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Abstract. In our previous work [3], we initiated a mathematical investigation

of the onset of synchronization in the Kuramoto model (KM) of coupled phase
oscillators on convergent graph sequences. There, we derived and rigorously

justified the mean field limit for the KM on graphs. Using linear stability
analysis, we identified the critical values of the coupling strength, at which the

incoherent state looses stability, thus, determining the onset of synchronization

in this model.
In the present paper, we study the corresponding bifurcations. Specifically,

we show that similar to the original KM with all-to-all coupling, the onset of

synchronization in the KM on graphs is realized via a pitchfork bifurcation. The
formula for the stable branch of the bifurcating equilibria involves the principal

eigenvalue and the corresponding eigenfunctions of the kernel operator defined

by the limit of the graph sequence used in the model. This establishes an
explicit link between the network structure and the onset of synchronization in

the KM on graphs. The results of this work are illustrated with the bifurcation

analysis of the KM on Erdős-Rényi, small-world, as well as certain weighted
graphs on a circle.

1. Introduction. In 1970s, a prominent Japanese physicist Yoshiki Kuramoto de-
scribed a remarkable effect in collective dynamics of large systems of coupled oscilla-
tors [13]. He studied all-to-all coupled phase oscillators with randomly distributed
intrinsic frequencies, the model which now bears his name. When the strength
of coupling is small, the phases are distributed approximately uniformly around a
unit circle, forming an incoherent state. Kuramoto identified a critical value of the
coupling strength, at which the the incoherent state looses stability giving rise to
a stable partially synchronized state. To describe the bifurcation corresponding to
the onset of synchronization, Kuramoto introduced the order parameter - a scalar
function, which measures the degree of coherence in the system. He further showed
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that the order parameter undergoes a pitchfork bifurcation. Thus, the qualitative
changes in the statistical behavior of a large system of coupled phase oscillators
near the onset to synchronization can be described in the language of the bifurca-
tion theory.

Kuramoto’s discovery created a new area of research in nonlinear science [22,
23, 21]. The rigorous mathematical treatment of the pitchfork bifurcation in the
KM was outlined in [5] and was presented with all details in [1]. The analysis in
these papers is based on the generalized spectral theory for linear operators [2] and
applies to the KM with intrinsic frequencies drawn from a distribution with analytic
or rational probability density function. Under more general assumptions on the
density, the onset of synchronization in the KM was analyzed in [7, 9, 6]. These
papers use analytical methods for partial differential equations and build upon a
recent breakthrough in the analysis of Landau damping [20].

In our previous work [3], we initiated a mathematical study of the onset of
synchronization in the KM on graphs. Following [16, 17], we considered the KM on
convergent families of deterministic and random graphs, including Erdős-Rényi and
small-world graphs among many other graphs that come up in applications. For
this model, we derived and rigorously justified the mean field limit. The latter is a
partial differential equation approximating the dynamics of the coupled oscillator
model in the continuum limit as the number of oscillators grows to infinity. In [3],
we performed a linear stability analysis of the incoherent state and identified the
boundaries of stability. Importantly, we related the stability region of the incoherent
state to the structural properties of the network through the spectral properties of
the kernel operator defined by the limit of the underlying graph sequence [14]. In
the present paper, we continue the study initiated in [3]. Here, we analyze the
bifurcations at the critical values of the coupling strength K−c < 0 < K+

c , where
the incoherent state looses stability. As in the analysis of the original KM in [1],
we have to deal with the fact that for K ∈ [K−c ,K

+
c ] the linearized operator has

continuous spectrum on the imaginary axis and no eigenvalues. Thus, neither the
asymptotic stability of the incoherent state, nor the center manifold reduction for
K = K±c can be performed using standard methods of the bifurcation theory. To
overcome this problem, following [1], we develop the generalized spectral theory,
which allows effective analysis of the bifurcations at K±c . This involves generalizing
the resolvent operator and using it to define generalized eigenvalues. The generalized
spectral theory is used i) to prove asymptotic stability of the incoherent state as
a steady state solution of the linearized equation for K ∈ [K−c ,K

+
c ]; ii) to obtain

finite-dimensional center manifolds at the critical values of the coupling strength
K = K±c ; iii) to identify the bifurcations at K = K±c . We do not develop nonlinear
estimates in this paper. We also do not prove the existence of the center manifold
rigorously. Both problems can be dealt with following the lines of the analysis in
[1]. These very technical questions are left out to keep the length of this paper
reasonable. Instead, we focus on the analysis of the bifurcations at K±c . To this
end, we develop all necessary tools for setting up the bifurcation problems, which
are analyzed formally assuming the existence of the center manifold. The center
manifold reduction yields stable spatial patterns arising from the bifurcations at
the critical values of the coupling strength. We apply these results to the KM on
several representative graphs, including small-world and Erdős-Rényi graphs. Our
results for the KM on these and many other graphs are verified numerically in the
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follow-up paper [4]. In the remainder of this section, we review the model and the
main outcomes of [3] and explain the main results of this work.

We begin with a brief explanation of the graph model that was used in [3] and will
be used in this paper. In [3], we adapted the construction of W-random graphs [15]
to define a convergent sequence of graphs. The flexible framework of W-random
graphs allows us to deal with a broad class of networks that are of interest in
applications. Let W be a symmetric measurable function on the unit square I2 :=
[0, 1]2 with values in [−1, 1] and let Xn = {ξn1, ξn2, . . . , ξnn} form a triangular array
of points ξni, i ∈ [n] := {1, 2, . . . n}, n ∈ N, subject to the following condition

lim
n→∞

n−1
n∑
i=1

f(ξni) =

∫
I

f(x)dx ∀f ∈ C(I). (1.1)

Γn = 〈V (Γn), E(Γn), (Wnij)〉 is a weighted graph on n nodes labeled by the integers
from [n], whose edge set is

E(Γn) = {{i, j} : W (ξni, ξnj) 6= 0, i, j ∈ [n]} .
Each edge {i, j} ∈ E(Γn) is supplied with the weight Wnij := W (ξni, ξnj). In
the theory of graph limits, W is called a graphon [14]. It defines the asymptotic
properties of {Γn} for large n.

Consider the initial value problem (IVP) for the KM on Γn

θ̇ni = ωi +Kn−1
n∑
j=1

Wnij sin(θnj − θni), i ∈ [n], (1.2)

θni(0) = θ0
ni. (1.3)

The intrinsic frequencies ωi, i ∈ [n], are independent identically distributed random
variables. The distribution of ω1 has density g(ω). For the spectral analysis in
Section 3, we need to impose the following assumptions on g: a) g : R→ R+ ∪ {0}
is an even unimodal function, and b) g is real analytic function with finite moments
of all orders:

∫
R |x|

mg(x)dx <∞, m ∈ N. For instance, the density of the Gaussian
distribution satisfies these conditions. The KM on weighted graphs {Γn} (1.2), (1.3)
can be used to approximate the KM on a variety of random graphs (cf. § 4.2 [3]).

Along with the discrete model (1.2) we consider the IVP for the following partial
differential equation

∂

∂t
ρ(t, θ, ω, x) +

∂

∂θ
{ρ(t, θ, ω, x)V (t, θ, ω, x)} = 0, (1.4)

ρ(0, θ, ω, x) = ρ0(θ, ω, x) ∈ S× R× I, (1.5)

where

V (t, θ, ω, x) = ω +K

∫
I

∫
R

∫
S
W (x, y) sin(φ− θ)ρ(t, φ, ω, y)g(ω)dφdωdy. (1.6)

Here, ρ(t, θ, ω, x) is the conditional density of the random vector (θ, ω) given ω, and
parametrized by (t, x) ∈ R+ × I, and S = R/2πZ is a circle. In particular,∫

S
ρ(t, θ, ω, x)dθ = 1 ∀(t, ω, x) ∈ R+ × R× I. (1.7)

It is shown in [3, Theorem 2.2] that

µnt (A) = n−1
n∑
i=1

δ(θni(t),ωi,ξni)(A) (1.8)
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interpreted as a probability measure on Borel sets A ∈ B(G), G = S × R × I,
converges in the bounded Lipschitz distance [8] uniformly on bounded time intervals
to the absolutely continuous measure

µt(A) =

∫
A

ρ(t, θ, ω, x)g(ω)dθdωdx, A ∈ B(G), (1.9)

provided µn0 and µ0 are sufficiently close in the same distance. The latter can be
achieved with the appropriate initial condition (1.3) and sufficiently large n (see [3,
Corollary 2.3]). Therefore, the IVP (1.4),(1.5) approximates the IVP (1.2),(1.3) on
finite time intervals for sufficiently large n.

An inspection of (1.4) shows that ρu = 1/(2π), the density of the uniform dis-
tribution on S, is a steady state solution of (1.4). It corresponds to the incoherent
(mixing) state of the KM. Numerics suggests that the incoherent state is stable for
small K ≥ 0. The loss of stability of the incoherent state is interpreted as the onset
of synchronization in the KM. This is the main focus of [3] and of the present paper.
In [3], we identified the boundaries of the region of stability of the incoherent state
in (1.4). Specifically, we showed that there exist K−c ≤ 0 ≤ K+

c such that ρu is
linearly stable for K ∈ [K−c ,K

+
c ], and is unstable otherwise.

The critical values K−c and K+
c depend on the network topology through the

eigenvalues of the compact symmetric operator W : L2(I)→ L2(I)

W[f ](x) =

∫
R
W (x, y)f(y)dy. (1.10)

The eigenvalues of W are real with the only accumulation point at 0. Denote
the largest positive and smallest negative eigenvalues of W by µmax and µmin
respectively. If all eigenvalues are nonnegative (nonpositive), we set µmin = −∞
(µmax = ∞). The main stability result of [3] yields explicit expressions for the
transition points

K−c =
2

πg(0)µmin
and K+

c =
2

πg(0)µmax
. (1.11)

Thus, the region of linear stability of ρu depends explicitly on the spectral properties
of the limiting graphon W . Recall that W represents the graph limit of {Γn}. Thus,
(1.11) links network topology to synchronization in (1.2). For the classical KM (all-
to-all coupling), W (x, y) = 1 and µmin = −∞, µmax = 1, which recovers the known
Kuramoto’s formula.

In the present paper, we study the onset of synchronization in (1.2) in more
detail. After some preliminaries and preparatory work in Sections 2 and 3, we
revisit linear stability of the incoherent solution. This time, we show that despite
the lack of eigenvalues with negative real part and the presence of the continuous
spectrum on the imaginary axis, the incoherent state is an asymptotically stable
solution of the linearized problem (cf. Theorem 4.1). This is a manifestation of the
Landau damping in the KM.

In Section 5, we study the bifurcation at K+
c with a one-dimensional center

manifold. To this end, we recall the order parameter

h(t, x) =

∫
I

∫
R

∫
S
W (x, y)eiθρ(t, θ, ω, y)g(ω)dθdωdy, (1.12)
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which was introduced in [3] as a measure of coherence in the KM on graphs. This
is a continuous analog of the local order parameter

1

n

n∑
j=1

Wnije
iθnj(t)

for the discrete model (1.2). The order parameter generalizes the original order
parameter used by Kuramoto for the all-to-all coupled model. Note that (1.12) de-
pends on x and contains information about the structure of the network through W .
As will be clear below, the order parameter plays an important role in the analysis
of the mean field equation. In particular, it can be used to locate nontrivial steady
state solutions. To this end note that the velocity field (1.6) can be conveniently
rewritten in terms of the order parameter

V (t, θ, ω, x) = ω +
K

2i

(
e−iθh(t, x) + eiθh(t, x)

)
. (1.13)

In particular, for a given steady state of the order parameter written in the polar
form

h∞(x) = R(x)eiΦ(x), (1.14)

the velocity field takes the following form

V (t, θ, ω, x) = ω −KR(x) sin(θ − Φ(x)).

Setting ∂θ (V ρ) = 0, we find the corresponding steady state solution of (1.4)

ρ(θ, ω, x) =


δ
(
θ − Φ(x)− arcsin(ω/KR(x))

)
, |ω| ≤ KR(x),

1

2π

√
ω2 −K2R(x)2

|ω −KR(x) sin(θ − Φ(x))|
, |ω| > KR(x),

(1.15)

where δ stands for the Dirac delta function. The stationary solution (1.15) has
the following interpretation: the first line describes phase-locked oscillators, while
the second line yields the distribution of the drifting oscillators. Thus, solutions of
this form may combine phase-locked oscillators and those moving irregularly. Such
solutions are called partially phase-locked or partially synchronized. The phase of
a phase-locked oscillator at x with a natural frequency ω, is given by

θ = Φ(x) + arcsin

(
ω

KR(x)

)
, (1.16)

provided |ω| ≤ KR(x). In Sections 5 and 6, we will identify branches of stable
equilibria bifurcating from K±c in terms of the corresponding values of the order
parameter. Then Equation (1.16) will be used to describe the corresponding stable
phase-locked solutions.

In Section 5, assuming that µmax is a simple eigenvalue of W, we show that
the coupled system (1.2) undergoes a supercritical pitchfork bifurcation at K+

c .
Specifically, we derive an ordinary differential equation for the order parameter
h and show that the trivial solution of this equation looses stability at K+

c and
gives rise to a stable branch of (nontrivial) equilibria, corresponding to partially
synchronized state (cf. (5.1)). In Section 6, we consider the onset of synchronization
in networks with certain symmetries (cf. (6.1)). This leads to the bifurcation with
a two-dimensional center manifold. The bifurcation analysis in Sections 5 and 6 is
illustrated with the analysis of the KM on Erdős-Rényi, small-world graphs, and to
a class of weighted graphs on a circle.
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2. Preliminaries. In the remainder of this paper, we will assume that K ≥ 0.
The case of negative K is reduced to that above by switching to K := −K and
W := −W . Furthermore, without loss of generality we assume that µmax > 0.

2.1. Fourier transform. We rewrite (1.4) in terms of the complex Fourier coeffi-
cients

zj =

∫
S
eijθρ(t, θ, ω, x)dθ, j ∈ Z. (2.1)

Applying the Fourier transform to (1.4) and using integration by parts, we obtain

∂zj
∂t

= −
∫
S
eijθ

∂

∂θ
{V (t, θ, ω, x)ρ(t, θ, ω, x)} dθ

= ij

∫
S
eijθV (t, θ, ω, x)ρ(t, θ, ω, x)dθ

= ijωzj +
jK

2

∫
S
eijθ

(
e−iθh(t, x)− eiθh(t, x)

)
ρ(t, θ, ω, x)dθ,

(2.2)

where

h(t, x) =

∫
I

∫
R

∫
S
W (x, y)eiθρ(t, θ, ω, y)g(ω)dθdωdy

=

∫
I

∫
R
W (x, y)z1(t, ω, y)g(ω)dωdy.

(2.3)

From (2.2), we further obtain

∂zj
∂t

= ijωzj +
jK

2

(
hzj−1 − hzj+1

)
, j ∈ Z. (2.4)

By (1.7), z0 = 1. Further, z−j = z̄j , because ρ is real. Thus, in (2.4) we can restrict
to j ∈ N.

Let

Pf(ω, x) =

∫
R

W[f ](ω, x)g(ω)dω

=

∫
I

∫
R
W (x, y)f(ω, y)g(ω)dωdy.

(2.5)

Combining these observations, we rewrite (2.4):

∂

∂t
z1 = iωz1 +

K

2

(
Pz1 −Pz1z2

)
, (2.6)

∂

∂t
zj = ijωzj +

jK

2

(
Pz1zj−1 −Pz1zj+1

)
, j = 2, 3, . . . . (2.7)

Note that the trivial solution Z := (z1, z2, . . . ) ≡ 0 is a steady state solution
of (2.6), (2.7). It corresponds to the uniform distribution ρu = 1/(2π), a constant
steady state solution of (1.4). Linearizing around Z ≡ 0, we arrive at

∂

∂t
z1 = Tz1, (2.8)

∂

∂t
zj = ijωzj , j = 2, 3, . . . , (2.9)

where T is a linear operator on H := L2(R× I, g(ω)dωdx)

Tf = iωf +
K

2
Pf. (2.10)



THE MEAN FIELD ANALYSIS OF THE KURAMOTO MODEL ON GRAPHS II 3903

2.2. The eigenvalue problem. The multiplication operator Miω : H → H de-
fined by

Miωf = iωf, ω ∈ R (2.11)

is a closed operator. The continuous spectrum of Miω fills the imaginary axis

σc(Miω) = isupp(g) = iR. (2.12)

Since P is compact (as a Hilbert-Schmidt operator), T : H → H is closed and
σc(T) = iR.

Next we turn to the eigenvalue problem

Tf = λf, (2.13)

where T and P are operators on H (cf. (2.10) and (2.5)).
We will locate the eigenvalues of T through the eigenvalues of W (cf. (1.10)).

Since W is a compact symmetric operator on L2(I), it has a countable set of real
eigenvalues with the only accumulation point at zero. All nonzero eigenvalues have
finite multiplicity.

Suppose λ is an eigenvalue of T and v ∈ H is the corresponding eigenfunction.
Then a simple calculation yields (cf. [3])

w =
K

2
D(λ)Ww, (2.14)

where

D(λ) =

∫
R

g(ω)dω

λ− iω
, (2.15)

w =

∫
R
v(ω, ·)g(ω)dω ∈ L2(I). (2.16)

Equation (2.14) yields the equation for eigenvalues of T

D(λ) =
2

Kµ
, (2.17)

where µ is a nonzero eigenvalue of W.
Using (2.17), we establish a one-to-one correspondence between the eigenvalues

of W and those of T. Specifically, for every positive eigenvalue of W, µ, there is a
branch of eigenvalues of T,

λ = λ(µ,K), K ≥ K(µ) :=
2

πg(0)µ
, (2.18)

such that
lim

K→K(µ)+0
λ(µ,K) = 0+, lim

K→∞
λ(µ,K) =∞. (2.19)

Recall that µmax stands for the largest positive eigenvalue of W. Then for K ∈
[0,K(µmax)) there are no eigenvalues with positive real part. Furthermore, for small
ε > 0 and K ∈ (K(µmax),K(µmax) + ε) there is a unique positive eigenvalue of T,
λ(K,µmax), which vanishes as K → K(µmax) + 0 (see [3] for more details).

3. The generalized spectral theory. The major obstacle in studying stability
and bifurcations of the incoherent state is the continuous spectrum of the linearized
problem on the imaginary axis (cf. (2.12)). To deal with this difficulty, we develop
the generalized spectral theory following the treatment of the classical KM in [1].
Below, we outline the key steps in the analysis of the generalized eigenvalue problem
referring the interested reader to [1], [2] for missing proofs and further details.
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3.1. The rigged Hilbert space. In this subsection, we define a rigged Hilbert
space (a.k.a. Gelfand triple) [11]

X ⊂ H ⊂ X ′,

where H is a Hilbert space, and X is a dense subspace of H, whose topology is
stronger than that of H. Throughout this paper, we assume that X is a locally
convex Hausdorff topological vector space over C and X ′ its dual space, the space
of continuous antilinear functionals on X. Let 〈·, ·〉 denote the pairing between X ′

and X, i.e., for l ∈ X ′ and f ∈ X, 〈l, f〉 := l(f) stands for the corresponding
antilinear functional. To use the generalized spectral theory (cf. [2]) we also need
X to be a quasi-complete barreled space.

We take L2(R × I, g(ω)dωdx) as the Hilbert space H and contruct X as fol-
lows. Let Exp(β, n) be the set of holomorphic functions on the region Cn := {z ∈
C | Im(z) ≥ −1/n} such that the norm

||φ||β,n := sup
Im(z)≥−1/n

e−β|z||φ(z)| (3.1)

is finite. With this norm, Exp(β, n) is a Banach space. The family of spaces
{Exp(β, n)}∞n=1 is an increasing sequence in n. By Montel’s theorem, the inclusion
Exp(β, n) → Exp(β, n + 1) is a compact operator for any n ≥ 1. By Komatsu’s
theorem [12], the inductive limit

Exp(β) := lim−→
n≥1

Exp(β, n)

=
⋃
n≥1

Exp(β, n)

 .

is a complete Montel space. In particular, it is a complete barreled (DF) space.
Similarly, the inductive limit Exp := lim−→

β≥0

Exp(β) is a complete barreled (DF) space.

The properties of Exp are described in detail in [1].
Let Exp(β, n) ⊗ L2(I) be a projective tensor product. Since the identity map

L2(I) → L2(I) is weakly compact, the inclusions Exp(β, n) ⊗ L2(I) → Exp(β, n +
1)⊗L2(I) and Exp(β)⊗L2(I)→ Exp(β+1)⊗L2(I) are weakly compact operators.
By Komatsu’s theorem [12], the inductive limit X := Exp ⊗ L2(I) is a complete
barreled (DF) space and X ′ is a Fréchet space. For every f ∈ X we have f(ω, ·) ∈
L2(I) for each ω ∈ R. In addition, f(ω, x) is holomorphic in ω on the upper half
plane, where it can grow at most exponentially. Then the operator T and the rigged
Hilbert space X ⊂ H ⊂ X ′ satisfy all assumptions of the generalized spectral theory
in [2].

Note that if l ∈ H then

〈l, f〉 := (l, f∗)L2(R×I) =

∫
I

∫
R
l(ω, x)f(ω, x)g(ω)dωdx,

for f ∈ X, where f∗(ω, x) := f(ω, x). Thus, l ∈ H can be viewed as an element of
X ′.

3.2. The generalized eigenvalue problem. In this subsection we calculate the
resolvent of T and spectral projections. With the rigged Hilbert space defined
above, we will view the resolvent as an operator from X to X ′.

Below, we will need to construct analytic continuation for certain functions in-
volving integrals of Cauchy type. For this, we are going to use an implication of
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the Sokhotski-Plemelj formulas, which we formulate as a separate statement for
convenience.

Lemma 3.1. (Sokhotski-Plemelj, cf. [10]) Let f be a complex valued function on
R. Suppose f has at most a finite number of integrable discontinuities. Then

F (z) =

∫
R

f(ω)dω

z − iω
(3.2)

is an analytic function in the right and left open half-planes of C. Furthermore, for
z = x+ iy, the following formulas determine the limits of F (z) as x→ 0±:

lim
x→0±

F (z) = ±πf(y) + i PV

∫
iR

f(−iφ)dφ

φ− iy
= ±πf(y)− iπH[f ](y),

(3.3)

where PV stands for the principal value in the sense of Cauchy and H[f ] denotes
the Hilbert transform of f .

Corollary 3.2. Suppose f is holomorphic on the real axis and admits the analytic
continuation to the upper half-plane. Then

F̃ (z) =

 F (z), x > 0,
limx→0+ F (z), x = 0,
F (z) + 2πf(−iz), x < 0,

(3.4)

is an entire function.

3.3. The generalized resolvent. Our next goal is to compute the resolvent of T

R(λ) = (λ−T)−1. (3.5)

To this end, we first compute R(λ) for Re(λ) > 0 and extend it analytically to the
left half-plane as an operator from X to X ′.

In the right half-plane Re(λ) > 0, R(λ) can be rewritten as follows

R(λ) = A(λ)

(
I− K

2
PA(λ)

)−1

=

(
I− K

2
A(λ)P

)−1

A(λ), (3.6)

where

A(λ) = (λ− iω)
−1
, (3.7)

and I stands for the identity operator. Note that A(λ) ceases to exist as the mul-
tiplication operator on H as Re(λ) → 0 (recall that the imaginary axis is the
continuous spectrum of Miω). However, it can be extended to the left half-plane
as as an operator A : X → X ′ defined as follows

〈A(λ)u, v〉 =

 (A(λ)u, v∗)H , Re(λ) > 0,
limRe(λ)→0+ (A(λ)u, v∗)H , Re(λ) = 0,
(A(λ)u, v∗)H + 2πg(−iλ)

∫
I
u(−iλ, x)v(−iλ, x)dx, Re(λ) < 0.

(3.8)
By Corollary 3.2, 〈A(λ)u, v〉 is an entire function in λ for all u, v ∈ X. This suggests
an appropriate generalization of R(λ), R(λ) : X → X ′ defined by

R(λ) = A(λ)

(
I− K

2
P×A(λ)

)−1

=

(
I− K

2
A(λ)P×

)−1

A(λ), (3.9)

where P× : X ′ → X ′ is the dual operator of P.
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Since T has the continuous spectrum on the imaginary axis, R(λ) can not be
continued to the left-half plane as an operator on H. We define the generalized
eigenvalues of T as the singularities of the generalized resolvent R(λ).

Definition 3.3. λ ∈ C is called a generalized eigenvalue of T if there is a nonzero
v ∈ X ′ such that (

I− K

2
A(λ)P×

)
v = 0, (3.10)

In this case, v is called a generalized eigenfunction.

Remark 3.4. Since the range of the operator P× : X ′ → X ′ is in X, A(λ)P×v is
well-defined for v ∈ X ′.

Remark 3.5. The generalized eigenvalues and the corresponding eigenfunctions of
T are, in fact, the eigenvalues and eigenfunctions of the dual of T, T× (cf. [2]).

Theorem 3.6. (cf. [2]) Let λ ∈ C be a generalized eigenvalue of T and v ∈ X ′ is
the corresponding eigenfunction. Then T×v = λv.

Remark 3.7. Using (3.8) and (3.10), one can see that the generalized eigenvalues
λ = λ(µ,K) of T are the roots of the following equation

2

Kµ
= D(λ), (3.11)

where µ is a nonzero eigenvalue of W and

D(λ) =


D(λ), Re(λ) > 0,

lim
Re(λ)→0+

D(λ), Re(λ) = 0,

D(λ) + 2πg(−iλ), Re(λ) < 0.

(3.12)

The right hand side of (3.12) is an entire function (cf. Corollary 3.2). For Re(λ) > 0,
(3.11) is reduced to the equation for the eigenvalues of T (cf. (2.17)). In this case, the
corresponding generalized eigenfunction v is included in L2(R× I, gdωdx), i.e., λ is
an eigenvalue of T. On the other hand, for Re(λ) ≤ 0, the generalized eigenfunction
v is not in H but is an element of the dual space X ′.

Since the generalized eigenvalue of T, λ, is a root of (3.11), R(λ)u is an X ′-
valued meromorphic function for each u ∈ X. For Re λ > 0, it coincides with the
restriction of R(λ) to X. Thus, R(λ) is a meromorphic continuation of R(λ) from
the right half-plane to the left-half plane as an X ′-valued operator.

3.4. The generalized Riesz projection. Let µ be a positive eigenvalue of W and
w ∈ L2(I) be the corresponding eigenfunction. The largest positive eigenvalue of W
and the corresponding eigenfunction are denoted by µmax and wmax respectively.
For every K > K+

c = 2/(πg(0)µmax) there is a real positive eigenvalue of T,
λ = λ(µ,K). The corresponding eigenfunction is given by

v(ω, x) =
K

2

w(x)

λ− iω
. (3.13)

As K approaches the critical value K+
c from above, the eigenvalue λ(µmax,K)

converges to 0+ along the real axis and at K = K+
c it hits the continuous spectrum

on the imaginary axis. The corresponding eigenfunction approaches the critical
vector

X ′ 3 v+
c :=

K+
c

2
lim*
λ→0+

wmax
λ− iω

, (3.14)
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where lim* stands for the limit in X ′ with respect to the weak dual topology 1 ,
i.e., the action of v+

c ∈ X ′ on u ∈ X is given by

〈v+
c , u〉 =

K+
c

2
l

∫
R×I

wmax(x)g(ω)

λ− iω
u(ω, x)dωdx

=
K+
c

2
l

∫
R

(wmax, u
∗(ω, ·))L2(I) g(ω)dω

λ− iω
.

(3.15)

Let λ ∈ C be a generalized eigenvalue of T. Then the generalized Riesz projection
Πλ : X → X ′ is defined by

Πλ =
1

2πi

∫
γ(λ)

R(z)dz, (3.16)

where γ(λ) is a simple closed curve around λ oriented counterclockwise that does
not encircle or intersect the rest of the spectrum. Below, we shall refer to such
curves as contours. The image of Πλ gives the generalized eigenspace of λ [1].

Theorem 3.8. Suppose the algebraic and geometric multiplicities of µmax coincide.
Then the generalized Riesz projection of λ = 0, the generalized eigenvalue of T for
K = K+

c , has the following form

Π0 = − lim*
λ→0+

(
D′(λ)−1A(λ)Π̃µmax D(λ)

)
= g1 lim*

λ→0+

(
A(λ)Π̃µmax D(λ)

)
,

(3.17)

where g1 = − limλ→0+D
′(λ)−1 is a positive constant, A(λ) was defined in (3.7),

and Π̃µ stands for the Riesz projection onto the eigenspace of W corresponding to
the eigenvalue µ. The operator D(λ) on H is defined by

D(λ)v =

∫
R

v(ω, ·)g(ω)dω

λ− iω
, v ∈ L2(R× I, gdωdx). (3.18)

The proof of Theorem 3.8 relies on three technical lemmas. Below we state and
prove these lemmas first and then prove the theorem.

Lemma 3.9. Let Re(λ) > 0 then

R(λ)v = A(λ)v +
K

2
A(λ)W

(
I− K

2
D(λ)W

)−1

D(λ)v, v ∈ H. (3.19)

Proof. By definition of R(λ) (3.5), for any v ∈ H, we have(
λ− iω − K

2
P

)
R(λ)v = v,

and, thus,

R(λ)v = A(λ)v +
K

2
A(λ)PR(λ)v. (3.20)

Using Fubini theorem, from (2.5) we have

PR(λ)v = W

[∫
R

(R(λ)v)(ω, ·)g(ω)dω

]
=: WQv.

(3.21)

1 {ln} ⊂ X′ converges to l ∈ X′ if 〈ln, f〉 ∈ C tends to 〈l, f〉 for every f ∈ X.
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On the other hand, integrating both sides of (3.20) against g(ω)dω, we obtain

Qv =

∫
R

(R(λ)v)(ω, ·)g(ω)dω

= D(λ)v +
K

2
D(λ)

∫
R×I

W (·, y) (R(λ)v) (ω, y)g(ω)dωdy

= D(λ)v +
K

2
D(λ)WQv.

(3.22)

and

Q =

(
I− K

2
D(λ)W

)−1

D(λ). (3.23)

Plugging (3.23) into (3.21), we have

PR(λ)v = W

(
I− K

2
D(λ)W

)−1

D(λ)v. (3.24)

The combination of (3.20) and (3.24) yields (3.19).

Lemma 3.10. Let λ = λ(µ,K) > 0 be an eigenvalue of T corresponding to the
positive eigenvalue of W, µ, and K > K+

c , and suppose that the geometric and
algebraic multiplicities of µ coincide.

Then

Πλ = −D′(λ)−1A(λ)Π̃µ D(λ), (3.25)

provided D′(λ) 6= 0, where Π̃µ is the Riesz projection onto the eigenspace of W
corresponding to µ.

Proof. As before, let γ(λ) denote a contour around λ. From (3.19), we have∫
γ(λ)

R(z)dz =
K

2

∫
γ(λ)

A(z)W

(
I−K

2
D(z)W

)−1

D(z)dz. (3.26)

We change variable in the integral on the right–hand side to ζ = 2(KD(z))−1.
By deforming the contour γ(λ) if necessary, we can always achieve D′(z) 6= 0 for
z ∈ γ(λ), so that this change of variable ζ = ζ(z) is well defined. Under this
transformation, γ(λ) is mapped to γ̃(µ), a contour around µ. Thus, we have∫

γ(λ)

R(z)dz = −
∫
γ̃(µ)

A(z(ζ))W (ζ −W)
−1

D(z(ζ))
dζ

ζD′(z(ζ))
. (3.27)

Since the algebraic and geometric multiplicities of µ are equal, the singularity of
(ζ −W)

−1
at ζ = µ is a simple pole, and the other factor in the integrand of the

above is regular at ζ = µ. Therefore, the right–hand side of (3.27) simplifies to∫
γ(λ)

R(z)dz = − 1

µD′(λ)
A(λ)W

(∫
γ̃(µ)

(ζ −W)
−1

D(z(ζ))dζ

)
. (3.28)

By multiplying both sides of (3.28) by (2πi)−1, we have

Πλ = − 1

µD′(λ)
A(λ)WΠ̃µ D(λ).

Finally, since Π̃µ is the projection on the eigensubspace of W,

WΠ̃µ D(λ) = µΠ̃µ D(λ).
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Thus,
Πλ = −(D′(λ))−1A(λ)Π̃µ D(λ). (3.29)

Lemma 3.11.

lim
z→0+

∫
R

g(ω)dω

(z − iω)n+1
=
inπ

n!

(
g(n)(0)− iH[g(n)](0)

)
. (3.30)

Proof. Using integration by parts n times, we obtain∫
R

g(ω)dω

(z − iω)n+1
=
in

n!

∫
R

g(n)(ω)dω

z − iω
.

The application of Lemma 3.1 to the integral on the right-hand side yields (3.30).

Below will need the following implications of Lemma 3.11.

Corollary 3.12.

lim
z→0+

D′(z) = −πH[g′](0) < 0, (3.31)

lim
z→0+

∫
R

g(ω)dω

(z − iω)3
=
−π
2
g′′(0). (3.32)

Proof. Differentiating D(z) and using (3.30), for z off the imaginary axis we have

D′(z) = −
∫
R

g(ω)dω

(z − iω)2
= −i

∫
R

g′(ω)dω

z − iω
. (3.33)

The integral on the right–hand side is of Cauchy type and Lemma 3.1 applies. By
(3.3),

lim
z→0+

D′(z) = −iπg′(0)− πH[g′](0). (3.34)

Since g is even, g′(0) = 0 and g′ is odd. Because g is also nonnegative and unimodal
g′(x) ≤ 0, x > 0. Thus,

H[g′](0) =
−1

π
PV

∫ ∞
−∞

g′(s)ds

s

=
−2

π
lim
ε→0+

∫ ∞
ε

g′(s)ds

s
> 0.

(3.35)

The combination of (3.3) and (3.35) yields (3.31).
Likewise, (3.32) follows from Lemma 3.11 for n = 2 and Lemma 3.1.

Proof of Theorem 3.8. Theorem 3.8 follows from (3.29) and (3.31).

4. Asymptotic stability of the incoherent state. We now return to the prob-
lem of stability of the incoherent state. Recall that in the Fourier space the incoher-
ent state corresponds to the trivial solution Z = (z1, z2, · · · ) = 0. The linearization
about Z = 0 shows that it is a neutrally stable equilibrium of (2.8), (2.9) for
0 ≤ K < K+

c . There are no eigenvalues of T for these values of K and the continu-
ous spectrum fills out the imaginary axis. Nonetheless, we show that the incoherent
state is asymptotically stable with respect to the weak dual topology.

Theorem 4.1. For K ∈ [0,K+
c ) the trivial solution of (2.8), (2.9) is an asymptot-

ically stable equilibrium for initial data from X ⊂ X ′ with respect to the weak dual
topology on X ′.
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Figure 1. Deformation of the integral path for the Laplace inver-
sion formula.

Remark 4.2. The stability with respect to the weak dual topology is weaker than
that with respect to the topology of the Hilbert space H. Still it is a natural
topology for the problem at hand. In particular, Theorem 4.1 implies that the
order parameter evaluated on the trajectories of the linearized problem tends to 0
as t → ∞.

Proof. Integrating (2.9) subject to zj(0, ·) ∈ X, we have

zj(t, ·) = eijωtzj(0, ·), j ≥ 2.

By the Riemann-Lebesgue lemma,

〈zj(t, ·), ψ(·)〉 =
∫
I

∫
R

eijωtzj(0, ω, x)ψ(ω, x)dωdx → 0, as t → ∞, ∀ψ ∈ X.

(4.1)
We now turn to (2.8). By the Hille-Yosida theory, operator T generates a C0-
semigroup eTt, which can be computed using inverse Laplace transform (cf. [1]):

etT = lim
b→∞

1

2πi

∫ a+ib

a−ib

eλt(λ−T)−1dλ, t > 0, (4.2)

where a > 0 is arbitrary. Thus, the (continuous) spectrum of T lies to the left of
the integration path along x = a (see Fig. 1a).

For arbitrary φ, ψ ∈ H, we have(
etTφ, ψ

)
H

= lim
b→∞

1

2πi

∫ a+ib

a−ib

eλt
(
(λ−T)−1φ, ψ

)
H
dλ. (4.3)

For φ, ψ ∈ X,
(
(λ−T)−1φ, ψ

)
H

is an analytic function in the right half–plane,
which can be extended to the entire complex plane as a meromorphic function
〈R(λ)φ, ψ〉. Thus,

〈etTφ, ψ〉 = lim
b→∞

1

2πi

∫ a+ib

a−ib

eλt〈R(λ)φ, ψ〉dλ ∀φ, ψ ∈ X. (4.4)

Let K ∈ [0,K+
c ) be fixed. Next we claim that one can choose ε = ε(K) > 0 such

that there are no generalized eigenvalues of T on or inside the contour

Cε,R : a− iR → a+ iR → −ε+ iR → −ε− iR → a− iR (Fig. 1b)
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for every R > 0. To construct Cε,R with the desired property, we first fix δ > 0.
Then we recall that generalized eigenvalues of T satisfy (3.11). From (3.12), under
our assumptions on g, there exists R0 = R0(δ) such that there are no roots of (3.11)
in the region

D+
R0,δ

= {z ∈ C : |z| ≥ R0 &− δ < Re(z) ≤ a},

because (3.11) can be reduced to 2/(Kµ) = O(1/|λ|) in D+
R,δ for R � 1. On the

other hand, D(λ) is holomorphic. Thus, the set of roots of (3.11) (i.e., the set of
generalized eigenvalues) does not have accumulation points in

D−R0,δ
= {z ∈ C : |z| ≤ R0 &− δ < Re(z) ≤ a}.

Thus, we can choose ε > 0 such that there are no generalized eigenvalues in D+
R0,ε
∪

D−R0,ε
. This completes the construction of Cε,R with the desired property for any

R > 0.
By the Cauchy Integral theorem,∮

Cε,R

eλt〈R(λ)φ, ψ〉dλ = 0 ∀φ, ψ ∈ X, (4.5)

for any R > 0, and∫ a+iR

a−iR
eλt〈R(λ)φ, ψ〉dλ =

(∫ −ε+iR
−ε−iR

−
∫ −ε+iR
a+iR

−
∫ a−iR

−ε−iR

)
eλt〈R(λ)φ, ψ〉dλ.

(4.6)
The integral on the left–hand side of (4.6) exists, by the Hille-Yosida theory. There-
fore, the integrals on the right–hand exist too. Below, we show that the last two
integrals on the right–hand side of (4.6) tend to 0 as R → ∞. Sending R → ∞ in
(4.6) and using (4.4), we arrive at

〈etTφ, ψ〉 = lim
R→∞

1

2πi

∫ −ε+iR
−ε−iR

eλt〈R(λ)φ, ψ〉dλ

=
e−εt

2πi
lim
R→∞

∫ R

−R
ieiλt〈R(iλ− ε)φ, ψ〉dλ

= o(e−εt), ∀φ, ψ ∈ X

(4.7)

as t→∞ because the integral

lim
R→∞

∫ R

−R
ieiλt〈R(iλ− ε)φ, ψ〉dλ

exists and also tends to zero as t→∞ due to the Riemann-Lebesgue lemma.

It remains to prove the following lemma.

Lemma 4.3. For K ∈ [0,K+
c ),

lim
R→∞

∫ −ε+iR
a+iR

eλt〈R(λ)φ, ψ〉dλ = lim
R→∞

∫ a−iR

−ε−iR
eλt〈R(λ)φ, ψ〉dλ = 0 ∀φ, ψ ∈ X.

(4.8)

Proof. We show that the integral
∫ −ε+iR
a+iR

eλt〈R(λ)φ, ψ〉dλ tends to zero as R →
∞. The second integral

∫ a−iR
−ε−iR e

λt〈R(λ)φ, ψ〉dλ can be treated in the same way.
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Further, we decompose the integral into two integrals as∫ −ε+iR
a+iR

eλt〈R(λ)φ, ψ〉dλ =

∫ iR

a+iR

eλt〈R(λ)φ, ψ〉dλ+

∫ −ε+iR
iR

eλt〈R(λ)φ, ψ〉dλ. (4.9)

We show that the first integral on the right hand side tends to zero as R→∞. For
Re(λ) > 0, we have

〈R(λ)φ, ψ〉 = 〈A(λ)φ, ψ〉+
K

2
〈A(λ)W

(
I−K

2
D(λ)W

)−1

D(λ)φ, ψ〉,

see (3.19). For the first term, we have∫ iR

a+iR

eλt〈A(λ)φ, ψ〉dλ

= eiRt
∫ 0

a

eλt
∫
I

∫
R

1

λ+ i(R− ω)
φ(ω, x)ψ(ω, x)g(ω)dωdxdλ.

Since the integral above is finite, for any ε0 > 0, there exists L > 0 such that∣∣∣∣∣
∫ 0

a

eλt
∫
I

∫
|ω|>L

1

λ+ i(R− ω)
φ(ω, x)ψ(ω, x)g(ω)dωdxdλ

∣∣∣∣∣ < ε0

On the other hand, the integrand

eλt
1

λ+ i(R− ω)
φ(ω, x)ψ(ω, x)g(ω)→ 0,

as R → ∞ uniformly in x ∈ I, ω ∈ (−L,L) and λ ∈ (0, a). This implies that the
integral ∫ iR

a+iR

eλt〈A(λ)φ, ψ〉dλ→ 0, as R→∞.

Consider

φ̃λ = W

(
I−K

2
D(λ)W

)−1

D(λ)φ.

The singularity of φ̃λ is a generalized eigenvalue of T (cf. (2.14)). For 0 < K < K+
c ,

there are no generalized eigenvalues of T in the right half-plane and on the imaginary
axis. Further, D(λ) → 0 as |λ| → ∞ and, thus, D(λ) → 0 too. This shows that

φ̃λ is bounded uniformly in λ on the region Re(λ) ≥ 0. By replacing φ with φ̃λ in

the first estimate of the integral of 〈A(λ)φ, ψ〉, we find that
∫ iR
a+iR

eλt〈A(λ)φ̃λ, ψ〉dλ
tends to zero. This shows that

∫ iR
a+iR

eλt〈R(λ)φ, ψ〉dλ decays to zero as R → ∞.

The second integral in (4.9) is analyzed in similarly. This completes the proof of
Lemma 4.3.

5. Bifurcation with a one-dimensional null space. In the previous section, we
proved asymptotic stability of the equilibrium at the origin of the linearized system
(2.8), (2.9) for K ∈ [0,K+

c ). On the other hand, for K > K+
c there is a positive

eigenvalue in spectrum of the linearized problem (cf. [3]). This signals a bifurcation
at K+

c . This bifurcation is analyzed in this present section. As in the classical KM,
the loss of stability of the incoherent state at K+

c and the development of partial
synchronization for K > K+

c is best seen in terms of the order parameter.
Throughout this section, we assume that the largest positive eigenvalue µmax

of W with the eigenfunction wmax is simple. Furthermore, we assume that at
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K+
c there is a (one-dimensional) smooth center manifold of the equilibrium at the

origin of (2.6), (2.7)2. Under these assumptions, below we show that the order
parameter undergoes a supercritical pitchfork bifurcation at K+

c . The stable branch
of equilibria bifurcating from 0 is given by

h∞(K) =
g(0)2π3/2√
−g′′(0)

µ3/2
max

√
1

C(x)

√
K −K+

c + o(
√
K −K+

c ), K > K+
c , (5.1)

where

C(x) :=
Π̃µmax(|wmax|2wmax)

|wmax|2wmax
. (5.2)

Formula (5.1) generalizes the classical Kuramoto’s formula describing the pitchfork
bifurcation in the all-to-all coupled model to the KM on graphs. The network
structure enters into the description of the pitchfork bifurcation through the largest
eigenvalue µmax and the corresponding eigenspace.

5.1. Preparation. Throughout this section, we assume that µmax is a simple ei-
genvalue of W. Let K = K+

c + ε with 0 < ε� 1 and rewrite (2.6),(2.7) as follows

∂

∂t
z1 = T0z1 +

ε

2
Pz1 −

K

2
Pz1z2, (5.3)

∂

∂t
zj = ijωzj +

jK

2

(
Pz1zj−1 −Pz1zj+1

)
, j = 2, 3, . . . , (5.4)

where T0 is T evaluated at K = Kc and T = T0 + εP/2.
For small ε > 0, the equilibrium of (5.3), (5.4) at the origin has a 1D unstable

manifold. We reduce the dynamics on the 1D unstable manifold, which we approx-
imate by the center manifold of the origin for K = K+

c , i.e., for ε = 0. For the
latter, we assume zk = hk(z1), k = 2, 3, . . . , on the center manifold, where hk are
smooth functions such that hk(0) = h′k(0) = 0.

Let Π0 be the projection to the eigenspace of λ = 0 spanned by v+
c (cf. Section

3.4). To track the evolution on the slow manifold we adopt the following Ansatz:

z1 = Π0z1 + (I−Π0)z1 = αc(t)v+
c +O(α2), (5.5)

zk = hk(z1) = O(α2), k = 2, 3, . . . , (5.6)

ε = α2, (5.7)

where α > 0 is a small parameter, c(t) is the coordinate along the center manifold,
and v+

c is the generalized eigenfunction of T0 corresponding to the zero eigenvalue
(cf. (3.14)). The Ansatz (5.5)-(5.7) follows right away once existence of the center
manifold is shown.

We will start by deriving several auxiliary facts that follow from the Ansatz
(5.5)-(5.7). First, using (5.5)-(5.7) and Theorem 3.6, from (5.3), we have

ż1 = T0z1 +O(α2) = T×0 (αc(t)v+
c ) +O(α2) = O(α2). (5.8)

Next, we estimate the order parameter.

Lemma 5.1.

h(t, x) = αc(t)wmax(x) +O(α2). (5.9)

2The proof of existence of the center manifold is a technical problem and is beyond the scope
of this paper (see [1] for the proof of existence of the center manifold in the original KM).
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Proof.

h = Pz1 = P
(
αc(t)v+

c +O(α2)
)

= αc(t)
K+
c

2
l

∫
R

∫
I

W (x, y)wmax(y)g(ω)

λ− iω
dydω +O(α2).

(5.10)

Applying the Fubini theorem, (3.11) and (2.15), we have

h = αc(t)
K+
c

2
(Wwmax)D(0+) +O(α2)

= αc(t)
K+
c µmax

2
D(0+)wmax +O(α2)

= αc(t)wmax +O(α2).

Lemma 5.2.

z2 =

(
αc(t)K+

c

2

)2

lim*
λ→0+

w2
max

(λ− iω)2
+O(α3). (5.11)

Proof. Using (5.5)-(5.7) and (5.8), we obtain

ż2 = h′2(z1)ż1 = O(α3),

(Pz1)z3 = O(α3).
(5.12)

By plugging (5.12) into (5.4) for j = 2, we obtain

0 = 2iωz2 +K(Pz1)z1 +O(α3). (5.13)

Next we plug in the expressions for z1,Pz1, and z2 (see (5.5), (5.9), (5.11)) into
(5.13) to verify that they satisfy this equation up to O(α3) terms. Specifically, we
have

2iωz2 +K(Pz1)z1

= 2iω

(
αc(t)K+

c

2

)2

lim*
λ→0+

w2
max

(λ− iω)2

+K
(
αc(t)wmax +O(α2)

) (
αc(t)v+

c +O(α2)
)

+O(α3)

= −α2c(t)2 (K+
c )2

2
lim*
λ→0+

(λ− iω)− λ
(λ− iω)2

w2
max

+K+
c α

2c(t)2wmax
K+
c

2
lim*
λ→0+

wmax
λ− iω

+O(α3)

= −α2c(t)2 (K+
c )2

2
lim*
λ→0+

w2
max

λ− iω
+ α2c(t)2 (K+

c )2

2
lim*
λ→0+

w2
max

λ− iω
+O(α3)

= O(α3).

5.2. The slow manifold reduction. Projecting both sides of (5.3) onto the center
subspace, we have

Π0 ż1 = Π0 T0z1 +
ε

2
Π0 h−

K

2
Π0(hz2). (5.14)

Using (5.5), we have

Π0 ż1 = αċ(t)v+
c ,

Π0 T0z1 = T×0 Π0 z1 = αc(t)T×0 v
+
c = 0.

(5.15)
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Further,

Π0 h = g1 lim*
λ→0+

(λ− iω)−1Π̃µmax D(λ)h. (5.16)

To evaluate (5.16), we take the following steps

lim*
λ→0+

D(λ)h = lim*
λ→0+

∫
R

αc(t)wmax
λ− iω

g(ω)dω +O(α2)

= αc(t)wmaxD(0+) +O(α2)

=
2αc(t)wmax

K+
c µmax

+O(α2)

and

lΠ̃µmax
D(λ)h =

2αc(t)wmax

K+
c µmax

+O(α2).

Finally,

Π0 h =
2αc(t)

K+
c µmax

g1 lim*
λ→0+

wmax
λ− iω

+O(α2)

=
αc(t)

µmax
g1

(
2

K+
c

)2

v+
c +O(α2).

(5.17)

Similarly, to evaluate

Π0(hz2) = g1 lim*
λ→0+

(λ− iω)−1Π̃µmax D(λ)(hz2), (5.18)

we first compute

lim*
λ→0+

D(λ)(hz2) = α3|c(t)|2c(t)
(
K+
c

2

)2

|wmax|2wmaxl
∫
R

g(ω)dω

(λ− iω)3
+O(α4)

= −α3|c(t)|2c(t)g2

(
K+
c

2

)2

|wmax|2wmax +O(α4),

(5.19)

where

g2 =
πg′′(0)

2
. (5.20)

By plugging (5.19) into (5.18), we obtain

Π0(hz2) = −α3|c(t)|2c(t)g1g2
K+
c

2

Π̃µmax(|wmax|2wmax)

wmax
v+
c +O(α4). (5.21)

By plugging (5.15), (5.17), and (5.21) into (5.14), dividing both sides by α and
v+
c and keeping terms up to O(α2) we have

ċ =
2g1c

(K+
c )2µmax

(
ε+

(K+
c )4µmaxg2

8
α2|c|2 Π̃µmax(|wmax|2wmax)

wmax

)
+O(α3). (5.22)

It is instructive to recast (5.22) in terms of the order parameter h (cf. (2.3)). By
Lemma 5.1,

h(t, x) = αc(t)wmax +O(α2).

Thus, by multiplying both sides of (5.22) by αwmax and neglecting higher order
terms, we obtain

ḣ =
2g1

(K+
c )2µmax

h

(
ε+

(K+
c )4µmaxg2

8

Π̃µmax
(|wmax|2wmax)

|wmax|2wmax
|h|2
)
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=
2g1

(K+
c )2µmax

h

(
ε+

g′′(0)

π3g(0)4µ3
max

C(x)|h|2
)
. (5.23)

Equation (5.23) shows that the trivial solution (the incoherent state) looses stability
at ε = 0 and for small ε > 0 there is a nonzero stable equilibrium

|h∞| =

√
−8

(K+
c )4µmaxg2

|wmax|2wmax
Π̃µmax(|wmax|2wmax)

·
√
K −K+

c + o(
√
K −K+

c )

=
g(0)2π3/2√
−g′′(0)

µ3/2
max

√
1

C(x)

√
K −K+

c + o(
√
K −K+

c ), K > K+
c .

(5.24)

5.3. Examples. In [3], we derived the transition formulas for the onset of synchro-
nization in the KM on several networks. We now return to these examples and
describe the transition to synchronization in more detail using the results of this
section.

We start with the KM on the Erdős-Rényi graphs. To this end, letW ≡ p ∈ (0, 1).
In [3], we showed that the largest positive eigenvalue of W in this case is µmax = p.
The corresponding eigenfunction wmax is constant. This yields the critical value
K+
c = 2(πg(0)p)−1. By plugging in these values into (5.1), we obtain

h∞(K) =
g(0)2π3/2√
−g′′(0)

p3/2
√
K −K+

c + o(
√
K −K+

c ). (5.25)

We next turn to the KM on small-world graphs. This family of graphs is defined
via the following graphon:

Wp,r(x, y) =

{
1− p, min{|x− y|, 1− |x− y|} ≤ r,
p, otherwise,

(5.26)

where p, r ∈ (0, 1/2) are two parameters. The former stands for the probability of
long range random connections and the latter is the range of regular local connec-
tions (cf. [18]).

The largest eigenvalue of Wp,r is equal to 2r + 2p − 4pr and the corresponding
eigenfunction wmax is constant (cf. [3]). This implies that the critical value is

K+
c =

2

πg(0)(2r + p− 4pr)
.

Using (5.1), we further have

h∞(K) =
g(0)2π3/2√
−g′′(0)

(2r + 2p− 4pr)3/2
√
K −K+

c + o(
√
K −K+

c ). (5.27)

6. Bifurcation with a two-dimensional null space.

6.1. The slow manifold reduction. Many networks in applications can be de-
scribed with the limiting graphon of the following form

W (x, y) = G(x− y) (6.1)

for some G ∈ L2(S) such that G(x) = G(−x). The graphons of this form are used
in the description of the small-world and many other networks (cf. §5.3 [3]).
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A graphon satisfying (6.1) admits Fourier series expansion

W (x, y) =
∑
k∈Z

cke
2πik(x−y), c−k = ck ∈ R. (6.2)

By Parseval’s identity, ∑
k∈Z

c2k = (2π)−1‖G‖2L2(S) <∞. (6.3)

It follows from (6.2) that the eigenvalues of the kernel operator W coincide with
the Fourier coefficients ck, k ∈ Z. The Fourier modes e2πikx, k ∈ Z, yield the
corresponding eigenfunctions.

We continue to assume that the largest eigenvalue of W is positive, i.e., there is
at least one positive coefficient ck. In view of (6.3), there is a finite set

M = {m ∈ Z : cm = sup{ck : k ∈ Z}} . (6.4)

If M = {0} the null space of W is one-dimensional. This case was analyzed in the
previous section. Here, we assume |M | = 2, i.e., there exists a unique m ∈ N such
that

µmax = sup{ck : k ∈ Z} = cm = c−m.

The corresponding eigenspace is spanned by w+ = e2πimx and w− = e−2πimx.
From now on, the slow manifold reduction proceeds along the lines of the analysis

in Section 5. The generalized center subspace of T0 is spanned by

v± =
K+
c

2
lim*
λ→0+

w±(x)

λ− iω
. (6.5)

On the center manifold, we adopt the following Ansatz

z1 = α (c−(t)v− + c+(t)v+) +O(α2), (6.6)

zk = hk(z1) = O(α2), k = 2, 3, . . . , (6.7)

ε = α2, (6.8)

where (c−, c+) is the coordinate along the center manifold. Following the lines of
Lemma 5.1 and 5.2, we obtain

h(t, x) = α (c−(t)w−(x) + c+(t)w+(x)) +O(α2) (6.9)

and

z2 =

[
αK+

c

2
(c−(t)w−(x) + c+(t)w+(x))

]2

· lim*
λ→0+

1

(λ− iω)2
+O(α3). (6.10)

In analogy to (5.14) and (5.15), projection of (5.3) onto the center subspace
yields

α(ċ−v− + ċ+v+) =
ε

2
Π0 h−

K

2
Π0(hz2). (6.11)

As in (5.17) and (5.21), we further obtain

Π0 h =
αg1

µmax

(
2

K+
c

)2

(c−v− + c+v+) +O(α2). (6.12)

and

Π0(h̄z2) (6.13)

=− α3g1g2

(
K+
c

2

)2

· lim*
λ→0+

1

λ− iω Π̃µmax((c−w− + c+w+)2(c−w− + c+w+)) +O(α4).
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Taking into account that w± = e±2πimx, we compute

Π̃µmax
((c−w− + c+w+)2(c−w− + c+w+))

=
(
c−|c−|2 + 2c−|c+|2

)
w− +

(
c+|c+|2 + 2c+|c−|2

)
w+. (6.14)

Plugging (6.14) into (6.13), we obtain

Π0(h̄z2) = −α
3g1g2K

+
c

2

((
c−|c−|2 + 2c−|c+|2

)
v− +

(
c+|c+|2 + 2c+|c−|2

)
v+

)
+O(α4).

(6.15)

Combining (6.11), (6.12), and (6.15), and by comparing the coefficients of v± on
both sides of the resultant equation, we arrive at the following system of equations{

ċ− = p1c−
(
ε− α2p2

(
|c−|2 + 2|c+|2

))
+O(α3),

ċ+ = p1c+
(
ε− α2p2

(
|c+|2 + 2|c−|2

))
+O(α3),

(6.16)

where

p1 =
2g1

(K+
c )2µmax

, p2 = −2g2

(
K+
c

2

)4

µmax (6.17)

are positive constants (see Theorem 3.8).
Using the polar form for c± = r±e

iφ± , we rewrite (6.16) as follows
ṙ− = p1r−

(
ε− α2p2

(
r2
− + 2r2

+

))
+O(α3),

ṙ+ = p1r+

(
ε− α2p2

(
r2
+ + 2r2

−
))

+O(α3),

φ̇− = 0,

φ̇+ = 0.

(6.18)

Neglecting the higher order terms, we locate the fixed points

(r−, r+) = (0, 0), (0,
√
ε/p2α2), (

√
ε/p2α2, 0), (

√
ε/3p2α2,

√
ε/3p2α2).

The linearization of (6.18) about these fixed points yields

εp1

(
1 0
0 1

)
, εp1

(
−1 0
0 −2

)
, εp1

(
−2 0
0 −1

)
,

2

3
εp1

(
−1 −2
−2 −1

)
,

respectively. Thus, the second and the third fixed points are stable for 0 < K −
K+
c � 1. This proves that the order parameter (6.9) tends to

h+
∞(x) =

√
K −K+

c

p2
eiφw+(x) + o(

√
K −K+

c ) (6.19)

or

h−∞(x) =

√
K −K+

c

p2
eiφw−(x) + o(

√
K −K+

c ) (6.20)

as t→∞, where φ is a constant which depends on an initial condition.

6.2. Example. To illustrate the bifurcation with two-dimensional null space, let

W (x, y)) = cos (2π(x− y)) =
1

2
e−2πi(x−y) +

1

2
e2πi(x−y). (6.21)

The only eigenvalue of W is µ = 0.5 and the corresponding eigenfunctions are

w±(x) = e±2πix.
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Figure 2. Formation of partially phase-locked solutions near a bi-
furcation with two-dimensional null space. The KM with intrinsic
frequencies from the standard normal distribution, graphon (6.21),
and random initial condition was for suffiently large time to reach
a stationary regime. The values of K are a) 3.5, b) 4, and c) 5.
The asymptotic state in (a) combines oscillators grouped around a
1-twisted state with those distributed randomly around S. For in-
creasing values of K, the noisy twisted states become more distinct
(b, c).

The analysis of this section then yields two stable branches of solutions bifurcat-
ing from h ≡ 0 at K+

c = 4(πg(0))−1 ≈ 3.2 (cf. (6.19), (6.20)):

h∞(x) =

√
κ

p2
ei(±2πx+φ) + o(

√
κ), 0 < κ = K −K+

c � 1, p2 = − 8g′′(0)

π3g(0)4
,

where the phase shift φ is determined from the initial condition. For small κ > 0,
the system has a family of stable partially phase-locked solutions (1.15), which can
be described as follows. The oscillators split into two groups depending on their

intrinsic frequencies. If |ωi| < K
√

κ
p2
, the oscillator i approaches one of the two

phase-locked solutions:

θi =
±2πi

n
+ φ+ Y (ωi) + o(

√
κ), (6.22)

where Y (ωi) = arcsin
(
ωi

K

√
p2
κ

)
∈ (−π/2, π/2) is a function of the random intrinsic

frequency ωi. The oscillators in this group form a noisy 1-twisted state [19]. The
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oscillators with intrinsic frequencies |ω| > K
√

κ
p2

are randomly distributed around

S. The density of this distribution is given in the second line of (1.15).
Figure 2 presents results of numerical integration of the KM with graphon (6.21)

and randomly distributed intrinsic frequencies. The plots in Figure 2 a-c show
asymptotic states of the KM for three increasing values of K, starting with K = 3.5
just near the critical value K+

c ≈ 3.2. In Figure 2a there are many oscillators spread
around S. However, the group of oscillators concentrating about a 1-twisted state is
already visible. For larger values of κ, the twisted state becomes more pronounced
(see Figure 2b,c). Twisted states bifurcating from the incoherent state are also
present in the KM on small-world graphs (see [4] for the analysis of the small-world
network and other examples).
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