

Sequestration of Landfill Gas Emissions using Basic Oxygen Furnace Slag: Effects of Moisture Content and Humid Gas Flow Conditions

Krishna R. Reddy, F.ASCE

Professor, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA; e-mail: kreddy@uic.edu (Corresponding author)

Archana Gopakumar, S.M. ASCE

Graduate Research Assistant, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA; e-mail: agopak2@uic.edu

Jyoti K. Chetri, S.M.ASCE

Graduate Research Assistant, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA, e-mail: jkc4@uic.edu

Girish Kumar, S.M.ASCE

Graduate Research Assistant, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA; e-mail: gkumar6@uic.edu

Dennis G. Grubb, M.ASCE

President, Fugacity LLC, 126 Veronica Lane, Lansdale, PA 19446, USA;
e-mail: dggrubbphdpe@gmail.com

Manuscript Submitted to:

Journal of Environmental Engineering, ASCE

July 15, 2019

32 **ABSTRACT:** Fugitive methane (CH₄) and carbon dioxide (CO₂) emissions from municipal
33 solid waste (MSW) landfills constitute one of the major anthropogenic sources of greenhouse gas
34 (GHG) emissions. In this regard, several researchers have focused on developing biocovers
35 which are primarily aimed at reducing CH₄ emissions from MSW landfills. Although these
36 studies have been successful in reducing the CH₄ emissions, the continuous CO₂ emissions due
37 to microbial CH₄ oxidation and MSW decomposition remain a major concern. In this study, the
38 CO₂ sequestration potential of basic oxygen furnace (BOF) steel slag subjected to simulated
39 landfill gas (LFG) conditions was examined to alleviate CO₂ emissions from landfills while also
40 promoting beneficial use of BOF slag. Several series of batch experiments were performed at
41 typical ambient conditions with varying moisture contents to evaluate the CO₂ removal capacity
42 of BOF slag. Small-scale column experiments were also performed simulating various LFG flow
43 conditions such as dry and humid LFG, and continuous and intermittent LFG flow into the
44 column. The results from the batch experiments showed that moisture is requisite for initiation of
45 carbonation reactions in BOF slag; however, there was no definitive trend or an optimum
46 moisture content that could be defined for the range of moisture contents tested. The CO₂
47 removal rate appeared to have a two-step mechanism: initial rapid CO₂ removal followed by
48 gradual removal of CO₂. The CO₂ removal capacity of BOF slag was found to be 350 mg/g and
49 155 mg/g of CO₂ under humid and dry LFG conditions, respectively. The total residual
50 lime/portlandite, which is readily available at slag surface, appears to be responsible for the
51 instantaneous carbonation of CO₂. In the long term, the CO₂ removal exceeded the theoretical
52 capacity of total residual lime/portlandite content, which was likely associated with the leaching
53 of other reactive minerals such as larnite (Ca₂SiO₄). An appreciable CH₄ removal by BOF slag
54 (120 mg/g and 40 mg/g under humid and dry conditions, respectively) was observed.

55

56 **Keywords:** MSW landfill, biocover, LFG emissions, BOF slag, CO₂ sequestration.

57

58 **INTRODUCTION**

59

60 Biodegradation of the waste in landfills results in LFG emissions which comprise of
61 approximately 50% CH₄, 50% CO₂, trace amounts of hydrogen sulfide (H₂S) and other non-
62 methanogenic organic compounds. In the U.S., LFG emissions are one of the major
63 anthropogenic sources of GHG emissions (US EPA, 2018). LFG emissions are addressed by
64 active gas extraction systems installed at landfills; however, these systems are not 100% efficient
65 due to the limited radius of influence of each gas extraction well (Spokas et al. 2006). In 2016,
66 fugitive emissions of LFG into the atmosphere were estimated at ~86.6 million metric tons of
67 CO₂ equivalents per year (US EPA, 2017). Fugitive CH₄ emissions from landfills pose a major
68 problem due to high global warming potential (GWP) of CH₄ of 28- 36 over 100 years (US EPA
69 2015), with emission rates as high as 10,000 mg CH₄ m⁻² d⁻¹, of which only 4-50% undergoes
70 oxidation while passing through landfill covers (Spokas et al. 2006).

71 Several studies address alternate cover systems, known as biocovers, that leverage the
72 microbial CH₄ oxidation that occurs in the landfill cover soils due to the presence of
73 methanotrophs. Biocovers that incorporate biologically-amended soils can enhance
74 methanotrophic activity leading to higher CH₄ oxidation rates (Sadasivam and Reddy 2014).
75 However, the organic materials commonly used as biocover amendments such as dewatered
76 sewage sludge, compost, and biosolids consist of unstable/degradable organic carbon that
77 eventually add to LFG emissions, thus exacerbating the situation. Alternatively, recent studies
78 investigating the use of biochar as an organic amendment in the biocovers showed enhanced
79 methanotrophic activity and CH₄ oxidation (Yargicoglu and Reddy 2015, 2017). Biochar is a
80 solid product derived from pyrolysis or gasification of organic matter under low oxygen

81 conditions. It contains more stable forms of organic carbon (compared to compost and biosolids),
82 high internal porosity, high water-holding capacity and high specific surface area making it a
83 good host media for bacteria to thrive and proliferate (Yargicoglu and Reddy 2015, 2017).

84 Although CH₄ emissions can be mitigated/controlled through the use of biochar-amended
85 soils, there are still uncontrolled emissions of CO₂ due to CH₄ oxidation and prevailing waste
86 decomposition. Complementing the CH₄ oxidation with CO₂ sequestration in biocovers has the
87 ability to result in “zero-emissions” from landfills. Accordingly, carbon capture and storage
88 (CCS) techniques using alkaline industrial by-products such as basic oxygen furnace (BOF) slag
89 adds an important dimension to potentially sustainable solutions to this global challenge. The
90 free-lime (CaO), portlandite [Ca(OH)₂] and oxides/silicate minerals containing divalent cations
91 (Ca, Mg, Fe) in BOF slag can promote conversion of CO₂ to stable carbonates.

92 Historically, studies have been conducted to analyze the CO₂ removal potential of BOF
93 slag for on-site carbon capture at industries such as steel production facilities, to optimize
94 reaction parameters (Huijgen et al. 2005; Su et al. 2016), and to purify raw biogas to natural gas
95 levels (Sarperi et al. 2014). Huijgen et al (2005) reported a maximum carbonation degree of 74%
96 of the Ca content for powder slag (< 38 μ m) and highlighted particle size and reaction
97 temperature as the factors affecting reaction rate. However, the conditions under which BOF slag
98 carbonation was evaluated in these studies do not relate to its potential use under landfill cover
99 conditions. For example, Huijgen et al. (2005) and Su et al. (2016) conducted experiments on
100 BOF slag under stirred powdered and slurry conditions which are considered most conducive for
101 accelerated carbonation, whereas the landfill cover soils mostly exist under unsaturated and static
102 conditions with larger diameter particle sizes. According to a Midwest US landfill temperature
103 study completed by Yesiller and Hanson (2003), temperatures only reach 23°C in the landfill

104 cover soil during summer, whereas industrial carbon capture studies are on the order of 100°C
105 (Huijgen et al. 2005, Su et al. 2016) with elevated pressures (20 bar and 250 kg/cm²). Sarperi et
106 al. (2014) conducted carbonation experiments at conditions that were closest to landfill
107 conditions with unsaturated slag samples at 20°C. Sarperi et al (2014) showed a CO₂ removal
108 capacity of 72 g CO₂/kg BOF slag corresponding to a 9% conversion of CaO in a column
109 experiment under ambient conditions using fine BOF slag (0-1 mm).

110 Researchers so far have focused on the mineral carbon sequestration using steel slags
111 under optimized conditions to accelerate the carbonation process. Limited studies have focused
112 on CO₂ sequestration by BOF slag under ambient conditions and none of the previous studies
113 have explored the CO₂ sequestration potential of the BOF slag under landfill conditions. This
114 paper presents a first study on the use of BOF slag as an amendment to the landfill cover soil
115 with the specific purpose of CO₂ sequestration under landfill conditions.

116 The objectives of the current study are: (1) to quantify the CO₂ sequestration potential of
117 BOF slag and other cover materials (soil and biochar) exposed to synthetic LFG under ambient
118 conditions; (2) to examine the CO₂ sequestration mechanism of the BOF slag; and, (3) to assess
119 the effect of process variables such as moisture content, gas composition and gas flow conditions
120 on the CO₂ sequestration potential of the slag. Batch experiments were conducted with BOF slag,
121 biochar and a cover soil with synthetic LFG to determine the CO₂ removal mechanisms and the
122 carbonation kinetics at unsaturated moisture conditions and normal atmospheric temperature
123 pertinent in landfill covers. Column experiments were also conducted to determine the
124 breakthrough curve and analyze the CO₂ removal behavior of the BOF slag tested.

125

126 **MATERIALS AND METHODS**

127

128 **Materials**

129

130 The materials studied included BOF slag, soil, and biochar. The crushed and screened BOF slag
131 with a top sieve size of 10 mm (3/8 inches) was obtained from Indiana Harbor East Steel Mill
132 (supplied by the Phoenix Services, LLC). The soil was collected from Zion Landfill, IL, from the
133 interim cover placed over MSW. The BOF slag and cover soils were collected manually using
134 shovels and collected in clean 5-gallon buckets. The buckets were immediately sealed with air
135 tight lids to avoid moisture loss. The biochar used in the experiments was acquired from a
136 commercial vendor and it was produced by gasification of waste wood (pinewood) at 570°C as
137 described by Yargicoglu et al. (2015).

138 The specific gravity of the three materials was determined in accordance to ASTM D854.

139 ASTM D422 was followed to determine the grain size distribution of each media, while
140 Atterberg limits of soil were determined as per ASTM D4318. Hydraulic conductivity and water
141 holding capacity (WHC) were determined according to the ASTM D2434 (for biochar and slag)
142 and ASTM D2980 (for all media), respectively. Hydraulic conductivity of soil was determined
143 according to ASTM 5084 (Method C, Falling head with rising tail water elevation) using a
144 flexible wall triaxial set up. The soil was sieved through No. 4 sieve, which was compacted at
145 20% target moisture content using a Harvard miniature setup (Humboldt Mfg. Co., Elgin,
146 Illinois) to a density of 2.11 g/cm³. The hydraulic conductivity of BOF slag was determined on
147 the sample passing through sieve No. 4, whereas the hydraulic conductivity was conducted on
148 biochar sample as is condition.

149 Oven-dried (100-110°C for 24 hours) samples (~10 g) of BOF slag, soil and biochar were
150 used to determine the loss-on-ignition (LOI) according to ASTM D2974. The pH and oxidation-
151 reduction potential (ORP) were measured using an ORION Model 720A pH meter (ORION
152 Research, Inc., Beverly, Massachusetts) as per ASTM D4972 and the electrical conductivity
153 (EC) was measured using Corning 311 Conductivity meter (Corning Inc., Corning, New York).

154 The basic physical, chemical and geotechnical properties of BOF slag, soil and biochar
155 used in this study are summarized in **Table 1**. The grain size distribution of each media is shown
156 in **Figure 1**. The representative sample of BOF slag tested consisted of ~91% sand-sized
157 particles and is classified as SP-SM according to Unified Soil Classification System (USCS).
158 The specific gravity of the BOF slag, soil and biochar were determined as 3.04, 2.65 and 0.65,
159 respectively. The hydraulic conductivity of BOF slag and biochar were both on the order of $\sim 10^{-4}$
160 cm/s, consistent with typical values for fine sands to loose silt (Holtz and Kovacs 1981). The soil
161 had very low hydraulic conductivity in the order of 10^{-8} cm/s. The WHC values of soil (45.9
162 w/w), BOF slag (40.5 w/w) and biochar (51.55 w/w) were comparable. BOF slag was observed
163 to be highly alkaline with pH ~12.4. The ORP of all three materials were negative,
164 demonstrating high redox conditions.

165 The minerals present in BOF slag were determined by X-ray powder diffraction (XRD)
166 and Rietveld quantification analysis. The sample preparation for XRD included grinding of a 3 g
167 sample, which was then spiked with corundum (Al_2O_3) on a 90:10 weight basis in a mixer for 10
168 min. Standard spike intensity reference was used to determine the amorphous content. Step-
169 scanned XRD data were collected by the Siemens D500 computer-automated diffractometer
170 using Bragg-Brentano geometry. The reference databases for powder diffraction and crystal

171 structure data were the International Center for Diffraction Data database (ICDD, 2001) and the
172 Inorganic Crystal Structure Database (ICSD, 2010, v.2).

173 The total elemental content was determined as a result of combined XRF/acid digestion
174 tests. Both Toxicity Characteristic Leaching Procedure (TCLP, EPA 1311) and Synthetic
175 Precipitation Leaching Procedure (SPLP, EPA 1312) leaching tests were conducted on the BOF
176 slag.

177 Scanning Electron Microscopy (SEM) imaging and analysis was conducted on crushed
178 and air-dried samples of BOF slag before and after carbonation experiments. Images were
179 captured using a JEOL JSM-6320F High Resolution Scanning Microscope operated at 2.5 kV.
180 Further, the elemental composition was determined using an Oxford X-Ray Energy Dispersive
181 Spectrometer (XEDS) fitted with a Hitachi S-3000N Variable Pressure Electron Microscope. The
182 specimens were sputter coated with 20 nm Pt/Pd using Cressington HR208 sputter coater to
183 minimize sample charging.

184

185 **Batch CO₂ Sequestration Experiments**

186

187 Batch experiments were conducted using BOF slag, soil and biochar to assess their removal
188 potential for CH₄ and CO₂, as shown in **Figure 2a**. The materials were dried in oven at 100-110
189 °C for 24 hours before they were used in the batch experiments. The batch experiments were
190 conducted by taking 1 g of dry sample in a 125 ml serum vial (Wheaton Glass, Milville, New
191 Jersey) and adding 0%, 10%, 20%, 30% and 40% (w/w) water (or L/S ratio of 0, 0.1, 0.2, 0.3 and
192 0.4 L/kg, respectively), at ambient temperature. Each vial was then purged completely with a
193 synthetic LFG mix containing 50% CH₄ and 50% CO₂ (v/v), closed with rubber septa, and

194 secured tightly with a metal crimp cap. Tests were conducted in triplicate for each water content
195 evaluated. The samples were shaken vigorously before sampling the gas from their headspace.
196 Gas samples were taken and analyzed using SRI 9300 GC (SRI Instruments, Torrance,
197 California) equipped with a thermal conductivity detector (TCD) and CTR-1 column capable of
198 simultaneous analysis of CO₂ and CH₄. For each replicate, 1 ml of gas sample was withdrawn
199 from the vial, and reduced to 0.5 ml before injecting into the GC. This ensured the sample
200 volume was within acceptable limits for the GC and in equilibrium with the atmospheric
201 pressure. A 3-point calibration curve was constructed for the SRI 9300 GC using standard CH₄-
202 CO₂ gas mixtures (Praxair Distribution, Inc., Roosevelt Road, Illinois) at 5%, 25%, and 50%
203 (v/v) concentration before testing the samples.

204 Two sets of batch experiments were conducted. The first set of batch experiments were
205 conducted with each media at five different moisture conditions contacted with synthetic LFG
206 containing 50% CH₄ and 50% CO₂ (v/v) for a total duration of 24 hours. In the second series of
207 batch tests, only BOF slag samples at a single moisture content (of 40%) were exposed to
208 different gas compositions for extended periods up to 1,850 hours: 50% CH₄ and 50% CO₂
209 mixture, 99% CH₄ and 1% nitrogen mixture, and 50% CO₂ and 50% nitrogen mixture. These gas
210 mixtures were selected to assess if there were any synergistic effects or interference on the
211 removal of CH₄ and CO₂ when both were present. The gas samples were analyzed from these
212 vials until no further CO₂ removal by BOF slag was detected.

213

214 **Column CO₂ Sequestration Experiments**

215

216 Column experiments were conducted to determine the CO₂ transport and removal capacity of the
217 BOF slag using the experimental setup shown in **Figure 2b**. An acrylic glass column (Cole-
218 Parmer, Vernon Hills, Illinois) of 30 cm height and 2.5 cm inner diameter was filled with BOF
219 slag with 10% (w/w) moisture content up to its full length in 2 layers of 15 cm each with light
220 tamping. It was secured with bed support mesh screen, end connections, and screw caps at both
221 ends. PTFE tubing was used to connect all components in the setup. Flow meters (Model
222 No.03216-04, Cole-Parmer, Vernon Hills, Illinois) were installed at both ends of the column to
223 control the influent/effluent gas flow rates. Gas samples were collected from each port at
224 different time intervals until CO₂ removal efficiency reduced to nearly 0% (C_{OUT}/C_{IN} = 1). 1 ml
225 of gas sample was collected from each sampling port at different time intervals, reduced to 0.5
226 ml and analyzed using SRI 9300 GC. Three column tests were conducted as follows and
227 summarized in **Table 2**:

- 228 • Column DC was tested under the *dry* continuous inflow gas (50% CH₄ and 50% CO₂)
229 conditions at 12 psi inlet pressure and inlet flow rate of 5-9 ml/min at ambient
230 temperature (23°C).
- 231 • Column HC was tested for *humid* continuous inflow gas (50% CH₄ and 50% CO₂)
232 conditions at an inlet pressure less than 6 psi and initial inlet flow rate of 10-12 ml/min at
233 atmospheric temperature. The synthetic LFG was passed through a water cylinder to
234 humidify the inlet gas to the column (**Figure 2b**).
- 235 • Column DI was conducted with *dry intermittent* gas (50% CH₄ and 50% CO₂) at 12 psi
236 inlet pressure and inlet flow rate 7-11 ml/min at atmospheric temperature.

237 Humid inflow gas conditions (HC) were tested to simulate the humid LFG conditions and role of
238 moisture on CO₂ removal, if any. The DC and DI tests were included to evaluate the effects of
239 pulsed flow on CO₂ removal.

240

241 **RESULTS AND DISCUSSION**

242

243 **Slag Characteristics**

244

245 **Table 3** shows the bulk chemistry and mineralogy of the BOF slag. The bulk chemistry (oxides
246 basis) is within the range reported in the published literature (Yildrim and Prezzi 2011; Grubb et
247 al. 2011, 2013; Chiang and Pan 2017). Most reactive minerals in the order of decreasing
248 reactivity commonly present in BOF slag are CaO, Ca(OH)₂ and Ca₂SiO₄ (Huijgen et al. 2005;
249 Sarperi et al. 2014; Caicedo-Ramirez et al. 2018). The CaO and Ca(OH)₂ constitute the effective
250 “residual lime” immediately available for reaction with CO₂. In the BOF slag used in this study,
251 ~2% CaO and ~9.5% Ca(OH)₂ are present, summing to 11.4-11.7 % residual lime content, along
252 with ~11% Ca₂SiO₄. In addition, ~5% CaCO₃ in the form of calcite and vaterite was also
253 measured reflecting the influence of air/water cooling during processing at the steel mill.

254 The total, TCLP, and SPLP heavy metal concentrations of the BOF slag along with the
255 RCRA limits as per 40 CFR 261 are summarized in **Table 4** for comparison purposes. The
256 results show that all TCLP regulated concentrations are within the RCRA limits, thus the BOF
257 slag is classified as non-hazardous. This observation is consistent with Proctor et al. (2000) in
258 which various slags [BOF, blast furnace (BF) and electric arc furnace (EAF)] from 58 active

259 steel mills across North America (that contribute to more than 47% of the steel production in
260 North America) were characterized to assess their impact on human and environmental health.

261 The key features of BOF slag compared to other landfill cover materials tested such as
262 soil and biochar are its high material density and high alkalinity. The high density of the BOF
263 slag is attributed to the iron content (**Table 4**). However, the specific gravity of the BOF slag
264 used (3.04) was much less than that reported for typical BOF slag (~3.5) in literature (Chesner et
265 al. 1998). According to Pan et al. (2013) and Morone et al. (2014) steel slags exhibited lower
266 specific gravity and particle density, respectively, upon carbonation (aging). Ko et al. (2015) also
267 mentioned reduction in density from 3.35 g/cm³ to 2.21 g/cm³ upon CaO hydration to Ca(OH)₂
268 and its carbonation. The presence of calcium carbonate polymorphs (calcite and vaterite) as
269 shown in **Table 3** confirms the aging of BOF slag leading to the reduction in material density.
270 The alkalinity and elevated pH associated with BOF slag resulting from its residual lime content
271 and basic silicates were viewed as a major challenge with respect to the viability of bacteria
272 (methanotrophs) to convert CH₄ to CO₂.

273

274 **Batch Experiments**

275

276 ***Effect of Moisture Content on Gas Removal***

277

278 The 24-hour batch experiments were conducted with soil, BOF slag, and biochar at five different
279 moisture contents by weight: 0%, 10%, 20%, 30% and 40% (L/S of 0, 0.1, 0.2, 0.3 and 0.4 L/kg,
280 respectively) such that the values were within their WHC for typical unsaturated conditions in
281 landfill covers. For each moisture content, the samples were tested in triplicate and the statistical

282 analysis was performed using ANOVA: single factor tool, comparing CO₂ removal in 24 hour
283 for each moisture content. There was significant difference in the total CO₂ removal by the BOF
284 slag from 0% to 40% moisture, with a confidence level greater than 95% (p=10⁻⁸). The CH₄ and
285 CO₂ removal was calculated based on the differences in their initial concentrations and the
286 quantities of each gas in the microcosm bottles at each testing interval reported by the GC (in
287 triplicate). **Figure 3a** shows the CO₂ removal capacity of BOF slag was in the range of 53-68
288 mg/g, versus 10 mg/g and 24 mg/g for soil and biochar, respectively. The CO₂ removal by BOF
289 slag was substantially higher than that of soil and biochar, and moreover appeared to be
290 independent of initial moisture content above 0%. The carbonation under dry conditions was
291 only 5 mg/g (negligibly small) indicating that moisture is a pre-requisite for carbonation. The
292 CH₄ removal in all media was insignificant (<6 mg/g), as implied by **Figure 3b**.

293 Several studies have emphasized the liquid to solid ratios as one of the process variables
294 influencing the carbonation of BOF slag. Some of these studies are summarized in **Table 5**.
295 However, none were able to establish a particular trend with the effect of moisture content on
296 CO₂ sequestration capacity of BOF slag under their respective experimental conditions. Huijgen
297 et al (2005) analyzed the effect of moisture content on degree of carbonation at L/S ratios
298 ranging from 2-20 L/kg under their experimental conditions. They observed slight decrease in
299 the degree of carbonation with the increase in L/S ratio from 2 to 20 L/kg which was attributed to
300 the increase in ionic strength and higher solubility of Ca. On the other hand, in the study by Su et
301 al. (2016), the degree of carbonation remained nearly constant when the L/S ratio increased from
302 2 to 10 L/kg but it dropped significantly in dry conditions under their experimental conditions,
303 and thus concluded that water is an essential medium for carbonation of BOF slag. Sarperi et al.
304 (2014) used operating conditions closer to the landfill conditions maintained in the present study.

305 BOF slag powder (0-1 mm) was used to sequester CO₂ from raw biogas at regulated temperature
306 (20°C) and exposed to CO₂/CH₄ gas mixture initially supplied to the BOF slag at various
307 moisture contents ranging from 0 to 0.5 L/kg. The CO₂ removal was monitored by GC and
308 optimum L/S ratio was identified as 0.1 L/kg with carbonation decreasing on either side of 0.1
309 L/kg. The reduction in carbonation at higher moisture content (L/S > 0.2 L/kg) was attributed to
310 the decrease in permeability of gas, limiting the interaction of gas with the slag particles and thus
311 decrease in reaction kinetics.

312 **Figure 4a** shows the CO₂ and CH₄ removal trends for the BOF slag during the 24-hour
313 batch experiments. The CH₄ removal was negligible and there was no significant change with
314 time. Likewise, CO₂ removal at 0% moisture (L/S = 0) was insignificant. Batch experiments
315 demonstrated the significance of moisture in BOF slag carbonation by the sudden shift of CO₂
316 removal from 5 mg/g under dry conditions to 61 mg/g (average for all moisture contents tested)
317 under moist conditions. Leaching of Ca²⁺ at the surface of slag particles is facilitated by
318 moisture, which forms the rate determining step of the carbonation reaction (Huijgen et al.
319 2005). The initial hydration of free lime and reaction of CO₂ with portlandite forms the initial
320 carbonates. Further, the Ca²⁺ from the Ca-silicates sequentially leach at the surface of the slag
321 particles to react with CO₂ during which it leaves a shell of unreactive, Ca-exhausted SiO₂ rim.
322 The Ca leaching even in the presence of moisture, could be limited by (1) formation of exhausted
323 SiO₂ particle on the slag particle surface, hindering the Ca²⁺ from reaching surface, (2)
324 precipitation layer of CaCO₃ on the surface of slag particles, and (3) stirring rate- a continuous
325 stirring enhances the carbonation as it would make more Ca²⁺ available on the surface to react.
326 Accordingly, as reported by Sarperi et al. (2014), an oven-dried slag (L/S = 0) did not exhibit

327 CO₂ removal (0 g/kg_{BOF}) whereas the intrinsic water in the as-received slag initiated
328 carbonation (24 g/kg_{BOF}), hence highlighting the role of water in accelerated carbonation.

329 However, a direct relationship between carbonation capacity and moisture content could
330 not be established from the 24-hour batch experiments in this study. Among the various moisture
331 contents tested, the optimum MC for carbonation was found to be 10% (L/S = 0.1 L/kg),
332 removing a maximum of 68 mg/g CO₂. Thereafter, lower CO₂ removal was observed at both
333 20% (L/S = 0.2 L/kg) and 40% (L/S = 0.4 L/kg) moisture content, with a slight increased CO₂
334 removal of 63 mg/g at 30% (L/S = 0.3 L/kg) moisture content. The CO₂ removal trends (**Figure**
335 **4a**) affirm that while moisture is a crucial factor for accelerated carbonation of BOF slag, it alone
336 cannot alter the extent of carbonation. Other factors such as BOF slag particle size, ambient
337 temperature, and initial CO₂ pressure usually control carbonation rates (Berryman et al. 2015; Su
338 et al. 2016; Ukwattage et al. 2017) and are viewed as the cause of this varying trend. Since the
339 slag sample was taken as-received for the batch experiments, the particle sizes present in the
340 samples varied which could have led to lesser carbonation in samples having high coarse-to-fine
341 particle ratios.

342 Further, CO₂ removal shows three distinct slopes in the presence of moisture (**Figure**
343 **4a**): first (steepest) slope occurred from 0 to 1 hour, second intermediate slope between 1 to 8
344 hours, and the flattest slope after 8 hours. Rapid carbonation occurred in the first one hour,
345 followed by more gradual removal thereafter. The difference in slopes is attributed to the
346 dissolution kinetics of various Ca containing minerals present in the BOF slag. The initial steep
347 slope suggests the dissolution of readily available minerals [CaO and Ca(OH)₂].

348 Furthermore, the BOF slag sample (<10 mm) with 61±7 mg/g CO₂ removal capacity over
349 the 10-40% moisture content range was successful under normal landfill conditions. The

350 optimum moisture content for CH₄ oxidation in landfill covers is on the order of 10-20%
351 (Visvanathan et al. 1999; Huber-Humer et al. 2008), hence the carbonation of BOF slag can be
352 operative while maintaining a nominal moisture content for methanotrophic activity.

353

354 ***Maximum Gas Removal and Synergistic Effects of Gas Composition***

355

356 Long-term batch experiments with different gas mixtures were conducted on BOF slag following
357 the same procedure as the 24-hour batch experiments, except the initial solid BOF slag at an
358 initial moisture content of 40% (L/S = 0.4 L/kg) was exposed to four synthetic LFG mixtures to
359 analyze the potential synergistic effects of CO₂ and CH₄ removal (**Figure 4b**). **Figure 4b** follows
360 a similar CO₂ removal trend as that observed in the 24-hour batch tests (**Figure 4a**). Carbonation
361 was initially rapid, followed by a continuous lower rate of CO₂ removal. The BOF slag exposed
362 to 50-50 CO₂/CH₄ gas mixture showed greater CO₂ removal (~100 mg/g) than that of 50-50
363 CO₂/N₂ mixture (~84 mg/g), which could be attributed to the difference in partial pressures of
364 different gas mixtures. Above all, the long-term CO₂ sequestration capacity of the BOF slag
365 exposed to 50-50 CO₂/CH₄ was almost double the rate of 24-hour test. The BOF slag sample
366 showed similar CH₄ removal of about 10-11 mg/g regardless of the gas mixture composition
367 which shows that there was no synergistic effects of gas composition on the CH₄ removal by the
368 BOF slag. In contrast, CO₂ removal showed synergistic effects of gas composition. The CH₄
369 removal fluctuated between 4-10 mg/g which could be attributed to the changes in adsorption on
370 the slag surfaces.

371

372 **Column Experiments**

373

374 **Dry Versus Humid Gas Injection**

375

376 The DC column was operated continuously with the inlet and outlet gas monitored regular time
377 intervals for CO₂ and CH₄ concentrations. The CO₂ and CH₄ ratios of outlet concentration to
378 inlet concentration (C_{OUT}/C_{IN}) as a function of pore volume (PV) are shown in **Figures 5(a) and**
379 **5(b)**, respectively. The HC column was conducted in a similar manner and the results are also
380 shown in **Figures 5(a) and 5(b)** for comparison for a total of approximately 1800 PV. The
381 corresponding cumulative CO₂ and CH₄ removals are plotted in **Figures 6(a) and 6(b)**. **Figure**
382 **6(a)** shows the results for a shorter test duration and **Figure 6(b)** shows the results for longer test
383 duration.

384 **Figure 5(a)** shows that under DC conditions, the C_{OUT}/C_{IN} for CO₂ is ~ 0 implying 100%
385 removal of CO₂ until 100 PV (with cumulative removal of 42 mg/g CO₂ as shown in **Figure**
386 **6(a)**). After 100 PV, C_{OUT}/C_{IN} increased rapidly to 0.7 at 150 PV. The ratio then gradually
387 increased to ~1 at around 1,553 PV (**Figure 5a**), for a total of ~155 mg/g of CO₂ removed at test
388 termination (**Figure 6b**). For DC conditions, CH₄ was almost always present in the effluent
389 (**Figure 5b**). Up to 100 PV, the C_{OUT}/C_{IN} ratio of CH₄ fluctuated around 0.4, then rapidly
390 increased to ~ 1 after the CO₂ breakthrough (**Figure 5b**), resulting in a cumulative 40 mg/g of
391 CH₄ removal (**Figure 6b**).

392 The CO₂ removal under HC condition followed similar pattern as DC condition until
393 breakthrough for a removal of ~ 42 mg/g of CO₂ at 100 PV (**Figures 5a and 6a**). After 100 PV,
394 the CO₂ C_{OUT}/C_{IN} increased rapidly to 0.6 at 200 PV (~ cumulative 58 mg/g) showing a removal
395 efficiency of 40%. The CO₂ C_{OUT}/C_{IN} continued as 0.6 until termination of the HC column test

396 (Figure 5). The corresponding inflow PV was 1,800 (213 hours) and the CO₂ removal was ~350
397 mg/g (Figure 6b). The HC column did not reach C_{OUT}/C_{IN} = 1 until termination, illustrating
398 more potential to remove CO₂. Surprisingly, HC column also showed considerable amount of
399 CH₄ removal (~118 mg/g) (Figure 6b) which could be due to adsorption or some reaction
400 mechanism involved which needs further investigation.

401 As shown in **Figures 6(a) and 6(b)**, the slope of cumulative CO₂ removal curve under
402 DC column conditions reduces from 0.4 to 0.07 at 100 PV (breakthrough). Cumulative CH₄
403 removal also followed a similar trend changing from 0.11 to 0.02 after the breakthrough. The
404 cumulative CO₂ removal slope by BOF slag under HC conditions reduces from 0.4 to 0.2 before
405 and after the breakthrough, respectively. A similar slope change in the cumulative CH₄ removal
406 curve was observed from 0.13 to 0.06 before and after breakthrough, respectively.

407

408 *Intermittent versus Continuous Gas Injection*

409

410 Column DI was cycled with dry inlet gas using a 9-10 hours ON/14-15 hours OFF schedule.
411 Each time the gas supply was reinstated, a C_{OUT}/C_{IN} similar to the previous cycle was re-
412 established in approximately 45 minutes. **Figures 7(a) and (b)** compare the results of DI column
413 with DC column. **Figure 7a** shows that the DI column exhibited essentially the same behavior as
414 the DC column through 100 PV. Thereafter, the DI results were clustered slightly lower than the
415 DC column data. **Figure 8** shows the cumulative removal of CO₂ which totalled 185 mg/g.
416 **Figure 7b** shows more overlapping performance of the two columns for CH₄ removal, ultimately
417 the DI column removed 50 mg/g (slightly higher than DC condition) as shown in **Figure 8**. The
418 slope of cumulative CO₂ removal curve by BOF slag changed from 0.4 to 0.11 at 100 PV,

419 whereas the slope of the cumulative removal curve of CH₄ changed from 0.17 to 0.03 after the
420 breakthrough (**Figure 8**).

421

422 ***Mechanisms of CO₂ Removal***

423

424 The number of pore volumes until CO₂ breakthrough and the corresponding total CO₂ removals
425 were the same for three column experiments (DC, HC and DI) as shown in **Table 6**. However,
426 the PVs and total CO₂ removal at the termination of the column experiments varied.

427 Breakthrough of CO₂ occurred at 100 PV (8,000-8,260 ml of synthetic LFG) for the BOF slag
428 under all three conditions – DC, HC and DI as shown in **Figure 5a** and **7a**. However,
429 carbonation persisted for longer periods under HC conditions compared to DC/DI conditions.

430 The similarity between the performance of DC and DI columns suggest that moist conditions
431 (HC) are critical for sustained CO₂ removal. However, initial breakthrough appears independent
432 of gas conditions (humidity) suggesting the availability of “residual lime” on slag surface is
433 decisive. Also, it can be inferred that the initial moisture content (10%) was sufficient to initiate
434 the carbonation process until breakthrough.

435 Huijgen et al. (2005) observed Ca(OH)₂ was responsible for the instantaneous
436 carbonation of steel making slags, while Sarperi et al. (2014) suggested surface lime (CaO) as
437 equally responsible for instantaneous reactions upon its hydration to form Ca(OH)₂. Hence, the
438 instantaneous CO₂ removal of BOF slag until 100 PV is assumed to be the reaction with both
439 CaO and Ca(OH)₂ in the as-received BOF slag (11.4 – 11.7 wt%). The leaching of Ca²⁺ ions is
440 thought to be the rate determining reaction step in the surficial carbonation mechanism according

441 to Chiang and Pan (2017) and Huijgen et al. (2005) suggesting moisture accelerates the
442 interstitial Ca availability required for sustained CO₂ sequestration.

443 Stoichiometric CO₂ sequestration of residual lime (11.4-11.7 wt%) amounts to 72 mg/g
444 of CO₂ on a theoretical basis. However, only 42 mg/g of CO₂ (60% of 72 mg/g) was removed at
445 breakthrough, 72 mg/g of CO₂ was removed at around 250-300 PV under HC and 440-450 PV
446 under DC conditions as shown in **Figure 6a**. This suggests that only 60% of the lime was surface
447 or near-surface accessible for instantaneous carbonation until breakthrough. Carbonation of the
448 remaining residual lime was attributed to the leaching of Ca ions from the inner core of the BOF
449 slag particles. The cumulative CO₂ removal persisted beyond the theoretical capacity of residual
450 lime (72 mg/g) as shown in **Figure 6a** which suggests the likelihood of the carbonation of other
451 Ca containing minerals. Other minerals that contain Ca such as Ca-Fe oxides and Ca-Mg-
452 silicates have also been reported to participate in CO₂ removal under variable conditions such as
453 higher moisture availability, finer particle sizes and longer carbonation periods (Huijgen et al.
454 2005; Kasina et al. 2015).

455 CO₂ removal in BOF slag follows two-step reaction mechanism as suggested by the
456 change in slope of cumulative removal curves of HC and DC columns (**Figure 6a**). The initial
457 rapid removal can be attributed to the carbonation of readily available minerals like CaO and
458 Ca(OH)₂. The slower CO₂ removal rates may involve leaching of Ca from inner core of slag
459 matrix as well as carbonation of Ca containing minerals with lower solubility rates like Ca
460 silicates (Huijgen et al. 2005). Furthermore, after breakthrough, the slope of HC column is
461 steeper than that of DC (**Figure 6a**) which indicates an increased Ca²⁺ leachability facilitated by
462 the moist conditions in the HC column.

463 Gradual white patchy formation of precipitates was observed in columns during the
464 experiments. Precipitate formation was sporadic until the breakthrough, thereafter progressed
465 uniformly from bottom to top in layers until termination when BOF slag particles were
466 completely covered and cemented together more tightly with white precipitates from
467 carbonation. The initial scattered formation of precipitates throughout the column suggests
468 consumption of surficial residual lime, followed by the progressive carbonation from inlet to
469 outlet.

470

471 *Mechanisms of CH₄ Removal*

472

473 For all the three conditions tested, removal of CH₄ was low. **Figures 5 to 8** show that the
474 breakthrough and cumulative removal curves of CH₄. The C_{OUT}/C_{IN} ratio of CH₄ remained
475 around 0.4 until 100 PV and then rapidly increased to nearly 0.9 for DC and 0.6 for HC column
476 (**Figure 5a**). The cumulative removal of CH₄ was about one-fourth of CO₂ removal in DC and
477 DI system, while it was one-third of the CO₂ removal in the HC system. Further, the slope of the
478 cumulative CH₄ removal gas followed a similar trend in DC, HC and DI systems, changing from
479 ~0.13 to 0.03 at breakthrough (100 PV).

480 To understand the CH₄ removal, a further in-depth study of chemical reaction
481 mechanisms occurring within the BOF slag matrix is required. It is known from the published
482 literature on steel slag carbonation as well as the XRD results that BOF slag is a complex system
483 that consists of numerous minerals. The basic and amphoteric oxides in the BOF slag form
484 several minerals that have different solubility, reactivity, bonding and other chemical
485 characteristics. It is also a vesicular material with high alkalinity making suitable for metals

486 immobilization, arsenic removal, and acid mine drainage remediation (Grubb et al. 2011; Grubb
487 and Wazne 2011; Ziemkiewicz and Skousen 1999). Previous studies discussed the influence of
488 oxygen vacancies in iron oxides to adsorb CH₄ and methyl radicals (Cheng et al. 2016) and CH₄
489 interaction with MgO and alumina (Li et al. 1994a, 1994b), and these metal oxides (FeO, MgO,
490 Al₂O₃) are constituents of BOF slag matrix, suggesting the possibility of CH₄ removal by BOF
491 slag along those routes. Steel slags have been studied by Navarro et al. (2010) to consist of both
492 mesopores and macropores with high specific surface area of 11 m²g⁻¹ providing more adsorptive
493 and reactive area. These properties of steel slag along with slight acidic nature of CH₄ gas may
494 provide a conducive environment for CH₄ adsorption (Chiang et al. 2016).

495

496 **SEM-EDS Analysis**

497

498 The SEM images and the SEM-EDS results for as-received and carbonated BOF slag samples
499 are shown in **Figure 9**, whereas the respective quantitative elemental results are summarized in
500 **Table 7**. The EDS result in terms of percentage weight can only be considered as a qualitative
501 method for comparison of steel slag that exhibits surficial and interstitial heterogeneous
502 distribution of elements as it mostly gives the surficial information of very tiny quantity of the
503 crushed sample (<0.5 g) that is considered representative of the larger system.

504 The image of as-received BOF slag shows the presence of large number of internal pores
505 with a network of needle-like formations observed on the surfaces infringing on the pores as
506 shown in **Figure 9a**. These needle-like formations are suggestive of CaCO₃ (Chiang and Pan
507 2017). In addition, the SEM-EDS spectrum and the quantitative results in **Table 7** confirmed that
508 the original sample tested for the experiments had already started undergoing carbonation during

509 cooling and processing with the presence of carbon (C), oxygen (O) along with calcium (Ca)
510 peaks suggestive of CaCO_3 .

511 The BOF slag collected from the DC and HC columns at the end of testing were
512 subjected to SEM-EDS analysis to compare the surface and compositional changes due to
513 carbonation. The sample from DI was not analyzed separately due to the similarity in its
514 response to that of DC conditions. Increasing C and O peaks were detected with increasing
515 degrees of carbonation (As-is \rightarrow DC \rightarrow HC). The increase in weight percentage of C and O in the
516 carbonated samples are provided in **Table 7**. Both carbonated samples from DC and HC
517 exhibited pore clogging as well as formation of needle-like outgrowths and rhombohedral
518 structures reducing the pore space in the BOF slag matrix as compared to the as-received sample
519 as shown in **Figure 9b** and **9c**. The precipitate formed during the column tests was thus
520 confirmed to be the carbonates with the help of SEM-EDS analysis based on the morphological
521 formations and Ca, C and O peaks.

522

523 CONCLUSIONS

524

525 BOF slag was evaluated in this study for its suitability as a material in landfill covers for the
526 mitigation of LFG emissions. Based on the series of batch and column experiments conducted in
527 this study, the following conclusions can be drawn:

528 • BOF slag has a significant capacity to sequester CO_2 under synthetic LFG conditions, and
529 moisture is necessary for the initiation of carbonation reaction. The CO_2 removal process can
530 be divided into (i) instantaneous, and (ii) long-term phases. The instantaneous reaction is
531 attributed to the residual lime content in the BOF slag. The long-term removal is attributed to

532 the leaching of Ca^{2+} from other reactive silicates which is assisted by the presence of
533 moisture in the system.

534 • A nominal amount of CH_4 removal by the BOF slag was observed during the batch and
535 column experiments, indicating potential interactions between select oxides and silicates with
536 CH_4 .

537 • The formation of carbonate precipitates in the column experiments did result in hardening of
538 the slag mass within the column, but, there was no significant effect on gas permeability.

539 However, a thorough investigation should be taken to account for potential clogging issues in
540 designing the slag layer thickness, particle size and porosity for the large scale and field scale
541 testing.

542

543 **ACKNOWLEDGEMENTS**

544

545 This project is funded by the U.S. National Science Foundation (grant CMMI # 1724773).
546 Phoenix Services, LLC, served as an industrial partner and provided slag samples for this
547 research.

548

549 **REFERENCES**

550

551 Berryman, E. J., Williams-Jones, A. E., and Migdisov, A. A. (2015). "Steel slag carbonation in a
552 flow-through reactor system: The role of fluid-flux." *J. Environ. Sci.*, 27(C), 266-275.

553 A. Caicedo-Ramirez, M.T. Hernandez and D.G. Grubb (2018). “Elution history of basic oxygen
554 furnace slag to produce alkaline water for reagent purposes.” Protection and Restoration
555 of the Environment XIV (PREXIV), Greece, July 3-6, 2018.

556 Cheng, Z., Qin, L., Guo, M., Fan, J. A., Xu, D., and Fan, L. S. (2016). “Methane adsorption and
557 dissociation on iron oxide oxygen carriers: the role of oxygen vacancies.” *Phys. Chem. Chem. Phys.*,
558 18(24), 16423-16435.

559 Chesner, W. H., Collins, R. J., and MacKay, M. H. (1998). *User guidelines for waste and by-
560 product materials in pavement construction*, Federal Highway Administration (FHWA),
561 FHWA-RD-97-148.

562 Chiang, W. S., Fratini, E., Baglioni, P., Chen, J. H., and Liu, Y. (2016). “Pore size effect on
563 methane adsorption in mesoporous silica materials studied by small-angle neutron
564 scattering.” *Langmuir*, 32(35), 8849-8857.

565 Chiang, P. C., and Pan, S. Y. (2017). *Carbon dioxide mineralization and utilization*, Springer,
566 Singapore.

567 Grubb, D. G., Wazne, M., Jagupilla, S. C., and Malasavage, N. E. (2011). “Beneficial use of
568 steel slag fines to immobilize arsenite and arsenate: slag characterization and metal
569 thresholding studies.” *J. Hazard. Toxic Radioact. Waste*, 15(3), 130-150.

570 Grubb, D. G., and Wazne, M. (2011). *Metal immobilization using slag fines*, U.S. Patent
571 Application No. 12/874,079.

572 Grubb, D. G., Wazne, M., Jagupilla, S., Malasavage, N. E., and Bradfield, W. B. (2013). “Aging
573 effects in field-compactated dredged material: steel slag fines blends.” *J. Hazard. Toxic
574 Radioact. Waste*, 17(2), 107-119.

575 Grubeša, I. N., Barisic, I., Fucic, A., and Bansode, S. S. (2016). *Characteristics and uses of steel*
576 *slag in building construction*, 1st Ed., Woodhead Publishing.

577 Gupta, J. D., Kneller, W. A., Tamirisa, R., and Skrzypczak-Jankun, E. (1994). “Characterization
578 of base and subbase iron and steel slag aggregates causing deposition of calcareous tufa
579 in drains”. *Transportation Research Record*, (1434).

580 Holtz, R. D., and Kovacs, W. D. (1981). *An introduction to geotechnical engineering*, 2nd Ed.,
581 Prentice-Hall, New Jersey.

582 Huber-Humer, M., Gebert, J., and Hilger, H. (2008). “Biotic systems to mitigate landfill methane
583 emissions.” *Waste Manag. Res.*, 26(1), 33-46.

584 Huijgen, W. J., Witkamp, G. J., and Comans, R. N. (2005). “Mineral CO₂ sequestration by steel
585 slag carbonation.” *Environ. Sci. Technol.*, 39(24), 9676-9682.

586 Kasina, M., Kowalski, P. R., and Michalik, M. (2015). “Mineral carbonation of metallurgical
587 slags”. *Mineralogia*, 45(1-2), 27-45.

588 Ko, M. S., Chen, Y. L., and Jiang, J. H. (2015). “Accelerated carbonation of basic oxygen
589 furnace slag and the effects on its mechanical properties.” *Constr. Build. Mater.*, 98, 286-
590 293.

591 Li, C., Yan, W., and Xin, Q. (1994a). “Interaction of methane with surface of alumina studied by
592 FT-IR spectroscopy.” *Catal. Lett.*, 24(3-4), 249-256.

593 Li, C., Li, G., and Xin, Q. (1994b). “FT-IR spectroscopic studies of methane adsorption on
594 magnesium oxide.” *J. Phys. Chem.*, 98(7), 1933-1938.

595 Morone, M., Costa, G., Polettini, A., Pomi, R., and Baciocchi, R. (2014). “Valorization of steel
596 slag by a combined carbonation and granulation treatment.” *Miner. Eng.*, 59, 82-90.

597 Navarro, C., Díaz, M., and Villa-García, M. A. (2010). "Physico-chemical characterization of
598 steel slag. Study of its behavior under simulated environmental conditions." *Environ. Sci.*
599 *Technol.*, 44(14), 5383-5388.

600 Pan, S. Y., Chiang, P. C., Chen, Y. H., Tan, C. S., and Chang, E. E. (2013). "Ex situ CO₂ capture
601 by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating
602 packed bed." *Environ. Sci. Technol.*, 47(7), 3308-3315.

603 Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., Avent, C., Bigham,
604 R.D., Connolly, M., Lee, B., Shepker, T.O., and Zak, M. A. (2000). "Physical and
605 chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace
606 steel industry slags." *Environ. Sci. Technol.*, 34(8), 1576-1582.

607 Reddy, K.R., Yargicoglu, E.N., Yue, D., and Yaghoubi, P. (2014). "Enhanced microbial methane
608 oxidation in landfill cover soil amended with biochar." *J. Geotech. Geoenviron. Eng.*,
609 ASCE, 140(9).

610 Sadasivam, B.Y., and Reddy, K.R. (2014). "Landfill methane oxidation in soil and bio-based
611 cover systems." *Reviews in Environ. Sci. Bio/Technol.*, 13(1), 79-107.

612 Sarperi, L., Surbrenat, A., Kerihuel, A., and Chazarenc, F. (2014). "The use of an industrial by-
613 product as a sorbent to remove CO₂ and H₂S from biogas." *J. Environ. Chem. Eng.*, 2(2),
614 1207-1213.

615 Spokas, K., Bogner, J., Chanton, J. P., Morcet, M., Aran, C., Graff, C., Moreau-Le Golvan, L.,
616 and Hebe, I. (2006). "Methane mass balance at three landfill sites: What is the efficiency
617 of capture by gas collection systems?." *Waste Manage.*, 26(5), 516-525.

618 Stolaroff, J. K., Lowry, G. V., and Keith, D. W. (2005). "Using CaO-and MgO-rich industrial
619 waste streams for carbon sequestration." *Energy Convers. Manag.*, 46(5), 687-699.

620 Su, T. H., Yang, H. J., Shau, Y. H., Takazawa, E., and Lee, Y. C. (2016). "CO₂ sequestration
621 utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr
622 concerns." *J. Environ. Sci.*, 41, 99-111.

623 Takahashi, T., and Yabuta, K. (2002). *New application of iron and steelmaking slag*, NKK
624 Technical Report-Japanese Edition, 87, 43-48.

625 Ukwattage, N. L., Ranjith, P. G., and Li, X. (2017). "Steel-making slag for mineral sequestration
626 of carbon dioxide by accelerated carbonation." *Measurement*, 97, 15-22.

627 US Environmental Protection Agency (US EPA) (2018). "Landfill methane outreach program
628 (LMOP)." <<https://www.epa.gov/lmop/benefits-landfill-gas-energy-projects>> (accessed
629 on June 4, 2018).

630 US EPA (2017). "Greenhouse gas reporting program (GHGRP)." <<https://www.epa.gov/ghgreporting/ghgrp-waste>> (accessed on June 4, 2018).

631 US EPA (2015). "Understanding global warming potentials." <<https://www.epa.gov/ghgemanagements/understanding-global-warming-potentials>>
632 (accessed on June 4, 2018).

633 Visvanathan, C., Pokhrel, D., Cheimchaisri, W., Hettiaratchi, J. P. A., and Wu, J. S. (1999).
634 "Methanotrophic activities in tropical landfill cover soils: effects of temperature,
635 moisture content and methane concentration." *Waste Manag. Res.*, 17(4), 313-323.

636 Yargicoglu, E., Sadasivam, B.Y., Reddy, K.R. and Spokas, K. (2015). "Physical and chemical
637 characterization of waste wood derived biochars." *Waste Manage.*, 36(2), 256-268.

638 Yargicoglu, E. N., and Reddy, K. R. (2015). "Characterization and surface analysis of
639 commercially available biochars for geoenvironmental applications." *IFCEE 2015*, 2637-
640 2646.

641

642

643 Yargicoglu, E. N., and Reddy, K. R. (2017). "Effects of biochar and wood pellets amendments
644 added to landfill cover soil on microbial methane oxidation: A laboratory column
645 study." *J. Environ. Manag.*, 193, 19-31.

646 Yesiller, N., and Hanson, J. L. (2003). "Analysis of temperatures at a municipal solid waste
647 landfill." Proc., *9th Int. Waste Management and Landfill Symp.*, T. H. Christensen et al.,
648 eds., CISA, Italy

649 Yildirim, I. Z., and Prezzi, M. (2011). "Chemical, mineralogical, and morphological properties of
650 steel slag." *Adv. Civil Eng.*, 2011.

651 Ziemkiewicz, P., and Skousen, J. (1999). "Steel slag in acid mine drainage treatment and
652 control." Proc., *Annual National Meeting of the Society for Surface Mining and*
653 *Reclamation*, 16, 651-656.

Table 1. Physical, chemical and geotechnical properties of experimentally tested BOF slag, cover soil and biochar

Properties	ASTM Method	BOF Slag	Soil	Biochar
Specific Gravity	D854	3.04	2.65	0.65
<i>Grain Size Distribution:</i>	D422			
Gravel (%)		0	0	45
Sand (%)		90.5	7.2	54
Fines (%)		9.5	92.8	1
D ₅₀ (mm)		0.47	0.0068	4.3
C _c		0.55	-	0.82
C _u		11.92	-	2.42
<i>Atterberg Limits:</i>	D4318			
Liquid Limit (%)		Non-Plastic	35.0	Non-Plastic
Plastic Limit (%)		-	20.34	-
Plasticity Index (%)		-	14.66	-
USCS Classification	D2487	SP-SM	CL	SP
Water Holding Capacity (w/w)	D2980	40.5	45.9	51.6
Dry Density (g/cm ³)		1.32	2.11	1.15
Hydraulic Conductivity (cm/s)	D2434	4.2 x 10 ⁻⁴	2.75 x 10 ⁻⁸	2 x 10 ⁻⁴
Loss of Ignition (%)	D2974	2.5	4.47	96.71
pH (1:1)	D4972	12.4	7.04	6.5
Electrical Conductivity (mS/cm)	D4972	6.68	0.4	0.8
Redox Potential (mV)	D4972	-317.9	-37.7	-6.3

Table 2. Summary of column experimental conditions

Parameters	DC	HC	DI
<i>Inlet gas:</i>			
Moisture condition	Dry	Humid	Dry
Mode of injection	Continuous	Continuous	Intermittent
Carbon dioxide (%)	50	50	50
Methane (%)	50	50	50
<i>Column:</i>			
Diameter (cm)	2.5	2.5	2.5
Length (cm)	30	30	30
BOF slag mass (g)	189.5	190.8	199.5
BOF slag particle size (mm)	< 4.75	< 4.75	< 4.75
Moisture content (%)	10	10	10
Dry density (g/cm ³)	1.3	1.3	1.38
Porosity (v/v)	0.57	0.57	0.55
Pore volume (ml)	82	82	80
<i>Flow:</i>			
Inlet flow rate (ml/min)	5-9	10-29	7-11
Inlet pressure (psi)	12	< 6	12
Outlet flow rate (ml/min)	1-7	2-21	2-9
Total test duration (min)	17159	103628	17678
Total pore volumes (#)	1553	22357	1882

DC=column with dry gas continuous inflow

HC=column with humid gas continuous inflow

DI= column with dry gas intermittent inflow

Table 3. Mineralogy and bulk chemistry (oxide basis) of BOF slag

Minerals and Oxides	Mineral Formula	Percent Weight
<i>Minerals</i>		
Lime	CaO	2.0-2.2
Portlandite	Ca(OH) ₂	9.4-9.5
Larnite	Ca ₂ SiO ₄	9.5-11.4
Srebrodolskite	Ca ₂ Fe ₂ O ₅	6.6-7.8
Akermanite	Ca ₂ MgSi ₂ O ₇	0.0-6.4
Magnesioferrite	MgFe ₂ O ₄	3.3-3.8
Katoite	Ca ₃ Al ₂ (OH) ₁₂	3.8-4.3
Calcite	CaCO ₃	2.8-2.9
Vaterite	CaCO ₃	1.8-2.7
Wuestite	FeO	2.5-2.7
Mayenite	Ca ₁₂ Al ₁₄ O ₃₃	2.7-2.9
Iron magnesium oxide	FeO.76MgO.24O	1.4-1.7
Merwinite	Ca ₃ Mg(SiO ₄) ₂	0.9-0.9
Periclase	MgO	0.4-0.6
Quartz	SiO ₂	0.3-0.4
Brucite	Mg(OH) ₂	0.3-0.6
Iron	Fe	0.0-0.1
Amorphous material		41.7-50.1
<i>Oxide Basis</i>		
CaO		33.6-33.8
SiO ₂		13.3-13.4
Al ₂ O ₃		3.6-3.6
Fe ₂ O ₃		15.4-15.4
MgO		4.6-4.6
SO ₃		0.3-0.3
Loss of Ignition (LOI)		8.6-8.6

Table 4. Total, TCLP and SPLP metal concentrations in BOF slag

Constituent	Symbol	Total (mg/kg)	TCLP (mg/L)	SPLP (mg/L)	RCRA Limit (mg/L)
Aluminum	Al	7,600	0.62	0.16	
Antimony	Sb	<0.76	<0.00031	<0.00016	
Arsenic	As	1.3	0.00087	0.00029	5
Barium	Ba	36	0.14	0.12	100
Beryllium	Be	<0.76	<0.00025	<0.00013	
Boron	B	330	0.12	0.027	
Cadmium	Cd	2.5	<0.00028	<0.00015	1
Calcium	Ca	290,000	2,300	800	
Chromium	Cr	1,600	0.011	0.002	5
Cobalt	Co	1.2	0.0034	0.0013	
Copper	Cu	7.4	<0.005	<0.0025	
Iron	Fe	210,000	0.031	0.011	
Lead	Pb	<0.76	<0.00041	<0.00020	5
Magnesium	Mg	65,000	0.077	<0.050	
Manganese	Mn	24,000	0.005	0.00072	
Mercury	Hg	<0.01	<0.00005	<0.00005	0.2
Nickel	Ni	8.2	0.036	0.013	
Potassium	K	<1,500	0.76	0.66	
Selenium	Se	<1.2	0.0047	0.0019	1
Silver	Ag	<0.76	<0.00025	<0.00013	5
Sodium	Na	<1,900	6.4	4.8	
Thallium	Tl	<0.23	<0.00025	<0.00013	
Vanadium	V	1,000	0.0058	0.00078	
Zinc	Zn	59	0.035	0.024	

TCLP = Toxicity Characteristic Leaching Procedure

SPLP = Synthetic Precipitation Leaching Procedure

RCRA = Resource Conservation and Recovery Act

Table 5. Comparison of batch experiments in previous and present study on CO₂ sequestration by steel slag

Reference	Experimental Conditions	Experimental Method	Notes
Huijgen et al. (2005)	<p>Slag: Linz Donawitz (LD) steel slag</p> <p>Moisture: 2-20 L/kg (L/S ratio)</p> <p>Reactor: AISI316 Autoclave Reactor</p> <p>Stirring rate: 500 rpm</p> <p>Grain size: < 106 µm</p> <p>Temperature: 100 °C</p> <p>Pressure: 20 bar (continuous CO₂ replenishment)</p> <p>Reaction time: 30 min</p> <p>Analysis method: Thermogravimetric Analysis (TGA) and acidification</p>	<p>Slag-water mixtures react in a closed reactor at specified conditions.</p> <p>After 30 min, the reactor was cooled, depressurized and opened. The slag-water mixture filtered, slag dried at 50°C in oven overnight and tested.</p>	<ul style="list-style-type: none"> ▪ Optimum L/S: 2 L/kg ▪ Calcium conversion and carbonate content decreased from 60 to 50% and 12.5 to 10.5 (wt%), respectively with increasing L/S from 2 to 20 L/kg, explained by higher ionic strength and higher Ca solubility. <p>Key difference from current study: High temperature, high pressure, finer particle size, higher stirring rate, slurry form, shorter reaction time</p>
Su et al. (2016)	<p>Slag: BOF slag</p> <p>Moisture: 0 -10 L/kg (L/S)</p> <p>Reactor: 20 ml capped (with 7 holes) cell within 500 ml autoclave</p> <p>Stirring rate: None</p> <p>Grain size: 3.5-2 (mm)</p> <p>Temperature: 100 °C</p> <p>Pressure: 245 bar</p> <p>Reaction time: 24 hours</p> <p>Analysis method: TGA</p>	<p>2 g dry slag distributed on cell base, covered with water to reach L/S ratio, positioned in autoclave with dry CO₂ ice, sealed and heated to reaction temperature. Reaction carried until temperature and pressure read 31°C and 75.3 kg/cm². The reactor was cooled and depressurized. The slag-water mixture filtered, slag oven dried at 80°C overnight and tested.</p>	<ul style="list-style-type: none"> ▪ Optimum L/S: 2-10 L/kg ▪ Degree of carbonation (wt%) remained nearly constant (16.3%-18.5%) when L/S increased from 2-10 L/kg <p>Key difference from current study: High temperature, high pressure, slurry form</p>
Sarperi et al. (2014)	<p>Slag: BOF slag</p> <p>Moisture: 0 - 0.5 L/kg</p> <p>Reactor: Atmospheric reactor</p> <p>Stirring rate: 300 rpm</p> <p>Grain size: 0-1 mm</p> <p>Temperature: 20°C(thermo-regulated room)</p> <p>Pressure: ND (CH₄/CO₂ gas mixture passed for 5 min at 10 ml/min)</p> <p>Reaction time: 6 hours</p> <p>Analysis method: Gas chromatography</p>	<p>Slag-water mixture filled into a 100 µm mesh basket (slag basket) and lowered into the reactor, hermetically sealed and gas samples analyzed over time.</p>	<ul style="list-style-type: none"> ▪ Optimum L/S: between 0.05 to 0.2 L/kg (with 65 g/kgBOF CO₂ removal at 0.1 L/kg) ▪ Oven-dried slag (L/S = 0) did not result in any CO₂ removal while the intrinsic water in the as-received slag initiated carbonation, hence highlighting importance of water in accelerated carbonation. <p>Key difference from current study: Finer particle size, shorter reaction time, higher stirring rate</p>

Present study

Slag: BOF slag

Moisture: 0 – 0.4 L/kg

Reactor: 125 ml microcosm bottles

Stirring rate: Only occassional shaking

Grain size: <10 mm (3/8")

Temperature: Room temperature (~23°C, non-regulated)

Pressure: ND (50% CH₄/50% CO₂ gas mixture purged in vial)

Reaction time:

Test 1: 24 hours; and

Test 2: 1850 hours

Analysis method: Gas Chromatography

1 g dry slag mixed with water to required moisture contents in microcosm bottle, purged to fill with 50% CH₄/50% CO₂ gas mixture and sealed. Gas samples analyzed over time.

- Optimum L/S: 0.1 L/kg (with 68 mg CO₂ /g BOF removed at L/S = 0.1 L/kg)
- Oven-dried slag (L/S = 0) did not remove any CO₂

Table 6. Cumulative CO₂ removed by BOF slag in column experiments with different flow conditions.

Column	1 PV (ml)	Breakthrough		Termination	
		PV (#)	CO ₂ removed (mg/g)	PV (#)	CO ₂ removed (mg/g)
DC: Dry & Continuous	82	100	42	1,553	155
HC: Humid & Continuous	82	100	42	1,800	350
DI: Dry & Intermittent	80	100	42	1,882	200

PV= Pore Volume

Table 7. SEM-EDS elemental quantitative results for as-received and carbonated slag from DC and HC column experiments.

Element	Weight (%)		
	As-received	DC	HC
Ca	55.34	61.57	57.08
Si	9.70	3.92	2.22
Fe	9.69	ND	ND
Mg	2.26	1.87	2.43
Al	1.79	ND	ND
C	5.47	10.73	11.97
O	15.75	21.91	26.29

DC=column with dry gas continuous inflow

HC=column with humid gas continuous inflow

ND=non-detected

Figure Captions

Figure 1. Grain size distribution of BOF slag, soil and biochar

Figure 2. Schematic setup (a) Batch experiment; and (b) Column experiment (humid).

Figure 3. Cumulative (a) CO_2 and (b) CH_4 removal in 24 hours by BOF slag, soil and biochar at different moisture conditions ($n = 3$).

Figure 4. Cumulative CO_2 and CH_4 removal by BOF slag with time: (a) short-term batch experiments with different initial solid moisture contents; and, (b) long-term batch experiments with different gas mixtures at initial solid moisture content of 40%.

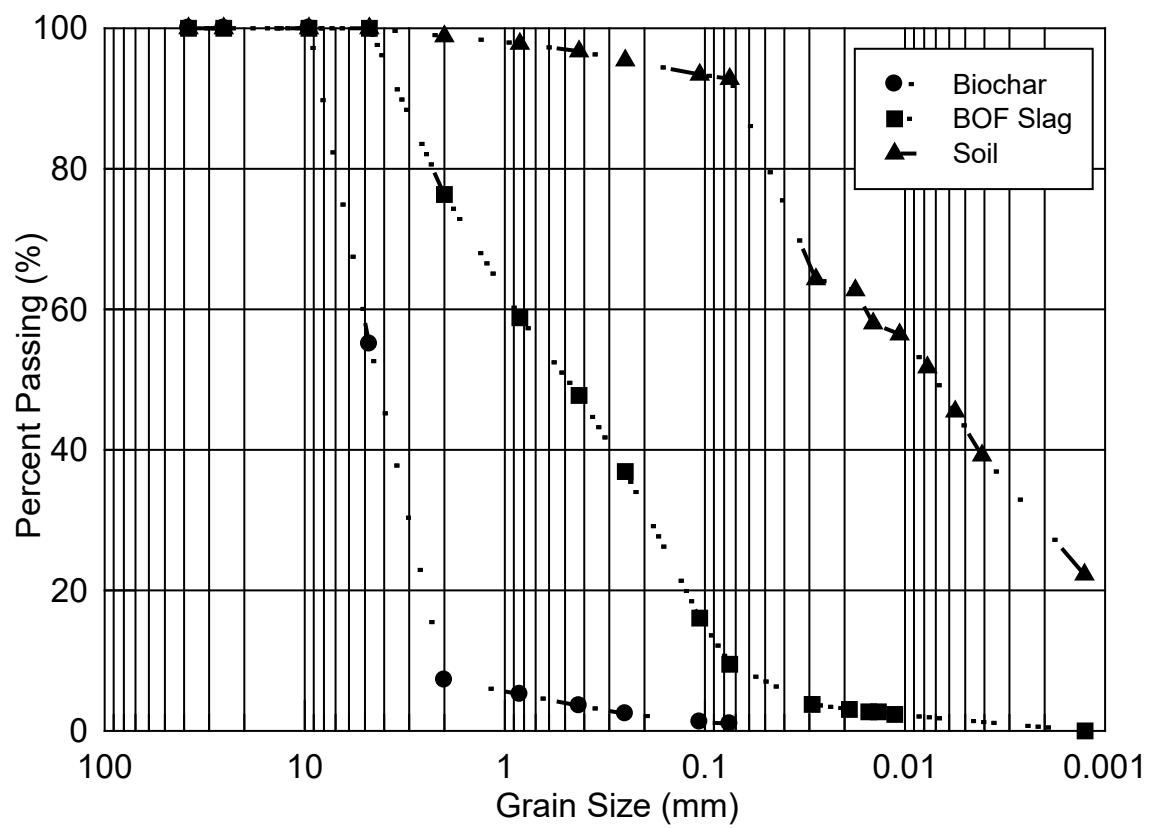

Figure 5. Outlet to inlet concentration ratio of CO_2 (a) and CH_4 (b) under dry (DC) and humid (HC) flow conditions on BOF slag column pore volume basis. Note: MC_i = initial moisture content

Figure 6. Short-term (a) and long-term (b) CO_2 and CH_4 removal under humid (HC) and dry (DC) flow conditions on BOF slag column pore volume basis.

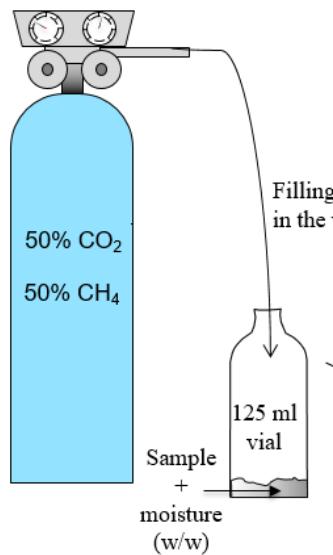
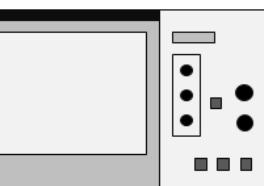
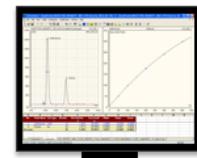

Figure 7. Outlet to inlet concentration ratio of CO_2 (a) and CH_4 (b) under dry continuous (DC) and dry intermittent (DI) flow conditions on BOF slag column pore volume basis.

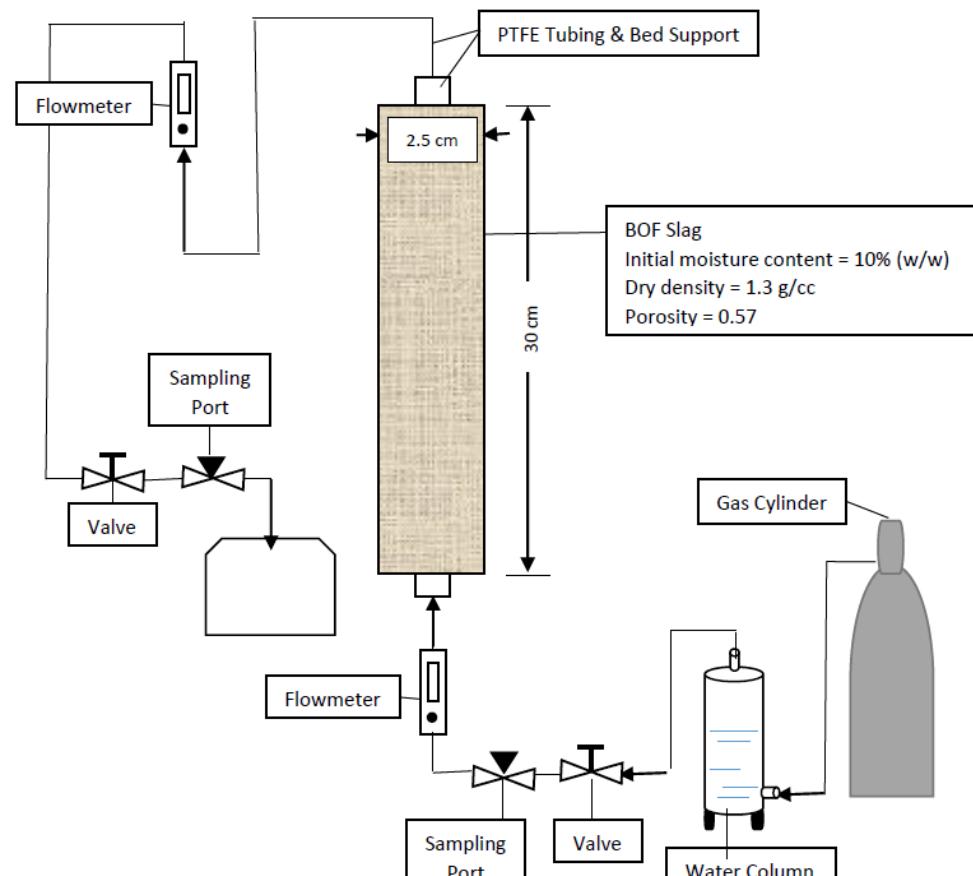
Figure 8. Comparison of cumulative CO_2 and CH_4 gas removal under dry continuous (DC) and dry intermittent (DI) flow conditions on BOF slag column pore volume basis.

Figure 9. Scanning Electron Microscopy- Energy Dispersive X-Ray Spectroscopy (SEM-EDS) images of BOF slag (a) As-received, (b) DC-Carbonated; and (c) HC-Carbonated (DC-dry gas conditions; HC-Humid gas condition

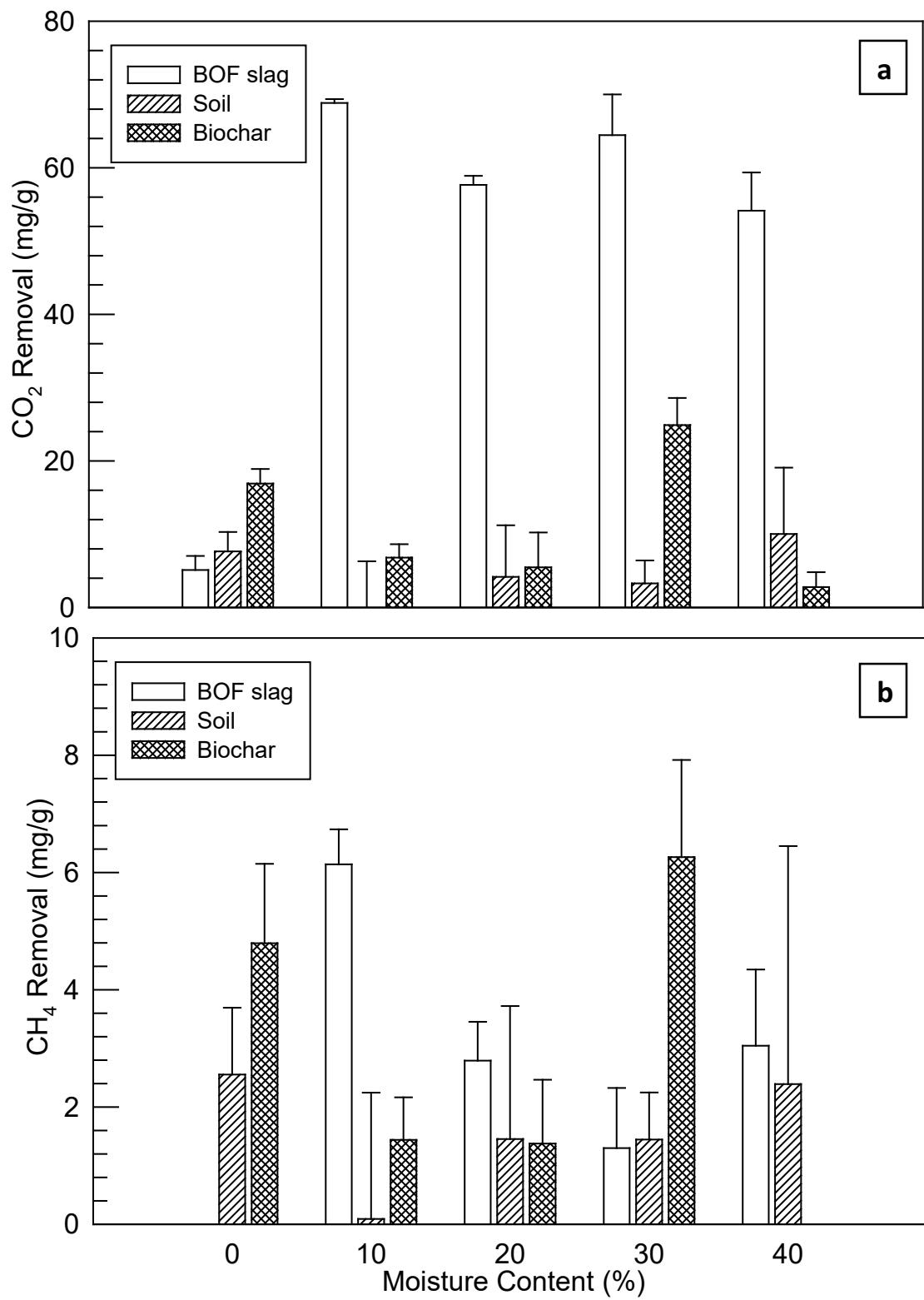
Gas Cylinder

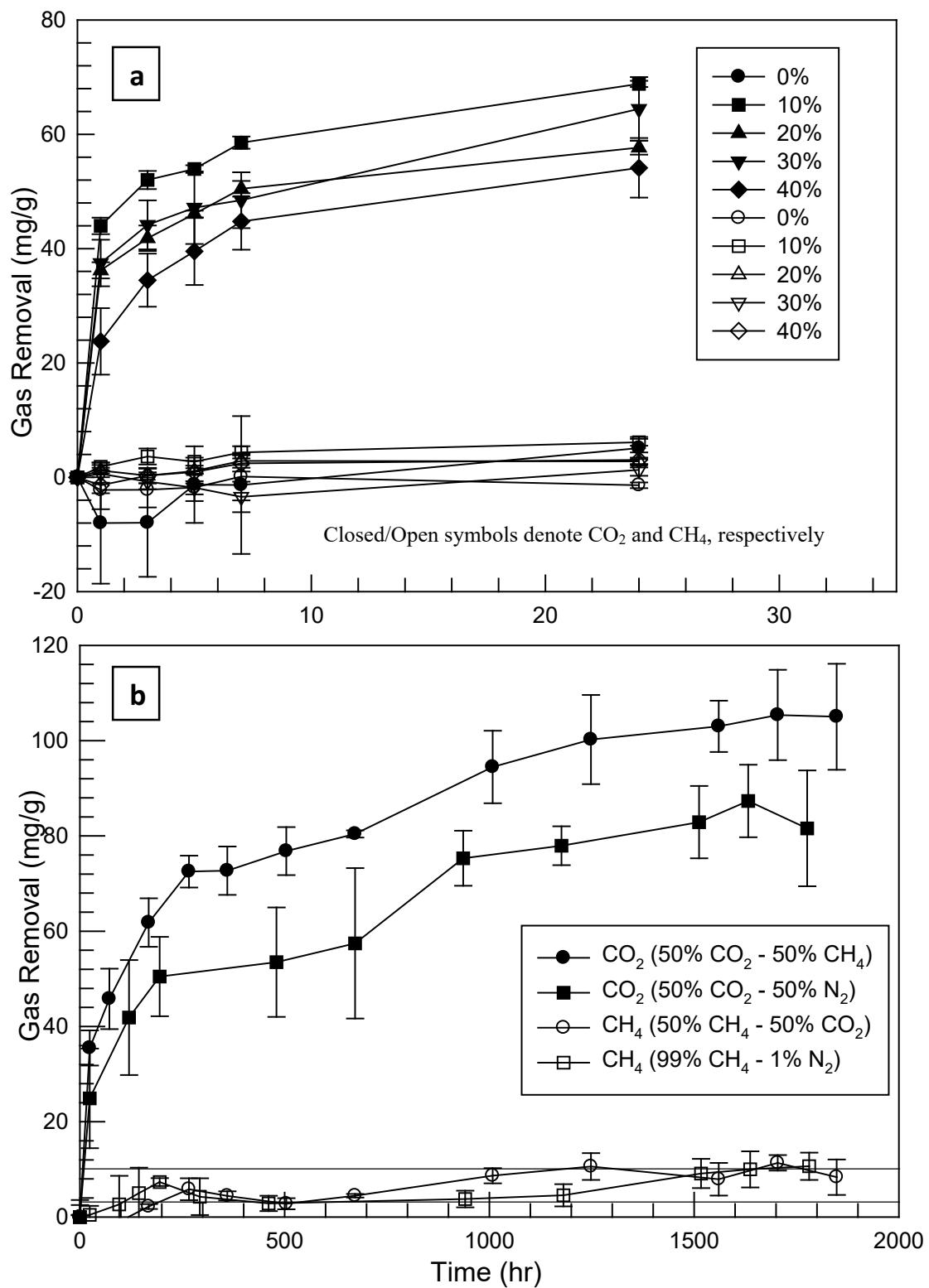


Concentration Analysis

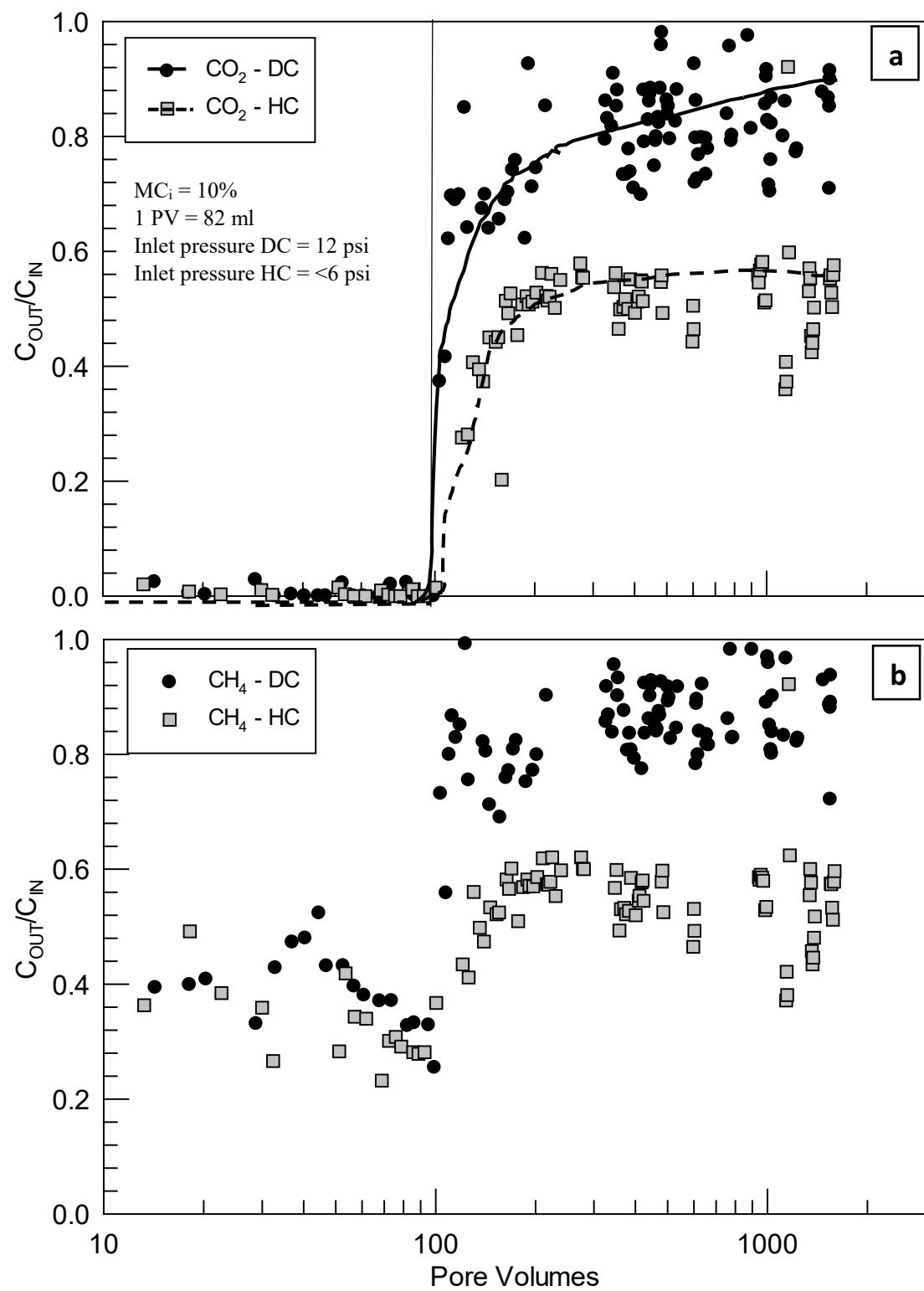
Sampling

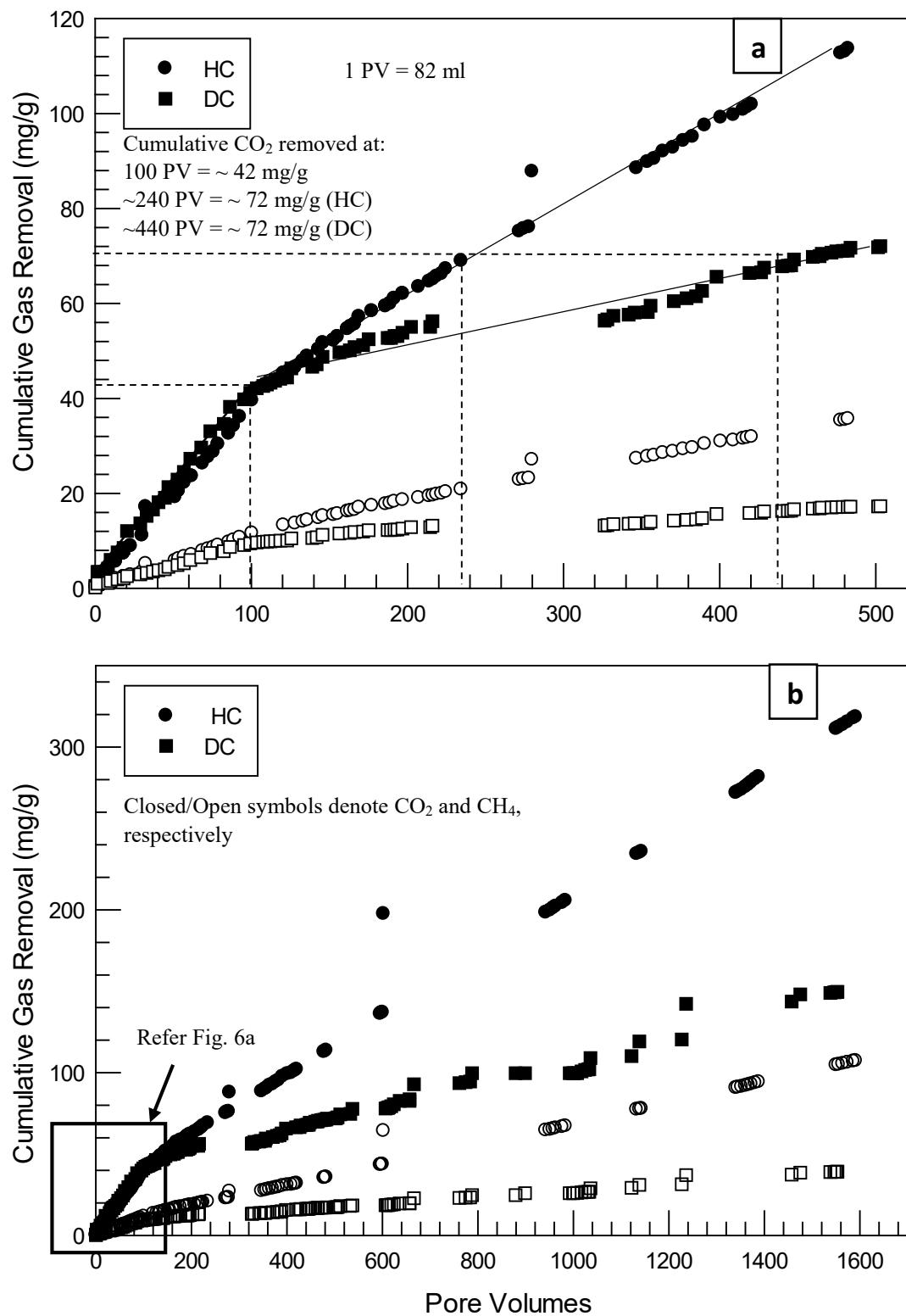

Gas sample

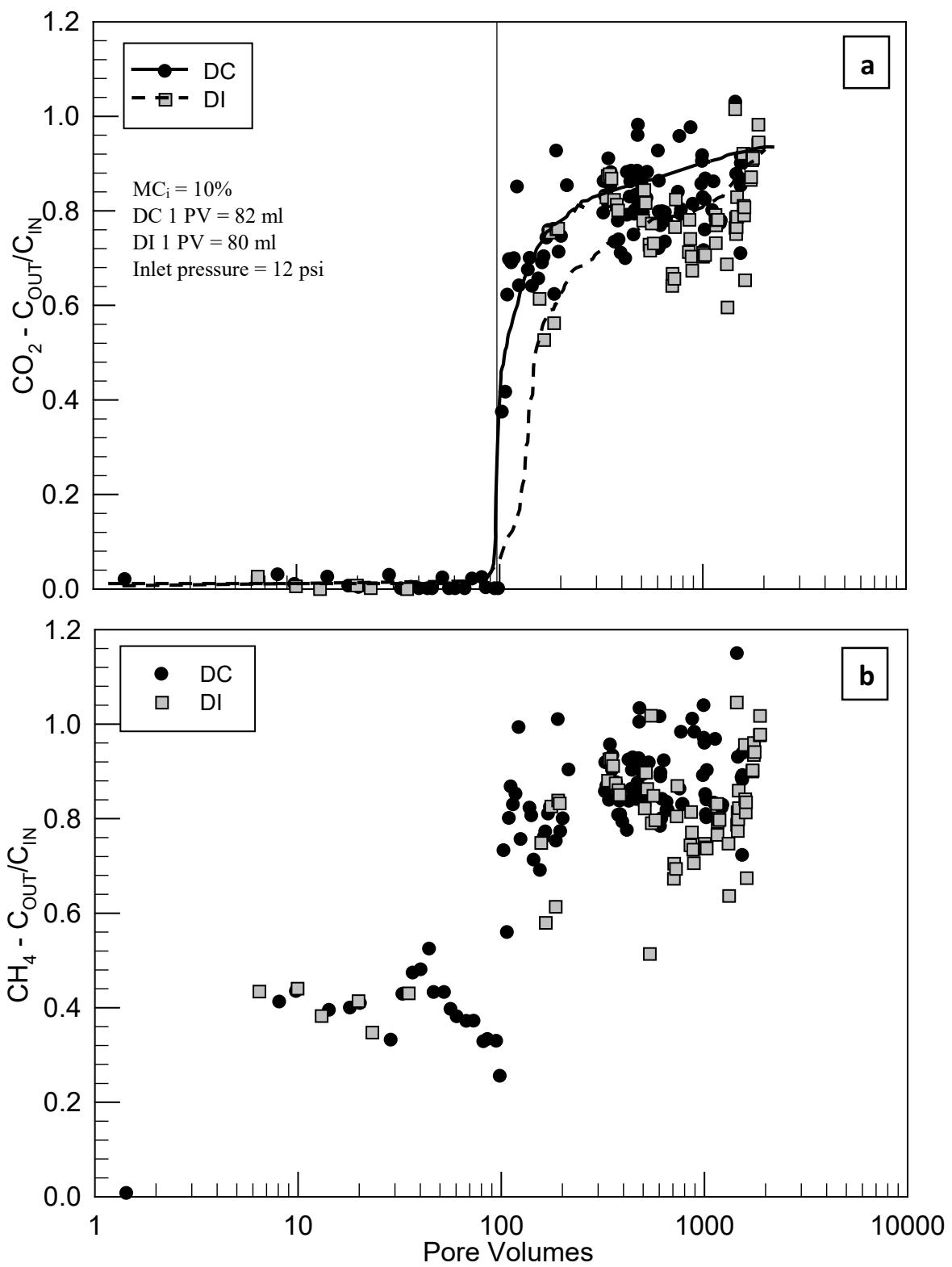
Sealed vial

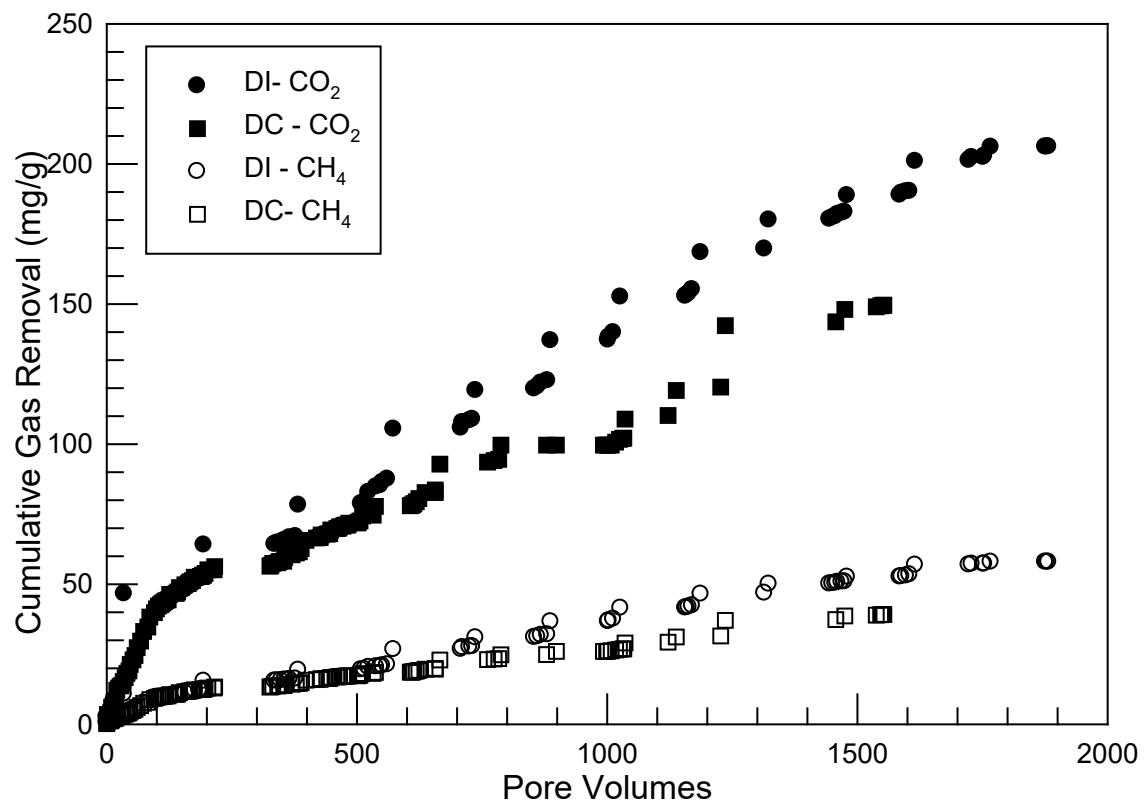

Reaction

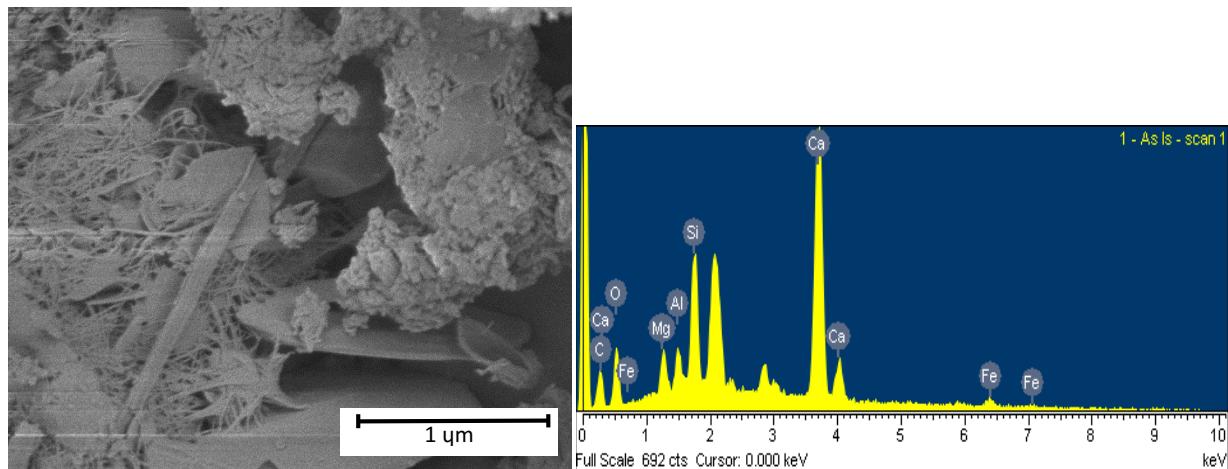


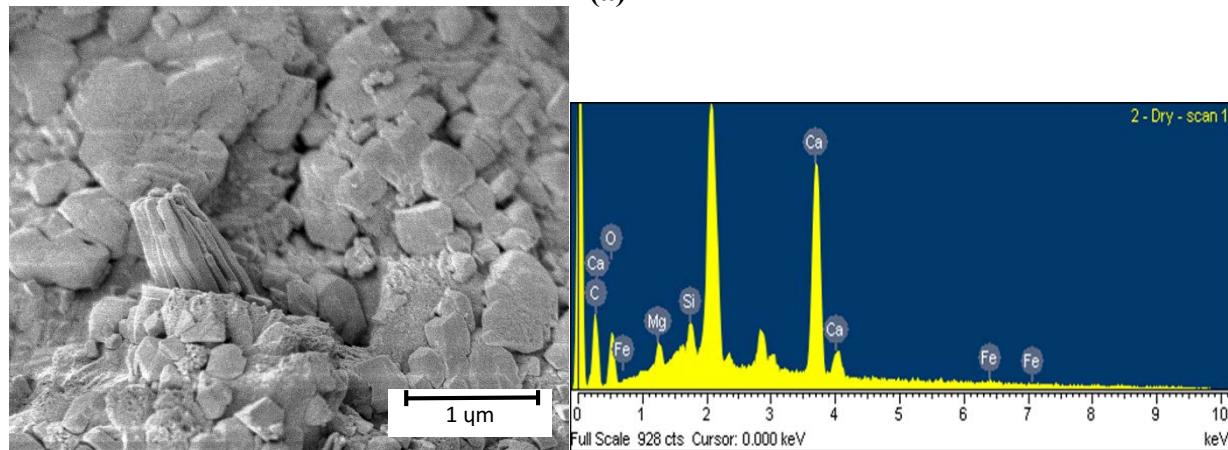

(a)

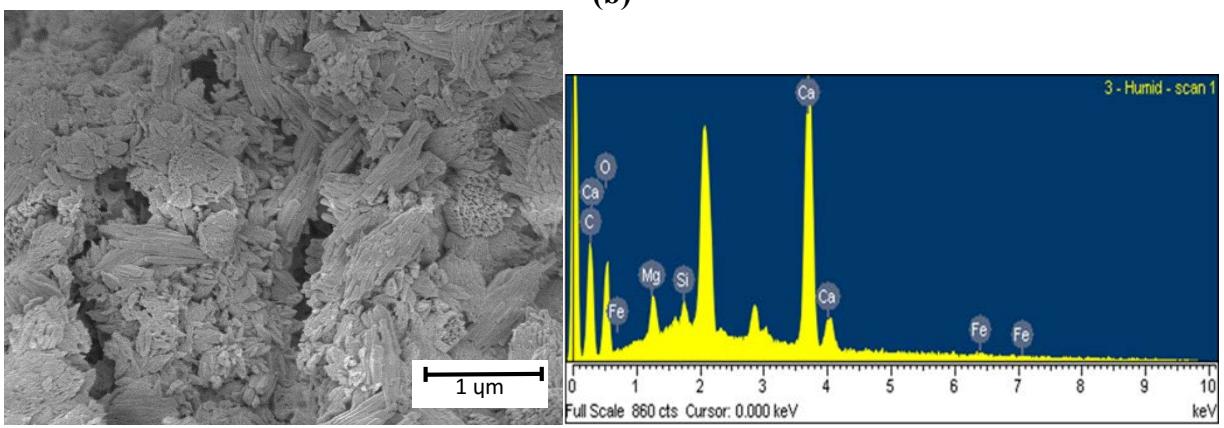



(b)








18000x magnification

(a)

13000x magnification

(b)

11000x magnification

(c)