
Journal of Nonlinear Science
https://doi.org/10.1007/s00332-018-9489-3

The Kuramoto Model on Power Law Graphs:
Synchronization and Contrast States

Georgi S. Medvedev1 · Xuezhi Tang2

Received: 31 March 2018 / Accepted: 16 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The relation between the structural properties of the network and its dynamics is a
central question in the analysis of dynamical networks. It is especially relevant for com-
plex networks found in real-world applications. This work presents mathematically
rigorous analysis of coupled dynamical systems on power law graphs. Specifically,
we study large systems of coupled Kuramoto phase oscillators. In the limit as the
size of the network tends to infinity, we derive analytically tractable mean field par-
tial differential equation for the probability density function describing the state of
the coupled system. The mean field limit is used to establish an explicit formula for
the synchronization threshold for coupled phase oscillators with randomly distributed
intrinsic frequencies. Furthermore, we study stable spatial patterns generated by the
Kuramoto model with repulsive coupling. In particular, we identify a family of stable
steady-state solutions having multiple regions with distinct statistical properties. We
call these solutions contrast states. Like chimera states, contrast states exhibit coexist-
ing regions of highly localized (coherent) behavior and highly irregular (incoherent)
distribution of phases. We provide a detailed mathematical analysis of contrast states
in the KM using the Ott–Antonsen ansatz. The analysis of synchronization and con-
trast states provides new insights into the role of power law connectivity in shaping
dynamics of coupled dynamical systems. In particular, we show that despite sparse
connectivity, power law networks possess remarkable synchronizability: the synchro-
nization threshold can be made arbitrarily low by varying the parameter of the power
law distribution.
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1 Introduction

Coupled dynamical systems on graphs serve as mathematical models of various tech-
nological physical, biological, social, and economic networks (Porter and Gleeson
2016). Examples include neuronal and genetic networks and models of flocking in
life sciences (Motsch and Tadmor 2014); power and information networks and con-
sensus protocols in technology (Medvedev 2012); and economic and social networks
and models of opinion dynamics in social sciences (Porter and Gleeson 2016). This
list can be continued. Numerical simulations and mathematical analysis of coupled
systems provided many important insights into the mechanisms underlying collective
dynamics in complex networks. In the last two decades, there have been a remarkable
progress in understanding classical phenomena such as synchronization and phase
locking in complex networks (Chiba and Nishikawa 2011; Strogatz 2000; Wiley et al.
2006; Medvedev and Tang 2015; Medvedev and Douglas Wright 2017), and the dis-
coveries of new effects in the dynamics of networks such as chimera states (Kuramoto
and Battogtokh 2002; Abrams and Strogatz 2006; Omelchenko 2013). The research
on dynamical networks has been fueled by the desire for better understanding the link
between the structure of a network and its dynamics. This is the main motivation of
our work.

Real-world networks feature a rich variety of connectivity patterns. Scale-free net-
works have been singled out in the network science community for their nontrivial
structure and compelling applications. The latter include theworldwideweb and scien-
tific citation network among other physical, biological, and social networks (Barabási
and Albert 1999). Scale-free graphs are characterized by power law asymptotics of
the degree distribution. For this reason, they are also called power law graphs. In
practice, power law distribution is determined by statistical methods. Different com-
binatorial algorithms such as the preferential attachment (see, e.g., Borgs et al. 2011)
and Chung and Lu (2002) methods are used to generate computational models of
scale-free graphs. Dynamical systems on the graphs generated by these methods are
difficult to study analytically. Consequently, there are few mathematical results on the
dynamics of coupled systems on scale-free graphs. The goal of this paper is to rectify
this situation. We introduce a new framework for modeling and analyzing coupled
systems on scale-free graphs. For concreteness, we study coupled Kuramoto phase
oscillators. The same approach applies to other models of interacting dynamical sys-
tems on graphs. For the KM on power law graphs, we derive an analytically tractable
mean field limit, which describes dynamics of the coupled system in the limit as the
number of oscillators tends to infinity. The mean field limit is used to study two prob-
lems: synchronization in the KM with random intrinsic frequencies (Strogatz 2000)
and attractors in repulsively coupled KMwith identical intrinsic frequencies. For each
problem, we identify the role of power law connectivity in shaping the corresponding
dynamical regime.

The KM of coupled phase oscillators is one of the most successful mathematical
models for studying collective dynamics and synchronization (Kuramoto 1975). It
captures the essential features of dynamics of weakly coupled limit cycle oscillators
(Hoppensteadt and Izhikevich 1997) and has many interesting applications in physical
and biological sciences (Strogatz 2000). In the synchronization problem, the intrinsic
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frequencies of the individual oscillators are assumed to be taken from a probability
distribution with density function g. Then, one wants to find a critical value of the
coupling strength, which marks the transition from to synchronization. For the clas-
sical KM on complete graphs, Kuramoto found the critical value Kc = 2π/g(0).
Kuramoto’s self-consistent analysis recently received a rigorous mathematical justi-
fication in Chiba and Nishikawa (2011), Chiba (2015). In the present paper, we use
the results in Chiba and Medvedev (2016), which extend the techniques from Chiba
and Nishikawa (2011) to the analysis of the KM on graphs. Using these techniques,
we obtain an explicit formula for the onset of synchronization for scale-free graphs.
Interestingly, we find that the KMon sparse power law graphs can have lower synchro-
nization threshold than on dense graphs. In fact, the synchronization threshold can be
made arbitrarily low by controlling the parameter of the power law distribution.

The second problem considered in this paper deals with attractors in repulsively
coupled KMwith identical frequencies on power law graphs. We find that this system
has a variety of stable steady-state solutions forming striking spatial patternswithwell-
defined statistical properties. We demonstrate existence of a class of such solutions
having well-defined regions of coherent and incoherent distribution of phases, like in
chimera states. We show that the phases in these regions are distributed according to
distinct probability laws. We call such solutions contrast states, because they combine
statistically distinct modes of behavior. Further, we show that in the continuum limit
contrast states form a continuous family. In numerical simulations, different contrast
states can be obtained as asymptotic states of theKMbyvarying (on a continuous scale)
the distribution of random initial conditions. To study these solutions analytically,
we employ the mean field limit for the KM on graphs (Chiba and Medvedev 2016;
Kaliuzhnyi-Verbovetskyi and Medvedev 2018) and the Ott–Antonsen ansatz (Ott and
Antonsen 2008).

The organization of the paper is as follows. In the next section, we explain the
W-random graph model (Lovász and Szegedy 2006; Borgs et al. 2014). This is the key
ingredient in our model of coupled dynamical systems on power law graphs. The W-
random graphmodel affords a convenient analytically tractable continuum limit. In the
next section, after explaining W-random graphs, we formulate the KM on the power
law graphs following (Kaliuzhnyi-Verbovetskyi and Medvedev 2017) and review the
mathematical background of the mean field equation for the KM on graphs following
(Chiba andMedvedev 2016) (see also Kaliuzhnyi-Verbovetskyi andMedvedev 2018).
Section 3 deals with the synchronization problem for the KM on power law graphs,
and Sect. 4—with attractors in the repulsively coupled model. We conclude with brief
discussion in Sect. 5.

2 TheModel and Its Approximations

W-random graphs provide a convenient framework for deriving the continuum limit
of the KM on convergent families of graphs (Medvedev 2014a, b; Kaliuzhnyi-
Verbovetskyi and Medvedev 2017; Chiba and Medvedev 2016). In this section, we
explain the W-random graph model adapted from Borgs et al. (2014), which will be
used below.
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Fig. 1 The pixel plot of the
adjacency matrix of a power law
graph. Each pixel represents a
nonzero entry of the adjacency
matrix

Let W (x, y) = (xy)−α, ρn = n−β, 0 < α < β < 1/2, and

Xn = {xn0, xn1, xn2, . . . , xnn}, xni = i/n, i = 0, 1, . . . , n. (2.1)

and
�n = G(W , ρn, Xn) stands for a random graph with the node set V (�n) = [n] :=

{1, 2, . . . , n} and the edge set E(�n) defined as follows. The probability that {i, j}
forms an edge is

P ({i, j} ∈ E(�n)) = ρnW̄n(xni , xnj ) =: ρnW̄ni j , i, j ∈ [n], (2.2)

where1

W̄n(x, y) = ρ−1
n ∧ W (x, y). (2.3)

The decision whether a given pair of nodes is included in the edge set is made inde-
pendently from other pairs. In other words, G(W , ρn, Xn) is a product probability
space

(�n = {0, 1}n(n+1)/2, 2�n ,P ). (2.4)

By �n(ω), ω ∈ �n , we will denote a random graph drawn from the probability distri-
bution G(W , ρn, Xn) (Fig. 1).

Lemma 2.1 (Kaliuzhnyi-Verbovetskyi and Medvedev 2017) �n = G(W , ρn, Xn) has
the following properties:

(A) The expected degree of node i ∈ [n] of �n is2

E ω deg�n
(i) = (1 − α)−1n1+α−β i−α(1 + o(1)). (2.5)

1 Throughout this paper, we use a ∧ b and a ∨ b to denote min{a, b} and max{a, b}, respectively.
2 Here and below, E ω denotes the mathematical expectation with respect to the probability space (2.4)
underlying the random graph model.
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(B) The expected edge density of �n is (1 − α)−2n−β(1 + o(1)).

Let �n = �n(ω), ω ∈ �n, be a random graph model taken from the probability
distribution G(W , ρn, Xn). The KM on �n is defined as follows:3

u̇ni = ηi + K

nρn

n∑

j=1

ξni j (ω) sin(unj − uni ), i ∈ [n], (2.6)

where uni , i ∈ [n], stands for the phase of oscillator i and ηi is its intrinsic frequency.
Until Sect. 4, we assume that the intrinsic frequencies are drawn form a continuous
probability distribution with density g. ξni j (ω) = 1E(�n(ω))({i, j}) is a Bernoulli
random variable, which takes value 1 when {i, j} is an edge of �n . K controls the
strength of coupling. For sparse graphs like the power law graph �n = G(W , ρn, Xn),
the edge density vanishes as n → ∞ (cf. Lemma 2.1). Thus, one needs to rescale the
coupling term appropriately so that it does not vanish as n → ∞. The scaling factor
ρn is used to make the continuum limit of (2.6) nondegenerate.

The analysis of (2.6) relies on several approximations, which we discuss next.
Note that the right-hand side of (2.6) depends on the realization of the random graph
model �n = G(W , ρn, Xn). Thus, (2.6) is a system of ordinary differential equations
with random coefficients. As a first step in analyzing (2.6), we substitute (2.6) by the
averaged model, which approximates the random KM (2.6). Specifically, we average
the right-hand side of (2.6) over all possible realizations of �n :

˙̄vni (t) = Fni (v̄n), vn(t) = (v̄n1(t), v̄n2(t), . . . , v̄nn(t)), i ∈ [n], (2.7)

where

Fni (v) = E ω

⎧
⎨

⎩ηi + K (nρn)
−1

n∑

j=1

ξni j (ω) sin(vnj − vni )

⎫
⎬

⎭

= ηi + K (nρn)
−1

n∑

j=1

E ω

(
ξni j (ω)

)
sin(vnj − vni )

= ηi + Kn−1
n∑

j=1

W̄ni j sin(vnj − vni ),

where we used (2.2). Recall that E ω stands for the mathematical expectation with
respect to the probability space (2.4).

Thus, the averaged model has the following form

˙̄vni = ηi + Kn−1
n∑

j=1

W̄ni j sin(v̄nj − v̄ni ), i ∈ [n]. (2.8)

3 Equation (2.6) is derived from a system of weakly coupled oscillators (Kuramoto 1975; Hoppensteadt
and Izhikevich 1997).
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We approximate (2.8) by

v̇ni = ηi + Kn−1
n∑

j=1

Wni j sin(vnj − vni ), i ∈ [n], (2.9)

where
Wni j = W (xni , xnj ) = (xni xnj )

−α, (i, j) ∈ [n]2. (2.10)

The next step is the derivation of the mean field approximation for (2.9), which
captures its dynamics in the limit as n → ∞:

∂

∂t
ρ(t, u, η, x) + ∂

∂u
{ρ(t, u, η, x)V (t, u, η, x)} = 0 (2.11)

where

V (t, u, η, x) = η + K
∫

I

∫

R

∫

S

W (x, y) sin(v − u)ρ(t, v, η, y)dvdηdy (2.12)

Here, ρ(t, u, η, x) stands for a probability density function on G = S × R × I
parametrized by time t ∈ R

+. It aims to describe the distribution of the oscillators
of the discrete model (2.6) at time t , provided both initial value problems (IVPs) for
(2.6) and (2.11) are initialized appropriately.

The mean field limit has been very useful in studies of interacting dynamical sys-
tems (Golse 2016; Strogatz andMirollo 1991). It has been instrumental in the analysis
of synchronization and chimera states in the KM (Strogatz 2000; Omelchenko 2013)
among many other dynamical regimes. For the original KM on complete graphs, the
rigorousmathematical justification of themean field equation (2.11)was given byLan-
cellotti (2005). It relies on the classical theory for theValsov equation (Neunzert 1978).
For the KM on graphs, the justification of the mean field limit was developed in Chiba
and Medvedev (2016), Kaliuzhnyi-Verbovetskyi and Medvedev (2018). Although the
results in these papers do not apply to the KMwith singular kernelW (x, y) = (xy)−α ,
0 < α < 1/2, the proof of the mean field limit in Kaliuzhnyi-Verbovetskyi and
Medvedev (2018) can be extended to cover the case W ∈ L2(I 2). This is work in
progress. Likewise, at the moment we are unable to provide a rigorous justification
of averaging for the model at hand. However, results for closely related models are
available in Kaliuzhnyi-Verbovetskyi and Medvedev (2018, Appendix A) (see also
Medvedev 2018, Theorem 3.1). In fact, Theorem 3.1 of Medvedev (2018) justifies
averaging for a modification of (2.6) considered in § 4.7.

If W is replaced by the truncated kernel WC (x, y) = C ∧ (xy)−α for arbitrary
C > 0 then the interpretation of the mean field limit in Chiba and Medvedev (2016)
carries over to the problem at hand. Using the truncated kernel does not limit the
applications of our results very much, as many effects considered in this work can be
achieved with WC instead of W . For the sake of completeness, the remainder of this
section we explain the mathematical meaning of the mean field equation (2.11) and
its relation to the discrete system (2.9) assuming that W := WC for sufficiently large
C > 0.
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Consider the following initial condition for (2.11)

ρ(0, u, η, x) = ρ0(u, η, x)g(η), (2.13)

where the nonnegative ρ0 ∈ L1(G) satisfies

∫

S

ρ0(u, η, x)du = 1 ∀(η, x) ∈ R × I . (2.14)

Then, as shown in Chiba and Medvedev (2016), there is a unique weak solution of the
IVP (2.11), (2.13). Moreover, ρ(t, ·) is a probability density function on G for every
t ∈ [0, T ]. Thus, one can define the probability measure

μt (A) =
∫

A
ρ(t, u, η, x)dudηdx, A ∈ B(G), (2.15)

where B(G) stands for the collection of Borel subsets of G.
On the other hand, the solution of the IVP for discrete problem (2.9) defines the

empirical measure

μn
t (A) = n−1

n∑

i=1

1A (θni (t), ηi , xni ) , A ∈ B(G). (2.16)

The analysis inChiba andMedvedev (2016), based on theNeunzert’s theory forVlasov
equation (cf. Neunzert 1978), shows that

sup
t∈[0,T ]

dBL(μn
t , μt ) → 0 as n → ∞, (2.17)

provided
dBL(μn

0, μ0) → 0 as n → ∞, (2.18)

Here, dBL(·, ·) stands for the bounded Lipschitz distance, which metrizes weak con-
vergence for the space of Borel probability measures on G (Dudley 2002). Thus, if
the initial distribution of oscillators (i.e., the initial conditions for (2.9)) converges
weakly to μ0 as n → ∞, then the solution of the continuous problem (2.11), (2.13)
approximates the distribution of oscillators around S for every t ∈ [0, T ]. The same
applies to the empirical measures generated by the discrete model on random graph
(2.6) provided the averaging is justified (cf. Chiba and Medvedev 2016).

3 Synchronization

With the mean field limit (2.11) in hand, we are equipped to study dynamics of the KM
on power law graphs (2.6). First, note that ρ(t, u, η, x) = (2π)−1g(η) is a steady-
state solution of (2.11), corresponding to the state of the network with all oscillators
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distributed uniformly around S. We refer to this dynamical regime as the incoherent
state.

Recall that α ∈ (0, 1/2) and assume that the probability density function g(η)

characterizing the distribution of intrinsic frequency η is even. Consider a self-adjoint
operator W : L2(I ) → L2(I ) defined by

W[ f ] =
∫

I
W (·, y) f (y)dy, f ∈ L2(I ). (3.1)

Let μmin (μmax) denote the smallest negative (largest positive) eigenvalue ofW. If all
eigenvalues ofW are positive (negative) set μmin := 0 (μmax = 0). Define

K+
c = 2

πg(0)μmax(W)
and K−

c = 2

πg(0)μmin(W)
.

Theorem 3.1 (Chiba and Medvedev 2016) The incoherent state is linearly stable for
K ∈ [K−

c , K+
c ] and is unstable otherwise.

To apply Theorem 3.1 to the problem at hand, we compute the eigenvalues of W.

Lemma 3.2 For α ∈ (0, 1/2), the spectrum of W consists of a simple eigenvalue
(1 − 2α)−1 and the zero eigenvalue of infinite multiplicity.

Proof Suppose ζ is an eigenvalue ofW, and f ∈ L2(I ) is a corresponding eigenfunc-
tion. Then,

x−α

∫

I
y−α f (y)dy = ζ f (x).

If f is orthogonal to the subspace of L2(I ) spanned by x−α , then ζ = 0. Otherwise,
f must be equal to Cx−α for some C �= 0 and

ζ =
∫

I
y−2αdy = (1 − 2α)−1.

	

The combination of Theorem 3.1 and Lemma 3.2 yields

Theorem 3.3 The incoherent state ρ = (2π)−1g(ω) is linearly stable for K ≤ Kc,

where

Kc = 2(1 − 2α)

πg(0)
, α ∈ (0, 1/2). (3.2)

In particular, for Gaussian density g(η) = e−η2/2/
√
2π , we have

Kc(α) = 2

√
2

π
(1 − 2α).
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a

K<Kc

b

K>Kc

Fig. 2 The distribution of the phases of coupled oscillators is shown on the unit circle in the complex plane:
vnk 
→ ei vnk ∈ C, k ∈ [n]. The strength of coupling is below the critical value Kc in a and is above Kc in
b. The black arrow depicts the order parameter, as a vector in the complex plane (cf. (4.7)). The bigger size
(modulus) of the order parameter corresponds to the higher degree of coherence. In a, the modulus of the
order parameter is close to zero, and the distribution of the oscillators is close to the uniform distribution.
In contrast in b, the distribution develops a region of higher density. The order parameter points to the
expected value (center of mass) of the distribution of the oscillators around S

For K ≤ Kc, the incoherent state is linearly stable and the oscillators are distributed
approximately uniformly around S (see Fig. 2a). For values of K > Kc, numerics
show a smooth transition to synchronization (see Figure 9 in Chiba et al. 2018). Note
that the synchronization threshold (3.2) can bemade arbitrarily small by taking α close
to 1/2. Such good synchronizability of the network is an implication of the scale-free
connectivity.

4 Repulsive Coupling

4.1 TheModel andMotivating Examples

In the previous section, we found that the incoherent state is linearly stable for K ≤
Kc = 2(1−2α)

πg(0) and is unstable otherwise. For increasing values of K > Kc, the
asymptotic state of the systems becomes more and more coherent and approaches
complete synchronization as K → ∞. In this section, we focus on pattern formation
in repulsively coupled networks, i.e., we consider (2.6) with K < 0. In this case,
the incoherent state is stable, but as we will see below, there are many other stable
states. To make the model analytically tractable, we set the intrinsic frequencies equal
to the same value ηi = η, i ∈ [n]. By switching to a uniformly rotating frame of
coordinates, without loss of generality we assume η = 0.

Thus, in the remainder of this section, we will be dealing with the following model

u̇ni = (nρn)
−1

n∑

j=1

ξni j (ω) sin(uni − unj ), i ∈ [n], (4.1)

uni (0) = u0ni . (4.2)

Here, we set K to −1, since this can always be achieved by rescaling time.
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Fig. 3 Plots a–d show the asymptotic states of model (4.1) initialized by random initial data shown in plots
e–h

After averaging and approximating W̄ni j by Wni j [cf. (2.10)], we arrive at a coun-
terpart of (2.9)

v̇ni = n−1
n∑

j=1

Wni j sin(vni − vnj ), i ∈ [n]. (4.3)

The corresponding mean field equation is given by

∂

∂t
ρ(t, u, x) + ∂

∂u
{V (t, u, x)ρ(t, u, x)} = 0, (4.4)

where

V (t, u, x) =
∫

S

∫

I
W (x, y) sin(u − v)ρ(t, v, y)dvdy. (4.5)

In theKMwith repulsive coupling on any undirected graph, the synchronous state is
unstable (cf. Medvedev and Tang 2015, Theorem 3.7). Thus, it is unstable for the KM
on power law graphs (4.1). Instead, we find a variety of stable steady-state solutions.
This is the main focus of this section.

We begin with an overview of the representative spatial patterns. First, we initialize
(4.1) with conditions sampled uniformly from the n-cube [π − δ, π + δ]n with suffi-
ciently small δ > 0. Plots a, b of Fig. 3 show asymptotic states corresponding to the
initial data shown in Fig. 3e, f, respectively. Note how changing the initial distribution
in f affects the corresponding asymptotic state in b.

For our next set of experiments, we choose initial condition from the uniform
distribution centered around an antiphase state

ū(m)
n = (0, 0, . . . , 0︸ ︷︷ ︸

m

, π, π, . . . , π︸ ︷︷ ︸
n−m

), m ∈ [n] (4.6)

(see Fig. 3g, h), i.e., the uniform distribution on
∏n

i=1[ū(m)
ni − δ, ū(m)

ni + δ] for some
m ∈ [n]. Note that like in the first pair of examples, the asymptotic states in Fig. 3c,
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Fig. 4 The initial conditions (dashed line) and asymptotic states (solid line) for (4.22) (a–c) and the cor-
responding steady states of (4.3) (d–f). The patterns shown in d and f are the examples of contrast states.
In d, the oscillators in the left region (I−) are localized around π and are spread-out around 0 in the right
region I+. Similarly, the pattern shown in f features localized distribution around 0 and the spread-out one
around π

d reflect the changes in the initial conditions. Furthermore, the step-like form of the
initial condition translates into the shape of asymptotic states: the oscillators uni (t)
for i ∈ [m] and those for i ∈ [n]/[m] exhibit qualitatively different distributions. The
oscillators in the former group are tightly localized around π , whereas the oscillators
in the latter group show significant variability (see Fig. 3c, d). The oscillators in both
groups exhibit well-defined distributions.We call stable (random) spatial patterns, like
those in Fig. 3c, d, exhibiting two or more types of qualitatively distinct probability
distributions, contrast states. By changing m ∈ [n] in the distribution of the initial
condition

∏n
i=1[ū(m)

ni −δ, ū(m)
ni +δ], we can control the position of the interface between

the regions with distinct behaviors (see Fig. 4d–f).
Since the initial data shown in Fig. 3e–h are sampled from an absolutely continuous

distribution, the solution of the IVP (4.1), (4.2) for every t > 0 is a continuous
random vector (cf. Neunzert 1978; Kaliuzhnyi-Verbovetskyi and Medvedev 2018).
The density function describing the distributions of uni (t), i ∈ [n], is approximated
by the solution of the IVP (2.11), (2.13) (cf. Kaliuzhnyi-Verbovetskyi and Medvedev
2018). The analysis of the mean field equation (2.11) explains the transformations of
the asymptotic states shown in Figs. 3 and 4.

4.2 The Lyapunov Function

Before turning to the analysis of the mean field equation, we establish several general
properties of the ω-limit set of (4.1).4

4 See Guckenheimer and Holmes (1990) for the definition of the ω–limit set.
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For the classical KMon complete graphs, Kuramoto introduced the order parameter

Rcmp(un) = n−1
n∑

j=1

ei unj , un = (un1, un2, . . . , unn) ∈ S
n . (4.7)

to study the transition to synchronization (Kuramoto 1975). The complex-valued order
parameter (4.7) provides a convenient measure of coherence in the system dynam-
ics. Indeed, if the phases uni , i ∈ [n], are distributed around S uniformly then
|Rcmp(un)| ≈ 0, whereas if they evolve in synchrony then |Rcmp(un)| ≈ 1.

For the KM on weighted graphs (4.3), there is a suitable generalization of the order
parameter:5

R(un) = n−1
n∑

j=1

anje
i uni , ani = x−α

ni , i ∈ [n]. (4.8)

Using R(un), (4.3) can be rewritten as follows

u̇ni = ani |R(un)| sin(uni − ψ), i ∈ [n], (4.9)

where ψ = Arg R(un). As follows from (4.9), there are two classes of equilibria of
(2.9):

En,1 = {
un ∈ S

n : (R(u) �= 0) &
(
unj − uni ∈ {0, π}, ∀i, j ∈ [n])} ,

En,2 = {
un ∈ S

n : R(un) = 0
}
.

Theorem 4.1 The ω-limit set of (4.3) is En,1 ∪ En,2.

Proof Let

L(un) = 1

2n
|R(un)|2 (4.10)

and note that

2nL(un) =
⎡

⎣n−1
n∑

j=1

anj cos uni

⎤

⎦
2

+
⎡

⎣n−1
n∑

j=1

anj sin uni

⎤

⎦
2

= n−2
n∑

i, j=1

anianj cos(uni − unj )

(4.11)

Further,
∂

∂uni
L(un) = −n−1

n∑

j=1

anianj sin(uni − unj ). (4.12)

5 This order parameter is used in the analysis of the bifurcation underlying the transition to synchrony in
the Kuramoto model on graphs (Chiba and Medvedev 2016, 2017). A similar order parameter was used by
Laing for the analysis of chimera states in a ring of coupled oscillators (Laing 2009).

123



Journal of Nonlinear Science

Thus, (4.9) is a gradient system

u̇n = −∇L(un).

and
L̇ = (∇L(un), u̇n) = − (u̇n, u̇n) ≤ 0, (4.13)

where (·, ·) stands for the inner product in R
n . By the Barbashin–Krasovskii–Lasalle

extension of the Lyapunov’s direct method (Barbašin and Krasovskiı̆ 1952; Krasovskiı̆
1959; LaSalle 1960), we conclude that the ω-limit set of (2.9) is the set of equilibria
En,1 ∪ En,2. 	


4.3 Stability of Equilibria in En,1

In this subsection, to gain first insights into the asymptotic states of the repulsively
coupled KM, we study stability of phase locked steady states of (4.9).

By the definition of En,1, for un = (un1, un2, . . . , unn) ∈ En,1 we have unj −uni ∈
{0, π}, ∀ i, j ∈ [n]. Thus, up to translation by a constant vector

En,1 =
n⋃

m=1

E
(m)
n,1 ,

where E(m)
n,1 consists of equilibria with precisely m coordinates equal to 0 and the rest

to π . For example,
(0, 0, . . . , 0︸ ︷︷ ︸

m

, π, π, . . . , π︸ ︷︷ ︸
n−m

) ∈ E
(m)
n,1 . (4.14)

Suppose u(m)
n = (u(m)

n1 , u(m)
n2 , . . . , u(m)

nn ) ∈ E
(m)
n,1 for some m ∈ [n]. Then, there is an

m-element subset �(m)
n ⊂ [n], |�(m)

n | = m such that

u(m)
n,i =

{
0, i ∈ �

(m)
n ,

π, i /∈ �
(m)
n .

(4.15)

Denote the matrix of linearization of (4.1) about u(m)
n by A. A straightforward com-

putation shows that
A = D − vvT, (4.16)

where D = (di j ) is a diagonal matrix with nonzero entries

dii =
{

x−α
ni d, i ∈ �

(m)
n ,

−x−α
ni d, i /∈ �

(m)
n ,

d := n−1
n∑

j=1

(−1)σ( j)x−α
nj , (4.17)

v =
(
(−1)σ(1)x−α

n1 , (−1)σ(2)x−α
n2 , . . . , (−1)σ(n)x−α

nn

)
, σ (i) =

{
0, i ∈ �

(m)
n ,

1, i /∈ �
(m)
n .

(4.18)
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Lemma 4.2 For u ∈ E
(m)
n,1 ,m ∈ [n], let A denote the matrix of linearization of (4.1)

about u.

If d > 0 then A has m − 1 positive eigenvalues, n − m negative eigenvalues, and
one zero eigenvalue.

If d < 0 then A has n − m − 1 positive eigenvalues, m negative eigenvalues, and
one zero eigenvalue.

Corollary 4.3 All equilibria from E
(m)
n,1 , 1 < m ≤ n, are unstable. In particular, all

solutions of form (4.14) are unstable for m > 1.

Proof of Lemma 4.2 Suppose d > 0. Let λk(D), and λk(A) k ∈ [n], denote the
eigenvalues of D and A arranged in the increasing order counting multiplicity. Since
A = D − vvT, from the Weyl’s theorem (Horn and Johnson 2013, Corollary 4.3.3)
we immediately have

λn−m(A) ≤ λn−m(D) < 0.

Further, the interlacing theorem (Horn and Johnson 2013, Theorem 4.3.4) implies

0 < λn−m+1(D) ≤ λn−m+2(A).

Finally, there is at least one zero eigenvalue of A, because its rows sum is equal to 0.
Thus, A has precisely n − m negative, n − m + 1 positive eigenvalues, and one zero
eigenvalue.

The case d < 0 is analyzed similarly. 	


4.4 The Ott–Antonsen Ansatz

Unlike equilibria in En,1 considered in the previous subsection, equilibria in En,2 are
harder to identify explicitly. To study properties of the equilibria inEn,2, wewill invoke
the mean field equation:

∂

∂t
ρ(t, u, x) + ∂

∂u
{V (t, u, x)ρ(t, u, x)} = 0, (4.19)

where

V (t, u, x) =
∫

I

∫

S

W (x, y) sin(u − v)ρ(t, v, y)dvdy. (4.20)

To identify a class of stable steady states of (4.19), we employ the Ott–Antonsen
ansatz (Ott and Antonsen 2008), i.e., we look for solutions of (4.19) in the following
form:

ρ(t, u, x) = 1

2π

(
1 +

∞∑

k=1

(
z(t, u)

k
ei ku + z(t, u)ke−i ku

))
. (4.21)

If supx∈I ,t∈[0,T ] |z(t, x)| < 1 then the series on the right-hand side of (4.21) is abso-
lutely convergent. Plugging (4.21) into (4.19), after straightforward albeit tedious
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manipulations, one verifies that (4.21) solves (4.19), provided z(t, x) satisfies the
following equation

∂

∂t
z(t, x) = 1

2xα

(
z(t, x)2 − 1

)
R[z(t, ·)], (4.22)

where

R[v] =
∫

I
y−αv(y)dy. (4.23)

From (4.21), it follows that

z(t, x) =
∫ 2π

0
ρ(t, u, x)ei udu. (4.24)

Using (4.24), we can express R[z] in terms of the density ρ:

R[z] =
∫

I

∫

S

y−αρ(t, u, y)ei ududy, (4.25)

i.e., R[z] is the continuous counterpart of the order parameter (4.8).
Below, wewill consider solutions of (4.19) subject to initial conditions that are even

functions in u for every x ∈ I . Since the flow respects this symmetry, the solutions
of the initial value problem for (4.19) are even functions in u for every t and x . In
this case, z(t, x) is real as easily seen from (4.24). In the remainder of this section,
we restrict to real solutions of (4.22). It is instructive to review the interpretation of
z(t, x) (cf. Omelchenko 2013). To this end, note that (4.21) implies

ρ(t, u, x) = 1 − |z(t, x)|2
2π

(
1 − 2|z(t, x)| cos(u − Arg z(t, x)) + |z(t, x)|2) . (4.26)

In particular, z ≡ 0 corresponds to the uniform density, while values of z close to ±1
indicate that the density is concentrated around 0 and π , respectively. Note that the
Ott–Antonsen ansatz assumes that the initial condition for ρ is consistent with (4.26).
Thus, it applies only to a special class of solutions of the mean field equation (4.19),
(4.20). Nonetheless, the analysis of the mean field equation using the Ott–Antonsen
ansatz gives valuable insights into the dynamics of the couples system and explains
the transformations of the asymptotic states shown in Fig. 3.

4.5 The Nonlocal Equation

Let M(0, 1) be a space of measurable functions z : (0, 1] → [−1, 1]. In analogy to
the discrete model (4.1), we divide the equilibria of (4.22) into two classes:

Ẽ1 = {z ∈ M(0, 1) : (|z(x)| = 1, x ∈ (0, 1])&(R[z] �= 0)} ,

Ẽ2 = {z ∈ M(0, 1) : R[z] = 0} .
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Theorem 4.4 Let z0 ∈ M(0, 1)\Ẽ1. Denote by ω(z0) the ω–limit set of the trajectory
of (4.22) started at z0. Then, ω(z0) ⊂ Ẽ2.

Proof Suppose R(0) := R[z(0, ·)] > 0. Changing the time variable to t = η(τ)

subject to

η′(τ ) = 1∫
I y

−α z̃(τ, y)dy
, z̃(τ, y) := z(η(τ ), x), η(0) = 0, (4.27)

we reduce (4.22) to
∂

∂τ
z̃ = 1

2xα

(
z̃2 − 1

)
. (4.28)

The last equation is integrated explicitly

z̃(τ, x) = 1 − C(x) exp{ τ
xα }

1 + C(x) exp{ τ
xα } , C(x) = 1 − z0(x)

1 + z0(x)
. (4.29)

Clearly, z̃(τ, x) ↘ −1 for x ∈ I as τ → ∞. Thus, there is 0 < τ ∗ < ∞ such that
R̃(τ ∗) := R̃[z̃(τ ∗, ·)] = 0 and R̃(τ ) > 0 for τ ∈ [0, τ ∗).

The change in time (4.27) is well defined for τ ∈ [0, τ ∗). In terms of the original
time, we have the description of the system’s dynamics on the time interval [0, t∗),
with

t∗ = lim
τ→τ∗−0

∫ τ

0
(R̃(s))−1ds. (4.30)

DenoteR(t) = R[z(t, ·)]. If t∗ < ∞ thenR(t) = R̃(τ ∗) = 0 for t ≥ t∗. Otherwise,
multiplying both sides of (4.22) by x−α and integrating over I , we have

R′ = 2−1
∫

I
x−2α(z2(x, t) − 1)dx R

≤ 2−1
∫

I
x−2α(z(x, t) − 1)dx R

≤ 2−1
∫

I
x−α(z(x, t) − 1)dx R

≤
(
R − (1 − α)−1

)
R.

(4.31)

By the comparison principle (cf. Hartman 1973, Theorem I.4.1), from (4.31) we con-
clude that R(t) ↘ 0, as t → ∞.

The case R[z(0, ·)] < 0 is analyzed similarly. 	


4.6 Attractors of the Repulsively CoupledModel

Theorem 4.4 shows that solutions of the mean field equation of form (4.21) approach
an equilibrium from the set {R = 0}. To illustrate possible patterns generated in this
scenario, we consider the IVP for (4.22) with the following initial conditions:
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z(step)δ,x0
(x) =

{−1 + δ, x ∈ I− := (0, x0),
1 − δ, x ∈ I+ := [x0, 1), (4.32)

Remark 4.5 The initial condition for the mean field equation (4.19) is obtained by
plugging (4.32) into (4.26). It is sufficiently close to the uniform density used in the
numerical simulations in Fig. 3, albeit is not the same. Still the analysis of the nonlocal
equation with the initial condition (4.32) explains the solutions shown in Fig. 3. The
uniform distribution in simulations was used for convenience. The results change little
if (4.26), (4.32) is used as the initial condition for (4.19).

For 0 < δ � 1, z(step)δ,x0
is close to the equilibrium z(step)0,x0

∈ Ẽ1, corresponding to a
phase locked solution, localized around π for x ∈ I− and around 0 for x ∈ I+.

Consider the IVP for (4.22) with initial condition z(step)δ,x0
for 0 < δ < 1. To this end,

note that for x∗ = 2
−1
1−α ∈ (0, 1),

∫ x∗

0
y−αdy = −

∫ 1

x∗
y−αdy.

Suppose first that 0 < x0 < x∗. Then R(0) > 0. By Theorem 4.4, R(t) ↘ 0.
Furthermore, |z(t, x)| ≤ 1 and, thus, z(t, x) is monotonically decreasing in time for
every x ∈ (0, 1]. In particular,

− 1 ≤ z(t, x) ≤ −1 + δ, x ∈ I− = (0, x0), t ≥ 0. (4.33)

This means that in I− the oscillators remain localized around π (in the moving frame
of coordinates) [cf. (4.26)], provided 0 < δ � 1 (Fig. 4d). On the other hand, in I+,
z(t, ·) is monotonically decreasing to its asymptotic state z∞ at whichR(z∞) = 0 (see
Fig. 4a). In I+, there must be an interval over which z is positive and strictly less than
1 − δ for all times. Denote such interval Ĩ+ ⊂ I+. Thus, over Ĩ+, z(t, x) is bounded
away from ±1 by a distance greater than δ uniformly in time. Thus, the oscillators
over Ĩ+ exhibit a greater degree of incoherence. The asymptotic state z∞ contains
both the region of coherent dynamics (I−) and that of incoherent (I+) (Fig. 4a). Thus,
z∞ corresponds to a contrast state. This is clearly seen in numerics (see Fig. 4d). In
the next section, for the modified model we will present tight estimates characterizing
the asymptotic state z∞.

Next, we comment on the transformation of the asymptotic state z∞ as x0 is increas-
ing past x∗. The case of x > x∗ presents a symmetric scenario. In this case, R(0) < 0
and both R(t) and z(t, ·) are monotonically increasing (see Fig. 4c). In particular,
1 − δ ≤ z(t, x) ≤ 1 in I+ for t ≥ 0, and the oscillators are localized around 0 in I+,
while exhibiting incoherent behavior in I− (see Fig. 4c, f). When x0 is close to x∗,
R(0) is close to zero, and |R(t)| remains small for all times. This means that the initial
pattern does not change much in the process of evolution, and z∞ remains close to the
step function

z(step)0,x0
(x) := ±1, x ∈ I±.
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The equilibrium z(step)0,x0
∈ Ẽ1 is unstable but lies close a stable equilibrium zstep,x∗ ∈ Ẽ2

(see Fig. 4b, e).

4.7 Contrast States in theModified KM

We now turn to a modification of the KM on power law graphs, for which we derive
tight estimates for the contrast states. If instead of scaling the coupling term by nρn ,
as in (2.6), we scale it by the expected degree of node i :

dni = E ω deg�n
(i) =

n∑

j=1

W̄ni j ,

the repulsively coupled KM and the corresponding averaged equation take the follow-
ing form:

u̇ni = 1

dni

n∑

j=1

ξni j (ω) sin(uni − unj ), i ∈ [n], (4.34)

and

v̇ni = 1

n

n∑

j=1

x−α
nj sin(vni − vnj ), i ∈ [n], (4.35)

respectively. The mean field equation then becomes (cf. Kaliuzhnyi-Verbovetskyi and
Medvedev 2017, Example 2.5)

∂

∂t
ρ(t, u, x) + ∂

∂u

{
ρ(t, u, x)

∫

I

∫

S
(1 − α)y−α sin(u − v)ρ(t, v, y)dvdy

}
.

(4.36)
Applying the Ott–Antonsen ansatz to the model at hand, we arrive at

ż = 1 − α

2

(
z2 − 1

)
R[z]. (4.37)

For (4.37) subject to the initial condition (4.32), below we present tight bounds for
the large time asymptotic state z∞.

Suppose R[z(0, ·)] > 0 and note that (4.37) and (4.32) imply

|z(x, t)| ≤ 1 and R[z(t, ·)] ≥ 0,

for any x ∈ I and t ≥ 0. Furthermore, z(t, x) is monotonically decreasing.
On the other hand, from (4.37) we have

(1 − α)(z − 1)R[z(t, ·)] ≤ ∂

∂t
z ≤ 1 − α

2
(z − 1)R[z(t, ·)]. (4.38)
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Fig. 5 The initial conditions (dashed line) and asymptotic states (solid line) for (4.37)

Multiplying all sides of the double inequality (4.38) by x−α and integrating over I ,
we have

((1 − α)R[z(t, ·)] − 1) ≤ ∂

∂t
R[z(t, ·)] ≤ 2−1 ((1 − α)R[z(t, ·)] − 1) . (4.39)

Recalling R[z(0, ·)] > 0, R[z(t, ·)] ↘ 0 as t → ∞, i.e., z(t, ·) approaches an
equilibrium from Ẽ2. Next, we characterize the limiting state of the system. Since the
initial condition is constant over each of the intervals I±, so is the solution (Fig. 5)

z(x, t) ≡ z−(t), x ∈ I−,

z(x, t) ≡ z+(t), x ∈ I+,
(4.40)

Since z−(0) = −1 + δ and z−(t) ≥ −1, we have

∣∣z−(t) + 1
∣∣ ≤ δ, (4.41)

i.e., the solution of the repulsively coupled KM (4.1) remains approximately synchro-
nized over I−.

Denote

z±∞ := lim
t→∞ z±(t).
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Fig. 6 The asymptotic states of (4.34). The patterns in a–d correspond to the solutions of (4.37) shown in
the corresponding plots of Fig. 5

Further, since R[z(t, ·)] → 0 as t → ∞, we have

z+∞
∫ 1

x0
y−αdy = −z−∞

∫ x0

0
y−αdy.

and

z+∞ = −z−∞
x1−α
0

1 − x1−α
0

. (4.42)

The combination of (4.41) and (4.42) yields

(1 − δ)
x1−α
0

1 − x1−α
0

≤ z+∞ ≤ x1−α
0

1 − x1−α
0

. (4.43)

This double inequality combined with (4.41) yields tight estimates for the asymptotic
state z∞ in I+. Estimates (4.41) and (4.43) characterize the asymptotic states for
initial conditions R[z(0, ·)] > 0 (Fig. 5a, b). The complementary case R[z(0, ·)] > 0
is analyzed similarly. The corresponding contrast states are shown in Fig. 6.

5 Discussion

Networks with power law degree distribution feature prominently in applications
(Barabási and Albert 1999). These are complex networks, whose structure is
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defined implicitly through the statistics of degrees of the vertices. Understand-
ing dynamics of coupled systems on such networks is a challenging problem.
In this paper, we employed the framework of sparse W-random graphs (Borgs
et al. 2014) to develop an analytically tractable coupled oscillator model on power
law graphs. In this paper, we focus on the KM of coupled phase oscillators;
however, our approach extends naturally to other types of coupled dynamical
systems on graphs. For the KM on graphs, we derived the mean field par-
tial differential equation approximating the dynamics of the coupled system in
the limit as the size of the network tends to infinity. A precise mathematical
interpretation of the mean field for the KM on graphs has been recently pro-
vided in Chiba and Medvedev (2016), Kaliuzhnyi-Verbovetskyi and Medvedev
(2018).

The mean field equation was used to calculate the synchronization threshold for
the model with attractive coupling and to study pattern formation in the repulsively
coupled model. The analysis of the synchronization problem revealed a remarkable
feature of the power law connectivity: the synchronization threshold can be made
arbitrarily close to zero by controlling the parameter of the power law distribution.
For repulsively coupled model with identical intrinsic frequencies, we performed a
detailed analysis of stable steady states. A striking feature of the repulsively cou-
pled model is the existence of a family of equilibria, which form a co-dimension 2
manifold. Given an initial condition, the large time asymptotic state of the system
is selected from this rich set of equilibria. Furthermore, the asymptotic state is con-
trolled by the initial condition in practically continuous manner, i.e., small changes
in the initial data result in small changes in the asymptotic state. This property is
not be confused with continuous dependence on initial data on finite time inter-
vals.

We analyzed the relation between the initial data and the asymptotic state for a
special class of initial conditions fitting into the Ott–Antonsen ansatz (Ott and Anton-
sen 2008). The use of the ansatz allows to see explicitly how the initial condition
translates into the asymptotic state of the system. It also reveals the mechanism
for the creation of contrast states, steady-state solutions, which like chimera states
(Omelchenko 2013), have multiple sets of oscillators subject to qualitatively distinct
probability distributions. The contrast states identified in this work and chimera states
have the same nature, as can be seen by comparing our analysis to the analysis of
chimera states in Omelchenko (2013). At the heart of the existence of multiple regions
with distinct behaviors in both cases lies the piecewise structure of the attractors
of the nonlocal equation derived via the Ott–Antonsen ansatz [compare Fig. 4a–c
with the plots for |a(x)| in Figure 3 of Omelchenko (2013)]. In our case, the sit-
uation is simpler, because it involves steady states compared to the periodic orbits
in Omelchenko (2013). Taken together, the results of this paper suggest an analytic
approach tomodeling and analysis of coupled dynamical systems on power law graphs
and illustrate implications of the power law connectivity for the dynamics of coupled
systems.

Acknowledgements This work was supported in part by the NSF DMS grants 1412066 and 1715161 (to
GM).

123



Journal of Nonlinear Science

References

Abrams, D.M., Strogatz, S.H.: Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurc.
Chaos Appl. Sci. Eng. 16(1), 21–37 (2006)

Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Barbašin, E.A., Krasovskiı̆, N.N.: On stability of motion in the large. Doklady Akad. Nauk SSSR (N.S.)

86, 453–456 (1952)
Borgs, C., Chayes, J., Lovász, L., Sós, V., Vesztergombi, K.: Limits of randomly grown graph sequences.

Eur. J. Combin. 32(7), 985–999 (2011)
Borgs, C., Chayes, J.T., Cohn, H., Zhao, Y.: An L p theory of sparse graph convergence I: limits, sparse

random graph models, and power law distributions. (2014). arXiv:1401.2906
Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional

Kuramoto model. Ergod. Theory Dyn. Syst. 35(3), 762–834 (2015)
Chiba, H., Medvedev, G.S.: The mean field analysis for the Kuramoto model on graphs I. The mean field

equation and transition point formulas. (2016). arXiv:1612.06493
Chiba,H.,Medvedev,G.S.: Themeanfield analysis of theKuramotomodel ongraphs II.Asymptotic stability

of the incoherent state, center manifold reduction, and bifurcations. (2017). arXiv:1709.08305
Chiba, H., Nishikawa, I.: Center manifold reduction for large populations of globally coupled phase oscil-

lators. Chaos 21(4), 043103–043110 (2011)
Chiba, H., Medvedev, G.S., Mizuhara, M.S.: Bifurcations in the Kuramoto model on graphs. Chaos. 28,

073109 (2018). (in press)
Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad.

Sci. USA 99(25), 15879–15882 (2002)
Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cam-

bridge University Press, Cambridge (2002). Revised reprint of the 1989 original
Golse, F.: On the dynamics of large particle systems in the mean field limit. In: Muntean, A., Rademacher,

J., Zagaris, A. (eds.) Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits
and Ergodicity. Lect. Notes Appl. Math. Mech., vol. 3, pp. 1–144. Springer, Cham (2016)

Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector
Fields. Applied Mathematical Sciences, vol. 42. Springer, New York (1990). Revised and corrected
reprint of the 1983 original

Hartman, P.: Ordinary Differential Equations. S. M. Hartman, Baltimore (1973). (Corrected reprint)
Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Applied Mathematical Sci-

ences, vol. 126. Springer, New York (1997)
Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)
Kaliuzhnyi-Verbovetskyi, D., Medvedev, G.S.: The semilinear heat equation on sparse random graphs.

SIAM J. Math. Anal. 49(2), 1333–1355 (2017)
Kaliuzhnyi-Verbovetskyi, D., Medvedev, G.S.: The mean field equation for the Kuramoto model on graph

sequences with non-Lipschitz limit. SIAM J. Math. Anal. 50(3), 2441–2465 (2018)
Krasovskiı̆, N.N.: Nekotorye zadachi teorii ustoichivosti dvizheniya. Gosudarstv. Izdat. Fiz.-Mat. Lit,

Moscow (1959)
Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Sympo-

sium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975). Lecture Notes in
Phys., vol. 39, pp. 420–422. Springer, Berlin (1975)

Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase
oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002)

Laing, C.R.: Chimera states in heterogeneous networks. Chaos 19(1), 013113–013118 (2009)
Lancellotti, C.: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transp.

Theory Stat. Phys. 34(7), 523–535 (2005)
LaSalle, J.: Some extensions of Liapunov’s secondmethod. IRETrans. Circuit Theory 7(4), 520–527 (1960)
Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory Ser. B 96(6), 933–957 (2006)
Medvedev, G.S.: Stochastic stability of continuous time consensus protocols. SIAMJ. Control Optim. 50(4),

1859–1885 (2012)
Medvedev, G.S.: The nonlinear heat equation on W-random graphs. Arch. Ration. Mech. Anal. 212(3),

781–803 (2014a)
Medvedev, G.S.: Small-world networks of Kuramoto oscillators. Phys. D 266, 13–22 (2014b)

123

http://arxiv.org/abs/1401.2906
http://arxiv.org/abs/1612.06493
http://arxiv.org/abs/1709.08305


Journal of Nonlinear Science

Medvedev, G.S.: The continuum limit for the Kuramoto model on sparse random graphs. (2018).
arXiv:1802.03787

Medvedev, G.S., Tang, X.: Stability of twisted states in the Kuramoto model on Cayley and random graphs.
J. Nonlinear Sci. 25(6), 1169–1208 (2015)

Medvedev, G.S., Douglas Wright, J.: Stability of twisted states in the continuum Kuramoto model. SIAM
J. Appl. Dyn. Syst. 16(1), 188–203 (2017)

Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)
Neunzert, H.: Mathematical investigations on particle-in-cell methods Fluid Dyn. Trans. 9, 229–254 (1978)
Omelchenko, O.E.: Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators.

Nonlinearity 26(9), 2469 (2013)
Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos

18, 037113 (2008)
Porter, M.A., Gleeson, J.P.: Dynamical Systems on Networks. Frontiers in Applied Dynamical Systems:

Reviews and Tutorials, vol. 4. Springer, Cham (2016). A tutorial
Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of

coupled oscillators. Phys. D 143(1–4), 1–20 (2000)
Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys.

63(3–4), 613–635 (1991)
Wiley, D.A., Strogatz, S.H., Girvan, M.: The size of the sync basin. Chaos 16(1), 015103–015108 (2006)

Affiliations

Georgi S. Medvedev1 · Xuezhi Tang2

Xuezhi Tang
xuezhi.tang@wellsfargo.com

1 Department of Mathematics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104,
USA

2 Wells Fargo Securities, 505 S. Tryon Street, Charlotte, NC 28202, USA

123

http://arxiv.org/abs/1802.03787
http://orcid.org/0000-0002-1626-6650

	The Kuramoto Model on Power Law Graphs: Synchronization and Contrast States
	Abstract
	1 Introduction
	2 The Model and Its Approximations
	3 Synchronization
	4 Repulsive Coupling
	4.1 The Model and Motivating Examples
	4.2 The Lyapunov Function
	4.3 Stability of Equilibria in mathcalEn,1
	4.4 The Ott–Antonsen Ansatz
	4.5 The Nonlocal Equation
	4.6 Attractors of the Repulsively Coupled Model
	4.7 Contrast States in the Modified KM

	5 Discussion
	Acknowledgements
	References




