)

(c− 1)δ
.(4.7)

Now we use Inequality (4.7) and Lemma 4.10
to show bounds for the dT (x, z). By our as-
sumption nns(z) is visible in Vx. Furthermore, as
dX(z, nns(z)) ≤ δs, by the definition of nets, nns(z)
is visible in Vz. First, we show the upper bound.

dT (x, z) ≤ dT (x, nns(z)) + dT (nns(z), z)

≤
(

1 +
6

c

)
· δ · (dX(x, nns(z)) + dX(nns(z), z))

≤
(

1 +
6

c

)
· δ · (dX(x, z) + 2dX(nns(z), z))

≤
(

1 +
6

c

)
· δ ·

(
dX(x, z) +

2dX(x, z)

(c− 1)δ

)
≤
(

1 +
6

c

)
· δ ·

(
1 +

2

c− 1

)
· dX(x, z)

≤
(

1 +
20

c− 1

)
· δ · dX(x, z)
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The inequalities above follow by triangle inequality,
Lemma 4.10, triangle inequality, Inequality (4.7), and
since δ ≥ 1 in order. Next, we show the lower bound.

dT (x, z) ≥ dT (x, nns(z))− dT (nns(z), z)

≥ c− 6

c
· dX(x, nns(z))−

(c+ 6)δ

c
· dX(nns(z), z)

≥ c− 6

c
· (dX(x, z)− dX(z, nns(z)))

− (c+ 6)δ

c
· dX(nns(z), z)

≥ c− 6

c
· dX(x, z)−

(
(c+ 6)δ2

c
+
c− 6

c

)
· dX(x, z)

(c− 1)δ

≥
(

1− 14

c− 1

)
· dX(x, z)

The inequalities follow from Lemma 4.10, Inequality
(4.7) and the triangle inequality.

4.5 Dynamic programming In the previous sec-
tion we defined the notion of a consistent set V of
plausible views over the entire set X. This defini-
tion can be naturally extended to views over sub-
sets of X. Specifically, let Y ⊆ X, let x ∈ Y , let
V be a set of plausible views at the vertices of Y ,
and let T = (Y,ET , wT ) be a positively weighted
tree. We say that V is a consistent set over sub-
tree T with root x if there are bijections for each
y ∈ Y \ {x}, `y : adj(y)→ {1, . . . ,degy}, and a bijec-

tion `x : adj(x)→ {1, . . . ,degx}\{Abx}, such that:
(1) For each edge e = (u, v) ∈ ET and the corre-

sponding views Vu, Vv ∈ V, we have that Vu
and Vv are consistent over (`u(e), `v(e)), and
wT (e) = |Adu −Adv|.

(2) For any view Vu ∈ V, the following three
conditions are equivalent (i) Abu = null, (ii)
Adu = 0, and (iii) u = x = a.

Comparing with our previous definition of consis-
tency, observe that V is a consistent set over subtree
T with root a, if and only if V is a consistent set over
tree T .

Lemma 4.12. Let X be an n-point metric space, with
doubling dimension λ, and spread ∆. For any δ > 0,
ε > 0, and deg > 0 there is a

n2 ·
(

∆

ε

)logδ(deg/ε)(O(δ2/ε))λ

time algorithm to compute a (1 + ε)δ distortion
embedding of X into a tree T of maximum degree
deg if δ ≥ δopt(X, deg). If δ < δopt(X, deg), this
algorithm either computes an embedding of distortion
(1 + ε)δ or (correctly) decides that δ < δopt(X, deg).

Proof. First suppose that δ ≥ δopt(X, deg).
Lemma 4.6 then guarantees the existence of a set
of views, one for each x ∈ X, with parameters
(deg, σ, c, (1 +σ)δ) that are consistent over some tree
T . (Since if there is (deg, σ, c, (1 + σ)δopt) set of con-
sistent views then there is a (deg, σ, c, (1 + σ)δ) set
of consistent views). Moreover, Lemma 4.11 implies
that if there is a consistent set of views over some T
with parameters (deg, σ, c, (1+σ)δ) then T defines an
embedding with distortion at most((

1 +
20

c− 1

)/(
1− 14

c− 1

))
· (1 + σ) · δ

≤
(

1 +
20

c− 1

)
·
(

1 +
28

c− 1

)
· (1 + σ) · δ

=

(
1 +

20

c− 1
+

28

c− 1
+

560

(c− 1)2

)
· (1 + σ) · δ

≤
(

1 +
608

c− 1

)
· (1 + σ) · δ,

which is at most (1 + ε)δ for c = 3×608
ε + 1 and

σ = ε/3.7 So set c and σ to these values and
let δ′ = (1 + σ)δ. Then the above two statements
combined imply that to prove the lemma, it suffices
to give an algorithm which finds any consistent set of
views (over some tree) with parameters (deg, σ, c, δ′),
if one exists, and otherwise returns δ < δopt(X, deg).
We now describe a recursive algorithm which we then
memoize to compute such a set of views.

Consider any collection V of views, with exactly
one view Vx for each x ∈ X, with parameters
(deg, σ, c, δ′). Given a weighted tree T on vertex
set X, we first consider the simpler task of checking
whether V is consistent over T . As discussed above,
this is equivalent to saying that V is consistent over
subtree T with root a. Let Ta = T and Va = V,
and for any x 6= a in X, let Tx denote the subtree
rooted at x and not containing a, and similarly let
Vx be the subset of views over the vertices in this
subtree. Also, let adj′(x) denote all neighbors of x
other than the one on the path to a, that is adj′(x)
are the neighbors of x in Tx (note adj′(x) = adj(x) if
x = a). Observe that for any x ∈ X, Vx is a consistent
set of views over subtree Tx with root x if and only if
for every y ∈ adj′(x) (1) Vy is a consistent set of views
over subtree Ty with root y, and (2) Vx and Vy are
consistent over e = (x, y) with wTx(x, y) = |Adx−Ady|.
Note that this is a recursive statement. Thus to
check consistency of Vx over Tx, condition (1) can
be checked by recursion, where the base case is when

7Note that c can be made significantly smaller, however,
in this paper to keep the calculations readable we are not

optimizing constants.
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adj′(x) = ∅, and condition (2) can be checked by the
algorithm of Lemma 4.5. To check if the full set V is
consistent over T , we apply this recursive algorithm
with x = a.

This immediately implies a recursive algorithm
for the harder problem of determining whether there
exists any such collection of views V consistent over
some tree T . Namely, consider all possible views
with parameters (deg, σ, c, δ′) that are centered at
the anchor a. For each such view Va, we recursively
determine if there is a collection of views containing
Va, which is consistent over a subtree T with root
a. To do so consider all possible partitions of X \ {a}
into dega subsets (i.e. subtrees). Then for each subset
Z in a given partition we try all possible views over
all members in Z as the root view, and for each such
view Vx, if the view is consistent with Va over the
edge (a, x) (note the weight of the edge will then
be |Ada − Adx|), we then recursively check whether
there is a collection of views over Z containing Vx,
which is consistent over any subtree TZ with root
x. The correctness of this approach is apparent
from the discussion above, however, the running
time is exponential. Specifically, Lemma 4.2 bounds
the number of possible views we must consider, but
remembering the subsets and guessing how they are
partitioned takes exponential time. However, we can
now make use of Lemma 4.4, which states that for
any view Vx, one can compute the unique partition
P = {p1, . . . , pdegx} of X \ {x}, such that if there is
a feasible extension of Vx to an embedding defined
by a tree T , then the sets in P must be the sets of
vertices form each component of T \{x}. Thus if x is
a root with a view Vx over some subset Z then we can
assume Z = ∪i∈{1,2,...,degx}\{Abx} pi, and thus Z does
not need to be passed as a parameter to the recursive
problem. Moreover, rather than guessing all possible
partitions of Z in this subproblem, we just use the
partition P \ {pAbx}.

Each subproblem of this recursive procedure is
defined by a root x ∈ X and a view Vx. Thus we can
setup a dynamic programming table, index by (x, Vx)
pairs, and then fill the table using the above recursive
procedure and memoization.

For the running time, there are n choices for x,

and (1/σ)·(c∆)O(logδ′ (c·deg))(2c(δ′)2)λ choices for Vx by
Lemma 4.2. Thus, the size of the table is

n

σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ .

Since we use memoization, each table entry is filled
only once. For each table entry, we first compute
its partition, and then independently for each (non-
anchor) subset in the partition, and for each view Vz

at a member z in the subset we check if Vx and Vz are
consistent (which itself includes plausibility checks),
and if so check the table entry (z, Vz). Ignoring
the time spent in recursive calls, our algorithm thus
spends at most

O(n logδ′(c∆)) +
(
deg

n

σ
(c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

)
·O((2c(δ′)2)2λ · logδ′(c∆))

=
n

σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

time per table entry, where the first term is the time
it takes to compute the partition (Lemma 4.4), and
last part of the second term is the time to check for a
pair of views whether each is plausible and whether
they are consistent (Lemma 4.3 and Lemma 4.5).
Therefore, the total running time of the algorithms is(n

σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

)
·
(n
σ
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

)
=
n2

σ2
· (c∆)O(logδ′ (c·deg))(2c(δ′)2)λ

As discussed above, in order to obtain a 1 + ε
approximation, we had set c = O( 1

ε ), σ = O(ε),
and δ′ = (1 + σ)δ, and thus the running time of our
algorithms is

n2

ε2

(
∆

ε

)logδ(deg/ε)(O(δ2/ε))λ

= n2

(
∆

ε

)logδ(deg/ε)(O(δ2/ε))λ

Theorem 4.1. Let X be an n-point metric space,
with doubling dimension λ and spread ∆. For any
0 < ε < 1 and deg > 1, where δopt = δopt(X, deg),
there is an algorithm with running time

n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2opt/ε))
λ

to compute a (1 + ε)δopt distortion embedding of X
into a tree T of maximum degree deg.

Proof. Consider the set L = {δi = (1 + ε/2)i|1 ≤
i ≤ n∆}. Our algorithm calls the procedure of
Lemma 4.12 with ε = ε/3 and δ = δi, in increasing
order of δi, until it first successfully finds an embed-
ding. Note that since X always embeds into a path
with distortion at most n∆, our algorithm will always
find an embedding. To bound the distortion of the
computed embedding, let 1 ≤ j ≤ n∆ be such that
(1 + ε/2)j−1 ≤ δopt(X, deg) ≤ (1 + ε/2)j . Then the
procedure of Lemma 4.12 will return an embedding of
distortion at most (1 + ε/2)j · (1 + ε/3) if it is called
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with parameters δ = δj = (1 + ε/2)j and ε = ε/3.
Thus we get an embedding with distortion at most

(1+ε/2)j(1+ε/3) ≤ δopt(1+ε/2)(1+ε/3) ≤ δopt(1+ε).

It remains to bound the running time of our al-
gorithm. We call the procedure of Lemma 4.12
O(log1+ε/2(δopt)) times. The running time of each
of these procedure calls is bounded by

n2 ·
(

∆

ε

)logδ(deg/ε)(O(δ2/ε))λ

=

n2 ·
(

∆

ε

)log1+ε/2(3·deg/ε)(O(δ2/ε))λ

.(4.8)

We know via Taylor series expansion, that for 0 ≤
x ≤ 1, log(1 + x) ≥ x − x2/2 = (x/2)(2 − x) ≥ x/2.
Therefore since 0 < ε < 1,

log1+ε/2(3 · deg/ε) =
log(3 · deg/ε)
log(1 + ε/2)

≤ log(3 · deg/ε)
ε/2

= O

(
log(deg/ε)

ε

)
Substituting in (4.8) we find out that the running
time of each call is bounded by

n2 ·
(

∆

ε

)log1+ε/2(3·deg/ε)(O(δ2/ε))λ

= n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2/ε))λ

Thus the total running time is

O(log1+ε/2(δopt)) · n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2/ε))λ

= n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2opt/ε))
λ

Corollary 5.1 in the next section shows that any
tree with doubling dimensions λ can be embedded
with (1 + ε) distortion into a tree with maximum de-
gree (O(1/ε))λ. Thus the above lemma statement
can be strengthened to remove the degree assump-
tion, yielding Theorem 1.1.

Proof. [Proof of Theorem 1.1] By Corollary 5.1, for
any ε > 0 there is a tree T = (X,ET , wT ) that defines
an embedding of distortion at most (1 + ε)δopt(X)
and that has maximum degree O((1/ε)λ). Therefore,
Theorem 4.1 gives a (1 + ε) approximation algorithm
by setting deg to O((1/ε)λ) and ε = ε/3. The running

time of the algorithm is

n2

(
∆

ε

)λ log(1/ε)(1/ε)(O(δ2opt/ε))
λ

= n2

(
∆

ε

)log(1/ε)(1/ε)(O(δ2opt/ε))
λ

= n2

(
∆

ε

)(O(δopt/ε))
2λ+1

where the last equality slightly weakens our run time
bound in order to simplify the expression.

5 Bounded degree trees as host metrics

In this section, we show that a doubling metric space
has a nearly optimal bounded degree tree spanner. In
particular, this result implies that a doubling tree can
be embedded into a bounded degree tree with same
vertex set nearly isometrically. These results imply
that considering bounded degree trees is sufficient
when we study embedding into trees or computing
geometric tree spanners. Specifically, they are used
in the proofs of Theorem 1.1 and Corollary 1.2. Due
to the space constraints the proof of the following is
left to the full version.

Lemma 5.1. Let (X, dX) be a metric space of dou-
bling dimension λ. Let T = (X,E,w) be a tree with
w = dX [E]. Suppose the identity map from (X, dX)
to (X, dT ) has distortion δ. For any 0 < ε < 1,
there is a tree T ′ = (X,E′, w′) with maximum degree
(O(δ/ε))λ such that w′ = dX [E′] and the identity
map from (X, dX) to (X, dT ′) has distortion at most
(1 + ε)δ.

Corollary 5.1. Let T = (V,E,w) be a tree of
doubling dimension λ. For any 0 < ε < 1, there is a
tree T ′ = (X,E′, w′) with maximum degree (O(1/ε))λ

such that the identity map from (V, dT ) to (V, dT ′) has
distortion at most (1 + ε).

6 Tree spanners

In this section, we consider the closely related prob-
lem of finding tree spanners with minimum stretch.
We start by considering a generalization of both
the low-distortion trees and low-stretch tree spanners
problems.

Let (X, dX) be a finite metric space. Similar
to the low-distortion embedding problem, we would
like to embed X into a tree T = (X,ET , wT ).
However, we have a set of constraints on possible
edges and edge weights of T . Specifically, we have
a constraint function h : X × X → 2R

+

, which
specifies the set of permitted weights for every pair
of vertices x, y ∈ X if we choose to include (x, y)
in ET . In particular, an edge (x, y) is banned if
h(x, y) = ∅. A tree is a permitted tree if all
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its edge weights are permitted. Given (X, dX) and
h, the constrained embedding problem asks for
the minimum distortion embedding of X into any
permitted tree. Note that the minimum stretch tree
spanner problem for a graph G = (X,EG, wG) is
equivalent to the constrained embedding problem for
(X, dG) and h, where h(x, y) = {wG(x, y)} if (x, y) ∈
EG, and h(x, y) = ∅, otherwise. Moreover, the
minimum distortion embedding problem is equivalent
to the constrained embedding problem for (X, dX)
and h, where h(x, y) = R+ for all x, y ∈ X.

We modify the algorithm of Lemma 4.12 to
solve the constrained embedding problem. Let
δopt(X, deg, h) denote the minimum distortion of
any embedding of (X, dX) into a tree with vertex set
X, maximum degree at most deg, and which is per-
mitted with respect to h.

One issue is that our algorithm works with a
discrete step size σ, while h might allow edge weights
that are not integer multiples of σ. To resolve this
issue, in a preprocessing step we change h to h′,
where h′(x, y) = {da/σe · σ | a ∈ h(x, y)}. The
proof of Lemma 4.1 implies that δopt(X, deg, h

′) ≤
(1 + σ)δopt(X, deg, h). Our algorithm then solves
the problem for X, deg, and h′ to find a tree T ′ =
(X,ET ′ , wT ′) that is permitted with respect to h′.
To obtain a permitted tree with respect to h in a
postprocessing step we modify wT ′ as follows. For
each (x, y) ∈ ET ′ , we set wT (x, y) to the largest
permitted value (with respect to h) that is at most
wT ′(x, y). Let δ′ and δ be distortions of identity maps
from (X, dX) to (X, dT ′) and from (X, dX) to (X, dT ),
respectively. Applying Lemma 4.1 in the reverse
direction implies that δ ≤ (1 + σ) · δ′. Hence, the
preprocessing and postprocessing introduce a factor
of at most (1 + σ)2 in the final distortion.

Now, let σ > 0, and let h′ be the refined
constraint function with step size σ. Also, let δ′opt =
δopt(X, deg, h

′). A modification of the argument
of Lemma 4.6 shows the existence of a consistent
set of views with parameters (deg, σ, c, δ′opt) over a
permitted tree T ′. Given any consistent set of views
over any tree Lemma 4.11 guarantees distortion at
most (1− 14/(c− 1))−1 · (1 + 20/(c− 1))δ′opt for the
identity map to that tree.

We slightly modify the dynamic programming
of Lemma 4.12 to compute a permitted tree with a
consistent set of views over it. Specifically, whenever
we check consistency between two views Vx and
Vy over an edge (x, y), we make sure that |Adx −
Ady| ∈ h(x, y), that is |Adx − Ady| is a permitted
weight for (x, y). The rest of the algorithm remains
intact. Together with the preprocessing and the
postprcessing step, we obtain an algorithm that is

guaranteed to return a tree with distortion at most(
1− 14

c− 1

)−1(
1+

20

c− 1

)
δ′opt≤

(
1+

608

c− 1

)
(1+σ)2δopt

So by setting c = 7 × 608/ε + 1 and σ = ε/7, we
are guaranteed that the distortion of our output is at
most (1 + ε)δopt, and the following theorem follows.

Lemma 6.1. Let X be an n-point metric space, with
doubling dimension λ, and spread ∆. Also, let h :
X × X → 2R

+

specify permitted edge weights. For
any δ > 0, ε > 0, and deg > 0 there is a

n2 ·∆logδ(deg/ε)(O(δ2/ε))λ

time algorithm to compute a (1 + ε)δ distortion
embedding of X into a permitted tree T (with respect
to h) of maximum degree deg if δ ≥ δopt(X, deg, h). If
δ < δopt(X, deg, h), this algorithm either computes an
embedding of distortion (1+ε)δ or (correctly) decides
that δ < δopt(X, deg, h).

The general version of Theorem 4.1 follows, by
the exact same proof.

Theorem 6.1. Let X be an n-point metric space,
with doubling dimension λ and spread ∆. Also, let h :
X×X → 2R

+

specify permitted edge weights. For any
0 < ε < 1 and deg > 1, where δopt = δopt(X, deg, h),
there is a

n2 ·
(

∆

ε

)log(deg/ε)·(1/ε)·(O(δ2opt/ε))
λ

time algorithm to compute a (1 + ε)δopt distortion
embedding of X into a permitted tree T of maximum
degree deg.

Now, we are ready to prove our spanner results.

Proof. [Proof of Theorem 1.2] Let h : X × X →
2R

+

be defined as follows. For each x, y ∈ X,
set h(x, y) = {w(x, y)} if (x, y) ∈ E, and set
h(x, y) = ∅ otherwise. For any 0 < ε < 1,
Theorem 6.1 finds a permitted embedding into a tree
T of distortion at most (1 + ε)δopt((X, dG), deg, h).
The constraint function ensures that T is a spanning
tree of G. Also, as h allows all spanning trees of
G and no other tree, we have δopt((X, dG), deg, h)
is equal to the minimum stretch of all spanning
trees. Note that the running time follows from
that of Theorem 6.1 by slightly weakening (and
simplifying) the exponent by writing log(deg/ε) ·
(1/ε) · (O(δ2

opt/ε))
λ = log(deg)(O(δopt/ε))

2λ+1.

Corollary 1.2 can be similarly proved from The-
orem 6.1, by subsequently setting deg according to
Lemma 5.1. See the full version for details.
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