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ABSTRACT 
Cells interacting over an extracellular matrix (ECM) exhibit 

emergent behaviors, which are often observably different from 

single-cell dynamics. Fibroblasts embedded in a 3-D ECM, for 

example, compact the surrounding gel and generate an 

anisotropic strain field, which cannot be observed in single cell-

induced gel compaction. This emergent matrix behavior results 

from collective intracellular mechanical interaction and is crucial 

to explain the large deformations and mechanical tensions that 

occur during embryogenesis, tissue development and wound 

healing. Prediction of multi-cellular interactions entails 

nonlinear dynamic simulation, which is prohibitively complex to 

compute using first principles especially as the number of cells 

increase. Here, we introduce a new methodology for predicting 

nonlinear behaviors of multiple cells interacting mechanically 

through a 3D ECM. In the proposed method, we first apply Dual-

Faceted Linearization to nonlinear dynamic systems describing 

cell/matrix behavior. Using this unique linearization method, the 

original nonlinear state equations can be expressed with a pair of 

linear dynamic equations by augmenting the independent state 

variables with auxiliary variables which are nonlinearly 

dependent on the original states. Furthermore, we can find a 

reduced order latent space representation of the dynamic 

equations by orthogonal projection onto the basis of a lower 

dimensional linear manifold within the augmented variable 

space. Once converted to latent variable equations, we superpose 

multiple dynamic systems to predict their collective behaviors. 

The method is computationally efficient and accurate as 

demonstrated through its application for prediction of emergent 

cell induced ECM compaction. 

INTRODUCTION 
The compaction of a cell-populated fibrous extracellular 

matrix (ECM) is an important mechanism for numerous 

biological processes including embryogenesis [1], tissue 

development [2] and wound healing [3–5]. In addition, during 

wound healing traction forces exerted by fibroblasts and 

myofibroblasts result in ECM compaction at the site of injury 

[3–5]. 

ECM gel compaction is a complex process from the 

mechanics point of view. The fibrous nature of the extracellular 

matrix (ECM) that forms a network of cross-linked fibers is 

highly nonlinear and intricate, but is critical for predicting large 

compaction and long-range transmission of forces [6]. As a large 

deformation is induced, the standard linear mechanics model 

yields significant errors since the ECM fiber network is 

anisotropic and even causes irreversible deformations as a large 

compaction takes place. This prominent nonlinearity prohibits us 

from using simple methods for predicting the ECM compaction 

by a multitude of cells. Contributions of individual cells cannot 

simply be added, or superposed, to predict a resultant 

compaction of the fibrous ECM. Cells’ properties, too, are highly 

nonlinear and complex. Considering these nonlinear physical 

and physiological properties results in a complex computational 

model consisting of differential equations that are intractably 

complex due to high-dimensional, nonlinear coupled dynamics. 

Previous in-silico models predicting compaction of cell-

populated gels have been used to supplement and enhance in-

vitro experiments and allow for fast and  inexpensive methods to 

evaluate various cell types and environmental conditions  [7], 
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[8–13]. In addition computational models can help elucidate and 

explore the underlying phenomena involved in compaction. 

Although mathematical continuum [7], [12], [11]and finite-

element models[8] of cell-mediated gel compaction exist, agent-

based modeling has been more recently used to study emergent 

phenomena because it can predict the adaptive behavior of 

individual components as a result of underlying rules [9,10]. 

However, current agent-based models often require abstraction 

of details in order to limit mathematical and computational 

complexity and computational cost especially for modeling 

larger cell populations. Most significant abstractions identified 

within  [7], [8–13] are (1) 2-D representation of a 3-D system; 

(2) exclusion of intracellular mechanics (3) absence of realistic 

ECM fiber mechanics.  In addition, simple rules describing the 

interactions between agents are often determined somewhat 

heuristically. These simplifications may put limitations to the 

model validity and furthermore the translational potential. 

 Using Dual Faceted Linearization, the original nonlinear 

dynamics of cells and ECM derived from physical and 

physiological principles are recast in an enlarged state space by 

augmenting independent state variables with auxiliary variables 

that inform all the nonlinear forces and displacements involved 

in the system. Once represented in the augmented space, the cells 

and ECM can be treated as linear systems which facilitates 

modular computation, separation and division of the coupled 

system, and scalable and integrative analysis. The linear 

representation further facilitates latent variable transformation 

and model order reduction. Within the linear latent variable 

representation, collective cell behaviors can be predicted by 

merely superposing the contributions of the individual cells. 

Using this method, computational expense and time are 

decreased significantly and sufficient mechanistic detail is 

retained in the simulation. 

NONLINEAR GOVERNING EQUATIONS FOR 
COLLECTIVE CELL BEHAVIORS IN ECM FIBER 
NETWORK 
Consider multiple cells having an identical phenotype are 

interacting to each other through the surrounding 3D ECM fiber 

network.  We construct a computational model for predicting 

cell-mediated ECM gel compaction. ECM is modeled as a 

network of many fibers connected at a large number of nodes  (Ne 

≈2000), whereas each cell is represented with a mesh structure 

consisting of many nodes (Nc ≈ 200). Each cell binds to the 

surrounding ECM fiber network by forming focal adhesions. 

Acting on the i-th node of the k-th cell with spatial coordinates 
3 1,c k

i
×∈ ℜx  are the cell’s cortical tension force and elastic energy 

force (collectively denoted as , 3 1

,

c k

Cort Elas i

×
− ∈ ℜF ) focal adhesion 

force (denoted as , 3 1

,

c k

FA i

×∈ℜF ), lamellipodium force ( , 3 1

,

c k

L i

×∈ℜF ) 

and frictional damping force ( , 3 1

,

c k

Damp i

×∈ℜF ). Assuming that the 

mass of the node is negligibly small and the damping force is 

given by ,

,

,c k

Damp i

c k
iD d dt= −F x , where D is damping constant, the 

equation of motion is given by: 

 

 
FIGURE 1: SCHEMATIC DIAGRAM OF CELL-ECM 
INTERACTION 
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 The cortical tension and elastic energy force of the k-th cell 

is a nonlinear function of its membrane coordinates. The focal 

adhesion force can be approximated to a nonlinear algebraic 

function of cell membrane and ECM nodes as well as the 

biochemical parameters involved in integrin-ligand binding. 

These nonlinear relationships may be found in [14,15] 

The forces acting on the j-th node of the fiber network 

include the elastic energy forces (including both lateral restoring 

forces and bending moments, e
Elas, j

F ), focal adhesion forces 

(from the shared attachment with the cell, e
FA, j

F ) and damping 

forces ( ,

e

Damp jF ) [25, 26]. The equation of motion can be written 

as:  

 

 0 , 1, ,

e

j

e e

e e
FA, jElas, j

d
D j N

dt
+ − = =F F ⋯

x
  (2) 

 

The ECM elastic energy force is a nonlinear function of 

ECM coordinates [14,15]. Physics dictates that the focal 

adhesion force of the i-th membrane node of the k-th cell 

attached to the j-th ECM node is: 

  

 
,

,
c k e
FA i FA, j−= FF   (3) 

  

Assuming that no two cells bind to the same ECM node, ,

,

c k

FA iF and 

e
FA, j

F have the same magnitude with the opposite signs. The focal 

adhesion connections between the membrane nodes and ECM 

nodes change over time as the cell membrane deforms, gains 

traction and generates lamellipodial protrusions.  
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Although the governing equations derived above are 

rigorous and based on basic principles, they are complex and can 

become computationally expensive as the number of cells 

increase. The number of state variables for the given system is 

3Ne+3Ncncell, which is on the order of 7,000 for ncell =2.  We aim 

to a) linearize the system using Dual faceted Linearization b) 

considerably reduce the number of state variables though latent 

variable transformation and c) predict collective behaviors of the 

multiple cells through superposition of individual cell dynamics. 

DUAL-FACETED LINEARIZATION  
 In Dual Faceted Linearization, we represent the nonlinear 

dynamical system in an augmented space consisting of 

independent state variables and nonlinear forces as the additional 

variables, termed auxiliary variables. Let us define the 

augmented space with two sets of linear differential equations: 

 

   

,
, , , 1, ,

1

c k
c c k c c k k

CE Cort Elas FA FA c cell

e
e e

Elas FA

e e
FAElas

d
k n

dt
set

d

dt

−


= + + = 


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W F W F L u
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⋯
x

x
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−
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x

  (5) 

 

The first set of differential equations are a re-representation 

of the original state equations in equation  (1) and (2) which are 

apparently linear in terms of the auxiliary variables and input. 

Here, ( ) 3 1, , ,
1

cNc k

c

c k c k
N

×= ∈ℜ
T

T T⋯x x x  is a vector containing 

the 3-D coordinates of all the cell membrane nodes. 
3 1, CNc k

Cort Elas

×
− ∈ℜF   is a vector comprising cortical tension and 

elastic energy forces for all the cell nodes ( 1, , Ci N= ⋯ ), 

3 1, CNc k

FA

×∈ℜF is a vector of focal adhesion forces at all the cell 

nodes,  k
u is an input vector containing all the lamellipodium 

forces ( ,

,

c k

L iF ), and ,c c

CE FA
W W  and CL are constant matrices of 

consistent dimensions. ( ) 3 1

1
e

e

Ne e e

N

×= ∈ℜ
T

T T
⋯x x x   is a vector 

containing the 3-D coordinates of all the ECM nodes. And 
3 1 3 1,e eN Ne e

FAElas
× ×∈ℜ ∈ℜF F are vectors consisting of all the elastic 

energy forces and focal adhesion forces acting on the ECM 

network, respectively.  
The second set of differential equations represent the 

transition of auxiliary state variables estimated through linear 

regressions. Here, 3 3*

*
e eN N×∈ℜR , 3 3*

*
c cN N×∈ℜQ , 3 3*

*
c cN N×∈ℜH  (∗-

corresponding various subscripts and superscripts) are high-

dimensional parameter matrices.  These matrices can be 

determined from numerical data created by simulation of the 

original dynamical system.  

However, due to the high dimension, these parameters 

matrices could be difficult to determine explicitly. However if 

the system is represented in a lower dimensional space, the high 

dimensional regression coefficient matrices need not be 

computed explicitly. This is discussed further in the subsequent 

section. 

Both differential equation sets presented in equations (4) 

and (5) are linear representing different (or dual) facets of the 

original nonlinear system viewed from the augmented space and 

providing a richer representation of the nonlinearity [16]. 

LATENT VARIABLE TRANSFORMATION 
A drawback of the Dual Faceted linearization method is the 

increase of variables. Auxiliary variables are not independent 

variables, and the representation with two sets of differential 

equations is highly redundant in a sense. Some variables may be 

collinear, and the differential equations may contain similar 

modes. These similar modes and collinear variables can be 

eliminated by using latent variable models [17,18].  

 From the simulation of the state equations  (1) and (2), we 

can obtain sample data of the state variables  in ,c kx and ex . We 

can also calculate auxiliary variables in ,c k

Cort Elas−F , ,c k

FA
F , e

Elas
F using 

the nonlinear relationships with the ECM and membrane 

coordinates [14,15]. The training data consists of T~3600 time 

sample points from state and auxiliary variables of a K=1-2 cells 

embedded in an ECM environment. The simulation is repeated 

N ~ 10 times with the cell(s) embedded in distinct locations 

within the ECM. 

Let ζc.k   be the augmented variable vector containing 

membrane node coordinates and forces of the k-th cell.  

  

FIGURE 2: BLOCK DIAGRAM OF LATENT VARIABLE 
SUPERPOSITION MODEL REPRINTED FROM (16) 
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,

9 1, ,

,

c

c k

Nc k c k

Cort Elas

c k

FA

×
−

 
 

= ∈ℜ 
 
 

ζ F

F

x

  (6) 

  

Here vector uk (containing the cell’s lamellipodial forces) is 

treated as an input variable that is excluded from the augmented 

state space. 

Similarly let ζe   be the augmented variable vector containing 

ECM node coordinates and forces: 

 

   

 6 1e

e

Ne

e
Elas

×
 

= ∈ℜ  
 

ζ
F

x
  (7) 

 

Focal adhesion forces contained within vector e
FA

F    can be 

mapped to the corresponding focal adhesion forces at each cell 

and, thereby, excluded from the augmented space of the ECM. 

Let the covariance matrices ,c e

ζζ ζζC C  be:  

  

 

( ) ( )

( ) ( )

, , , ,

1 1 1

, ,

1 1

1

1

K N T
c c k n c k n

k n t

N T
e e n e n

n t

C t t
K N T

C t t
N T

ζζ

ζζ

= = =

= =

=
⋅ ⋅

=
⋅





T

T

ζ ζ

ζ ζ

ɶ ɶ

ɶ ɶ

  (8) 

  

Here ( ), ,c n k tζɶ represents the mean centered t-th time sample 

(of augmented variable vector ζc.k   ) for the k-th cell in the n-th 

simulation and ( ),e n tζɶ  represents the mean centered t-th time 

sample (of the augmented variable vector ζe   ) in the n-th 

simulation. 

We transform the augmented linearized system one in the 

latent variable space spanned by eigenvectors

( ) c c

CE FA

m mc c c c

x F F

×= ∈ℜ
T

T T T
V V V V and ( ) e e

Elas

m me e e

x F

×= ∈ ℜ
T

T T
V V V  

of the covariance matrices ,c e

ζζ ζζC C  respectively: 

            

,

1 1, ,

,

,c e

CE

Elas

FA

c c k

x e e

xm mc k c c k e

F Cort Elas e

Fc kc
FAF

e
Elas

× ×

−

   
      

= ∈ℜ = ∈ℜ         
         

T

TV
V

z V F z
V F

FV

x
x

  (9) 

 

Here, mc << 3Nc, and m e<< 3Ne. In addition, the original data 

of ζc.k and ζe can be approximated with latent variables:  

 

  

 , ,
,   

CE

Elas

FA

c

x e

xc k c c k e e

F e

Fc

F

 
   

= =         
 

V
V

ζ V z ζ z
V

V

  (10) 

 

Differentiating the latent state vector zc.k   and substituting 

equations (4), (5) and (10) yields: 

              

 

, , , ,

,

CE FA

c k c k c k c k
c c cCort Elas FA
x F F

c k k e

d d d d

dt dt dt dt

−= + +

= + +

T T Tz F F
V V V

A z Bu Cz

x

  (11) 

 

Where: 
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( ) ( )

( )

CE FA

CE CE CE FA FA FA

CE FA

FA

Elas Elas Elas Elas

FA

c c c c c

x CE F FA F
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F x x F F F x x F F

c c c

x c F u F u

c e e

F x x

e e e e e e e e

x Elas F F x x F F

k e e k c

x FA map F

= +

+ + + +

= + +

=

= + +

=

T

T T

T T T

T

T T

T

A V W V W V

V Q V Q V V H V H V

B V L V Q V H

C V H V

G V W V V R V R V

D V W P V

  (12) 

 

Here, 3 3e cN Nk

map

×∈ ℜP is a parameter matrix (consisting of either 0 

or -1 elements) which maps the membrane focal adhesion forces 

of the k-th cell ( ,c k

FA
F ) to the corresponding ECM focal adhesion 

forces ( e
FA

F ) as discussed in reference [16]. 

 Differentiating the latent state vector ze and substituting 

equation (4), (5) and (10) yields:                          

                    

 ,

1

cell

Elas

ne e
e e e k c k

x F

k

e
Elas

dd d

dt dt dt =

= + = +T T
Fz

V V G z D z
x

  (13) 

                                                                               

Equations (11) and  (13) provide an accurate representation 

of the nonlinear ECM dynamics reduced to a compact, low-

dimensional model. This model provides not only a low-

dimensional modular structure for efficient computation, but also 

contains natural insights into the interactions among the multiple 

cells. Figure 2 shows the dynamic interactions in block diagram 

form based on equations (11) and (13) and represents our 

mathematical structure of modular components whose simplified 

interactions still reflect the physical mechanisms within the 

system. As can be seen, the actions taken by all the cells are 

integrated into the global ECM state transition, which is fed back 

to the individual cells. Therefore, each cell is connected to other 

cells through the global feedback of the ECM latent state ze.  

 The input uk pertains to the lamellipodium forces, which are 

generated in a particular side or direction of the cell. Among 

others, the polarity of a cell is important to determine on which 

side of the cell lamellipodia are formed. It has been reported that 

the local stiffness of ECM is a major factor that determines the 

cell polarity [19]. The functional relation between  

lamellipodium force generation uk and properties and state of the 

ECM stress-strain field ze are described in [16]. This can be 

interpreted as a feedback controller residing in each cell model. 
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LEAST SQUARES ESTIMATION FOR IDENTIFICATION 
OF THE PARAMETER MATRICES INVOLVED IN THE 
LATENT SPACE STATE EQUATIONS 

Since the system is represented in a lower dimensional 

space, the high dimensional regression coefficient matrices (
* * *

* * *R ,Q ,H ) are not computed explicitly. Instead, the lower 

dimension coefficient matrices A, B,C,G  are computed directly 

from numerical simulation data transformed into the latent 

variable space. Recall that training data consists of T~3600 time 

sample points from state and auxiliary variables of a K=1-2 cells 

embedded in an ECM environment. The simulation is repeated 

N ~ 10 times with the cell(s) embedded in distinct locations 

within the ECM. 

 

We define transformed data set: 

 

 

 
( ) ( ) ( )( ), , , , , , ,, , , ,

| 1, , , 1, , , 1, ,

e n c k n k n e n c k n

Tr

t t t d dt d dt

k K n N t T

  
Ζ =  

= = =  

z z u z z

⋯ ⋯ ⋯
  (14) 

 

 

Here superscripts k, n signify the k-th cell within the n-th 

simulation. We combine parameter matrices from equation (11)

[ ] ( )c c c em m N m× + +
∈ℜA B C≜ΜΜΜΜ and variables into

( ) ( ) ( ) ( )( ) ( ) 1, , , , , c c em N mk n c k n k n e n
t t t t

+ + ×
= ∈ℜ

T
T T T

ξ z u z . The 

parameter matrix ΜΜΜΜ can be optimized so that the mean squared 

error of predicting , ,c k nd dtz  may be minimized: 

 

 ( )
2

, ,
0 ,

1 1 1

1
arg min

c k nK N T
k n

k n t t

d
t

K N T dt
ξ

= = =

= −
⋅ ⋅


z

ΜΜΜΜ
Μ ΜΜ ΜΜ ΜΜ Μ   (15) 

      

Using the standard least squared estimation and assuming 

that the sample data sufficiently spans the dimension of vector

( ),k n tξ , we can obtain: 

                             

( ) ( ) ( )
1, ,

0 , , ,

1 1 1 1 1 1

c k nK N T K N T
k n k n k n

k n t k n tt

d
t t t

dt
ξ ξ ξ

−

= = = = = =

  
=      
 

T Tz
Μ   (16) 

                       

Similarly least squares estimate matrix G from equation  

(13) is given by:  

   

 ( ) ( ) ( ) ( )
1

0 , , ,

1 1 1 1

N T N T
n e n e n e n

n t n t

t t t t

−

= = = =

  
=   
  
 

T T
G δ z z z   (17) 

Where ( ) , , , ,

1

K
n c k n k c k n

t
k

t d dt
=

= −δ z D z  and k
D ’s are known 

matrices  as defined in (12).  

In summary, in order to to compute coefficient matrices A, 

B, C, G we do the following:  

 

 

 

 

 20 LV 

model 

100LV 

model 

Real 

Simulation 

Computation time 2 min 20 min 10 hours 
 

TABLE 1: SUMMARY OF THE COMPUTATION TIME OF THE 
LATENT VARIABLE MODEL COMPARED TO THE ORIGINAL 
FULL-SCALE SIMULATION 

 

1) Create data by simulating the original state equations, 

equations (1) and equations (2), using the full-scale, 

nonlinear model, as described previously. 

2) Compute covariance matrices ,c eC Cζζ ζζ , and obtain 

eigenvalues and eigenvectors c
V  and c

V  , as described 

previously.  

3) Transform the data of the augmented state variables to latent 

space ( ( ), ,c k n tz  and ( ),e n tz  ) using the orthogonal matrices c
V  

and c
V .   

4) Compute time derivatives , ,c k nd dtz   and ,e nd dtz  , using 

latent space time samples and form a dataset:

( ) ( ) ( )( ), , , , , , ,, , , ,

| 1, , , 1, , , 1, ,

e n c k n k n e n c k n

Tr

t t t d dt d dt

k K n N t T

  
Ζ =  

= = =  

z z u z z

⋯ ⋯ ⋯
. Using

Tr
Ζ , 

identify the parameter matrices A, B, C, G involved in the 

latent space state equations using Least Squares Estimate.  

 

Parameter matrices 3
, , ,c c c c c e e em m m N m m m m× × × ×∈ℜ ∈ℜ ∈ℜ ∈ℜA B C G  

are much lower in dimension than the regression coefficient 

matrices * * *

* * *
, ,R Q H   given in equations (5). Therefore, fewer data 

points allow us to determine these parameter matrices in the 

latent space. It should be noted that matrices k
D ’s are of high 

dimension, but are not computed with regression since they 

consist of known matrices as shown in equation (12).  

FIGURE 3: COMPARISON OF ECM COMPACTION FOR 
NONLINEAR COMPUTATIONAL MODEL AND LINEAR LATENT 
VARIABLE MODEL 
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RESULTS 
Figure 3 shows simulation experiments of two cells 

interacting with 3D ECM. Two cells, initially with an initial 

spherical shape, are embedded in the ECM fiber  network of a 

cylindrical space that measures 40 μm in diameter and 100 μm 

in length. Cells began to interact with the ECM fibers 

immediately, formed focal adhesions, and deformed both their 

own shapes and the ECM fiber network. Polarity directions of 

both cells (red arrows initially pointing in arbitrary directions) 

shift to point inward, indicating that larger stresses are detected 

in the area between the cells .The left hand side plots with green 

cells were generated with the original full scale computation 

using (1) and (2) while the right hand side plots with blue cells 

were the simulation using the dual faceted linearization and 

latent variable modeling based on (11) and (13). The low-order 

latent model could successfully reproduce the ground-truth, full-

scale simulation results in a significantly less amount of time. 

Table 1 give a summary of the computation time of the latent 

variable model using m= mc + me = 20   latent variables and m=  

100   latent variables  compared to the original full-scale 

simulation.  

 Figure 4 shows the ECM gel compaction by a single cell 

alone compared with two cells.  The compaction by a single cell 

is significantly smaller as quantified by the thickness comparison 

of the ECM along the longitudinal (X) axis. The maximum 

contraction for 1 cell along the axis is maximum contraction 90%  

which the maximum contraction 67% . It should be noted that 

the compaction by the two cells is more than twice larger than 

that of the single cell. This implies that the two cells amplified 

their reactions to the ECM compaction with each other, 

exhibiting a collective behavior. 

CONCLUSION 
The collective ECM compaction by multiple cells was 

predicted through superposition of individual cells contributions. 

This was made possible with the Dual Faceted Linearization. As 

applied to the analysis of multi-cell ECM compaction, linear 

augmented equations describing single cell-ECM interactions 

were derived from DF linearization, and then converted to a 

reduced-order linear representation by transformation onto a 

basis of eigenvectors derived from simulated data set. DF 

Linearization allows for the evolution of independent and 

auxiliary states to be described within a lower dimensional linear 

manifold.  The resulting reduced order latent model is capable of 

reproducing nonlinear dynamics, and the linearized structure of 

individual models facilitated their integration to describe cell 

behaviors. The prediction of collective behaviors was achieved 

by superposing contributions of individual cells represented by 

latent variables zc,k, which evolves based on their own dynamics 

in response to the global ECM state represented by latent 

variable ze.  The presented method for predicting collective 

behaviors of cell-mediated ECM gel compaction is scalable. 

Since the individual cell-ECM interactions are local 

computations the computational complexity does not increase 

exponentially, although the number of cells increases. Current 

and future work includes increasing the number of cells within 

the latent variable simulation [16]. Since computing a ground 

truth simulation with a large number of cells is impractical and 

sometimes infeasible, the proposed work can be used to predict 

large scale multi-cell interactions within reasonable 

computational time frame and can be compared with 

experimental results.  
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