

Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions

Krishna R. Reddy

Professor, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA, e-mail: kreddy@uic.edu (Corresponding author)

Jyoti K. Chetri

Graduate Research Assistant, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA, e-mail: jkc4@uic.edu

Girish Kumar

Graduate Research Assistant, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA, e-mail: gkumar6@uic.edu

Dennis G. Grubb

President, Fugacity LLC, 126 Veronica Lane, Lansdale, PA 19446, USA;
e-mail: dggrubbphdpe@gmail.com

Manuscript Submitted to:

Waste Management

July 15, 2019

30 **ABSTRACT**

31 This study investigates the carbon dioxide (CO₂) sequestration potential of three different basic
32 oxygen furnace (BOF) slags (IHE-3/15, IHE-9/17, and Riverdale) subjected to simulated landfill
33 gas (LFG) conditions (50% CH₄ and 50% CO₂ v/v) in a series of batch and column experiments.
34 Batch experiments were performed at different moisture contents (0%, 10%, 15% and 20%
35 moisture by weight) and temperatures (7 °C, 23 °C and 54 °C) to examine the effect of moisture
36 and temperature on the CO₂ sequestration potential of the BOF slags. The column experiments
37 were conducted under continuous humid gas flow conditions. The results from the batch
38 experiments show that the CO₂ sequestration was significantly higher in a moist state (10%,
39 15%, 20% moisture (w/w)) versus the dry state (0% moisture). The optimum moisture content
40 (w/w) for CO₂ sequestration was different for each BOF slag; IHE-3/15 (10%), IHE-9/17 (20%)
41 and Riverdale (20%). The variation in ambient temperature did not show any significant effect
42 on the CO₂ sequestration capacity of the BOF slags. The CO₂ sequestration capacity of IHE-
43 3/15, IHE-9/17 and Riverdale BOF slags determined by long-term batch experiments were 105
44 mg/g, 80 mg/g and 67 mg/g, respectively. The IHE-3/15 slag demonstrated the highest
45 carbonation potential and was attributed to its finer particle size and higher free lime, portlandite
46 and larnite content. The IHE-9/17 and Riverdale slags showed significantly lower CO₂
47 sequestration capacity in comparison to the IHE-3/15 slag. The amount of free lime, portlandite
48 and larnite, which are considered to be the most reactive minerals during carbonation, was nearly

49 1.3 times less than that of the IHE-3/15 slag in the IHE-9/17 and Riverdale slags. Also, the
50 Riverdale slag showed relatively lower CO₂ sequestration in column experiment in comparison
51 to the batch experiments, perhaps due to a high in-situ density which limited CO₂ diffusion and
52 hence the CO₂ uptake. Overall, this study provides a means to analyze the suitability of the use
53 of BOF slags in landfill covers for mitigating fugitive CO₂ emissions from landfills.

54

55 **Keywords:** Municipal solid waste; Landfill gas emissions; Landfill cover; Basic oxygen furnace
56 slag; Carbon dioxide sequestration.

57

58

59 **1. Introduction**


60 Municipal solid waste (MSW) landfill gas emissions, especially methane (CH_4) and
61 carbon dioxide (CO_2), constitute major contributors of anthropogenic greenhouse gas (GHG)
62 emissions worldwide. Engineered MSW landfills are generally designed with active gas
63 collection systems to capture the LFG emissions. Despite having the well-designed active gas
64 collection systems, fugitive emissions persist. According to the United States Environmental
65 Protection Agency (USEPA), there were approximately 2,000 active landfills in the U.S. in 2009
66 (USEPA, 2018). With a growing number and size of these landfills, the problem of fugitive LFG
67 emissions is persistently exacerbating and transforming into an untenable challenge. In the recent
68 years, many researchers have attempted to mitigate the landfill CH_4 emissions by proposing
69 biocovers (Sadasivam and Reddy 2014). Biocovers are alternate cover systems containing
70 organic matter to enhance microbial oxidation of CH_4 , thus limiting the CH_4 emissions.
71 Although a considerable amount of CH_4 emissions are mitigated, there are still large amounts of
72 CO_2 , resulting from CH_4 oxidation and MSW degradation, released into the atmosphere, leaving
73 the problem of LFG emissions unresolved. Goldsmith Jr et al. (2012) have reported fugitive CH_4
74 emissions as a function of climate and cover type from their study in 20 landfills in the USA. For
75 a final cover, highest CH_4 flux of $32 \text{ g/m}^2/\text{d}$ and an average CH_4 emission rates of $0.09 \text{ g/m}^2/\text{d}$ for
76 a closed landfill with active gas collection system have been reported. Since LFG is composed of
77 approximately 50% CH_4 and 50% CO_2 (USEPA, 2014), the corresponding CO_2 emission derived

78 from the CH₄ emissions data as mentioned earlier will be 88 g/m²/d and 0.25 g/m²/d for a landfill
79 with final cover without gas collection system and landfill with active gas collection,
80 respectively.

81 Several studies have been carried out and technologies have been developed to capture
82 CO₂ at industrial facilities that emit large amounts of CO₂ (e.g., power plants, manufacturing
83 plants). In this regard, mineral carbonation (MC) has proven to be a potential solution to CO₂
84 sequestration and safe means for the storage of CO₂ (Huijgen et al., 2005). Industrial alkaline
85 solid residues such as steel slag have shown a promising CO₂ sequestration potential (Huijgen et
86 al., 2005; Huijgen et al., 2006; Bonenfant et al., 2008; Lekakh et al., 2008; Chang et al., 2010;
87 Kunzler et al., 2011; van Zomeren et al., 2011; Pan et al., 2012). Steel slags are good source of
88 calcium rich alkali minerals and their low cost and high availability makes them appealing for
89 CO₂ sequestration applications. Among the different types of steel making slags (BF, BOF, EAF
90 and LF), BOF slags have highest carbonation potential due to high residual lime content (Chang
91 et al., 2010). BOF slag is formed during conversion of pig iron to steel. Superheated oxygen is
92 blown into the furnace containing molten iron, scrap metal, alloying agents and various fluxes
93 and approximately 20-25 wt% of Fe (0) is converted back to Fe(II, III), which accumulates in the
94 slag. This process is followed by air and/or water cooling of the molten BOF slag which
95 produces dense rock type material (National Slag Association, 2013) having a somewhat

96 vesicular morphology and array of crystallized and amorphous minerals, whose proportions are
97 affected by rates of cooling.

98 The carbonation process in steel slag involves dissolution of CO₂ in water, leaching of Ca
99 ions from the slag matrix, and precipitation of carbonates. Equations 1 to 4 show the basic
100 reactions involved in carbonation of a BOF slag. Further detailed explanation on carbonation
101 mechanism is given in Reddy et al. (2018a, b).

106 The CO₂ sequestration potential of BOF slags depends upon various factors such as
107 chemical composition, moisture content, temperature, particle size, and gas pressure (Huijgen et
108 al., 2005; Baciocchi et al., 2009; van Zomeren et al., 2011). Although several studies have been
109 carried out on BOF slags for use in CO₂ sequestration (Huijgen et al., 2005; van Zomeren et al.,
110 2011; Su et al., 2016), none has focused on CO₂ sequestration under typical landfill conditions.

111 **Table 1** summarizes some of the studies on BOF slag describing the research objectives and
112 experimental conditions. For example, study by Huijgen et al. (2005) focuses on the mineral CO₂
113 sequestration of steel slag fines in a slurry condition (L/S ratio of 2 to 20 L/kg) at higher stirring
114 rate (100- 2000 rpm), CO₂ pressure of 1-30 bar and temperature of 25-225 °C. The carbonation

115 conditions were optimized for maximum carbonation of the steel slag, and maximum
116 carbonation was obtained at 19 bar CO₂ pressure, 100 °C, slag particle size < 38 µm and in 30
117 minutes reaction time. Study by Sarperi et al. (2014), which is closest to our study, showed the
118 removal of CO₂ and H₂S simultaneously using BOF slag exposed to biogas generated from pilot
119 digester under atmospheric conditions. The key difference is that they used powder BOF slag
120 (particle size 0-1 mm) for column test in order to optimize CO₂ removal.

121 In general, none of the past studies have explored CO₂ sequestration potential of BOF
122 slag in landfill conditions. Furthermore, although, many studies have compared the carbonation
123 potential of different types of steel slag, our study is the first to analyze the heterogeneity of the
124 BOF slags based on their production batch, and its effect on their carbonation potential.

125 The objectives of the current study are 1) to analyze the variability that exists within the
126 BOF slag based on their production batch and plant; 2) to examine the effect of process variables
127 such as moisture and temperature on the carbonation potential of different BOF slags under
128 landfill conditions; 3) to investigate the governing mechanisms in carbonation of BOF slags in
129 landfill conditions. Batch and column experiments were conducted with three different BOF
130 slags to determine the carbonation potential of the slags under simulated landfill conditions. In
131 the landfill, it is difficult to optimize the carbonation conditions such as moisture content, gas
132 pressure, stirring rate etc. due to which it is of paramount importance to simulate the field
133 conditions as closely as possible.

134

135 **2. Materials and methods**

136

137 *2.1. Materials*

138

139 The BOF slags used in this study were obtained from the Indiana Harbor East (IHE) and

140 Riverdale Steel Mills in Indiana and Illinois, respectively. The IHE BOF slags were sampled in

141 March, 2015 and September, 2017 and the Riverdale BOF slag was sampled in September, 2017.

142 The slag samples were received in a crushed granular form with top sieve size of 10 mm (3/8

143 inch). The BOF slags from IHE steel mill are denoted as *IHE-3/15* and *IHE-9/17* and the steel

144 slag from Riverdale steel mill is denoted as *Riverdale*. A gas mixture of 50% CH₄ and 50% CO₂

145 by volume (Praxiar Distribution, Inc., Illinois) was used as simulated LFG for all the

146 experiments performed in this study.

147

148 *2.2. Characterization of slags*

149

150 Particle size distribution was determined as per ASTM D422. The specific gravity, soil

151 classification, and water holding capacity (WHC) were determined according to ASTM D584,

152 D2487 and D2980, respectively. Loss on ignition (LOI) was determined per ASTM D2974.

153 Hydraulic conductivity was measured according to ASTM D2434 standard procedure using a
154 rigid wall permeameter. The pH and oxidation-reduction potential (ORP) were measured using
155 an ORION Model 720A pH meter at a liquid to solid ratio of 1:1. The pH meter was pre-
156 calibrated using standard buffer solutions of pH 4, 7 and 10 before use. Electrical conductivity
157 (EC) was measured using a Corning 311 Conductivity Meter pre-calibrated using standard
158 solution of 12.9 mS/cm before use. Acid neutralization capacity (ANC) and carbonate content
159 were determined according to ASTM STP-1123 (Isenburg and Moore, 1992) and ASTM D4373,
160 respectively.

161 The total elemental content analysis of IHE 3/15 and IHE 9/17 slags was conducted
162 through a combination of X-ray fluorescence (XRF) and solid phase acid digestion with
163 chemical analysis by inductively coupled plasma optical emission spectrometry (ICP-OES). The
164 total elemental content analysis of Riverdale slag sample was conducted using USEPA
165 SW3050B method with chemical analysis by inductively coupled plasma mass spectrometry
166 (ICP-MS). Leaching behavior of all three BOF slag samples were analyzed by performing
167 Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching
168 Procedure (SPLP) tests per EPA Method 1311 and 1312 standard procedures.

169 Mineralogical composition of all three slag samples was determined by X-ray powder
170 diffraction (XRD) and Rietveld quantification analyses. For XRD, the sample was prepared by
171 grinding 3 g of sample using BICO Model VP-1989 mill with a 3.5 inch-ring and puck. XRD

172 data were collected by the Siemens D500 computer-automated diffractometer using Bragg-
173 Brentano geometry. Quantitative analysis was performed using the whole pattern fitting function
174 of Diffrac Plus Topas R, a proprietary Bruker AXS software (v. 2.0, 2000) which is based on
175 Rietveld method (Rietveld 1969).

176 Morphological microstructure analyses were performed using scanning electron
177 microscope (SEM). For SEM analysis, smaller grain mounds were prepared with slag samples
178 before and after carbonation and sputter coated with 20 nm Pt/Pd using Cressington HR208
179 sputter coater to omit charging of particles during analysis. The SEM analyses were performed
180 by JEOL JSM-6320F High Resolution Scanning Microscope operated at 2.5 kV.

181

182 *2.3. Batch experiments*

183

184 Batch experiments were performed on each as-received BOF slag under synthetic landfill
185 gas conditions at different moisture contents and temperatures. Three different series of batch
186 experiments were performed on each of the three BOF slags as follows:

187 • Series 1: These batch tests were performed to ass the effect of moisture content on CO₂
188 sequestration in 24 hours. For testing on each slag type, four 1 g oven dried slag samples
189 were mixed with deionized water at specific moisture content (0%, 10%, 15% and 20%)
190 in four 125 mL glass vials under normal atmospheric condition and purged with synthetic

191 landfill gas mixture and stirred vigorously. The CO₂ sequestration in each samples vial
192 was analyzed by taking gas samples from the head space in different time intervals for a
193 total of 24 hours.

194 • Series 2: These batch tests were conducted to evaluate long-term carbonation potential of
195 each slag type at water holding capacity. For the IHE-9/17 and Riverdale slags, 1 g each
196 of these slag samples were mixed with 20% (w/w) of water and for IHE-3/15 slag, 1 g of
197 slag sample was mixed with 40% (w/w) of water in 125 mL glass vials and purged with
198 synthetic landfill gas mixture. The selected moisture contents corresponded with their
199 water holding capacity. These slag samples were analyzed till they reached their
200 maximum CO₂ sequestration capacity.

201 • Series 3: These batch tests were conducted to evaluate the effect of temperature on CO₂
202 sequestration by the slags. For testing, three 1g sample of BOF slag were mixed with
203 20% (w/w) of water, purged with synthetic landfill gas mixture and were placed in an
204 incubator at controlled constant temperatures of 7 °C (44.6 °F), 23 °C (73.4 °F) and 54 °C
205 (129.2 °F). The temperatures were selected to account for seasonal variations plus the
206 additional heat due to microbial decomposition of landfill waste.

207 All of the batch experiments were performed in triplicate to ensure repeatability. Gas samples
208 from each vial were analyzed by gas chromatography (GC) using an SRI 9300 GC equipped

209 with a thermal conductivity detector (TCD) and CTR-1 column capable of separating CH₄
210 and CO₂.

211

212 *2.4. Column experiments*

213

214 The column experiments were conducted on each BOF slag under humidified, simulated
215 LFG gas mixture conditions. All experiments were performed at room temperature (± 2 °C) in
216 acrylic glass columns with an inner diameter 2.5 cm and height 30 cm. Each BOF slag sample
217 was mixed with deionized water (to yield moisture content of 10%) and was placed in the
218 column in approximately 5 cm lifts followed by light tamping. The synthetic LFG at a pressure
219 of approximately 40 kPa was passed through a water column to humidify (not measured) the gas
220 before introducing it into the column. Flow meters (Cole-Parmer, Model No. PMRI-010874)
221 were connected at the column inlet and outlet to control the influent gas flow rates (10-12
222 mL/min) and measure the effluent gas flow rate. Gas sampling ports were connected to the inlet
223 and outlet of the columns to allow measurement of the influent and effluent gas concentrations.
224 The experimental set up is shown in **Figure 1**. Gas samples were collected at regular time
225 intervals from inlet and outlet sampling ports and analyzed by SRI 9300 GC. **Table 2** shows the
226 experimental conditions for the column tests.

227

228 **3. Results and discussion**

229

230 *3.1. BOF slag characterization*

231

232 The physical, geotechnical and chemical properties of the three BOF slags are
233 summarized in **Table 3**. The grain size distribution of the three slags are shown in **Figure 2**, all
234 three slags were dominated by sand-sized particles. The IHE-3/15 slag had the most fines which
235 contributed to an average particle size (0.47 mm) nearly three times smaller than the other slags.
236 The specific gravity of the IHE-3/15 was the lowest which may be attributed to its lower iron
237 content. The water holding capacity (WHC) of the IHE-3/15 slag was twice that of the other
238 slags.

239 The total elemental content, TCLP and SPLP results for the constituents of concern
240 (COC) metals for all the three BOF slags are presented in **Table 4** and are consistent with the
241 ranges given by Proctor et al. (2000). The TCLP concentrations are below the Resource
242 Conservation and Recovery Act (RCRA) limits demonstrating that the slag is non-
243 hazardous. The major difference between the three slags was the elemental content of aluminum
244 (Al) in the Riverdale slag is about six times more than that of the other slags. Steel slag is a
245 complex mixture and contains many insoluble silicates and other strongly pH buffered minerals.

246 As such, leaching of the metals is typically low and similar regardless of the total elemental
247 content.

248 Mineralogically, the slag composition in terms of major oxides and the mineral phases is
249 presented in **Table 5**. IHE-3/15 had lowest Fe content and highest LOI, whereas Riverdale had
250 highest Al content which is consistent with **Table 4**. The major oxides present are consistent
251 with the ranges given by Shi (2004). However, the amount of Al_2O_3 (11.6%) in Riverdale
252 exceeds the range (1-6%) given by Shi (2004). The major mineral phases determined by QXRD
253 were free lime (CaO), portlandite [$\text{Ca}(\text{OH})_2$], larnite (Ca_2SiO_4 or C_2S), and calcium ferrite
254 ($\text{Ca}_2\text{Fe}_2\text{O}_5$ or C_2F). The IHE-3/15 slag had the highest amount of free lime and portlandite [CaO
255 $+ \text{Ca}(\text{OH})_2$] (~12%) nearly double that of IHE-9/17 slag and 3.5 times that of Riverdale slag. The
256 IHE-3/15 slag contained calcite and vaterite (~5.5%) suggesting the sample had undergone
257 certain aging. Studies have shown that CaO and $\text{Ca}(\text{OH})_2$ have the highest CO_2 sequestration
258 potential among the various minerals present in the steel slag (Bonenfant et al., 2009; Pan et al.,
259 2012). Calcium silicates hydrates (C-S-H) can also react with CO_2 and form CaCO_3 precipitates
260 and a silica gel (Pan et al., 2012). Free lime and portlandite, which are readily water-soluble and
261 strongly buffered, are the first to react and form carbonates followed by other species with lower
262 solubility, like larnite (or C_2S) where Ca is generally bound with silicates (Uibu et al., 2011). The
263 Riverdale slag showed significant amount of calcium aluminate ($\text{Ca}_3\text{Al}_2\text{O}_6$ or C_3A) and tetra-
264 calcium aluminoferrite ($\text{Ca}_4\text{Al}_2\text{Fe}_2\text{O}_{10}$ or C_4AF) which renders hydration property to Riverdale
265 slag.

266 **Figure 3** presents the SEM images of the non-carbonated (as-received) and carbonated
267 BOF slags from this study. The as-received BOF slag was observed to have more porous

268 surfaces and visually discrete as shown in **Figure 3**. The carbonated phase was characterized
269 with the outgrowths in the shape of needles or plates or rods, filling the voids between the
270 particles as shown in **Figure 3** (carbonated). Such outgrowths were identified as carbonates
271 formed during carbonation reactions (Huijgen et al., 2005, Chang et al., 2011).

272

273 *3.2. Batch experiments: Effect of moisture content on CO₂ sequestration*

274

275 The results of the first series of batch experiments are presented in **Figures 4**. **Figure 4a**
276 shows CO₂ removal by the three BOF slags at different moisture contents and different points of
277 time until 24 hours. **Figure 4b** shows negligible uptake of CO₂ by all three slags in a dry state
278 (0% moisture) and a significant increase upon addition of the moisture. The optimum moisture
279 content (OMC) for CO₂ sequestration by IHE-3/15 slag was 10% (L/S ratio of 0.1 L/kg)
280 whereas, the OMC for the IHE-9/17 and Riverdale slags was approximately 20% (L/S ratio of
281 0.2 L/kg). The reason for the lower OMC for the IHE-3/15 slag likely relates to the finer particle
282 size and higher lime/portlandite contents. As shown in **Figure 4b**, the 24-hour CO₂ sequestration
283 capacity of IHE-3/15 slag was the highest (53-68 mg/g) followed by IHE-9/17 (32-45 mg/g) and
284 Riverdale (19-38 mg/g). **Figure 4b** also shows negligible uptake of CO₂ by all three slags in a
285 dry state (0% moisture). **Figures 4c** and **4d** show the amount of CH₄ uptake by each BOF slag;
286 however, it was not very significant (< 6 mg/g).

287 **Figure 4a** shows that most of the CO₂ removal occurs in the first 5 hours after which the
288 rate of CO₂ removal was nearly constant in all the moisture content ranges (10% to 20%) across
289 all the three BOF slags tested. This suggests a two-step reaction mechanism for carbonation in
290 BOF slags. The first step likely comprises of the dissolution of free CaO and Ca(OH)₂ and
291 reaction with CO₂ as these two minerals are readily soluble and easily carbonated at the natural
292 pH of the BOF slag. The flatter slope of the curves shown in **Figure 4a** (after 5 hours) likely
293 involves other soluble species and potentially slower reaction rate perhaps contributable to the
294 dissolution of C₂S as it is the second most reactive phase after [CaO + Ca(OH)₂]. Huijgen et al.
295 (2005) had also reported that Ca silicates have lower carbonation rates than Ca(OH)₂ owing to
296 their lower solubility rates. At all the moisture content ranges studied, the IHE-3/15 BOF slag
297 showed the highest CO₂ sequestration capacity which was consistent with the highest [CaO +
298 Ca(OH)₂] content.

299 The results of second series of batch experiments performed at the WHC of each slag
300 [IHE-3/15 (40%), IHE-9/17 (20%), Riverdale (20%)] in an effort to simulate the impact of high
301 rainfall infiltration are shown in **Figure 5**. These results show that the CO₂ removal by the three
302 BOF slags continues to occur over 50 to 66 days. The maximum CO₂ removal capacities were
303 reasonably estimated when the removal curve reached an asymptote. The respective maximum
304 CO₂ removal capacities of IHE-3/15, IHE-9/17 and Riverdale slags were 105 mg/g, 80 mg/g and

305 67 mg/g, respectively. The corresponding reaction times were 1600 hours for IHE-3/15 and 1200
306 hours for IHE-9/17 and Riverdale.

307 Assuming all the CaO and Ca(OH)₂ present (as determined by QXRD, see Table 5)
308 would react with CO₂, the theoretical CO₂ removal capacity of the IHE-3/15, IHE-9/17 and
309 Riverdale BOF slags based on stoichiometric considerations would correspond to 72, 32 and 21
310 mg/g, respectively. The maximum amount of CO₂ removed in first 5 hours (**Figure 4a**)
311 corresponds to 54, 34 and 25 mg/g for IHE-3/15, IHE 9/17 and Riverdale slag, respectively,
312 which is consistent with the theoretical CO₂ removal capacity based on [CaO + Ca(OH)₂] content
313 of each slag. Hence, it can be hypothesized that CaO and Ca(OH)₂ were responsible for initial or
314 primary carbonation reaction.

315 Furthermore, in IHE-9/17 and Riverdale slags, carbonation continued beyond the
316 carbonation capacity of the [CaO + Ca(OH)₂] present in the respective slags. This is indicative of
317 the participation of other Ca containing minerals in the carbonation reaction. Huijgen et al.
318 (2005), Bonenfant et al. (2008), Uibu et al. (2011) and Su et al. (2016) have reported, based on
319 the XRD and TGA analysis on the carbonated and non-carbonated slag samples, that after CaO
320 and Ca(OH)₂, larnite (C₂S) is the most reactive mineral phase for carbonation. Hence, the
321 carbonation of other Ca containing minerals mainly C₂S or those which dissolve at higher pH
322 can be assumed as the secondary carbonation reaction. The total theoretical CO₂ sequestration
323 potential of IHE-3/15, IHE-9/17 and Riverdale slag based on the amount of [CaO + Ca(OH)₂ +

324 C_2S] corresponds to 126, 93 and 101 mg/g, respectively. The 24 hour CO_2 sequestration by IHE-
325 9/17 and Riverdale slags is consistent with the theoretical capacity of $[\text{CaO} + \text{Ca}(\text{OH})_2 + \text{C}_2\text{S}]$
326 which confirms that C_2S or other Ca containing mineral phases were participating in the
327 carbonation reaction.

328 The CO_2 removed in long-term batch experiments was higher than that of 24-hour batch
329 experiments exhibiting the effect of reaction time on carbonation of the minerals. The minerals
330 which are not readily carbonated or have slower reaction kinetics like C_2S may participate in
331 carbonation with an increase in reaction time. Similarly, the long-term batch experiments also
332 showed higher CO_2 sequestration than the theoretical capacity of $[\text{CaO} + \text{Ca}(\text{OH})_2]$ which further
333 confirms the participation of C_2S or other Ca containing minerals, including Ca bearing solids
334 comprising the amorphous content (40-50 wt%).

335 On the other hand, the long term batch experiments results showed that the measured
336 capacity of each respective slag was exhausted before its theoretical CO_2 sequestration capacity
337 $[\text{Ca}(\text{OH})_2 + \text{CaO} + \text{C}_2\text{S}]$. The limiting factors could be related to grain size effects, availability of
338 moisture, and development of Ca-depleted silicate rims around the slag particles which limit
339 further leaching of Ca from the inner core of slags (Huijgen et al., 2005, 2006).

340 Very low CH_4 uptake was observed in all three BOF slags during long-term batch
341 experiments, and the CH_4 uptake was similar (~ 10 mg/g) indicating a weak dependence on grain
342 size, moisture and mineralogy, despite the elevated alumina content of the Riverdale slag.

343

344 *3.3. Batch experiments: Effect of temperature on CO₂ sequestration*

345

346 Landfill covers are subjected to wide variations of temperature due to the seasonal
347 variations and heat generation from different phases of decomposition of MSW and other
348 inorganic exothermic chemical reactions within the landfill. Landfill temperatures as high as 60-
349 80 °C has been reported in literature (Hanson et al., 2009; Jafari et al., 2014). The effects of
350 variation of temperature on CO₂ sequestration capacity of BOF slags were examined in batch
351 experiments at 7 °C, 23 °C and 54 °C. **Figure 6** shows the CO₂ removal by the three BOF slags
352 as a function of temperature. The 24-hour CO₂ removal for IHE-3/15 was highest at all the
353 temperatures tested and showed a decreasing trend with increase in temperature which is
354 consistent with the study by Quaghebeur et al. (2015) in which an inverse trend with temperature
355 from 20 °C to 140 °C for a BOF slag with high [CaO + Ca(OH)₂] content was observed. IHE-
356 9/17 slag did not show any specific trend with temperature, while Riverdale slag showed an
357 increasing trend with increase in temperature (**Figure 6**). The effect of temperature on
358 carbonation is a combination of dissolution rate of minerals as well as CO₂. Solubility of CO₂
359 decreases whereas leaching of Ca from calcium bearing minerals increases with temperature
360 (Huijgen et al., 2005). The solubility of hydroxides (Ca(OH)₂ and Mg(OH)₂) decrease with
361 increase in temperature (Quaghebeur et al., 2015 and Park et al., 2003). The dissolution of

362 $\text{Ca}(\text{OH})_2$ and CO_2 are likely to be the rate limiting factors in case of IHE-3/15 slag at elevated
363 temperature. On the other hand, solubility of silicates may be the rate determining factor in case
364 of Riverdale slag as the solubility of silicates increases with temperature (Quaghebeur et al.,
365 2015). From this study it can be said that the type of minerals and their solubility at different
366 temperature play an important role in CO_2 sequestration.

367

368 *3.4. Column experimental results*

369

370 **Figures 7a and 7b** show the CO_2 and CH_4 sequestration potential of the three BOF slags
371 on a pore volume (PV) basis of gas flow. An initial phase of near complete CO_2 (100%) removal
372 can be seen in **Figure 7a** with breakthrough occurring at different times for different BOF slags
373 (80, 30 and 19 PV or 10, 5 and 2 hours for IHE-3/15, IHE-9/17 and Riverdale, respectively).

374 After breakthrough, the CO_2 removal gradually decreased to nearly 0% which is taken to be the
375 ultimate or operational CO_2 removal capacity of each BOF slag under experimental conditions.

376 A similar CO_2 removal pattern was observed in all three BOF slags after breakthrough as shown
377 in **Figure 7a**. The removal efficiency decreases sharply after breakthrough; however, the
378 removal continues at a slower rate for a longer period leading to considerable uptake of CO_2 . The
379 exhaustion or termination time was different for different BOF slags (1,033, 430 and 333 hours
380 for IHE-3/15, IHE-9/17 and Riverdale, respectively). Similarly, termination PVs of inflow gas

381 were 8,400, 3,600 and 3,200 for IHE-3/15, IHE-9/17 and Riverdale, respectively. IHE-3/15 slag
382 had highest CO₂ removal rates and removal capacity.

383 **Figures 8a and 8b** show the cumulative CO₂ and CH₄ sequestered in short and long
384 term, during column experiments with each BOF slag. **Figure 8a** shows the cumulative removal
385 of CO₂ by the three BOF slags in the initial phase of the column experiment when a slope change
386 occurs signifying the change in removal rate. At breakthrough, the amount of CO₂ sequestered
387 was 28, 7 and 4 mg/g for IHE-3/15, IHE-9/17 and Riverdale slag, respectively. The gradual
388 decline in slope after breakthrough can be attributed to the deposition of the carbonate
389 compounds on the slag surface preventing contact of Ca and CO₂. However, with prolonged
390 reaction time, the CO₂ removal progresses at a slower rate which shows that the deposition of
391 carbonate compounds or calcite influences the reaction rate but does not limit the CO₂
392 sequestration potential of the slag.

393 IHE-3/15 slag distinctly showed higher CO₂ sequestration than IHE-9/17 and Riverdale
394 slag in column experiments. This suggests that the [CaO, Ca(OH)₂ and C₂S] content, particle
395 size, and porosity are the governing factors for CO₂ sequestration. In contrast to IHE-3/15 and
396 IHE-9/17 slags, Riverdale slag showed the presence of significant amount of C₃A and C₄AF
397 whose hydration will compete for available moisture and potentially impact carbonation
398 reactions.

399 **Figure 7b** shows percent removal of CH₄. The BOF slags showed some removal of CH₄
400 in the beginning which was followed by sudden decrease in the removal gradually leading to
401 nearly 0% removal. From **Figures 8a** and **8b**, it can be seen that the CH₄ uptake is relatively low
402 in comparison to CO₂ in all three BOF slags. **Figure 8a** shows initial higher rate of CH₄ removal
403 followed by a nearly constant phase and this pattern is similar in all the three BOF slags. The
404 reason for this behavior could be the adsorption of CH₄ on the surface of the slag particles due to
405 the presence of high alumina content, which is reported to have the potential to adsorb CH₄ (Li et
406 al., 1994a, b). However, Riverdale slag that has the highest alumina content showed the lowest
407 CH₄ removal which suggests that alumina content of the slag may not be contributing
408 significantly towards CH₄ adsorption. Perhaps the slag particle size may have a considerable
409 impact on adsorption of CH₄ since the IHE-3/15 slag showed relatively higher CH₄ removal in
410 comparison to other two slags. Hence, this behavior requires a further detailed investigation for
411 the fundamental reason behind the CH₄ removal in the BOF slags tested.

412 Comparing the CO₂ sequestered until breakthrough with the theoretical capacity of [CaO
413 + Ca(OH)₂] in each slag, the carbonate conversion will correspond to 39%, 22% and 19% in
414 IHE-3/15, IHE-9/17 and Riverdale slags, respectively. Considering all the [CaO + Ca(OH)₂]
415 would react in the beginning, the breakthrough PV would be 167, 101 and 78 for IHE-3/15, IHE-
416 9/17 and Riverdale slags, respectively. However, the breakthrough occurred at lesser PV than the
417 theoretical PV which suggests that not all the free CaO and Ca(OH)₂ were available for

418 carbonation. The steep slope in **Figure 8a** until breakthrough suggests rapid reaction kinetics
419 likely due to the readily available $[\text{CaO} + \text{Ca}(\text{OH})_2]$. Besides that, the change in slope after
420 breakthrough shows a two-step reaction mechanism: initial rapid reaction followed by slower
421 reaction kinetics. The maximum CO_2 sequestration capacity of IHE-3/15, IHE-9/17 and
422 Riverdale slags as quantified from the column experiments are 325, 85 and 56 mg/g, respectively
423 which correspond to 100%, 91% and 55% conversion of $[\text{CaO} + \text{Ca}(\text{OH})_2 + \text{C}_2\text{S}]$ present in each
424 BOF slag assuming all of it would react with CO_2 . A maximum carbonate conversion of 93.5 %
425 has been reported by Chang et al. (2012) in a high-gravity rotating packed bed at a reaction time
426 of 30 min, rotating speed of 750 rpm and temperature of 65 °C. Similarly, the degree of
427 carbonation achieved in the past studies is shown in Table 1. Studies have reported higher degree
428 of carbonation under high temperature and pressure and for smaller particle size fraction of the
429 slag. In our study, higher degrees of carbonation were achieved under ambient conditions which
430 could be attributed to the prolonged exposure of the slags with the humid LFG mixture.

431 It is noteworthy that despite having similar total $[\text{CaO} + \text{Ca}(\text{OH})_2 + \text{C}_2\text{S}]$ content and
432 particle size as the IHE-9/17 slag, the Riverdale slag showed lower CO_2 sequestration potential.
433 The reason for this could be the presence of relatively lower $[\text{CaO} + \text{Ca}(\text{OH})_2]$ and higher C_2S
434 content in Riverdale slag than IHE-9/17 slag as Ca silicates have lower carbonation rate than
435 $\text{Ca}(\text{OH})_2$ (Huijgen et al., 2005). Other limiting factors for carbonation could be the degree of
436 compaction or in-place density (which leads to different porosities) of the slag in the column that

437 can affect the slag surface available for carbonation. High porosity means more slag surface
438 exposed to inflowing CO₂ gas. The porosity of the Riverdale slag (0.44) was 1.2 times less than
439 that of IHE-9/17 slags. The ultimate CO₂ sequestration of IHE-9/17 slag as measured from the
440 column experiment was 1.5 times that of the Riverdale slag which follows similar relation as
441 obtained in terms of porosity of the slags. It suggests that there could be an influence of porosity
442 on the CO₂ uptake by each BOF slag.

443

444 **4. Conclusions**

445

446 This study evaluated the CO₂ sequestration potential of different BOF slags, from
447 different steel production plants and different production batches, subjected to simulated landfill
448 gas conditions. The CO₂ sequestration of three BOF slags was assessed under varying moisture
449 conditions and temperatures. The characterization of the BOF slags showed that, despite having
450 similar production process, the slags could differ in their physical and chemical properties. The
451 batch experimental results showed that the effect of mineralogy and particle sizes of slags on
452 CO₂ sequestration are more pronounced than that of moisture content and temperature. CaO,
453 Ca(OH)₂ and C₂S were found to be the primary minerals responsible for CO₂ sequestration in the
454 slag with [CaO + Ca(OH)₂] being the first one to react during carbonation. A two-step reaction

455 mechanism was observed during carbonation with an initial rapid reaction phase followed by a
456 relatively slower reaction rate.

457 In the column experiments, CO₂ sequestration capacity was found to be a function of
458 various parameters like mineralogy, particle size, moisture, and porosity. IHE-3/15 slag, which
459 had highest finer fractions (9.5%), smaller average particle size (0.47mm), highest porosity
460 (57%) and highest [CaO + Ca(OH)₂] content (11.5%) among the three BOF slags, showed the
461 highest CO₂ sequestration. Initial phase of complete removal of CO₂ until breakthrough followed
462 by gradual reduction in the rate of CO₂ removal was observed and this behavior was attributed to
463 the carbonation of readily available [CaO + Ca(OH)₂] in the beginning followed by other
464 minerals with lower carbonation rates like C₂S. The possibility of participation of the amorphous
465 phase present in the BOF slag in carbonation reaction was also highlighted.

466 Overall, it can be concluded that the BOF slag has significant CO₂ sequestration potential
467 under synthetic landfill gas condition; however, the CO₂ sequestration capacity may vary with
468 the type of BOF slags and other physical parameters. Hence, it is utmost important to understand
469 the characteristics of the BOF slags before implementing them in landfill covers in large scale.

470

471 **Acknowledgements**

472

473 This project is funded by the U.S. National Science Foundation (grant CMMI #
474 1724773), which is gratefully acknowledged. Phoenix Services, LLC, is acknowledged for being
475 an industrial partner on this project and providing slag samples for the experiments.

476

477 **References**

478

479 Baciocchi, R., Costa, G., Polettini, A., and Pomi, R., 2009. Influence of particle size on the
480 carbonation of stainless steel slag for CO₂ storage. Energy Procedia, 1(1), 4859-4866.

481 Bonenfant, D., Kharoune, L., Sauve, S., Hausler, R., Niquette, P., Mimeaule, M., and Kharoune,
482 M., 2008. CO₂ sequestration potential of steel slags at ambient pressure and
483 temperature. Ind. Eng. Chem. Res., 47(20), 7610-7616.

484 Belhadj, E., Diliberto, C., and Lecomte, A., 2014. Properties of hydraulic paste of basic oxygen
485 furnace slag. Cem. Concr. Compos., 45, 15-21.

486 Chang, E. E., Chen, C. H., Chen, Y. H., Pan, S. Y., and Chiang, P. C., 2011. Performance
487 evaluation for carbonation of steel-making slags in a slurry reactor. J. Hazard.
488 Mater., 186(1), 558-564.

489 Chang, E. E., Pan, S. Y., Chen, Y. H., Tan, C. S., and Chiang, P. C. 2012. Accelerated
490 carbonation of steelmaking slags in a high-gravity rotating packed bed. J. Hazard. Mater.,
491 227, 97-106.

492 Georgaki, I., Soupios, P., Sakkas, N., Ververidis, F., Trantas, E., Vallianatos, F., and Manios, T.,
493 2008. Evaluating the use of electrical resistivity imaging technique for improving CH₄
494 and CO₂ emission rate estimations in landfills. Sci. Total Environ., 389(2-3), 522-531.

495 Goldsmith Jr, C. D., Chanton, J., Abichou, T., Swan, N., Green, R., and Hater, G., 2012.

496 Methane emissions from 20 landfills across the United States using vertical radial plume
497 mapping. *J. Air Waste Manage. Assoc.*, 62(2), 183-197.

498 Hanson, J. L., Yeşiller, N., and Oettle, N. K., 2009. Spatial and temporal temperature
499 distributions in municipal solid waste landfills. *J. Environ. Eng.*, 136(8), 804-814.

500 Hegde, U., Chang, T. C., and Yang, S. S., 2003. Methane and carbon dioxide emissions from
501 Shan-Chu-Ku landfill site in northern Taiwan. *Chemosphere*, 52(8), 1275-1285.

502 Huijgen, W. J., Witkamp, G. J., and Comans, R. N., 2005. Mineral CO₂ sequestration by steel
503 slag carbonation. *Environ. Sci. Technol.*, 39(24), 9676-9682.

504 Huijgen, W. J., Witkamp, G. J., and Comans, R. N., 2006. Mechanisms of aqueous wollastonite
505 carbonation as a possible CO₂ sequestration process. *Chem. Eng. Sci.*, 61(13), 4242-
506 4251.

507 Isenburg, J., and Moore, M., 1992. Generalized acid neutralization capacity test. In *Stabilization*
508 and *Solidification of Hazardous, Radioactive, and Mixed Wastes: 2nd Volume*. ASTM
509 International.

510 Jafari, N. H., Stark, T. D., and Rowe, R. K., 2014. Service life of HDPE geomembranes
511 subjected to elevated temperatures. *J. Hazard. Toxic Radioact. Waste*, 18(1), 16-26.

512 Ko, M. S., Chen, Y. L., and Jiang, J. H., 2015. Accelerated carbonation of basic oxygen furnace
513 slag and the effects on its mechanical properties. *Constr. Build. Mater.*, 98, 286-293.

514 Kolani, B., Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., Boutillon, L., and Linger, L., 2012.

515 Hydration of slag-blended cements. *Cem. Concr. Compos.*, 34(9), 1009-1018.

516 Kunzler, C., Alves, N., Pereira, E., Nienczewski, J., Ligabue, R., Einloft, S., and Dullius, J.,
517 2011. CO₂ storage with indirect carbonation using industrial waste. *Energy Procedia*, 4,
518 1010-1017.

519 Lekakh, S. N., Rawlins, C. H., Robertson, D. G. C., Richards, V. L., and Peaslee, K. D., 2008.
520 Kinetics of aqueous leaching and carbonization of steelmaking slag. *Metall. Mater.
521 Trans. B*, 39(1), 125-134.

522 Li, C., Yan, W., and Xin, Q., 1994a. Interaction of methane with surface of alumina studied by
523 FT-IR spectroscopy. *Catal. Lett.*, 24(3-4), 249-256.

524 Li, C., Li, G., and Xin, Q., 1994b. FT-IR spectroscopic studies of methane adsorption on
525 magnesium oxide. *J. Phys. Chem.*, 98(7), 1933-1938.

526 Mahoutian, M., Shao, Y., Mucci, A., and Fournier, B., 2015. Carbonation and hydration behavior
527 of EAF and BOF steel slag binders. *Mater. Struct.*, 48(9), 3075-3085.

528 Pan, S. Y., Chang, E. E., and Chiang, P. C., 2012. CO₂ capture by accelerated carbonation of
529 alkaline wastes: a review on its principles and applications. *Aerosol Air Qual.
530 Res.*, 12(5), 770-791.

531 Pan, S. Y., Adhikari, R., Chen, Y. H., Li, P., and Chiang, P. C., 2016. Integrated and innovative
532 steel slag utilization for iron reclamation, green material production and CO₂ fixation via
533 accelerated carbonation. *J. Clean. Prod.*, 137, 617-631.

534 Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., Avent, C., and Zak,
535 M. A., 2000. Physical and chemical characteristics of blast furnace, basic oxygen furnace,
536 and electric arc furnace steel industry slags. *Environ. Sci. Technol.*, 34(8), 1576-1582.

537 Quaghebeur, M., Nielsen, P., Horckmans, L., and Van Mechelen, D., 2015. Accelerated
538 carbonation of steel slag compacts: Development of high-strength construction
539 Materials. *Frontiers in Energy Research*, 3, 52.

540 Reddy, K. R., Gopakumar, A., and Chetri, K. J., 2018a. Critical review of applications of iron
541 and steel slags for carbon sequestration and environmental remediation. *Rev. Environ.*
542 *Sci. Bio.* (accepted)

543 Reddy, K. R., Gopakumar, A., Rai, K. R., Kumar, G., Chetri, K. J. and Grubb, D., 2018b. Effect
544 of basic oxygen furnace slag particle size on sequestration of carbon dioxide from landfill
545 gas. *Waste Manag. Res.* (accepted)

546 Sarfo, P., Das, A., Wyss, G., and Young, C. 2017. Recovery of metal values from copper slag
547 and reuse of residual secondary slag. *Waste Manage.*, 70, 272-281.

548 Shi, C., (2004). Steel slag—its production, processing, characteristics, and cementitious
549 properties. *J. Mater. Civ. Eng.*, 16(3), 230-236.

550 Su, T. H., Yang, H. J., Shau, Y. H., Takazawa, E., and Lee, Y. C., 2016. CO₂ sequestration
551 utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr
552 concerns. *J. Environ. Sci.*, 41, 99-111.

553 USEPA, 2018. Municipal solid waste landfills., United States Environmental Protection Agency.
554 Available at <<https://www.epa.gov/landfills/municipal-solid-wastelandfills#publications>>
555 (accessed on August 5, 2018)

556 USEPA., 2014. Municipal Solid Waste Landfills: Economic Impact Analysis for the Proposed
557 New Subpart to the New Source Performance Standards. U.S. Environmental Protection

558 Agency Office of Air and Radiation Office of Air Quality Planning and Standards

559 Research Triangle Park, NC 27711

560 Uibu, M., Kuusik, R., Andreas, L., and Kirsimäe, K., 2011. The CO₂-binding by Ca-Mg-silicates
561 in direct aqueous carbonation of oil shale ash and steel slag. Energy Procedia, 4, 925-932.

562 van Zomeren, A., Van der Laan, S. R., Kobes, H. B., Huijgen, W. J., and Comans, R. N., 2011.
563 Changes in mineralogical and leaching properties of converter steel slag resulting from
564 accelerated carbonation at low CO₂ pressure. Waste Manage., 31(11), 2236-2244.

565 Wang, Z., Huang, G., An, C., Chen, L., and Liu, J. 2016. Removal of copper, zinc and cadmium
566 ions through adsorption on water-quenched blast furnace slag. Desalin. Water Treat.,
567 57(47), 22493-22506.

568

Table 1: Studies on carbonation of steel slags

Steel slag	Experimental conditions	Objective	Carbonate conversion (based on total Ca content)	Reference
LD	Experimental set up: 450 mL autoclave reactor Particle size: < 38 μm – < 2 mm L/S ratio : 2 to 20 L/kg Stirring rate : 100-2000 rpm CO ₂ pressure: 1-30 bar Temperature: 25-225 °C Duration: 2-30 min	Mineral CO ₂ sequestration by steel slag	74 %	Huijgen et al. (2005)
BOF	Experimental set up: Glass column (5 cm inner diameter, 20 cm height) Particle size: 2 – 3.3 mm L/S ratio : 0.01 to 0.1 L/kg for unsaturated and 0.4 to 2 L/kg for saturated condition Gas: 20% CO ₂ , 80% Ar CO ₂ pressure: 0.2 bar Temperature: 5-90 °C Duration: 8 to 200 hour	Investigate the potential of accelerated carbonation of steel slag, at relatively low CO ₂ pressure, to improve pH and leaching properties, mainly of vanadium	48%	van Zomeren et al. (2011)
BOF	Experimental set up: Rotating packed bed Particle size: < 0.088 mm L/S ratio : 20 L/kg Stirring rate : 500-1250 rpm Gas: 99% CO ₂ CO ₂ pressure: 1 bar Temperature: 25-65 °C Duration: 30 min	To study the accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed	93.5%	Chang et al. (2012)
BOF	Experimental set up: Batch reactor Particle size: < 1 mm and (1-6 mm) L/S ratio : 0, 0.05, 0.2, 0.3, 0.4 and 0.5 L/kg Gas: 50% CO ₂ , 50% CH ₄	To use industrial by-product as a sorbent to remove CO ₂ and H ₂ S from biogas	18%	Sarperi et al. (2014)

	Stirring rate: 300 rpm Temperature: 20 °C Duration: 24 hour			
BOF	Experimental set up: Rotatory kiln made of stainless steel Particle size: <3.5mm, 3.5-7mm, 7-15mm, 15-25mm Relative humidity: 0-80% CO ₂ content: 0-40% Temperature: 25-250 °C Duration: 24 hour	Accelerated carbonation of BOF slag and the effect of carbonation on its mechanical properties	12%	Ko et al. (2015)
EAF , BOF and EAF mixed	Experimental set up: Pressure chamber Specimen: rectangular slag panels Gas: 99.5% CO ₂ Temperature: Room temperature Pressure: 0.15 MPa Duration: 2 and 24 hour	Examination of carbonation and hydraulic behavior of EAF and BOF slag	-	Mahoutian et al. (2015)
BOF	Experimental set up: 20 mL capped stainless steel cell contained in a 500 mL stainless steel autoclave Particle size: <0.5mm– 3.5mm L/S ratio : 0, 2, 5 and 10 L/kg CO ₂ pressure: 0-245 bar Temperature: 25-100 °C Duration: 0 to 96 hour	Optimization of carbonation condition , address carbonation mechanism and evaluate the extents of V and Cr release	71%	Su et al. (2016)
BOF	Experimental set up: glass column 2.5 cm inner diameter, 30 cm height Particle size: as received (mean particle size ranging from 0.47 – 1.5 mm) L/S ratio : 0.1 L/kg Gas: Continuous, humid, 50% CO ₂ and 50% CH ₄ (v/v) CO ₂ pressure: < 0.4 bar Temperature: Room temperature Duration : Until steel slag reaches ~0% CO ₂ uptake capacity	To examine the effect of BOF slag types on the CO ₂ sequestration potential of slag under landfill condition	~100%	Current study

Table 2: Summary of column experimental conditions

Parameters	IHE-3/15	IHE-9/17	Riverdale
<i>Test conditions</i>			
<i>Inlet gas:</i>			
Carbon dioxide (%)	50	50	50
Methane (%)	50	50	50
Moisture condition	Humid	Humid	Humid
Mode of injection	Continuous	Continuous	Continuous
<i>Column:</i>			
Diameter (cm)	2.5	2.5	2.5
Length (cm)	30	30	30
BOF slag mass (g)	187	254	293.5
Average slag particle size (mm)	0.5	1.5	1.5
Moisture content (%)	10	10	10
Dry density (g/cm ³)	1.3	1.67	1.93
Porosity (v/v)	0.58	0.52	0.44
Pore volume (PV, mL)	83	78	68
Inlet flow rate (mL/min)	9-12	9-12	9-12
Inlet pressure (psi)	<6	<6	<6
Outlet flow rate (mL/min)	2-12	2-12	2-12

Table 3: Physical, geotechnical and chemical properties of the BOF slags

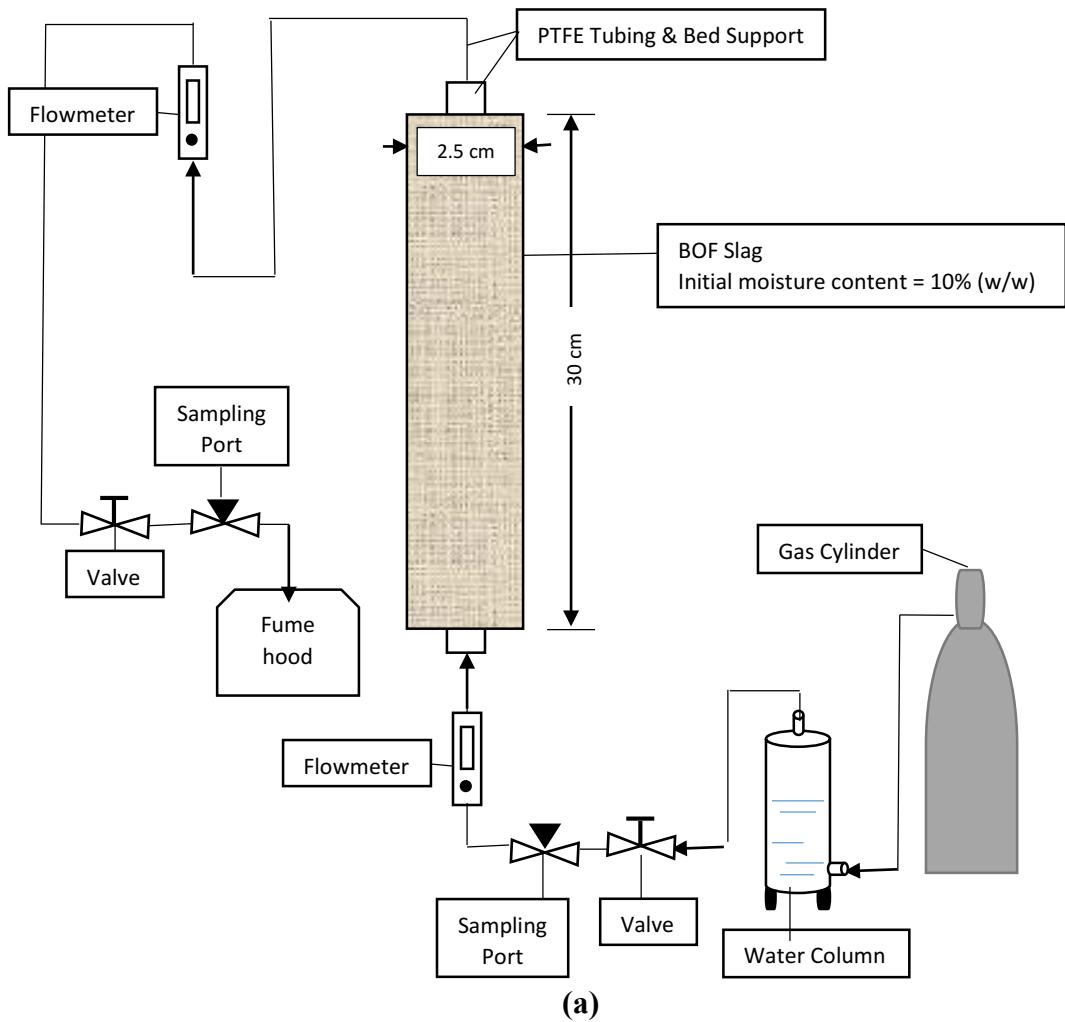
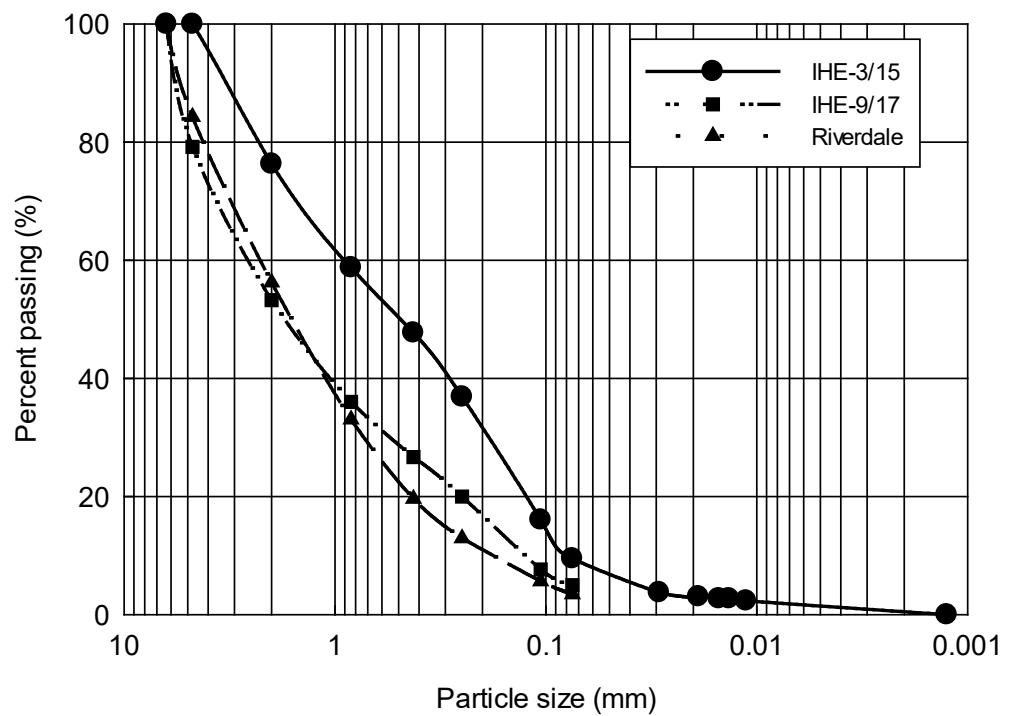

Properties	ASTM Method	IHE-3/15	IHE-9/17	Riverdale
Specific Gravity	D854	3.04	3.46	3.46
<i>Grain Size Distribution:</i>	D422			
Gravel (%)		0	20.8	15.7
Sand (%)		90.5	74.2	80.9
Fines (%)		9.5	5.0	3.4
D ₅₀ (mm)		0.47	1.5	1.5
C _c		0.55	0.7	1.1
C _u		11.92	18	11.6
<i>Atterberg Limits:</i>	D4318			
Liquid Limit (%)		Non-Plastic	Non-Plastic	Non-Plastic
Plastic Limit (%)				
Plasticity Index (%)				
USCS Classification	D2487	SP-SM	SP-SM	SW
Water Holding Capacity (w/w)	D2980	40.5	20	20
Dry Density (g/cm ³)		1.62	1.72	1.90
Hydraulic Conductivity (cm/s)	D2434	4.2 x 10 ⁻⁴	1.1 x 10 ⁻³	4.1 x 10 ⁻⁴
Loss on Ignition (%)	D2974	2.5	1.6	0.8
pH (L/S = 1:1)	D4972	12.4	12.1	12.1
Electrical Conductivity (mS/cm)	D4972	6.68	13.3	14.2
Redox Potential (mV)	D4972	-317.9	-313.3	-314.1
ANC (Equivalents of acid/Kg)	STP-1123	6-7	6-7	5-6
Carbonate content (%)	D4373	17	10	8
<i>Elemental Analysis</i>	XRF			
Ca (%)		48.85	40.35	40.85
Fe (%)		21.8	30.25	28.15
Si (%)		12.65	9.55	7.3
Mg (%)		5.6	10.9	9.25
Mn (%)		2.4	2.2	3.25
Al (%)		3.8	3.95	8.35

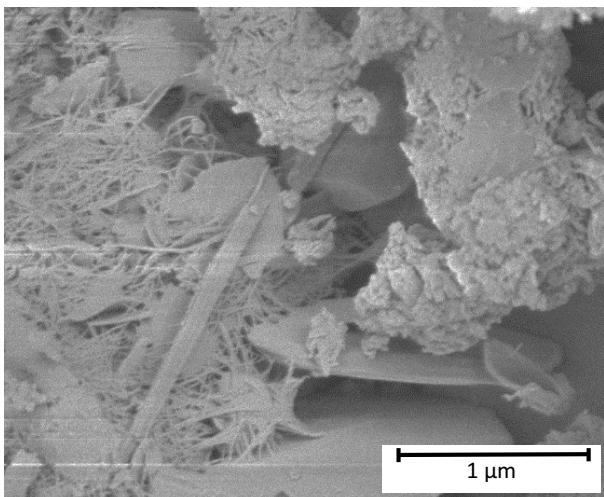
Table 4: Characteristic leaching properties of the BOF slags

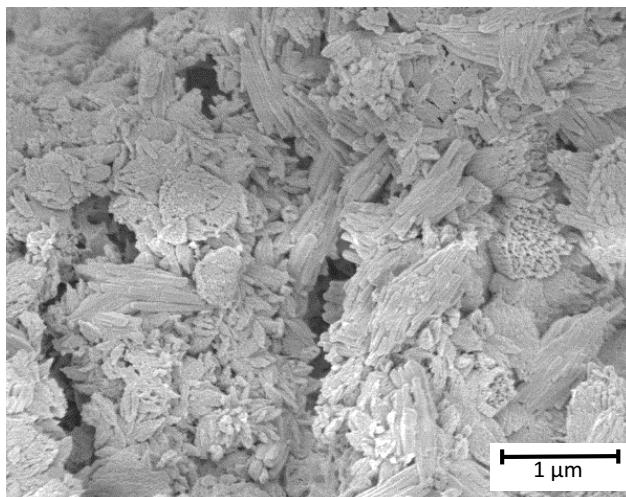
Metals	RCRA limit (mg/L)	Total (mg/kg)			TCLP (mg/L)			SPLP (mg/L)		
		IHE-3/15	IHE-9/17	Riverdale	IHE-3/15	IHE-9/17	Riverdale	IHE-3/15	IHE-9/17	Riverdale
Aluminum		11,000	15,000-19,000	64,000-69,000	0.62	<1.0	70-86	0.16	0.19	0.49-0.76
Antimony		<0.76	<1.7	<1.7	<0.00031	< 0.015	< 0.015	< 0.00016	< 0.0060	< 0.0060
Arsenic	5	1.3	1.7-1.8	5.3-7.6	0.00087	< 0.010	< 0.010	0.00029	< 0.0040	< 0.0040
Barium	100	36	66-72	120-130	0.14	0.13-0.15	0.21-0.25	0.12	0.078-0.083	0.19-0.20
Beryllium		<0.76	0.51-0.55	0.45-0.46	<0.00025	< 0.0050	< 0.0050	<0.00013	<0.002	< 0.0020
Boron		330	32-38	55-64	0.12	< 0.23	<0.2 4	0.027	0.08-0.084	< 0.20
Cadmium	1	2.5	<0.42	0.49-0.51	0.00028	< 0.0050	< 0.0050	0.00015	<0.002	< 0.0020
Calcium		290,000	220,000-260,000	280,000-310,000	2,300	2,200-2,600	1,500-1,600	800	880-1,000	590-900
Chromium	5	1,100	1,300-1,400	1,600	0.011	0.029-0.045	<0.01-0.016	0.002	0.010-0.011	0.0012-0.0073
Cobalt		1.2	1.4-1.6	1.7-2.4	0.0034	<0.010	< 0.010	0.0013	< 0.0040	< 0.0040
Copper		7.4	9.6-11	21-31	0.005	<0.1	< 0.10	0.0025	< 0.020	< 0.020
Iron		210,000	150,000-180,000	150,000-180,000	0.031	7.8-9.4	<0.25	0.011	3.6-3.8	1.2-1.5
Lead	5	<0.76	2.5-2.7	4.9	0.00041	<0.005	<0.005	0.0002	< 0.0020	< 0.0020
Magnesium		54,000	72,000-79,000	73,000-75,000	0.077	0.29-0.35	<0.25	0.05	< 0.40	< 0.40
Manganese		20,000	13,000-15,000	19,000-20,000	0.005	<0.01	<0.01	0.00072	< 0.0040	0.0040-0.0049
Mercury	0.2	<0.01	<0.019	<0.017	0.00005	<0.0002	<0.0002	0.00005	< 0.00020	-
Nickel		8.2	5.9-6.2	11-13	0.036	0.025-0.03	<0.02	0.013	0.0094-0.0098	<0.008
Potassium		2,000	150-160	49-53	0.76	0.87-1.0	<0.25	0.66	0.48-0.56	0.22-0.44
Selenium	1	<1.2	<0.85	<0.84	0.0047	<0.01	<0.01	0.0019	< 0.0040	< 0.0040
Silver	5	<0.76	<0.85	<0.84	0.00025	< 0.010	< 0.010	0.00013	< 0.0040	< 0.0040
Thallium		<0.23	<0.85	<0.84	0.00025	< 0.0050	< 0.0050	0.00013	< 0.0020	< 0.0020
Tin	-	<4.2	8.8-12	-	< 0.050	< 0.050	-	< 0.020	< 0.020	< 0.020
Vanadium		700	860-970	830-840	0.0058	0.01-0.015	<0.01	0.00078	< 0.0040	< 0.0040
Zinc		59	35-41	50-54	0.035	<0.05	<0.05	0.024	< 0.020	< 0.020


Table 5: Mineralogy and bulk chemistry (oxide basis) of the BOF slags

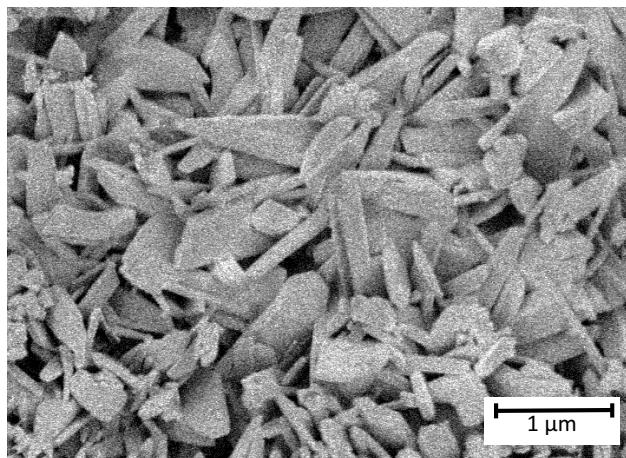
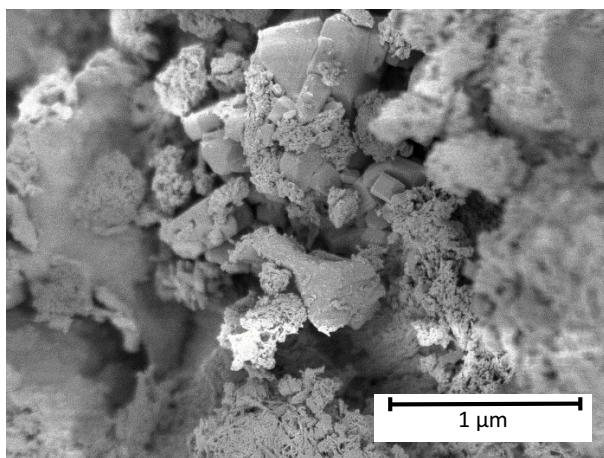
Minerals and oxides	Mineral formula	BOF Slag		
		IHE-3/15 (wt %)	IHE-9/17 (wt %)	Riverdale (wt %)
Oxide basis				
CaO		33.7	29	40.3
SiO ₂		13.35	10.55	10.9
Al ₂ O ₃		3.6	3.8	11.6
Fe ₂ O ₃		15.4	22.25	28.3
MgO		3.1	9.3	10.8
SO ₃		0.3	0.2	0.6
LOI		8.6	3.65	0.55
Minerals				
Lime	CaO	2.0-2.2	2.4	1-1.2
Portlandite	Ca(OH) ₂	9.4-9.5	0-4.4	2-2.3
Larnite	Ca ₂ SiO ₄	9.5-11.4	11.7-12.6	14.5-16.6
Calcite	CaCO ₃	2.8-2.9	0.8-1.1	0.9-1.3
Vaterite	CaCO ₃	1.8-2.7	-	-
Srebrodolskite	Ca ₂ Fe ₂ O ₅	6.6-7.8	14.2-15	-
Brownmillerite	Ca ₄ Al ₂ Fe ₂ O ₁₀	-	-	9-10.4
Calcium Aluminate (C3A)	Ca ₃ Al ₂ O ₆	-	-	6.2-6.4
Bredigite	Ca ₇ Mg(SiO ₄) ₄	-	-	2.6-1.9
Magnesioferrite	MgFe ₂ O ₄	3.3-3.8	6-6.5	4.6-4.9
Iron Magnesium Oxide	Fe0.76Mg0.24O	1.4-1.7	5.2-5.4	3.5-3.8
Wuestite	FeO	2.5-2.7	3.4-3.5	1.7-2.2
Periclase	MgO	0.4-0.6	0.7-0.8	2.7-2.8
Brucite	Mg(OH) ₂	0.3-0.6	0.4	-
Mayenite	Ca ₁₂ Al ₁₄ O ₃₃	2.7-2.9	2-2.9	3.1-3.3
Akermanite	Ca ₂ MgSi ₂ O ₇	0.0-6.4	2	-
Merwinite	Ca ₃ Mg(SiO ₄) ₂	0.9	1.8-2.1	-
Katoite	Ca ₃ Al ₂ (OH) ₁₂	3.8-4.3	1.7-1.8	1.3-1.5
Quartz	SiO ₂	0.3-0.4	-	-
Amorphous Material		41.7-50.1	43-43.7	40.6-46.1

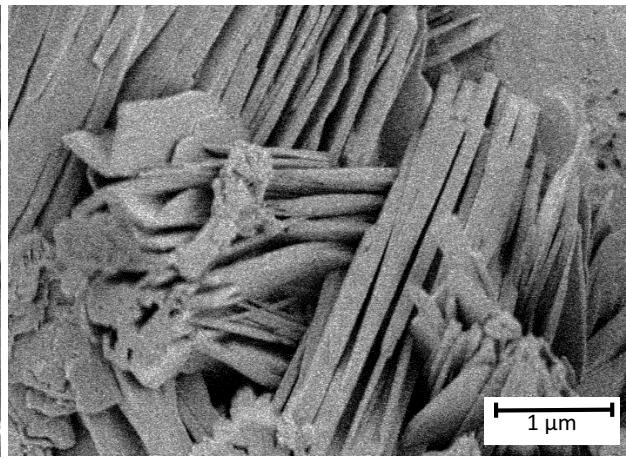
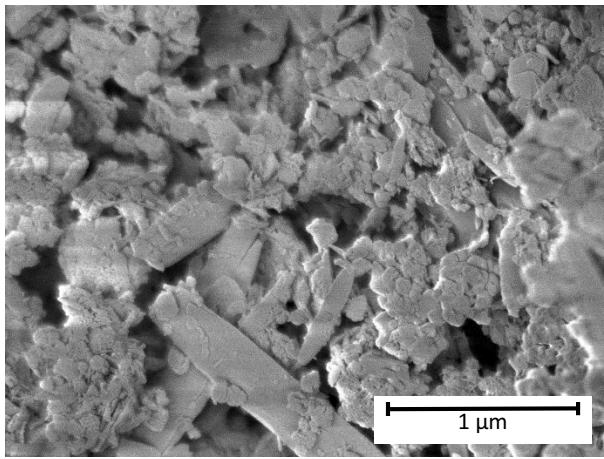
(b)

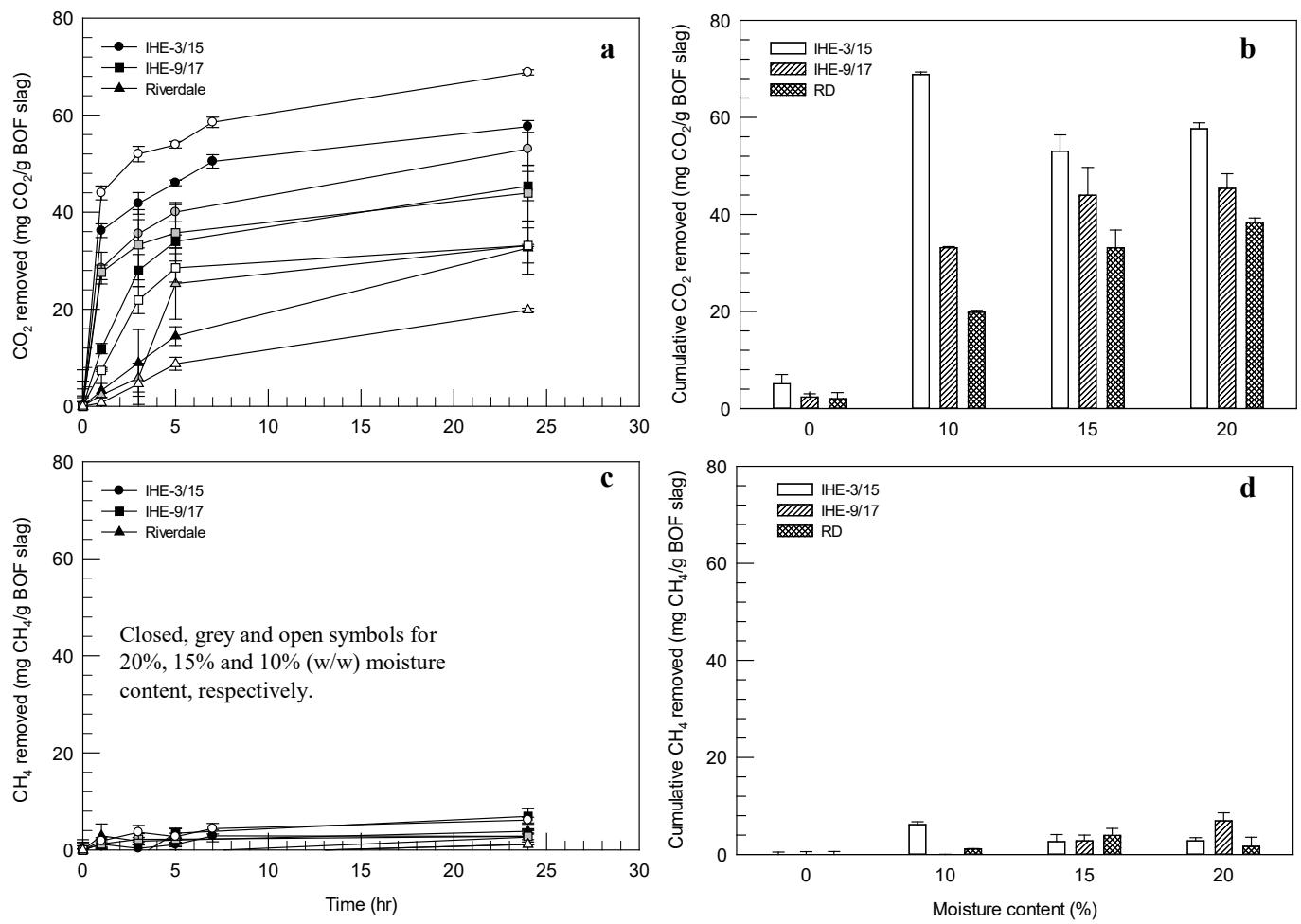

Figure 1: Column experimental setup (with humid gas): (a) Schematic; and (b) Photograph.

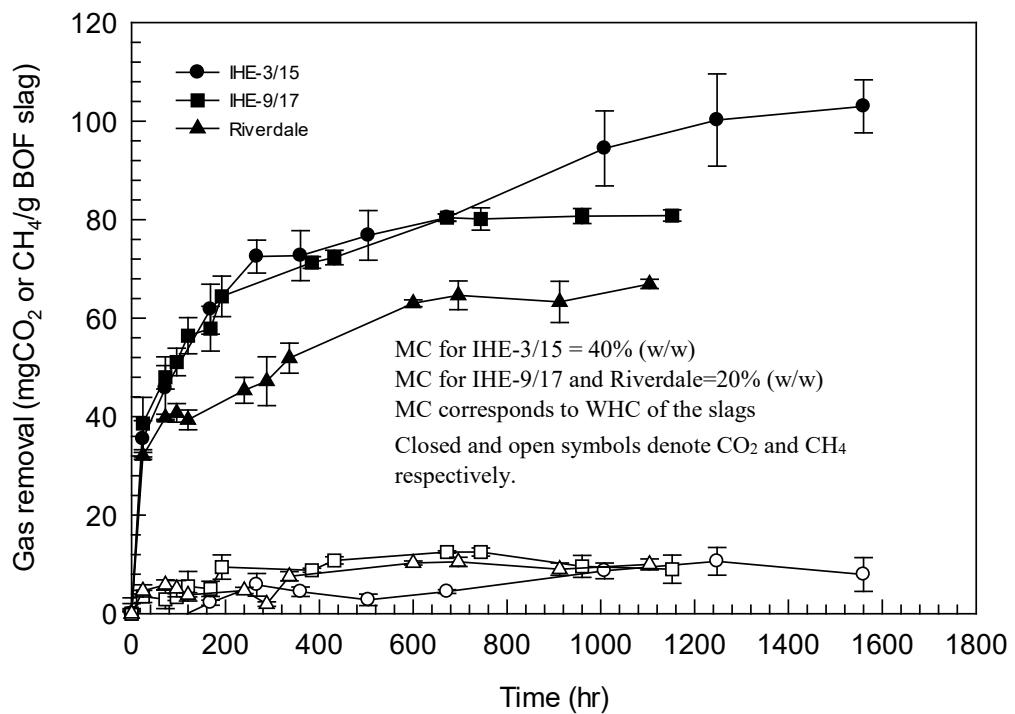

Figure 2: Particle size distribution of the BOF slags (IHE-3/15, IHE-9/17 and Riverdale)

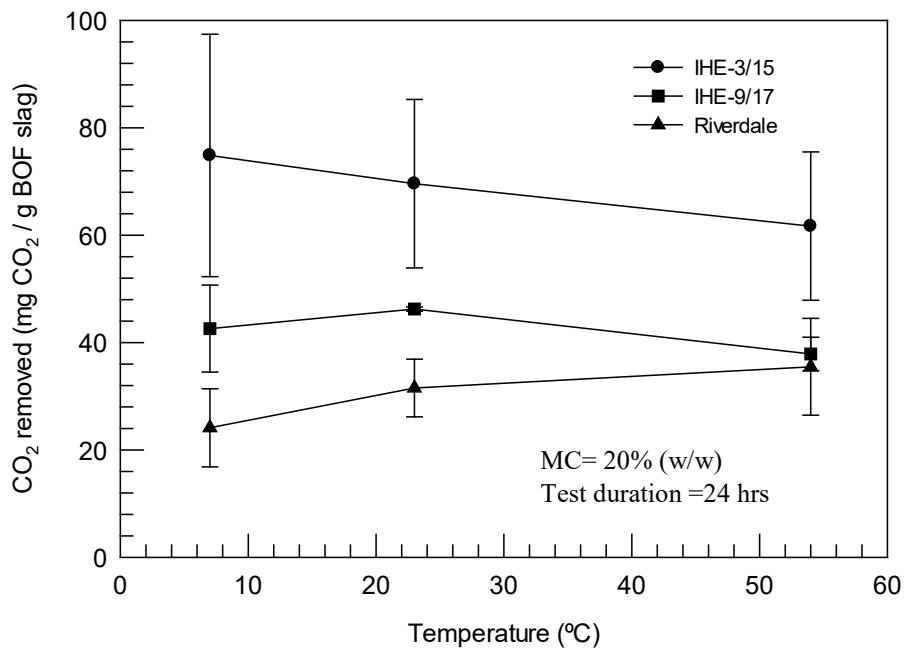
As-received

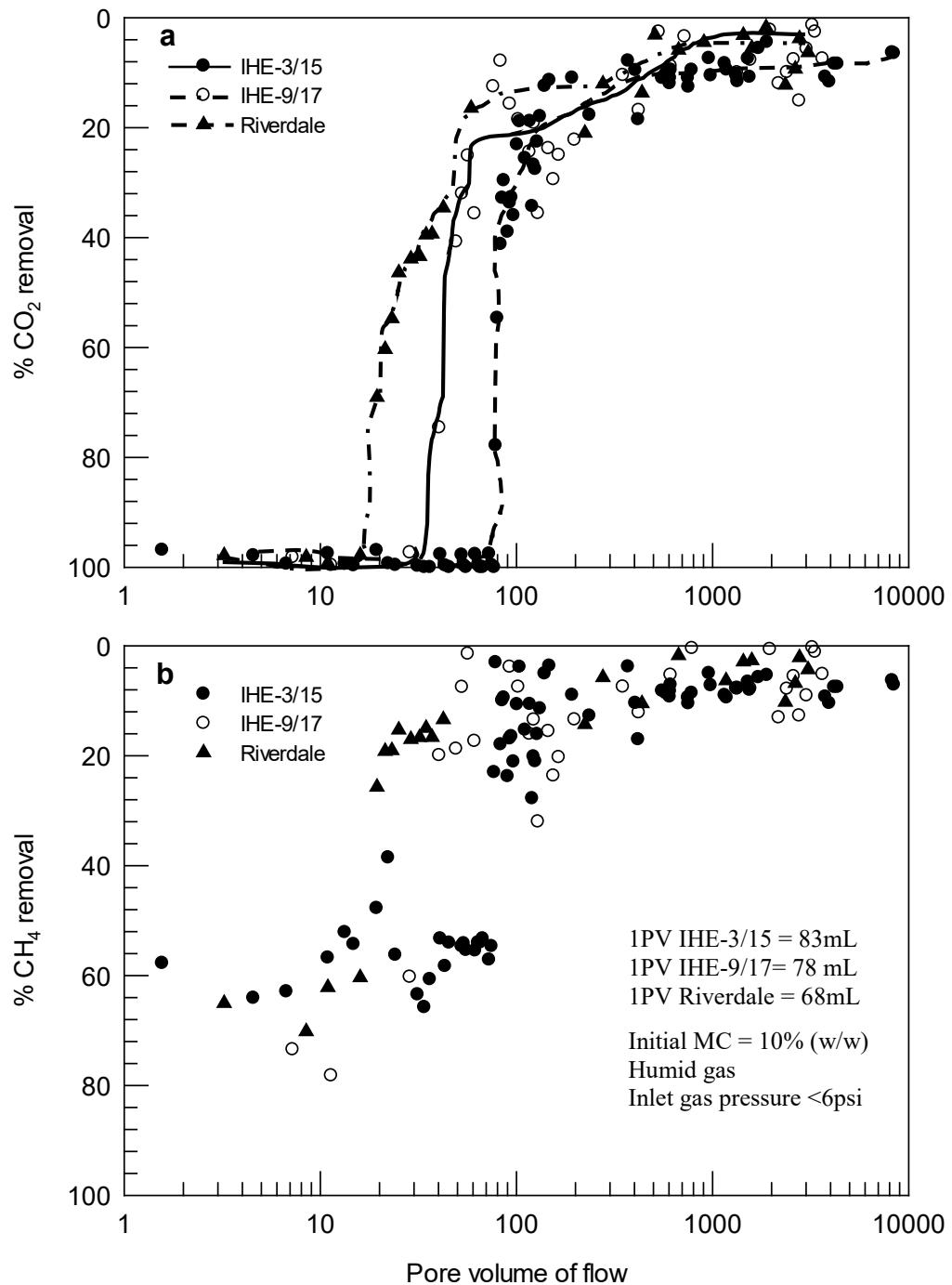


IHE-3/15



Carbonated


IHE-9/17


Riverdale


Figure 3: SEM images of as-received and carbonated BOF slags (IHE-3/15, IHE-9/17 and Riverdale)


Figure 4: Removal of CO₂ a) hourly and b) cumulative and CH₄ c) hourly and d) cumulative in 24 hours by the BOF slags (IHE-3/15, IHE-9/17 and Riverdale) at different moisture content and exposed to synthetic LFG (50% CO₂:50% CH₄ (v/v)) at room temperature and atmospheric pressure

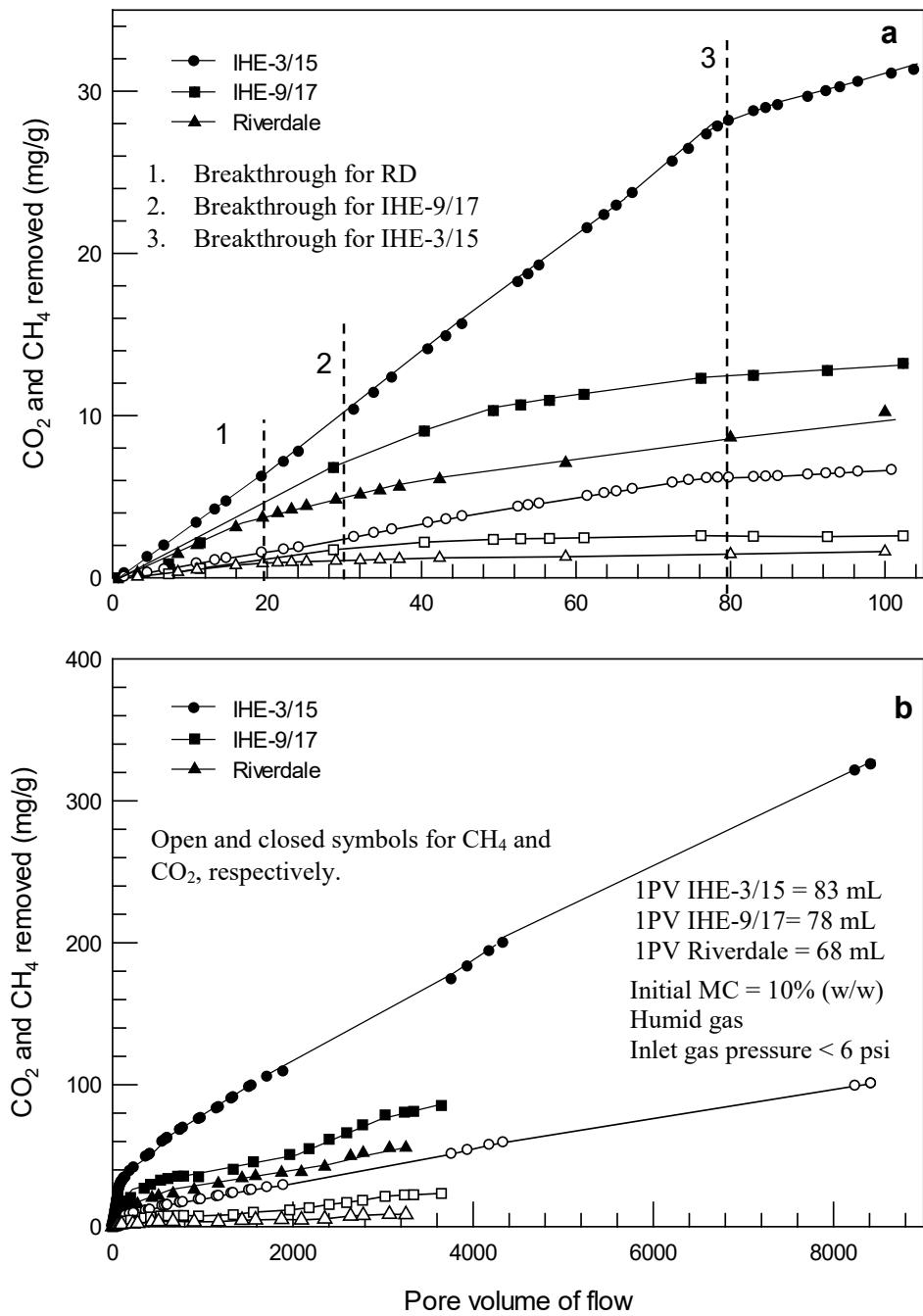

Figure 5: Cumulative removal of CO₂ and CH₄ with time by BOF slags (IHE-3/15, IHE-9/17 and Riverdale) exposed to synthetic LFG (50% CO₂:50% CH₄ (v/v)) at room temperature and atmospheric pressure and moisture content corresponding to the water holding capacity (WHC) of each BOF slag.

Figure 6: Removal of CO₂ by BOF slags (IHE-3/15, IHE-9/17 and Riverdale) in 24 hours as a function of temperature when exposed to synthetic LFG (50% CO₂:50% CH₄ (v/v)) at an initial moisture content of 20% and atmospheric pressure.

Figure 7: Comparison of percent removal of a) CO₂ and b) CH₄ by BOF slags (IHE-3/15, IHE-9/17 and Riverdale) on a pore volume basis for simulated LFG gas flow (50/50 CH₄/CO₂) at 23 ±2°C.

Figure 8: Short (a) and long (b) term CO_2 and CH_4 removal by BOF slags (IHE-3/15, IHE-9/17 and Riverdale) on a pore volume basis for simulated LFG gas flow (50/50 CH_4/CO_2) at $23 \pm 2^\circ\text{C}$.