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Abstract

Fine-scale evolutionary dynamics can be challenging to tease
out when focused on broad brush strokes of whole popula-
tions over long time spans. We propose a suite of diagnos-
tic metrics that operate on lineages and phylogenies in digi-
tal evolution experiments with the aim of improving our ca-
pacity to quantitatively explore the nuances of evolutionary
histories in digital evolution experiments. We present three
types of lineage measurements: lineage length, mutation ac-
cumulation, and phenotypic volatility. Additionally, we sug-
gest the adoption of four phylogeny measurements from bi-
ology: depth of the most-recent common ancestor, phylo-
genetic richness, phylogenetic divergence, and phylogenetic
regularity. We demonstrate the use of each metric on a set of
two-dimensional, real-valued optimization problems under a
range of mutation rates and selection strengths, confirming
our intuitions about what they can tell us about evolutionary
dynamics.

Introduction

Evolution is a collective effect of many smaller events such
as replication, variation, and competition that occur on a
fine-grained temporal scale. While evolution’s emergent na-
ture can be fascinating, it also presents challenges to study-
ing the short-term mechanisms that, in aggregate, govern
long-term results. In computational evolutionary systems,
we can theoretically collect data to help untangle these
mechanisms. In practice, however, the sheer number of con-
stituent events produce an overwhelming quantity of data.
In response, we have developed a standardized suite of di-
agnostic metrics to summarize short-term evolutionary dy-
namics within a population by measuring lineages and phy-
logenies. Here, we describe these metrics and provide ex-
perimental results to develop an intuition for what they can
tell us about evolution.

A lineage describes a continuous line of descent, linking
parents and offspring in an unbroken chain from an original
ancestor. A complete lineage can provide a post-hoc, step-
by-step guide to the evolution of an extant organism where
each step involves replication and inherited variation. In-
deed, lineage analyses are a powerful tool for disentangling
evolutionary dynamics in both natural and digital systems;

digital systems, however, allow for perfect lineage tracking
at a level of granularity that is impossible in modern wet lab
experiments. These data allow us to replay the tape of life
in precise detail and to tease apart the evolutionary recipe
for any phenomenon we are interested in (McPhee et al.,
2016b). In one notable example, Lenski et al. used the lin-
eage of an evolved digital organism in Avida to tease apart,
step by step, how a complex feature (the capacity to perform
the equals logical operation) emerged (Lenski et al., 2003).

Yet, tracking the full details of a single lineage, much less
a population of lineages, can be computationally expensive
and will inevitably generate an unwieldy amount of data that
can be challenging to visualize or interpret (McPhee et al.,
2016a). Summary statistics can help alleviate these issues
by enabling the user to focus on aggregate trends across a
population rather than needing to examine each individual’s
lineage. The question is how to effectively summarize a path
through fitness space. One useful abstraction is to treat the
path as a sequence of states. Here, we use phenotypes and
genotypes as the states in the sequence, but we could just
as easily use some other descriptor of the lineage’s position
in the fitness landscape at a given point in time. With this
abstraction in hand, a few metrics are easily formalized: the
number of unique states, the number of transitions between
states, and the amount of time spent in each state. Addition-
ally, we may care about how the transitions between states
happened. What mutations led to them? Were those muta-
tions beneficial, deleterious, or neutral at the time? These
mutations are particularly notable because they did not sim-
ply appear briefly, but stood the test of time, leaving descen-
dants in the final population. Here, we explore a subset of
these metrics that we expect will be broadly useful.

Whereas a lineage recounts the evolutionary history of a
single individual, a phylogeny details the evolutionary his-
tory of an entire population. Measurements that summa-
rize phylogenies can provide useful insight into population-
level evolutionary dynamics, such as diversification and co-
existence among different clades. A variety of useful phy-
logeny measurements have already been developed by bi-
ologists (Tucker et al., 2017). These measurements tend to



treat the phylogeny as a graph and make calculations about
its topology. Tucker et al. group them into three broad cat-
egories: assessments of the quantity of evolutionary history
represented by a population, assessments of the amount of
divergence within that evolutionary history, and assessments
of the topological regularity of the phylogenetic tree. Such
measurements can help quantify the behavior of the popula-
tion as a whole, providing insight into interactions between
its members. Thus, they are useful indicators of the presence
of various types of eco-evolutionary dynamics.

Here, we present three types of lineage measurements
and suggest adopting four phylogeny measurements from
biology; these are lineage length, mutation accumulation,
phenotypic volatility, depth of the most-recent common an-
cestor, phylogenetic richness, phylogenetic divergence, and
phylogenetic regularity. For each metric, we discuss its ap-
plication and our intuition for what it can tell us about evolu-
tion. We evaluate our intuition on a set of two-dimensional,
real-valued optimization problems under a range of mutation
rates and selection strengths. For this work, we restrict our
attention to asexually reproducing populations; however, we
suggest how these metrics can extend to sexual populations.

In addition to demonstrating a range of metrics that are
useful to digital evolution research, we intend for this work
to begin a conversation within the artificial life commu-
nity about how we quantify, interpret, and compare ob-
served evolutionary histories. There have been extensive ef-
forts to improve our ability to represent and visualize both
lineages and phylogenies (Standish and Galloway, 2002;
Burlacu et al., 2013; McPhee et al., 2016b,a; Lalejini and
Offria, 2016), which are indispensable for building intuitions
and qualitatively understanding the dynamics embedded in
a population’s evolutionary history. However, we are un-
aware of efforts to formalize a suite of quantitative lineage
and phylogeny-based metrics for computational evolution.

Metrics

Code for all of our metrics is open source and avail-
able in the Empirical library (https://github.com/
devosoft/Empirical). Empirical is a C++ library
built to facilitate writing efficient and easily sharable scien-
tific software. Empirical is a header-only library, so adding
these metrics to an existing project has minimal overhead.

Lineage Metrics

Each of the three lineage metrics that we discuss — lineage
length, mutation accumulation, and phenotypic volatility —
reduces a lineage to a linear sequence of states where each
state represents an individual or sequence of individuals that
share a common genotypic or phenotypic characteristic of
interest; Figure 1 is given as a toy example to help guide
our discussion of these metrics. While we limit our focus
to three lineage metrics, this abstraction places lineages in a
form suitable for a wide range of measurements, including

the direct application of many data mining techniques de-
signed to operate over sequences such as sequential pattern
mining, trend analysis, et cetera (Han et al., 2011).

Only asexual lineages where genetic material is exclu-
sively vertically transmitted can be directly abstracted as
a linear sequence of states. Sexual reproduction (and any
form of horizontal gene transfer) complicates matters sig-
nificantly as such lineages are more appropriately repre-
sented by trees rooted at the extant organism, branching for
each contributor of genetic material. One possibility is to
compress sexual lineages into linear sequences of states by
modeling sexual reproduction events as asexual reproduc-
tion events, designating one parent to be a part of the lineage
and considering the genetic contributions of other parents as
sources of genetic variation (mutations). The primary down-
side to this approach is its lossy-ness (i.e., the fact that it dis-
cards potentially important parentage information). Alter-
natively, we can extend our metrics to operate over the more
complex state sequences that constitute the lineages of sexu-
ally reproducing organisms. One such approach would be to
consider all possible ancestor paths for an extant individual,
calculating a given metric for each of them and then averag-
ing the resulting values together. Another approach would
be to divide an organism into its constituent parts that are in-
herited atomically (such as genes or instructions, depending
on the representation); an organism would then be viewed as
a collection of lineages rather than a single one. Assessing
the efficacy of these and potentially other approaches would
be a useful line of research to pursue in the future.

Lineage Length Lineage length describes the number of
states traversed by a lineage. If a state is defined as a single
individual, lineage length is a count of the number of gen-
erations. Generation count is most useful in systems where
generational turnover is not fixed, but instead determined by
the life history strategies of organisms. For lineages that
span equal lengths of time, more generations imply faster
replication rates (e.g., r-selected lineage) while fewer gen-
erations imply slower replication rates (e.g., K-selected lin-
eage).

Lineage length becomes a more flexible and informa-
tive metric if we consider more abstract definitions of states
along a lineage. We might measure lineage length where a
state represents a sequence of individuals that share a partic-
ular phenotypic or genotypic characteristic. In these cases,
lineage length only increases when the characteristic of in-
terest changes from parent to offspring. For example, in an
environment where organisms must perform tasks to be suc-
cessful, we might define state as the set of tasks performed
by an individual. In this scenario, lineage length would only
increase when the set of tasks performed by an ancestor
changes; sequential ancestors that perform the identical sets
of tasks would be compressed into a single state in the se-
quence, even if other traits differ.
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(A) Full lineage state sequence:

Generation: 1 2 3 4

5 6 7 8 (extant)

AA—>AA—»> BA —» AB —» AB —» BB —» BB —» BB

Mutation: Mutation:
Substitution Reverse

Mutation:
Substitution

(B) Lineage state sequence where ancestral states are compressed by genotype:

AA —> BA —»

—> BB

(C) Lineage state sequence where ancestral states are compressed by phenotype:

—_—

—_—

(D) Lineage state sequence where ancestral states are compressed by whether or not the associated

phenotype has rounded edges:

Phenotype has no rounded edges

— Phenotype has rounded edges

Figure 1: Four methods of representing a lineage. This example lineage has accumulated three mutations (one reverse mutation and two
substitutions) and gone through three distinct phenotypes. In (A), each state along the lineage represents a single individual; lineage length
is the number of generations spanned by the lineage (eight). In (B), states represent the sequence of genotypes along the lineage, reducing
lineage length to four. In (C) states represent the sequence of phenotypes along the lineage; lineage length is the number of times a different
phenotype is expressed (three). In (D), states are a particular phenotypic characteristic; here, lineage length is two.

Mutation Accumulation Mutation accumulation defines
a set of measurements that track mutational changes across
a lineage. These changes can be measured as the magnitude
of the change (for real-valued genomes) or as the total count
of changes (for discrete-valued genomes). Mutation effects
can also be tracked to gain insights about their distribution
along a given lineage. Measures of mutation accumulation
along the lineages of successful individuals can help tease
apart the relative importance of different types of mutational
events when compared to what is expected by chance.

In conjunction with collected fitness information, the
class of a mutation (e.g., beneficial, deleterious, or neutral)
can also be tracked. Different evolutionary conditions are
expected to cause different distributions of mutations along
a lineage (Barrick and Lenski, 2013); deviations revealed
by measures of mutation accumulation can act as a barome-
ter for unexpected evolutionary dynamics. The number and
magnitude of deleterious mutations along a lineage can tell
us both about the ruggedness of the fitness landscape, and
about a lineage’s ability to cross fitness valleys (Covert et al.,
2013). Similarly, an elevated measure of neutral mutations
relative to beneficial or deleterious mutations can suggest
that the fitness landscape has neutral space that the lineage
is spending most of its time drifting around.

Phenotypic Volatility Phenotypic volatility addresses the
rate at which phenotype changes as you move down a lin-

eage (although the same concept can be applied to specific
phenotypic traits or other types of state). In systems with
discrete/categorical phenotypes, this can be measured by
summing the number of times the phenotype changes. A re-
lated but subtly different measurement in such systems is the
number of unique phenotypes on a lineage. In most cases,
these values will be similar; a discrepancy would suggest
that the lineage was cycling through a set of phenotypes.
Such behavior could, for example, be indicative of some
form of evolutionary bet-hedging (Beaumont et al., 2009).

In systems with continuous-valued phenotypes, a subtly
different approach is needed to measure phenotypic volatil-
ity, because there are no discrete state transitions. Instead,
we can measure the overall variance in phenotype along a
lineage. In some cases, it may be desirable to smooth out
the noise inherent in a real-valued phenotype. We can do
so by instead taking the variance of the moving average of
fitness, to more closely approximate the idea of measuring
phase transitions.

Summary statistics Each of these metrics can be calcu-
lated for each member of the population at each time step.
Doing so, however, would produce an amount of data so
large that it would be difficult to make sense of. Instead, we
need to come up with ways to generate useful summaries.
There are two main approaches to doing so: 1) choose a
small number of representative lineages from a given time



point, or 2) collect summary statistics about the distribution
of metric values across the population.

A single lineage can be chosen by selecting the lineage
of a representative organism (either the most fit or the most
numerous; here we use the most fit). In populations where
diverse strategies coexist, this approach can be uninforma-
tive as any one lineage is unlikely to be representative of all
successful lineages. One alternative is to filter out lineages
that do not have offspring some predetermined number of
generations later as such lineages were likely not represen-
tative of an important subset of the population. Still, any ap-
proach based on measuring only a subset of lineages can be
challenging to interpret when the current dominant lineage
(or lineages) is replaced with a different one; such changes
can introduce a discontinuity if the value is being measured
over time. If graceful responses to changes in which lineage
is dominant are required, it can be advantageous to instead
measure summary statistics (e.g., mean, variance, and range)
across the entire population.

In scenarios with frequent selective sweeps, the dominant
lineage will likely be similar to the average lineage, as most
of the population will be closely related. When the pop-
ulation contains more phylogenetic diversity, however, the
dominant lineage may differ from the mean. Of course, the
nature of such differences is likely informative about the
evolutionary dynamics occurring in the population.

Phylogeny metrics

These metrics operate on entire phylogenies rather than sin-
gle lineages within a population, eliminating the need to
identify a representative organism or lineage. Because they
use data from the entire population, phylogeny metrics can
be more computationally expensive to calculate than single
lineage metrics. On the other hand, because most lineages
tend to share substantial history, phylogeny metrics can usu-
ally be calculated more rapidly than full-population lineage
metrics. Note that phylogenies can be constructed with re-
gard to any taxonomic level of organization, be it individual,
genotype, phenotype, et cetera. Thus, when we refer gener-
ally to items in a phylogeny, we will use the term faxa.

A standard technique for saving memory and time when
working with phylogenies in computational systems is to
“prune” them, removing dead (extinct) branches. Since all
of the phylogeny metrics we discuss here are borrowed from
natural systems (where we do not have information about
taxa without offspring), they all are designed to work on
pruned phylogenies. Thus, for the remainder of this paper,
we will assume we are working with pruned phylogenies.

In populations without ecological forces promoting co-
existence, phylogenies should coalesce periodically, result-
ing in pruned lineages that mostly consist of a single path.
When there is strong selection, this coalescence should hap-
pen even more rapidly. Thus, phylogenies with topologies
that deviate from that expectation are an indication of eco-

logical interactions within the population. The metrics dis-
cussed here can provide insight into the nature of those in-
teractions and their long-term evolutionary effects. As a re-
sult, they are often referred to as phylogenetic diversity met-
rics (Tucker et al., 2017).

An important distinction between phylogenies in natural
versus computational systems is that natural phylogenies are
generally inferred from extant taxa, whereas computational
phylogenies are directly recorded. Inferred phylogenies do
not contain internal nodes except at branch points. They
also do not contain history prior to the most recent common
ancestor (MRCA) of all extant organisms. For consistency,
we exclude pre-MRCA taxa from our analyses. However,
we will not remove non-branching internal nodes, as these
only serve to make our phylogenies more informative.

Here we provide a high-level summary of phylogeny met-
rics that we expect will be particularly useful. For more met-
rics and more detail on all of these metrics, see (Winter et al.,
2013; Tucker et al., 2017).

Depth of Most-Recent Common Ancestor The depth of
the MRCA (i.e., the number of steps it is from the original
ancestor) is an informative metric and is easy to calculate.
A recent MRCA implies frequent selective sweeps and less
long-term stable coexistence between clades. Measuring the
frequency with which the MRCA changes (i.e., the number
of coalescence events) can also be informative, as some con-
ditions can inflate the length of the lineage relative to other
conditions without actually increasing the frequency of se-
lective sweeps. This scenario is particularly likely when the
population size is changing over time. A downside to the
depth of MRCA as a metric is that any population that does
have a stable ecology will likely never change its MRCA af-
ter the very beginning of evolution (which at least allows us
to detect stable coexistence in the population).

Phylogenetic Richness Measurements of phylogenetic
richness quantify the total amount of evolutionary history
contained in a set of taxa. The most traditional metric of
phylogenetic richness is “Phylogenetic Diversity”, which is
calculated as the number of nodes in the minimum spanning
tree from the MRCA to all extant taxa (Faith, 1992). An-
other approach is to calculate the pairwise distances between
all taxa and sum them (Tucker et al., 2017). A third approach
is to sum evolutionary distinctiveness, a measurement of a
taxon’s evolutionary uniqueness (Isaac et al., 2007), across
all extant taxa (Tucker et al., 2017).

Phylogenetic Divergence Measurements of phylogenetic
divergence quantify how distinct the taxa in the population
are from each other and are often averaged across individ-
ual taxa. For example, one option is to average the pair-
wise distances across all taxa in the population (Webb and
Losos, 2000). Similarly, phylogenetic divergence can be cal-
culated by averaging the evolutionary distinctiveness across



Figure 2: The fitness landscapes used in this experiment:
A) Himmelblau, B) Six-humped Camel Back, C) Shubert,
and D) Composition Function 2. Interactive versions avail-
able at https://emilydolson.github.io/fitness_
landscape_visualizations.

each taxon in the population.

Phylogenetic Regularity Measurements of phylogenetic
regularity quantify how balanced the branches are in a phy-
logeny and are often the variances of values calculated for
individual taxa. Just as the mean of the pairwise distances
between all taxa in the population is a measurement of phy-
logenetic divergence, taking their variance is a measurement
of phylogenetic regularity. The same is true of the variance
of evolutionary distinctiveness across the population.

Test Problems

To understand the metrics defined above, the test problems
used need to be well understood and studied. The bench-
mark functions from the GECCO Competition on Niching
Methods meet both of these requirements and allow us to
visualize the actual fitness landscape, due to the low dimen-
sionality of the problems (Li et al., 2013). For each prob-
lem, the X and Y coordinates offered by a given organism
are translated by the function into a fitness value. We chose
a diverse subset of these functions (Himmelblau, Shubert,
Composition Function 2, and Six-Humped Camel Back) as
our test problems in order to gain a broad understanding of
our metrics. We used the implementations of these problems
at https://github.com/mikeagn/CEC2013 (C++
for fitness calculations during evolution, Python for post-hoc
analysis). Figure 2 shows the fitness landscapes defined by
each of our four chosen test problems.

For each test problem, we evolved populations of 1000
organisms under a range of mutation rates and selection
strengths for 5000 generations. Each organism’s genome
consisted of two floating point numbers that defined its po-
sition in the fitness landscape. We initialized populations
by randomly generating a number of organisms equal to the
population size. To determine which organisms reproduced
each generation, we used tournament selection. We evolved
populations under five different tournament sizes: one, two,
four, eight, and sixteen. Tournament size represents strength
of selection where higher tournament sizes correspond to
strong selection and lower tournament sizes correspond to
weak selection (Blickle and Thiele, 1995). A tournament
size of one is equivalent to no selection pressure (i.e., every
organism in the population has an equal chance of being se-
lected to reproduce). Organisms selected to reproduce did so
asexually. Values in an offspring’s genome were mutated by
adding noise given by a normal distribution with a mean of
0; the ‘mutation rate’ of a treatment defined the standard de-
viation used to define this normal distribution and was given
as a proportion of the test problem’s domain. We prevented
mutations from causing a value to exceed the valid domain
of the given problem. For each problem and tournament
size, we evolved populations at eight mutation rates: 1le-08,
1e-07, 1e-06, 1e-05, 1e-04, 1e-03, 1e-02, and 1e-01.

We also ran a second set of experiments to explore the
impact of ecological dynamics on these metrics. For these
experiments, we generated a stable ecology using the Eco-
EA algorithm as a selection technique (Goings et al., 2012).
Eco-EA is a technique for creating niches that promote sta-
ble diversification in the context of an evolutionary algo-
rithm. In our test problems, we created niches associated
with spatial locations across the fitness landscape. For all
experimental conditions, we ran ten replicates, each with
a unique random number seed. Our experiment is imple-
mented using the Empirical library; our implementation is
included in the supplemental material for this paper (Lale-
jini et al., 2018).

Data Analysis
3D visualizations

In order to make these metrics useful, we must have an
accurate understanding of how various measurements cor-
respond to the actual behavior of lineages. The most di-
rect way to confirm our expectations is to visualize the path
that each lineage takes through the fitness landscape, map-
ping the X, y, and z (fitness) coordinates of each ancestor of
each member of the population (Virgo et al., 2017). Cre-
ating such a visualization entails condensing a large quan-
tity of information into a limited space. When projected
onto two dimensions, lineages can obscure parts of the fit-
ness landscape (and each other). To mitigate this prob-
lem, we used the A-Frame framework (A-Frame authors,
2018) to build a three-dimensional data visualization (see
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Figure 3: A close-up on two adjacent peaks in the Shubert func-
tion fitness landscape. Lineages are depicted as paths fading from
white to black over evolutionary time. The lineages shown here
evolved under a mutation rate of 0.01. A) Was evolved using a
tournament size of 2, whereas B) was evolved using a tournament
size of 16. These figures neatly illustrate how increased tournament
size keeps the lineage near the tops of the peaks.

Figure 3) described in detail in our companion paper (Dol-
son and Ofria, 2018). For the data interpretation in this
paper, we used an Oculus Rift to provide us with fine-
grained control of which part of the visualization we were
looking at. Our full visualization, complete with data, can
be viewed on the web or using a virtual reality headset
at https://emilydolson.github.io/fitness_
landscape_visualizations.

Metric analysis

We analyzed trends in our metrics using the R Statistical
Computing Language (R Core Team, 2017). Specifically,
we used the ggplot2 library for all graphs included in this
paper (Wickham, 2009). All analysis scripts are available
in the supplemental material for this paper (Lalejini et al.,
2018)..

Results and Discussion

Overall, our results were consistent with evolutionary the-
ory. As mutation rate increases, coalescence takes longer,
as evidenced by the fact that the MRCA is farther back in
time at higher mutation rates (see Figure 4). Consequently,
phylogenetic richness (as measured by phylogenetic diver-
sity) is higher at high mutation rates. Phylogenetic diver-
gence, measured here as mean pairwise distance between
taxa, is similarly higher at high mutation rates. Evolution-
ary distinctiveness, being another measurement of phyloge-
netic divergence, behaved almost identically (Lalejini et al.,
2018). Variance of evolutionary distinctiveness and pair-
wise distance between taxa (phylogenetic regularity met-
rics) behaved similarly to the phylogenetic divergence met-
rics. This pattern makes sense, as most phylogenetic diver-
gence on these landscapes will produce unbalanced phylo-
genetic trees. If there were stable coexistence between mul-
tiple clades, we would expect to see a reduced correlation
between the phylogenetic divergence metrics and the phy-
logenetic regularity metrics. Increased mutation rate also
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Figure 4: Values of example metrics across different mutation
rates for each of the four problems. All lineage-based metrics are
calculated on the lineage of the fittest organism at the final time
point; population-level means behaved similarly. All experiments
shown here used a tournament size of 4. Circles are medians, ver-
tical lines show inter-quartile range, and shaded area is a boot-
strapped 95% confidence interval around the mean. Note that both
axes are on log scales.

increases the number of deleterious steps taken, a logical
consequence of increasing mutation relative to strength of
selection.

Similarly, increasing tournament size generally increases
the rate of coalescence, as higher tournament sizes corre-
spond to stronger selection (see Figure 5). As a result, all of
the measurements of phylogenetic richness and divergence
decrease as tournament size increases. MRCA depth, on the
other hand, increases, directly reflecting the increased fre-
quency of selective sweeps.

Surprisingly, there is no clear effect of tournament size on
the count of deleterious steps along the dominant lineage (as
evidenced by the fact that the confidence intervals all over-
lap). Values for all selection schemes and tournament sizes
hover near 2500, meaning that a deleterious step is taken in
roughly half of the 5000 generations. This result is partially
an effect of mutation rate; at the lowest mutation rate, there
is a clear trend toward fewer deleterious steps as tournament
sizes increase (Lalejini et al., 2018). However, the effect of


https://emilydolson.github.io/fitness_landscape_visualizations
https://emilydolson.github.io/fitness_landscape_visualizations

Phylogenetic diversity | Deleterious steps I
2 006404 2.52e+03
her 2516403 I
1.58e+04 2.50e+03
1.266+04 2.49¢+03 1 M
1006204 2.48e+03 r T
2.47e+03 1
7.94e+03 4 '
Mean pairwise distance | MRCA depth |

3.16e+03
3.98e+03 A
1.00e-+03 2.51e+03 |
T TeRE
3.16e+02 4 \* 1.58e+03 A
| J

1.00e+03 o

Mutation accumulation

Phenotypic volatility |

1e+05
1.00e+02
1e+00
3.16e+01
1e-05
1.00e+01

Problem
Six-hump camel back

Figure 5: Values of example metrics across different tournament
sizes for each of the four problems. All experiments shown here
used a mutation rate of 0.001. All lineage-based metrics are calcu-
lated on the lineage of the fittest organism at the final time point;
population-level means behaved similarly. Circles are medians,
vertical lines show inter-quartile range, and shaded area is a boot-
strapped 95% confidence interval around the mean. Note that both
axes are on log scales.

mutation rate on the relationship between tournament size
and dominant deleterious steps is complex, particularly for
Composition Function 2 (Lalejini et al., 2018). These trends
likely share a common cause with the thresholding effect
evident in Figure 4, where the number of deleterious steps
along the dominant lineage abruptly climbs between muta-
tion rates of 10~ and 10~° and remains relatively flat over
other mutation rates. Based on an inspection of the 3D fit-
ness landscape visualizations, we can see that this is not an
effect of lineages moving from peak-to-peak; at most muta-
tion rates, they tend to remain on a single peak. Thus, we can
infer that this effect is the result of a drift-like phenomenon
where, at sufficiently high mutation rates, all members of the
population are constantly somewhat displaced from their lo-
cal fitness peak.

Having reinforced our intuition about these metrics in a
simple system, we can now expand them to a slightly more
complex system. A large proportion of interesting short-
term evolutionary dynamics relate to interaction between in-
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Figure 6: Values of example metrics across different mutation
rates for each of the four problems under a diversity-preserving
selection regime, Eco-EA. All lineage-based metrics are calcu-
lated on the lineage of the fittest organism at the final time point;
population-level means behaved similarly. All experiments shown
here used a tournament size of 4. Circles are medians, vertical lines
show inter-quartile range, and shaded area is a bootstrapped 95%
confidence interval around the mean. Note that both axes are on
log scales.

dividuals in the population (i.e., ecological dynamics). In
particular, such interactions often promote the stable coex-
istence of clades occupying different niches. As such, it is
important to establish a baseline for how our metrics respond
to ecological coexistence.

Indeed, the presence of stabilizing ecological dynamics
substantially changes the values we observe for most met-
rics (see Figure 6). Perhaps the least surprising of these is
MRCA depth is far lower than it was for tournament selec-
tion, reflecting the rarity of coalescence events under these
conditions. Consequently, phylogenetic diversity is higher,
as the extant population represents a greater amount of evo-
lutionary history. Relatedly, mean pairwise distance among
extant taxa is higher in the presence of ecology, as clades in
different niches continue to diverge. Interestingly, the rela-
tionship of many metrics (e.g., deleterious steps and phylo-
genetic diversity) to mutation rate is reversed in the presence
of ecology. Explaining the underlying mechanisms behind



these distinctions is beyond the scope of this paper, but the
ease with which the metrics identified their presence clearly
indicates their power.

Conclusions

Our goals for this work are two-fold: 1) to suggest a set
of metrics that will improve our capacity to quantitatively
understand evolutionary histories in digital evolution exper-
iments, and 2) to spark a conversation in the computational
evolution community about how to quantify, interpret, and
compare observed evolutionary histories. With feedback
from the community, we will expand our suite of lineage
and phylogeny metrics, compiling accessible descriptions
and examples of each metric.

We have demonstrated that these metrics behave reason-
ably on a set of toy problems with simple organisms. Hav-
ing established baseline expectations for their responses to
common conditions, our next step is to apply these metrics
to more complex scenarios: populations of digital organisms
that we evolve in a variety of qualitatively different environ-
ments where we would expect to observe a wide range of
evolutionary dynamics. It is under these conditions that we
expect the true value of these metrics to become clear.
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