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Abstract. In his classical work on synchronization, Kuramoto derived the

formula for the critical value of the coupling strength corresponding to the

transition to synchrony in large ensembles of all-to-all coupled phase oscillators
with randomly distributed intrinsic frequencies. We extend this result to a large

class of coupled systems on convergent families of deterministic and random

graphs. Specifically, we identify the critical values of the coupling strength
(transition points), between which the incoherent state is linearly stable and is

unstable otherwise. We show that the transition points depend on the largest

positive or/and smallest negative eigenvalue(s) of the kernel operator defined
by the graph limit. This reveals the precise mechanism, by which the network

topology controls transition to synchrony in the Kuramoto model on graphs.
To illustrate the analysis with concrete examples, we derive the transition point

formula for the coupled systems on Erdős-Rényi, small-world, and k-nearest-

neighbor families of graphs. As a result of independent interest, we provide
a rigorous justification for the mean field limit for the Kuramoto model on

graphs. The latter is used in the derivation of the transition point formulas.

In the second part of this work [8], we study the bifurcation corresponding
to the onset of synchronization in the Kuramoto model on convergent graph

sequences.

1. Introduction. Synchronization of coupled oscillators is a classical problem of
nonlinear science with diverse applications in science and engineering [3, 46]. Phys-
ical and technological applications of synchronization include power, sensor, and
communication networks [14], mobile agents [43], electrical circuits [1], coupled
lasers [25], and Josephson junctions [52], to name a few. In biological and social
sciences, synchronization is studied in the context of flocking, opinion dynamics,
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and voting [20, 38]. Synchronization plays a prominent role in physiology and in
neurophysiology, in particular. It is important in the information processing in the
brain [44] and in the mechanisms of several severe neurodegenerative diseases such
as epilepsy [51] and Parkinsons Disease [29]. This list can be continued.

Identifying common principles underlying synchronization in such diverse models
is a challenging task. In the seventies Kuramoto found an elegant approach to this
problem. Motivated by problems in statistical physics and biology, he reduced a
system of weakly coupled limit cycle oscillators to the system of equations for the
phase variables only1. The resultant equation is called the Kuramoto model (KM)
[27]. Kuramoto’s method applies directly to a broad class of models in natural sci-
ence. Moreover, it provides a paradigm for studying synchronization. The analysis
of the KM revealed one of the most striking results of the theory of synchronization.
For a system of coupled oscillators with randomly distributed intrinsic frequencies,
Kuramoto identified the critical value of the coupling strength, at which the gradual
buildup of coherence begins. He introduced the order parameter, which describes
the degree of coherence in a coupled system. Using the order parameter, Kuramoto
predicted the bifurcation marking the onset of synchronization.

Kuramoto’s analysis, while not mathematically rigorous, is based on the correct
intuition for the transition to synchronization. His discovery initiated a line of fine
research (see [48, 49, 47, 6] and references therein). It was shown in [48, 49] that
the onset of synchronization corresponds to the loss of stability of the incoherent
state, a steady state solution of the mean field equation. The latter is a nonlinear
hyperbolic partial differential equation for the probability density function describ-
ing the distribution of phases on the unit circle at a given time. The bifurcation
analysis of the mean field equation is complicated by the presence of the continu-
ous spectrum of the linearized problem on the imaginary axis. To overcome this
problem, in [6] the first author developed an analytical method, which uses the
theory of generalized functions and rigged Hilbert spaces [18] (see [12, 17] for other
approaches).

The Kuramoto’s original analysis of the onset of synchronization and subsequent
work [48, 49, 6] deal with all-to-all coupled systems. Real world applications fea-
ture complex and often random connectivity patterns [42]. The goal of our work is
to extend the mathematical theory of synchronization to spatially structured net-
works. We are especially interested in identifying the contribution of the network
connectivity to the the bifurcation underlying the transition to synchrony. To this
end, we adopt the approach developed by the second author in [35, 36]. Specifically,
we consider the KM on convergent families of deterministic and random weighted
graphs. Our framework covers many random graphs widely used in applications,
including Erdős-Rényi and small-world graphs. Furthermore, with minor modifi-
cations our approach applies to a large class of sparse graphs including power-law
graphs (cf. [23]). For the KM on convergent graph sequences, we derive and rig-
orously justify the mean field equation and study stability and bifurcations of the
incoherent state. The latter is a special solution of the mean field equation, whose
loss of stability marks the onset of synchronization. For presentation purposes, we
split our results in two sets. In the present paper, we deal with the derivation of the
mean field equation and linear stability analysis of the incoherent state. In partic-
ular, we derive explicit formulas for the critical values of the coupling strength, at

1For related reductions predating Kuramoto’s work, see [33, 34, 3] and the discussion before
Theorem 9.2 in [21].
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which the incoherent state looses stability. These transition point formulas relate
the onset of synchronization to the structure of the network through the extreme
eigenvalues of the kernel operator defined by the graph limit. In the second part of
our work [8], we deal with a more technical bifurcation analysis of the incoherent
state. Here, we are also able to identify the contribution of the network connectivity
to the bifurcation structure of the KM model. Together, the results of the present
paper and those of [8] provide a complete theory of synchronization for the KM on
convergent graph sequences.

The original KM with all-to-all coupling and random intrinsic frequencies has
the following form:

θ̇i = ωi +
K

n

n∑
j=1

sin(θj − θi). (1)

Here, θi : R → S := R/2πZ, i ∈ [n] := {1, 2, . . . , n} is the phase of the oscillator i,
whose intrinsic frequency ωi is drawn from the probability distribution with density
g(ω), n is the number of oscillators, and K is the strength of coupling. The sum on
the right-hand side of (1) describes the interactions of the oscillators in the network.
The goal is to describe the distribution of θi(t), i ∈ [n], for large times and n� 1.

Since the intrinsic frequencies are random, for small values of the coupling
strength K > 0, the dynamics of different oscillators in the network are practi-
cally uncorrelated. For increasing values of K > 0, however, the dynamics of the
oscillators becomes more and more synchronized. To describe the degree of syn-
chronization, Kuramoto used the complex order parameter :

r(t)eiψ(t) := n−1
n∑
j=1

eiθj(t). (2)

Here, 0 ≤ r(t) ≤ 1 and ψ(t) stand for the modulus and the argument of the
order parameter defined by the right-hand side of (2). Note that if all phases are
independent uniform random variables and n� 1 then with probability 1, r = o(1)
by the Strong Law of Large Numbers. If, on the other hand, all phase variables
are equal then r = 1. Thus, one can interpret the value of r as the measure
of coherence in the system dynamics. Numerical experiments with the KM (with
normally distributed frequencies ωi’s) reveal the phase transition at a certain critical
value of the coupling strength Kc > 0. Specifically, numerics suggest that for t� 1
(cf. [47])

r(t) =

{
O(n−1/2), 0 < K < Kc,
r∞(K) +O(n−1/2), K > Kc.

Assuming that g is a smooth even function that is decreasing on ω ∈ R+, Kuramoto
derived the formula for the critical value

Kc =
2

πg(0)
. (3)

Furthermore, he formally showed that in the partially synchronized regime (K >
Kc), the steady-state value for the order parameter is given by

r∞(K) =

√
−16

πK4
c g
′′(0)

√
K −Kc +O(K −Kc). (4)

Recently, Chiba and Nishikawa [10] and Chiba [6] confirmed Kuramoto’s heuristic
analysis with the rigorous derivation of (3) and analyzed the bifurcation at Kc.
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In this paper, we initiate a mathematical investigation of the transition to co-
herence in the KM on graphs. To this end, we consider the following model:

θ̇i = ωi +
K

n

n∑
j=1

Wnij sin(θj − θi), (5)

Wn = (Wnij) is an n × n symmetric matrix of weights. Note that in the classical
KM (1), every oscillator is coupled to every other oscillator in the network, i.e., the
graph describing the interactions between the oscillators is the complete graph on n
nodes. In the modified model (5), we supply the edges of the complete graph with
the weights (Wnij). Using this framework, we can study the KM on a variety of
deterministic and random (weighted) graphs. For instance, let Wnij , 1 ≤ i < j ≤ n
be independent Bernoulli random variables

P(Wnij = 1) = p,

for some p ∈ (0, 1). Complete the definition of Wn by setting Wnji = Wnij and
Wnii = 0, i ∈ [n]. With this choice of Wn, (5) yields the KM on Erdős-Rényi random
graph.

The family of Erdős-Rényi graphs parameterized by n is one example of a con-
vergent family of random graphs [30]. The limiting behavior of such families is
determined by a symmetric measurable function on the unit square W (x, y), called
a graphon. In the case of the Erdős-Rényi graphs, the limiting graphon is the
constant function W ≡ p. In this paper, we study the KM on convergent fami-
lies of deterministic and random graphs. In each case the asymptotic properties of
graphs are known through the limiting graphon W . The precise relation between
the graphon W and the weight matrix Wn will be explained below.

In studies of coupled systems on graphs, one of the main questions is the relation
between the structure of the graph and network dynamics. For the problem at
hand, this translates into the question of how the structure of the graph affects the
transition to synchrony in the KM. For the KM on convergent families of graphs,
in this paper, we derive the formulas for the critical values

K+
c =

2

πg(0)ζmax(W)
and K−c =

2

πg(0)ζmin(W)
, (6)

where ζmax(W) (ζmin(W)) is the largest positive (smallest negative) eigenvalue of
the self-adjoint kernel operator W : L2(I)→ L2(I), I := [0, 1], defined by

W[f ] =

∫
I

W (·, y)f(y)dy, f ∈ L2(I). (7)

If all eigenvalues of W are positive (negative) then K−c := −∞ (K+
c := ∞). The

main result of this work shows that the incoherent state is linearly (neutrally) stable
for K ∈ [K−c ,K

+
c ] and is unstable otherwise. The transition point formulas in (6)

reveal the effect of the network topology on the synchronization properties of the
KM through the extreme eigenvalues ζmax(W) and ζmin(W). For the classical KM
(W ≡ 1) ζmax(W) = 1 and there are no negative eigenvalues. Thus, we recover (3)
from (6).

We derive (6) from the linear stability analysis of the mean field limit of (5).
The latter is a partial differential equation for the probability density function
corresponding to the distribution of the phase variables on the unit circle (see (16),
(17)). For the classical KM, the mean field limit was derived by Strogatz and
Mirollo in [48]. We derive the mean field limit for the KM on weighted graphs
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(5) and show that its solutions approximate probability distribution of the phase
variables on finite time intervals for n� 1. Here, we rely on the theory of Neunzert
developed for the Vlasov equation [39, 40] (see also [4, 13, 19]), which was also used
by Lancellotti in his treatment of the mean field limit for the classical KM [28]. In
this paper, we assume that W is a Lipschitz continuous function on I2, so that we
can use the classical results for the Vlasov equation in [39, 40]. Our analysis can
be extended to the models with non-Lipschitz graphons W (cf. [22]). We do not
pursue this extension in the present work, to keep the analysis simple.

With the mean field limit in hand, we proceed to study transition to coherence
in (5). As for the classical KM, the density of the uniform distribution is a steady
state solution of the mean field limit. The linear stability analysis in Section 3 shows
that the density of the uniform distribution is neutrally stable for K−c ≤ K ≤ K+

c

and is unstable otherwise. Thus, the critical values K±c given in (6) mark the
loss of stability of the incoherent state. The bifurcations at K±c and the formula
for the order parameter corresponding to (4) will be analyzed elsewhere using the
techniques from [6, 7].

Sections 4 and 5 deal with applications. In the former section we collect ap-
proximation results, which facilitate application of our results to a wider class of
models. Further, in Section 5, we discuss the KM for several representative network
topologies : Erdős-Rényi, small-world, k-nearest-neighbor graphs, and the weighted
ring model. We conclude with a brief discussion of our results in Section 6.

In addition to the work by Chiba [10, 5, 6] already mentioned above, the mean
field limit and stability of the incoherent state in the classical KM (1) have been
more recently treated by several authors [28, 12, 17]. In addition, the mean field
limits for the KM forced by noise on lattices (albeit with singular weights) and
on certain random graphs have been studied in [32] and [11] respectively. The
goal of the present paper is twofold. First, we suggest a flexible framework for
studying the mean field limit for the KM on convergent families of weighted de-
terministic and random graphs. Our framework covers many graphs common in
applications including Erdős-Renyi and small-world graphs. Furthermore, with ap-
propriate rescaling of the discrete model (5) our method applies without changes to
certain sparse graphs, like sparse Erdős-Rényi and sparse stochastic block graphs
(see Example 2.4 in [23]). Second, we show that linear stability of the incoherent
state in the KM on graphs is fully determined by the spectral properties of the
limiting graphon of the underlying graph sequence. This provides the link between
the network structure and synchronization for the KM on graphs (5). This is the
main message of this paper. In the follow-up work [8], we address several issues per-
tinent to nonlinear stability including asymptotic stability of the incoherent state,
bifurcations, and the center manifold reduction.

2. The mean field limit. Throughout this paper, we will use a discretization of
I = [0, 1] :

Xn = {ξn1, ξn2, . . . , ξnn}, ξni ∈ I, i ∈ [n], (8)

which satisfies the following property

lim
n→∞

n−1
n∑
i=1

f(ξni) =

∫
I

f(x)dx, ∀f ∈ C(I). (9)

Example 2.1. The following two examples of Xn will be used in constructions of
various graphs throughout this paper.
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1. The family of sets (8) with ξni = i/n, i ∈ [n] satisfies (9).
2. Let ξ1, ξ2, . . . be independent identically distributed (IID) random variables

(RVs) with ξ1 having the uniform distribution on I. Then with Xn = {ξ1, ξ2,
. . . , ξn} (9) holds almost surely (a.s.), by the Strong Law of Large Numbers.

Let W be a symmetric Lipschitz continuous function on I2 :

|W (x1, y1)−W (x2, y2)| ≤ LW
√

(x1 − x2)2 + (y1 − y2)2 ∀(x1,2, y1,2) ∈ I2. (10)

The weighted graph Γn = G(W,Xn) on n nodes is defined as follows. The node
and the edge sets of Γn are V (Γn) = [n] and

E(Γn) = {{i, j} : W (ξni, ξnj) 6= 0, i, j ∈ [n]} , (11)

respectively. Each edge {i, j} ∈ E(Γn) is supplied with the weight Wnij := W (ξni,
ξnj).

On Γn, we consider the KM of phase oscillators

θ̇ni = ωi +Kn−1
n∑
j=1

Wnij sin(θnj − θni), i ∈ [n]. (12)

The phase variable θni : R → S := R/2πZ corresponds to the oscillator at node
i ∈ [n]. Throughout this paper, we identify θ ∈ S with its value in the fundamental
domain, i.e., θ ∈ [0, 2π). Further, we equip S with the distance

dS(θ, θ′) = min{|θ − θ′|, 2π − |θ − θ′|}. (13)

The oscillators at the adjacent nodes interact through the coupling term on the
right hand side of (12). The intrinsic frequencies ω1, ω2, . . . are IID RVs. Assume
that ω1 has absolutely continuous probability distribution with a continuous density
g(ω). The initial condition

θni(0) = θ0i , i ∈ [n], (14)

are sampled independently from the conditional probability distributions with den-
sities ρ̂0θ|ω(θ, ωi, ξni), i ∈ [n]. Here, ρ̂0θ|ω(θ, ω, ξ) is a nonnegative continuous function

on G := S× R× I that is uniformly continuous in ξ. In addition, we assume∫
S
ρ̂0θ|ω(φ, ω, ξ)dφ = 1 ∀(ω, ξ) ∈ R× I. (15)

We want to show that the dynamics of (12) subject to the initial condition (14)
can be described in terms of the probability density function ρ̂(t, θ, ω, x) satisfying
the following Vlasov equation

∂

∂t
ρ̂(t, θ, ω, x) +

∂

∂θ
{ρ̂(t, θ, ω, x)V (t, θ, ω, x)} = 0, (16)

where

V (t, θ, ω, x) = ω +K

∫
I

∫
R

∫
S
W (x, y) sin(φ− θ)ρ̂(t, φ, λ, y)dφdλdy (17)

and the initial condition

ρ̂(0, θ, ω, x) = ρ̂0θ|ω(θ, ω, x)g(ω), (18)

where g is a given probability density function describing the desribution of the
intrinsic frequencies ωi, i ∈ [n], in the KM (5). By (15), ρ̂(0, θ, ω, x) is a probability
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density on (G,B(G)):∫
S

∫
R

∫
I

ρ̂(0, θ, ω, x)dxdωdθ =

∫
R

∫
I

{∫
S
ρ̂0θ|ω(θ, ω, x)dθ

}
g(ω)dxdω

=

∫
R
g(ω)dω = 1.

(19)

Here, B(G) stands for the Borel σ-algebra of G.
Below, we show that the solutions of the IVPs for (12) and (16), generate two

families of Borel probability measures parametrized by t > 0. To this end, we
introduce the following empirical measure

µnt (A) = n−1
n∑
i=1

δPni(t)(A) A ∈ B(G), (20)

where Pni(t) = (θni(t), ωi, ξni) ∈ G.
To compare measures generated by the discrete and continuous systems, following

[40], we use the bounded Lipschitz distance:

d(µ, ν) = sup
f∈L

∣∣∣∣∫
G

fdµ−
∫
G

fdν

∣∣∣∣ , µ, ν ∈M, (21)

where L is the set of functions

L = {f : G→ [0, 1] : |f(P )− f(Q)| ≤ dG(P,Q), P,Q ∈ G} (22)

and M stands for the space of Borel probability measures on G. Here,

dG(P, P ′) =
√
dS(θ, θ′)2 + (ω − ω′)2 + (x− x′)2,

for P = (θ, ω, x) and P ′ = (θ′, ω′, x′). The bounded Lipschitz distance metrizes the
convergence of Borel probability measures on G [15, Theorem 11.3.3].

We are now in a position to formulate the main result of this section.

Theorem 2.2. Suppose W is a Lipschitz continuous function on I2. Then for
any T > 0, there exists a unique weak solution2 of the IVP (16), (17), and (18),
ρ̂(t, ·), t ∈ [0, T ], which provides the density for Borel probability measure on G:

µt(A) =

∫
A

ρ̂(t, P )dP, A ∈ B(G), (23)

parametrized by t ∈ [0, T ]. Furthermore,

d(µnt , µt)→ 0 (24)

uniformly for t ∈ [0, T ], provided d(µn0 , µ0)→ 0 as n→∞.

Proof. We rewrite (12) as follows

θ̇ni = λi +Kn−1
n∑
j=1

W (xni, xnj) sin(θnj − θni), (25)

λ̇ni = 0,

ẋni = 0, i ∈ [n],

subject to the initial condition

(θni(0), λni(0), xni(0)) = (θ0i , ωi, ξni), i ∈ [n]. (26)

2See [39, Remark 1] for the definition of the weak solution.
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As before, we consider the empirical measure corresponding to the solutions of (25),
(26)

µnt (A) = n−1
n∑
i=1

δPni(t)(A), A ∈ B(G), (27)

where Pni(t) = (θni(t), λni(t), xni(t)) ∈ G.
We need to show that µnt and µt are close for large n. This follows from the

Neunzert’s theory [40]. Specifically, below we show

d(µnt , µt) ≤ Cd(µn0 , µ0), t ∈ [0, T ], (28)

for some C > 0 independent from n.
Below, we prove (28). Theorem 2.2 will then follow.
Let C(0, T ;M) denote the space of weakly continuous M-valued functions on

[0, T ]. Specifically, µ. ∈ C(0, T ;M) means that

t 7→
∫
G

f(P )dµt(P ) (29)

is a continuous function of t ∈ [0, T ] for every bounded continuous function f ∈
Cb(G).

For a given ν. ∈ C(0, T ;M), consider the following equation of characteristics:

dP

dt
= Ṽ [ν.](t, P ), P (s) = P 0 ∈ G. (30)

where P = (θ, ω, x) and

Ṽ [ν.](t, P ) =

ω +K
∫
G
W (x, y) sin(v − θ)dνt(v, ω, y)

0
0

 . (31)

Under our assumptions on W , (30) has a unique global solution, which depends
continuously on initial data. Thus, (31) generates the flow Tt,s : G → G (Ts,s =

id, Ts,t = T−1t,s ):

P (t) = Tt,s[ν.]P
0.

Following [39], we consider the fixed point equation:

νt = ν0 ◦ T0,t[ν.], t ∈ [0, T ], (32)

which is interpreted as

νt(A) = ν0 (T0,t[ν.](A)) ∀A ∈ B(G).

It is shown in [39] that under the conditions (I) and (II) given below, for any
ν0 ∈M there is a unique solution of the fixed point equation (32) ν. ∈ C(0, T ;M).

Moreover, for any two initial conditions ν1,20 ∈M, we have

sup
t∈[0,T ]

d(ν1t , ν
2
t ) ≤ exp{CT}d(ν10 , ν

2
0) (33)

for some C > 0. By construction of Tt,s and (27), the empirical measure µn. satisfies
the fixed point equation (32). By [39, Theorem 1], νt, the solution of the (32), is an
absolutely continuous measure with density ρ̂(t, ·) for every t ∈ [0, T ], provided ν0 is
absolutely continuous with density ρ̂(0, ·) (cf. (19)). Furthermore, ρ̂(t, P ) is a weak
solution of the IVP for (16), (17), and (18). Therefore, since both the empirical
measure µn. and its continuous counterpart µ. (cf. (27) and (23)) satisfy the fixed
point equation (32), we can use (33) to obtain (28). It remains to verify the following
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two conditions on the vector field Ṽ [ν.], which guarantee the solvability of (32) and
continuous dependence on initial data estimate (33) (cf. [40]):

(I): Ṽ [µ.](t, P ) is continuous in t and is globally Lipschitz continuous in P with
Lipschitz constant3 L1, which depends on W .

(II): The mapping Ṽ : µ. 7→ Ṽ [µ.] is Lipschitz continuous in the following sense:∣∣∣Ṽ [µ.](t, P )− Ṽ [ν.](t, P )
∣∣∣ ≤ L2d(µt, νt),

for some L2 > 0 and for all µ., ν. ∈ C(R,M) and (t, P ) ∈ [0, T ]×G. 4

For the Lipschitz continuous function W , it is straightforward to verify conditions
(I) and (II). In particular, (I) follows from the weak continuity of µt (cf. (29)) and
Lipschitz continuity of W and sinx. The second condition is verified following the
treatment of the mechanical system presented in [40] (see also [28]). We include the
details of the verification of (II) for completeness.

Let P = (θ, ω, x) ∈ G be arbitrary but fixed and define

f(φ, λ, y;P ) =
W (x, y) sin(φ− θ) + ‖W‖L∞(I2)

2(‖W‖L∞(I2) + LW )
, (34)

where LW is the Lipschitz constant of W (x, y) (cf. (10)). Then f ∈ L (cf. (21)).
Further,∣∣∣Ṽ [ν.](t, P )− Ṽ [µ.](t, P )

∣∣∣
=

∣∣∣∣K ∫
G

W (x, y) sin(φ− θ) (dνt(φ, λ, y)− dµt(φ, λ, y))

∣∣∣∣
= 2K(‖W‖L∞(I2) + LW )

∣∣∣∣∫
G

f(φ, λ, y) (dνt(φ, λ, y)− dµt(φ, λ, y))

∣∣∣∣
≤ L2d(νt, µt), L2 := 2K(‖W‖L∞(I2) + LW ),

which verifies the condition (II).

Corollary 2.3. For the empirical measure µnt (20) and absolutely continuous mea-
sure µt (23) defined on the solutions of the IVPs (12), (14), (15) and (16), (17),
(18) respectively, we have

lim
n→∞

sup
t∈[0,T ]

d(µnt , µt) = 0 a.s..

Proof. In view of Theorem 2.2, we need to show

lim
n→∞

d(µn0 , µ0) = 0 a.s..

By [15, Theorem 11.3.3], it is sufficient to show

lim
n→∞

∫
G

f (dµn0 − dµ0) = 0 ∀f ∈ BL(G) a.s., (35)

3A straightforward estimate shows that L1 =
√

2
(
LW + ‖W‖L∞(I2)

)
+ 1, where LW is the

Lipschitz constant in (10).
4With these assumptions the estimate (33) holds with C = L1 + L2 (see [40]).
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where BL(G) stands for the space of bounded real-valued Lipschitz functions on G
with the supremum norm. Since BL(G) is a separable space, let {fm}∞m=1 denote
a dense set in BL(G). Using (14) and (20), we have∫

G

fmdµ
n
0 = n−1

n∑
i=1

fm(θ0i , ωi, ξni) =: n−1
n∑
i=1

Ym,ni. (36)

RVs Ym,ni, i ∈ [n], are independent and uniformly bounded. Further,

E

(
n−1

n∑
i=1

Ym,ni

)
= n−1

n∑
i=1

∫
S

∫
R
fm(φ, λ, ξni)ρ̂

0
θ|ω(φ, λ, ξni)g(λ)dλdφ

=: n−1
n∑
i=1

Fm(ξni),

(37)

Because fm is Lipschitz and ρ0θ|ω is uniformly continuous in ξ, the function

Fm(ξ) =

∫
S

∫
R
fm(φ, λ, ξ)ρ̂0θ|ω(φ, λ, ξ)g(λ)dλdφ

is continuous on I.
By (9), we have

lim
n→∞

E

(
n−1

n∑
i=1

Ym,ni

)
=

∫
I

Fm(ξ)dξ =

∫
G

fmdµ0. (38)

By the Strong Law of Large Numbers5, from (36), (37), and (38) we have

lim
n→∞

∫
G

fm (dµn0 − dµ0) = lim
n→∞

n−1
n∑
i=1

(Ym,ni − EYm,ni) = 0 a.s.. (39)

Therefore,

P
{

lim
n→∞

∫
G

fm (dµn0 − dµ0) = 0 ∀m ∈ N
}

= 1.

Using density of {fm}∞m=1 in BL(G), we have

P
{

lim
n→∞

∫
G

f (dµn0 − dµ0) = 0 ∀f ∈ BL(G)

}
= 1.

3. Linear stability. In the previous section, we established that the Vlasov equa-
tion (16), approximates discrete system (12) for n � 1. Next, we will use (16)
to characterize the transition to synchrony for increasing K. To this end, in this
section, we derive the linearized equation about the incoherent state, the steady
state solution of the mean field equation. In the next section, we will study how
the spectrum of the linearized equation changes with K.

In this section, we assume that probability density g is a continuous and even
function monotonically decreasing on R+.

5 It is easy to adjust the proof of Theorem 6.1 [2] so that it applies to the triangular array
Yni, i ∈ [n], n ∈ N (see [37, Lemma 3.1]).
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3.1. Linearization. First, setting ρ̂(t, θ, ω, x) = ρ(t, θ, ω, x)g(ω), from (16) we de-
rive the equation for ρ:

∂

∂t
ρ+

∂

∂θ
{Vρρ} = 0, (40)

where

Vρ(t, θ, ω, x) = ω +K

∫
I

∫
S

∫
R
W (x, y) sin(φ− θ)ρ(t, φ, λ, y)g(λ)dλdφdy.

By integrating (16) over S, one can see that

∂

∂t

∫
S
ρ̂(t, θ, ω, x)dθ = 0,

and, thus,∫
S
ρ̂(t, θ, ω, x)dθ =

∫
S
ρ̂(0, θ, ω, x)dθ =

∫
S
ρ̂0θ|ω(0, θ, ω, x)g(ω)dθ = g(ω). (41)

Thus, ∫
S
ρ(t, θ, ω, x)dθ = 1 ∀(t, ω, x) ∈ R+ × R× I. (42)

In addition, ∫
R
g(ω)dω = 1,

because g is a probability density function. The density of the uniform distribution
on S, ρu = (2π)−1, is a steady-state solution of the mean field equation (40). It
corresponds to the completely mixed state. We are interested in stability of this
solution. In the remainder of this section, we derive the linearized equation around
ρu.

Let

ρ = ρu + z(t, θ, ω, x). (43)

By (42), ∫
S
z(t, θ, ω, x)dθ = 0 ∀(t, ω, x) ∈ R+ × R× I. (44)

By plugging in (43) into (40), we obtain

∂

∂t
z(t, θ, ω, x) +

∂

∂θ

{
Vρu+z(t, θ, ω, x)

(
1

2π
+ z

)}
= 0. (45)

The expression in the curly brackets has the following form:

Vρu+z(t, θ, ω, x)

(
1

2π
+ z

)
=

(
ω +K

∫
I

∫
S

∫
R
W (x, y) sin(φ− θ)×

×
(
(2π)−1 + z(t, φ, λ, y)

)
g(λ)dλdφdy

)( 1

2π
+ z

)
=

ω

2π
+ ωz

+
K

2π

∫
I

∫
S

∫
R
W (x, y) sin(φ− θ)z(t, φ, λ, y)g(λ)dλdφdy +O(z2).

Thus,
∂

∂t
z +

∂

∂θ

{
ωz +

K

2π
G[z]

}
+O(z2) = 0,
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where the linear operator G is defined by

G[z] :=

∫
I

∫
S

∫
R
W (x, y) sin(φ− θ)z(t, φ, λ, y)g(λ)dλdφdy (46)

We arrive at the linearized equation:

∂

∂t
Z +

∂

∂θ

{
ωZ +

K

2π
G[Z]

}
= 0. (47)

3.2. Fourier transform. We expand Z into Fourier series

Z(t, θ, ω, x) =
∞∑
k=1

Ẑk(t, ω, x)e−ikθ +

( ∞∑
k=1

Ẑk(t, ω, x)e−ikθ

)
, (48)

where Ẑk stands for the Fourier transform of Z

Ẑk =
1

2π

∫
S
Z(θ, ·)eikθdθ.

In (48), we are using the fact that Z is real and Ẑ0 = 0 (cf. (44)).
The linear stability of ρu is, thus, determined by the time-asymptotic behavior of

Ẑk, k ≥ 1. To derive the differential equations for Ẑk, k ≥ 1, we apply the Fourier
transform to (47):

∂

∂t
Ẑk +

̂(
∂

∂θ

{
ωZ +

K

2π
G[Z]

})
k

= 0. (49)

Using the definition of the Fourier transform and integration by parts, we have

̂(
∂

∂θ

{
ωZ +

K

2π
G[Z]

})
k

=
1

2π

∫
S

∂

∂θ
(. . . ) eikθdθ = −ikωẐk − ik

K

2π
̂(G[Z])k. (50)

It remains to compute ̂(G[Z])k, k ≥ 1. To this, end we rewrite

G[Z] =
1

2i

∫
I

∫
S

∫
R
W (x, y)

(
ei(φ−θ) − e−i(φ−θ)

)
Z(t, φ, λ, y)g(λ)dλdφdy

=
π

i

∫
I

∫
R
W (x, y)

(
e−iθẐ1 − eiθẐ−1

)
g(λ)dλdy.

(51)

Using (51), we compute

̂(G[Z])k =
1

2π

π

i

∫
S

∫
I

∫
R
W (x, y)

(
ei(k−1)θẐ1 − ei(k+1)θẐ−1

)
g(λ)dλdydθ

=

{
π
i P[Ẑ1], k = 1,
0, k > 1,

(52)

where

P[Z] :=

∫
I

∫
R
W (x, y)Z(t, λ, y)g(λ)dλdy. (53)

The combination of (49), (50), and (52) yields the system of equations for Ẑk, k ≥
1:

∂

∂t
Ẑ1 = iωẐ1 +

K

2
P[Ẑ1], (54)

∂

∂t
Ẑk = ikωẐk, k > 1. (55)
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3.3. Spectral analysis. In this section, we study (54), which decides the linear
stability of the uniform density ρu as a steady state solution of the mean field
equation. We rewrite (54) as

∂

∂t
Ẑ1(t, ω, x) = T [Ẑ1](t, ω, x). (56)

where

T [Z] = iωZ +
K

2
P[Z]. (57)

Equations (53) and (57) define linear operators P and T on the weighted Lebesgue
space L2(X, gdωdx) with X := R× I.

Lemma 3.1. T : L2(X, gdωdx)→ L2(X, gdωdx) is a closed operator. The residual
spectrum of T is empty and the continuous spectrum σc(T ) = i supp(g).

Proof. Consider the multiplication operator Miω : L2(X, gdωdx) → L2(X, gdωdx)
defined by

Miωz = iωz, ω ∈ R. (58)

It is well known that Miω is closed and the (continuous) spectrum of Miω lies on
the imaginary axis σc(Miω) = i · supp(g). Since W (x, y) is square-integrable by
the assumption, P is a Hilbert-Schmidt operator on L2(X, gdωdx) and, therefore,
is compact [54]. Then, the statement of the lemma follows from the perturbation
theory for linear operators [24].

Similarly, the spectrum of the operatorMijω lies on the imaginary axis; σ(Mijω)

= ij · supp(g). Hence, the trivial solution Ẑj ≡ 0 of (55) for j = 2, 3, . . . is neutrally
stable.

We define a Fredholm integral operator W on L2(I) by

W[V ](x) =

∫
R
W (x, y)V (y)dy. (59)

Since W is compact, the set of eigenvalues σp(W) is a bounded countable with the
only accumulation point at the origin. Since W is symmetric, all eigenvalues are
real numbers.

Lemma 3.2. The eigenvalues of T are given by

σp(T ) =

{
λ ∈ C\σc(T ) : D(λ) =

2

ζK
, ζ ∈ σp(W)\{0}

}
, (60)

where

D(λ) :=

∫
R

1

λ− iω
g(ω)dω. (61)

Proof. Suppose v ∈ L2(X, gdωdx) is an eigenvector of T corresponding to the ei-
genvalue λ:

T [v] = λv.

Then

v = 2−1K(λ− iω)−1P[v]. (62)

By multiplying both sides of (62) by g(ω) and integrating with respect to ω, we
have∫

R
v(ω, x)g(ω)dω =

K

2

∫
R

1

λ− iω
g(ω)dω ·

∫
I

∫
R
W (x, y)v(ω, y)g(ω)dωdy. (63)
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Rewrite (63) as

V =
K

2
D(λ)W[V ], (64)

where

V :=

∫
R
v(ω, ·)g(ω)dω ∈ L2(I).

Equations (64) and (59) reduce the eigenvalue problem for T to that for the
Fredholm operator W. Suppose V ∈ L2(I) is an eigenfunction of W associated
with the eigenvalue ζ 6= 0. Then (64) implies D(λ) = 2/(ζK).

If 0 ∈ σp(W) and V is a corresponding eigenvector, then Equation (62) yields

v =
K

2

1

λ− iω

∫
I

∫
R
W (x, y)v(ω, y)g(ω)dωdy

=
K

2

1

λ− iω

∫
I

W (x, y)V (y)dy =
K

2

1

λ− iω
(W[V ])(x) = 0.

Thus, ζ = 0 is not an eigenvalue of T .

For ζ 6= 0 denote

K(ζ) =
2

πg(0)

1

|ζ|
. (65)

Lemma 3.3. For each ζ ∈ σp(W) and K > K(ζ) there is a unique eigenvalue of
the operator T (cf. (57)), λ = λ(ζ,K) satisfying D(λ) = 2/(ζK).

For ζ ∈ σp(W)
⋂
R+, λ(ζ,K) is a positive increasing function of K satisfying

lim
K→K(ζ)+0

λ(ζ,K) = 0 + 0, lim
K→∞

λ(ζ,K) =∞. (66)

For ζ ∈ σp(W)
⋂
R−, λ(ζ,K) is a negative decreasing function of K satisfying

lim
K→K(ζ)+0

λ(ζ,K) = 0− 0, lim
K→∞

λ(ζ,K) = −∞. (67)

Finally,

σp(T ) = {λ(ζ,K) : ζ ∈ σp(W)\{0}, K > K(ζ)} ⊂ R\{0}.

Proof. Since ζ ∈ R, setting λ = x+ iy for the equation D(λ) = 2/(ζK) yields
∫
R

x

x2 + (ω − y)2
g(ω)dω =

2

ζK
,∫

R

ω − y
x2 + (ω − y)2

g(ω)dω = 0.
(68)

With ζ = 1 this system of equations was analyzed in [6] in the context of the
classical Kuramoto model (1).

The second equation of (68) gives

0 =

∫
R

ω − y
x2 + (ω − y)2

g(ω)dω =

∫ ∞
0

ω

x2 + ω2
(g(y + ω)− g(y − ω))dω. (69)

Since g is even, y = 0 is a solution of (69). Furthermore, since g is unimodal, there
are no other solutions of (69). Thus, λ is real.

With y = 0 the first equation of (68) yields∫
R

x

x2 + ω2
g(ω)dω =

2

ζK
. (70)
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For the uniqueness of x satisfying this equality, it is sufficient to show that the
function

x 7→
∫
R

x

x2 + ω2
g(ω)dω

is monotonically decreasing in x except at the jump point x = 0. If this were not
true, there would exist two eigenvalues for some interval K1 < K < K2, and two
eigenvalues would collide and disappear at K = K1 or K = K2. This is impossible,
because D(λ) is holomorphic in λ.

Since g is nonnegative and K > 0, from (70) we have ζx > 0. Further, the
left-hand side of (70) satisfies

lim
x→±0

∫
R

x

x2 + ω2
g(ω)dω = ±πg(0), (71)

lim
x→±∞

∫
R

x

x2 + ω2
g(ω)dω = 0. (72)

The first identity follows from the Poisson’s integral formula for the upper half-plane
[45]. The combination of (70) and (71) implies that x→ 0 as K → K(ζ) + 0, while
that of (70) and (72) yields x→ ±∞ as K →∞.

To formulate the main result of this section, we will need the following notation:

ξmax(W) =

{
max{ζ : ζ ∈ σp(W)

⋂
R+}, σp(W)

⋂
R+ 6= ∅,

0 + 0, otherwise.

ξmin(W) =

{
min{ζ : ζ ∈ σp(W)

⋂
R−}, σp(W)

⋂
R− 6= ∅,

0− 0, otherwise.

(73)

Further, let

K+
c =

2

πg(0)ξmax(W)
and K−c =

2

πg(0)ξmin(W)
. (74)

Theorem 3.4. The spectrum of T consists of the continuous spectrum on the imagi-
nary axis and possibly one or more negative eigenvalues, if K ∈ [K−c ,K

+
c ], and there

is at least one positive eigenvalue of T , otherwise.

Theorem 3.4 follows from Lemma 3.3. It shows that the incoherent state is
linearly (neutrally) stable for K ∈ [K−c ,K

+
c ] and is unstable otherwise. The critical

values K±c mark the loss of stability the incoherent state. The detailed analysis of
the bifurcations at K±c will be presented elsewhere.

Remark 3.5. For the classical Kuramoto model on the complete graph, W ≡ 1
and ζmax(W) = 1. Thus, we recover the well-known Kuramoto’s transition formula
(3) [27]. In the general case, the transition points depend on the graph structure
through the extreme eigenvalues of the kernel operator W.

Remark 3.6. For nonnegative graphons W , ζmax(W) coincides with the spectral
radius of the limiting kernel operator W (cf. [50]):

%(W) = max{|ζ| : ζ ∈ σp(W)},

This can be seen from the variational characterization of the eigenvalues of a self-
adjoint compact operator, which also implies

%(W) = max
‖f‖L2(I)=1

(W[f ], f). (75)
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4. Approximation. Equation (12) may be viewed as a base model. To apply
our results to a wider class of deterministic and random networks, we will need
approximation results, which are collected in this section.

4.1. Deterministic networks. Consider the Kuramoto model on the weighted
graph Γ̃n = 〈[n], E(Γ̃n), W̃ 〉

˙̃
θni = ωi +Kn−1

n∑
j=1

W̃nij sin(θ̃nj − θ̃ni), i ∈ [n], (76)

where W̃n = (W̃nij) is a symmetric matrix.
Denote the corresponding empirical measure by

µ̃nt (A) = n−1
n∑
i=1

δP̃ni(t)
(A), A ∈ B(G), (77)

where P̃ni(t) = (θ̃ni(t), ωi, ξni), i ∈ [n].

First, we show that if Wn and W̃n are close, so are the solutions of the IVPs
for (12) and (76) with the same initial conditions. To measure the proximity of

Wn = (Wnij) ∈ Rn×n and W̃n = (W̃nij) and the corresponding solutions θn and

θ̃n, we will use the following norms:

‖Wn‖2,n =

√√√√n−2
n∑

i,j=1

W 2
nij , ‖θn‖1,n =

√√√√n−1
n∑
i=1

θ2ni, (78)

where θn = (θn1, θn2, . . . , θnn) and Wn = (Wnij).
The following lemma will be used to extend our results for the KM (12) to other

networks.

Lemma 4.1. Let θn(t) and θ̃n(t) denote solutions of the IVP for (12) and (76)
respectively. Suppose that the initial data for these problems coincide

θn(0) = θ̃n(0). (79)

Then for any T > 0 there exists C = C(T ) > 0 such that

max
t∈[0,T ]

∥∥∥θn(t)− θ̃n(t)
∥∥∥
1,n
≤ C

∥∥∥Wn − W̃n

∥∥∥
2,n

, (80)

where the positive constant C is independent from n.

Corollary 4.2.

sup
t∈[0,T ]

d(µnt , µ̃
n
t ) ≤ C

∥∥∥Wn − W̃n

∥∥∥
2,n

. (81)

Proof. (Lemma 4.1) Denote φni = θni − θ̃ni. By subtracting (76) from (12), multi-
plying the result by n−1φni, and summing over i ∈ [n], we obtain

(2K)−1
d

dt
‖φn‖21,n = n−2

n∑
i,j=1

(
Wnij − W̃nij

)
sin(θnj − θni)φni

+ n−2
n∑

i,j=1

W̃nij

(
sin(θnj − θni)− sin(θ̃nj − θ̃ni)

)
φin

=: I1 + I2. (82)
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Using an obvious bound |sin(θnj − θni)| ≤ 1 and an elementary inequality |ab| ≤
2−1(a2 + b2), we obtain

|I1| ≤ 2−1
(
‖Wn − W̃n‖22,n + ‖φn‖21,n

)
. (83)

Further, from Lipschitz continuity of sin and the definition of φni, we have∣∣∣sin(θni − θnj)− sin(θ̃ni − θ̃nj)
∣∣∣ ≤ |φni − φnj | ≤ |φni|+ |φnj |.

Therefore,

|I2| ≤ 2‖W̃‖L∞(I2)‖φn‖21,n. (84)

The combination of (82), (83), and (84) yields

K−1
d

dt
‖φn(t)‖21,n ≤

(
4‖W̃‖L∞(I2) + 1

)
‖φn(t)‖21,n + ‖Wn − W̃n‖22,n. (85)

By the Gronwall’s inequality [16, Appendix B.2.j],

‖φn(t)‖21,n ≤ eKC1t

(
‖φn(0)‖21,n +

∫ t

0

K‖Wn − W̃n‖22,nds
)

≤ eKC1tKt‖Wn − W̃n‖22,n,

where we used φn(0) = 0 and C1 :=
(

4‖W̃‖L∞(I2) + 1
)

. Thus,

sup
t∈[0,T ]

‖φn(t)‖21,n ≤ eKC1TKT‖Wn − W̃n‖22,n.

Proof. (Corollary 4.2) Let f ∈ L (cf. (22)) and consider∣∣∣∣∫
G

f (dµnt − dµ̃nt )

∣∣∣∣ =

∣∣∣∣∣n−1
n∑
i=1

f(θni(t))− f(θ̃ni(t))

∣∣∣∣∣
≤ n−1

n∑
i=1

∣∣∣θni(t)− θ̃ni(t)∣∣∣
≤ ‖θn(t)− θ̃n(t)‖1,n.

By Lemma 4.1,

max
t∈[0,T ]

d(µnt , µ̃
n
t ) = sup

f∈L

∣∣∣∣∫
G

f (dµnt − dµ̃nt )

∣∣∣∣ ≤ C‖Wn − W̃n‖2,n.

4.2. Random networks. We now turn to the KM on random graphs. To this
end, we use W-random graph Γ̄n = Gr(Xn,W ), which we define next. As before,
Xn is a set of points (8),(9). Γ̄n is a graph on n nodes, i.e., V (Γ̄n) = [n]. The edge
set is defined as follows:

P ({i, j} ∈ E(Γn)) = W (ξni, ξnj). (86)

The decision for each pair {i, j} is made independently from the decisions on other
pairs.

The KM on the W-random graph Γ̄n = Gr(Xn,W ) has the following form:

˙̄θni = ωi +Kn−1
n∑
j=1

enij sin(θ̄nj − θ̄ni), i ∈ [n] := {1, 2, . . . , n} (87)
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where enij , 1 ≤ i ≤ j ≤ n are independent Bernoulli RVs:

P(enij = 1) = W (ξni, ξnj),

and enij = enji.

Lemma 4.3. Let θn(t) and θ̄n(t) denote solutions of the IVP for (12) and (87)
respectively. Suppose that the initial data for these problems coincide

θn(0) = θ̄n(0). (88)

Then

lim
n→∞

sup
t∈[0,T ]

∥∥θn(t)− θ̄n(t)
∥∥
1,n

= 0 a.s.. (89)

Proof. The proof follows the lines of the proof of Lemma 4.1. As before, we set up
the equation for φni := θ̄ni − θni:

(2K)−1
d

dt
‖φn‖21,n = n−2

n∑
i,j=1

(enij −Wnij) sin(θnj − θni)φni

+ n−2
n∑

i,j=1

enij
(
sin(θ̄nj − θ̄ni)− sin(θnj − θni)

)
φin

=: I1 + I2. (90)

As in (84), we have bound

|I2| ≤ n−2
n∑

i,j=1

(|φni|+ |φnj |) |φni| ≤ 2‖φn‖21,n, (91)

where we used 0 ≤ enij ≤ 1.
Next, we turn to the first term on the right hand side of (90). For this, we will

need the following definitions:

Zni(t) = n−1
n∑
j=1

anij(t)ηnij ,

anij(t) = sin (θnj(t)− θni(t)) ,
ηnij = enij −Wnij .

and Zn = (Zn1, Zn2, . . . , Znn). With these definitions in hand, we estimate I1 as
follows:

|I1| = |n−1
n∑
i=1

Zniφni| ≤ 2−1
(
‖Zn‖21,n + ‖φn‖21,n

)
, (92)

The combination of (90)-(92) yields,

d

dt
‖φn(t)‖21,n ≤ 5K‖φn(t)‖21,n +K‖Zn(t)‖21,n. (93)

Using the Gronwall’s inequality and (88), we have

‖φn(t)‖21,n ≤ K exp{5Kt}
∫ t

0

‖Zn(s)‖21,nds

and

sup
t∈[0,T ]

‖φn(t)‖21,n ≤ K exp{5KT}
∫ T

0

‖Zn(t)‖21,ndt. (94)
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Our next goal is to estimate
∫ T
0
‖Zn(t)‖21,ndt. Below, we show that∫ T

0

‖Zn(t)‖21,ndt→ 0 as n→∞ a.s.. (95)

To this end, we will use the following observations. Note that ηnik and ηnil are
independent for k 6= l and

E ηnij = E enij −Wnij = 0, (96)

where we used P(enij = 1) = Wnij .
Further,

E η2nij = E(enij −Wnij)
2 = E e2nij −W 2

nij

= Wnij −W 2
nij ≤ 1/4.

(97)

and

E(η4nij) = E(enij −Wnij)
4

= E
(
e4nij − 4e3nijWnij + 6e2nijW

2
nij − 4enijW

3
nij +W 4

nij

)
= Wnij − 4W 2

nij + 6W 3
nij − 3W 4

nij

= Wnij (1−Wnij)
4

+W 4
nij (1−Wnij) ≤ 2−4.

(98)

Next, ∫ T

0

Zni(t)
2dt = n−2

n∑
k,l=1

cniklηnikηnil, (99)

where

cnikl =

∫ T

0

anik(t)anil(t)dt and |cnikl| ≤ T. (100)

Further, ∫ T

0

‖Zn(t)‖21,ndt = n−3
n∑

i,k,l=1

cniklηnikηnil (101)

and, finally,

E

(∫ T

0

‖Zn(t)‖21,ndt

)2

= n−6
n∑

i,k,l,j,p,q=1

cniklcnjpq E (ηnikηnilηnjpηnjq) . (102)

We have six summation indices i, k, l, j, p, q ranging from 1 to n. Since E ηnik = 0
for i, k ∈ [n], and RVs ηnik and ηnjp are independent whenever {i, k} 6= {j, p}, the
nonzero terms on the right-hand side of (102) fall into two groups:

I : c2nikkη
4
nik

II : cnikkcnjppη
2
nikη

2
njp (i 6= j) or c2niklη

2
nikη

2
nil (k 6= l).

There are n2 terms of type I and 3n3(n− 1) terms of type II. Thus,

E

(∫ T

0

‖Zn(t)‖21,ndt

)2

≤ T 2n−6
(
n2 + 3n3(n− 1)

)
= O(n−2), (103)

where we used (102), (97), (98), and the bound on |cnikl| in (100).
Next, for a given ε > 0 we denote

Aεn =

{∣∣∣∣∣
∫ T

0

‖Zn(t)‖21,ndt

∣∣∣∣∣ ≥ ε
}
. (104)
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and use Markov’s inequality and (103) to obtain

∞∑
n=1

P(Aεn) ≤ ε−2
∞∑
n=1

E

(∫ T

0

‖Zn(t)‖21,ndt

)2

<∞. (105)

By the Borel-Cantelli Lemma, (104) and (105) imply (95). The latter combined
with (94) concludes the proof of Lemma 4.3.

5. Examples.

5.1. Erdős-Rényi graphs. Let p ∈ (0, 1), Xn be defined in (8), (9), andWp(x, y) ≡
p. Then Γn,p = Gr(Xn,Wp) is a family of Erdős-Rényi random graphs. To apply
the transition point formula (74), we need to compute the largest eigenvalue of the
self-adjoint compact operator Wp : L2(I)→ L2(I) defined by

Wp[f ](x) =

∫
I

W (x, y)f(y)dy = p

∫
I

f(y)dy, f ∈ L2(I). (106)

Lemma 5.1. The largest eigenvalue of Wp is ζmax(Wp) = p.

Proof. Suppose λ ∈ R\{0} is an eigenvalue ofWp and v ∈ L2(I) is the corresponding
eigenvector. Then

p

∫
I

v(y)dy = ζv(x). (107)

Since the right-hand side is not identically 0, v = constant 6= 0. By integrating
both sides of (107), we find that ζ = p.

Thus, for the KM on Erdős-Rényi graphs, we have

K+
c =

2

πg(0)p
, K−c = −∞.

5.2. Small-world network. Small-world (SW) graphs interpolate between regular
nearest-neighbor graphs and completely random Erdős-Rényi graphs. They found
widespread applications, because they combine features of regular symmetric graphs
and random graphs, just as seen in many real-world networks [53].

Following [36, 37], we construct SW graphs as W-random graphs [31]. To this
end let Xn be a set of points from (8) satisfying (9), and define Wp,r : I2 → I by

Wp,r(x, y) =

{
1− p, dS(2πx, 2πy) ≤ 2πr,
p, otherwise,

(108)

where p, r ∈ (0, 1/2) are two parameters.

Definition 5.2. [36] Γn = Gr(Xn,Wp,r) is called W-small-world graph.

The justification of the mean field limit in Section 2 relies on the assumption that
the graphon W is Lipschitz continuous. A rigorous treatment of the mean field limit
for the KM with non-Lipschitz graphon Wp,r is beyond the scope of this paper. For
the mathematical analysis of the non-Lipschitz case, we refer an interested reader
to [22]. In this paper, we apply Theorem 2.2 to the KM with regularized graphon
W ε
p,r.
Let W ε

p,r be a Lipschitz continuous graphon such that

‖Wp,r −W ε
p,r‖L2(I2) < ε, (109)

and consider Γεn = Gr(Xn,W
ε
p,r). Denote µnt and µn,εt empirical measures generated

by the KMs on Γn and Γεn (with the same initial data) respectively. By (81),
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supt∈[0,T ] d(µnt , µ
n,ε
t ) = O(ε) a.s., i.e., the KM on Γεn approximates the KM on Γn.

Below, we derive the transition point formula for the KM on Γεn.
Lemma 4.3 and Theorem 2.2 justify (16), (17) as the continuum limit for the KM

on the sequence of SW graphs (Γεn). Thus, (74) yields the transition point formula
for the KM on SW graphs. To use this formula, we need to compute the extreme
eigenvalues of Wε

p,r : L2(I)→ L2(I) defined by

Wε
p,r[f ] =

∫
I

W ε
p,r(·, y)f(y)dy, f ∈ L2(I).

Lemma 5.3. The largest eigenvalue of Wε
p,r is

ζmax(Wε
p,r) = 2r + p− 4pr + oε(1). (110)

Proof. We calculate the largest eigenvalue of Wp,r. Using the definition (108), one
can write

Wp,r[f ](x) =

∫
S
Kp,r(x− y)f(y)dy,

where Kp,r is a 1−periodic function on R, whose restriction to the interval [−1/2,
1/2) is defined as follows

Kp,r(x) =

{
1− p, |x| ≤ r,
p, otherwise,

(111)

The eigenvalue problem for Wp,r can be rewritten as

Kp,r ∗ v = ζv.

Thus, the eigenvalues of Wp,r are given by the Fourier coefficients of Kp,r(x) as

ζk = (K̂p,r)k :=

∫
S
Kp,r(x)e−2πikxdx,

for k ∈ Z. The corresponding eigenvectors vk = ei2πkx, k ∈ Z, form a complete
orthonormal set in L2(I).

A straightforward calculation yields

ζk =

{
2r + p− 4rp, k = 0,
(πk)−1(1− 2p) sin(2πkr), k 6= 0.

(112)

Further,

ζmax(Wp,r) = 2r + p− 4rp. (113)

The estimate (110) follows from (113) and (109) via continuous dependence of the
eigenvalues with respect to the parameter ε.

Thus, for the KM on Γεn, we have

K+
c =

2

πg(0)

1

2r + p− 4pr
+O(ε).

The smallest negative eigenvalue is given by ζk(r) for some k(r) 6= 0. While it is
difficult to obtain an explicit expression k(r), from (112) we can find a lower bound
for it:

ξmin(W) >
−1 + 2p

π
. (114)

In particular, for sufficiently small ε, the incoherent state in the KM on Γεn is stable

for K ∈
(

2 (g(0)(−1 + 2p))
−1
,K+

c

]
.
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5.3. Coupled oscillators on a ring. A common in applications type of network
connectivity can be described as follows. Consider n oscillators placed uniformly
around a circle. They are labelled by integers from 1 to n in the counterclockwise
direction. To each potential edge {i, j} ∈ [n]2 we assign a weight

Wnij = G(ξni − ξnj), (115)

where G is a 1-periodic even measurable bounded function.

Example 5.4. Let Xn = {1/n, 2/n, . . . , 1} and the restriction of the 1-periodic
even function Gr on [0, 1/2] is defined by

Gr(x) =

{
1, 0 ≤ x ≤ r,
0, x > r,

(116)

where r ∈ (0, 1/2) is a parameter. With this choice of G := Gr, we obtain a k-
nearest-neighbor model, in which each node is connected to k = brnc from each
side.

Example 5.5. Another representative example was used by Kuramoto and Bat-
togtokh [26]. Here, let Xn = {1/n, 2/n, . . . , 1} and the restriction of the 1-periodic
even function G to [0, 1/2] is defined by G(x) := e−κx, where κ > 0 is a parame-
ter. With this choice of G, we obtain the KM where the strength of interactions
decreases exponentially with the distance between oscillators.

As in our treatment of the KM on SW graphs in §5.2, the integral operator
W : L2(I)→ L2(I) can be written as a convolution

W[f ](x) =

∫
I

G(x− y)f(y)dy, f ∈ L2(I). (117)

It is easy to verify that the eigenvalues of W are given by the Fourier coefficients of
G(x).

For instance, for the k-nearest-neighbor network in Example 5.4, by setting p = 0
in (113), for the network at hand we obtain ζmax(W) = r and, thus,

K+
c =

1

πg(0)r
.

Note that, in accord with our physical intuition, the transition point is inversely
proportional to the coupling range.

For the network in Example 5.5, eigenvalues are given by

ζk :=


2κ

κ2 + 4π2k2
(1− e−κ/2), (k : even),

2κ

κ2 + 4π2k2
(1 + e−κ/2), (k : odd), k = 0, 1, 2, . . . .

(118)

The largest positive eigenvalue is ζmax(W) = ζ0, and we obtain

K+
c =

κ

πg(0)

1

1− e−κ/2
, K−c = −∞.

This recovers the classical result (3) as κ→ 0.
If the explicit expression for the largest positive eigenvalue ofW is not available,

for a network with nonnegative graphon W , the transition point can be estimated
using the variational characterization of the largest eigenvalue (75). Specifically,
from (75), we have:

ζmax(W) ≥
∫
I2
Wdxdy = ‖W‖L1(I2),
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and, thus,

K+
c ≤

2

πg(0)‖W‖L1(I2)
.

6. Discussion. In this work, we derived and rigorously justified the mean field
equation for the KM on convergent families of graphs. Our theory covers a large
class of coupled systems. In particular, it clarifies the mathematical meaning of the
mean field equation used in the analysis of chimera states (see, e.g., [41]). More-
over, we show how to write the mean field equation for the KM on many common
in applications random graphs including Erdős-Rényi and small-world graphs, for
which it has not been known before.

We used the mean field equation to study synchronization in the KM on large
deterministic and random graphs. We derived the transition point formulas for the
critical values of the coupling strength, at whic h the incoherent state looses stability.
The transition point formulas show explicit dependence of the stability boundaries
of the incoherent state on the spectral properties of the limiting graphon. This
reveals the precise mechanism by which the network topology affects the stability
of the incoherent state and the onset of synchronization. In the follow-up work, we
will show that the linear stability analysis of this paper can be extended to show
nonlinear stability of the incoherent state albeit with respect to the weak topology.
There we will also present the bifurcation analysis for the critical values K±c . The
analysis of the KM on small-world networks shows that, unlike in the original KM
(1), on graphs the incoherent state may remain stable even for negative values of K,
i.e., for repulsive coupling. In fact, the bifurcations at the left and right endpoints
can be qualitatively different. In the small-world case, the center manifold at K−c is
two-dimensional, whereas it is one-dimensional at K+

c . These first findings indicate
that the bifurcation structure of the KM on graphs (12) is richer than that of
its classical counterpart (1) and motivates further investigations of this interesting
problem [9]. In the future, we also plan to extend our analysis to the KM on certain
sparse graphs, including sparse power law networks considered in [23].

Acknowledgments. The authors thank Carlo Lancellotti for helpful discussions.
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