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Abstract 

Industry foundation classes (IFC) is widely accepted as the future of building information 

modeling (BIM) to take on the challenge of BIM interoperability and enables its support of various 

automation tasks. However, it is not uncommon to see misuses of IFC entities during the creation 

of BIM. Such misuses prevent a successful automation of BIM-supported tasks because 

misclassification of objects in BIM can lead to significant negative consequences in downstream 

applications due to incorrect semantic information provided. To address this problem, the authors 

propose a new data-driven, iterative method that can be used to develop an algorithm to 

automatically classify each object in an IFC model into predefined categories. The algorithm 

consists of multiple sub-algorithms with each sub-algorithm depicting a pattern matching rule that 

uses inherent features of the geometric representation of an architecture, engineering, and 

construction (AEC) object. The method was tested in an experiment where IFC models from three 

different sources were collected and 1,891 AEC objects were extracted and divided into training 

and testing data for use. By comparing the classification results of the algorithm developed based 

on training data and applied to testing data with a manually developed gold standard, 84.45% recall 

and 85.20% precision were achieved in common building element categories, 100% recall and 

https://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-5487.0000858


 

2 

 

precision were achieved in detailed beam categories. The sources of errors were found to be: (1) 

different objects sharing the same geometric shape; and (2) uncovered geometric shape 

representation in the training data. By adding locational information into consideration in addition 

to geometric information and making sure training data covers all geometric shape representations, 

100% precision and recall can be achieved for all categories.  

Author keywords: Object classification; Building information modeling (BIM); Interoperability; 

IFC; Computer applications. 

Introduction 

Since the emergence of the first Building information modeling (BIM) software in the 1980s - the 

ArchiCAD’s Radar CH - BIM has been under fast development due to its high demand (Quirk 

2012). BIM software, such as AutoDesk Revit, Bentley AECOsim, Solibri Model Viewer, and 

BIMserver, help people visualize a building design prior to its construction (Eastman et al. 2011). 

Such pre-construction visualization improves collaboration between different stakeholders such as 

planner, designer, structural engineer, construction manager, and field workers. A better 

collaboration between these stakeholders will likely improve performance and quality of the end 

product – the building. With the BIM software at hand, people can take quick responsive actions 

to design changes and discover errors and omissions prior to the actual construction (Eastman et 

al. 2011). There are many off-the-shelf BIM software that a BIM user can choose from. For 

example, ETakeoff helps people with the cost estimation task, ANSYS helps people with the 

structural analysis task, and STR Vision provides a 4D and 5D modeling system to help people 

with scheduling and cost estimation tasks. For such BIM uses, one would like to take advantage 

of all the strengths of these different BIM software. Considering that for the same project the BIM 

data in these different software belong to the same building structure, it will be a waste of 



 

3 

 

opportunities to create BIM data from scratch in each of the software. An optimal process would 

require a seamless data transfer between different software in an automated fashion. In theory, 

BIM is designed to be interoperable. However, in practice, BIM software developed by different 

companies use different data structures and data formats. As a result, data transfer between 

different software used by stakeholders in different disciplines can be costly because of the needed 

manual efforts or converters in conducting the transfer and fixing information inconsistency or 

adding missing information, even for the same building project. For example, if two software need 

one converter that converts the BIM model between the formats of the two software, ten BIM 

software would require 𝐶10
2 = 45 converters (theoretically) to achieve interoperability between all 

of them. The number of converters increases quadratically with the number of BIM software, 

resulting in a high cost and inconvenience for achieving interoperability between all BIM software. 

To reduce the high cost of achieving BIM interoperability, twelve companies collaborated to 

develop a uniform standard for BIM which is known as the Industry Foundation Classes (IFC) 

(Hamil 2012). 

IFC specifications are open and transparent (buildingSMART 2018a). IFC models can be readily 

accessed using a text editor. Under constant development and refinement by buildingSMART, IFC 

became one of the most promising attempts trying to solve BIM interoperability. However, IFC 

schema still has major problems when transforming to other proprietary software formats and vice 

versa (Ma et al. 2006; Pazlar and Turk 2008). The IFC standard defines its own object data types 

to store the physical and functional information of building elements in entities and attributes. For 

a standard building, most elements are in common shapes such as cuboids, prisms, and cylinders, 

whereas uncommon shapes (in the context of building structure) also exist such as pyramids, 

pentagonal cylinders, and dodecahedrons. It is easier to construct elements in common shapes than 
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the ones in uncommon shapes. However, it also creates room for the misuse of entities. For 

example, an IfcSlab entity may be misused to represent a wall, which should be using IfcWall or 

IfcWallStandardCase for data representation. The misuse occurred because both of them have a 

cuboid shape, and the only differences are in their corresponding length/width/height ratios. 

Although model visualization tools can still provide the same visualization results of a slab 

represented using an IfcWall entity as if it was represented correctly by an IfcSlab entity, this type 

of misuse can lead to problems in transferring data between different BIM applications that require 

the use of semantic information of building elements beyond their shape and geometry, such as 

architectural design, cost estimation, and structural analysis. It will make the conversion results 

from IFC files error-prone. For example, given the previous misuse case, when taking off the 

volume of slabs, the software will mistakenly add the volume of the wall represented by a slab 

entity. While the names of IFC entities can be misleading in the case of entity misuse, the 

geometric shapes information are one of the most reliable parts of BIM and it is almost always 

accurate for a successful building object representation. In this paper, the authors leverage the 

geometric information of objects in IFC models to automatically classify BIM objects in the 

architectural, engineering, and construction (AEC) domain into predefined building element 

categories.  

Background 

Object Classification 

Object classification is the process where objects are recognized, differentiated, and understood, 

meaning that the objects are grouped for some specific purpose (Henri et al. 2005). Object 

classification in an automated fashion involves two essential steps: feature extraction and feature-

based classification (Ullman 2007).  
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There are many researches on 2D object classification to detect and classify objects from 2D 

images. For example, Henri et al. (2017) proposed to extract a hierarchy of fragments with visual 

element features such as human faces and car wheels for use in recognizing and classifying objects 

(e.g., people and cars) from 2D images. Ullman and Epshtein (2007) proposed two extensions of 

the fragment-based object recognition scheme. One is a hierarchical decomposition into parts and 

sub-parts at multiple levels according to the features. The other is depicting different views of the 

same object part using semantically equivalent feature sets (Ullman and Epshtein 2007). 

Distinguished from the fragment-based scheme, Wang et al. (2009) designed a technique that sorts 

objects into predefined categories by building their “text-based image features”. A text-based 

feature is built from the tags of its k-nearest neighbors in the training collection. For example, 

“motorbikes” is a text-based feature built from the tags of its 5,000-nearest neighbors based on 

measuring the chi-square distance in a space of 256-dimensional vectors. Wang et al. (2009) found 

that text-based features from images are reliable to classify the objects in images even when an 

object appearance changes in the images. In the civil engineering domain, computing methods and 

algorithms have also been developed to identify/classify the following contents from 2D images: 

construction equipment (Memarzadeh et al. 2013), construction activities (Liu and Golparvar-Fard 

2015), safety harness (Fang et al. 2018), construction materials (Han and Golparvar-Fard 2015), 

highway assets (Golparvar-Fard et al. 2013) and traffic signs (Balali and Golparvar-Fard 2015), 

bridge components (Narazaki et al. 2018), cracks and defects in a structure (Feng et al. 2017; 

Gopalakrishnan et al. 2017), among others. 

In contrast to 2D object classification, 3D object classification has more information to leverage 

because of its additional spatial dimension. For a successful 3D object classification, object 

detection is a critical step when dealing with less structured data such as point cloud data collected 
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using Light Detection and Ranging (LIDAR) techniques. For example, Wang and Schenk (2010) 

designed an object classification technique to detect and reconstruct buildings from LIDAR data. 

Their approach uses LIDAR terrain surface, edges, and points of a building as features. Also 

working on point cloud data but from a different perspective, Voegtle and Steinle (2003) designed 

a method to detect segments and extract objects inside these segments based on a special region 

growing algorithm. LIDAR data has been widely used in the civil engineering domain for 

capturing as-built projects (Wang and Cho 2014), prefabricated components (Kalasapudi et al. 

2015), construction equipment and assets (Chen et al. 2016; Fang et al. 2016), and surveying 

results (Tang and Akinci 2012). RGB-D data is another type of commonly used 3D data other than 

point cloud data. Different methods have been proposed to conduct object classification on RGB-

D data. For example, Richard et al. (2012) proposed a combination of convolutional and recursive 

neural networks (CNN and RNN) to classify 3D objects from RGB-D data, where multiple RNN 

weights are randomly initialized and a tree structure is built for the classifier. Bo et al. (2013) 

proposed a hierarchical matching pursuit (HMP) method for RGB-D data object classification, 

which uses an unsupervised learning technique with sparse coding to generate hierarchical feature 

representations for classifying household objects.  

In spite of the different types of data used, the above methods all focused on object classification 

in as-built models or assets. As-built models are models created from surveying/inspecting a 

physical system (Hefele and Dolin 1998). On the contrary, as-designed models are virtual models 

that are derived from design data (Huber et al. 2011). As such, as-designed model has more 

“degrees of freedom” in terms of the possible model setup. For example, an as-designed model 

can be built as high as the designer wants, whereas as-built models can only be as high as it 

physically stands. As a result, a successful classification of objects in an as-designed model will 
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heavily rely on the correct understanding of the designed structure and the BIM data structure. 

Object classification of as-designed models is underexplored comparing to that of as-built models. 

In this domain, Qin et al. (2014) proposed a 3D CAD object classification method using deep 

neural networks in which they leveraged prior CAD knowledge to generate features to use in the 

deep neural network model training. An average correct rate of 98.64% was achieved in a dataset 

that contained objects in 28 categories such as screw and nut. Henn et al. (2012) presented a 

support vector machines (SVMs)-based machine learning classifier that can automatically classify 

the building type of a selected 3D model from city models such as terraced building and apartment 

building. They achieved a cross validation accuracy of 90.79% on 1,953 building objects.  

IFC Schema 

IFC schema has been under constant development and released many versions from IFC1.0 to 

IFC4 Add2 (buildingSMART 2018a). Although not the latest version, IFC2x3 is currently the most 

widely implemented version of the IFC schema, which the authors chose to use in this paper. In 

IFC2x3, there are 117 defined types and 653 entities, including 33 types of entities for building 

elements (buildingSMART 2007). For example, IfcBeam is a building element entity that is used 

to define a beam instance, and IfcDoor is a building element entity that is used to define a door 

instance. Fig. 1 provides a visualization of a beam in IFC and Fig. 2 shows the IFC data of the 

beam. It is a wide flange beam (or I-beam) that is commonly seen in a steel structure. The IfcBeam 

references other entities such as IfcOwnerHistoty, IfcLocalPlacement, and 

IfcProductDefinitionShape, which contain detailed information about the beam. By tracing the 

references between entities in an IFC data, all relevant information to an object can be extracted 

(Won et al. 2013). 
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An IFC model of a building usually contains multiple building elements. While most of the 

building elements should be using correct IFC entities, e.g., IfcWall for a wall, IfcSlab for a Slab, 

it is not rare to see misuses, such as the misuse of an IfcSlab for a wall as described above. In 

extreme cases, most of the objects in a model contain entity misuses. For example, in the 59 objects 

in a bridge model described by Ma et al. (2017), 35 objects (59%) contained entity misuses.  

To prevent potential negative consequences resulting from misuses of IFC entities and support a 

seamless interoperability of BIM, the authors propose an IFC-based BIM object classification 

method based solely on the geometric information of the object. 

IFC Object Classification 

Few recent works in IFC object classification were found. For example, Koo and Shin (2018) 

explored the use of novelty detection machine learning approach to detect IFC objects 

misclassifications during manual creation of the IFC data. They used SVMs to classify objects into 

individual classes and tested the SVMs on four classes - walls, doors, columns, and slabs. Their 

testing achieved an accuracy that ranged from 80.95% to 97.14% for different classes. The use of 

machine learning was promising, but it was difficult (if not impossible) to achieve 100% accuracy. 

In contrast, Sacks et al. (2017) captured domain expert knowledge into computer rules for 

classifying IFC objects. The rules were based on pairwise geometric, spatial, and topological 

relationships between IFC objects. Ma et al. (2017) designed a similar method to classify BIM 

objects using a tailored matching algorithm. In their methods, each object in consideration is paired 

with all other objects and the similarity of objects in each pair is calculated by comparing their 

feature values and relationships. Perfect testing results (100% accuracy) have been reported in both 

methods on 333 objects and 390 objects from one and two bridge IFC models, respectively. 

However, their methods focused on the relative relationship between features of different objects 
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rather than the feature values of the objects themselves, such as geometric representation and 

numerical parameters of the object, thus, reference objects are always in need. In this paper, the 

authors look into the geometric representations of objects in IFC and directly leverage such 

information in classifying the objects. Using the authors’ method, although sample objects are still 

needed in the development phase, the developed algorithm could then be directly applied to new 

IFC objects, without the need of reference objects during the classification application stage. For 

example, a regular wall usually has a long rectangular box shape defined by the three parameters 

of length, width, and height. These geometric parameters can be directly used for BIM object 

classification. Based on this idea, the authors propose a data-driven method that could be used to 

develop algorithms for classifying BIM objects automatically. The method was implemented on 

processing IFC data, but is adaptable to any data format.  

Proposed Method for Automated Object Classification in IFC-based BIM 

The authors propose a new 7-step iterative method to classify BIM objects in IFC models (Fig. 3): 

data collection, preprocessing, environment setup, primary development, secondary development, 

error analysis and training improvement, and testing. The method provides a platform for 

algorithm development using a data-driven and pattern matching rule-based approach. With the 

addition of detailed patterns, the algorithm can be continuously developed to reach a required level 

of granularity, e.g., to distinguish beams from walls, to distinguish I-Beams from C-beams, or to 

distinguish different sizes of I-Beams. The detailed explanation of the 7 steps is listed below. To 

help illustrate the method, some implementation examples are used in this explanation. 
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(1) Data collection: collect IFC models from different sources to create a dataset with a broad 

coverage of different types of IFC entity usage.  

Although IFC was designed to be an open and neutral data standard that is intended to be used by 

all disciplines and all life cycle phases of a project in the AEC domain, its built-in flexibility allows 

the IFC standard to be used in different ways. For example, the same 3D shape can be represented 

using either a “Swept Solid” (i.e., the solid created by the sweeping motion of an existing solid or 

plane) or a “Boundary Representation” (i.e., a solid created by a collection of connected surface 

elements). Furthermore, the existence of property sets allows BIM implementations to customize 

and define their own properties. Therefore, a dataset consisted of models collected from different 

sources are expected to have a broader coverage of different types of representations and uses of 

IFC entities comparing to models collected from a single source.  

(2) Preprocessing: extract IFC objects from the collected models, manually label the data, and 

divide the objects into training set and testing set.  

In order to classify the objects of an IFC model, the algorithm needs to detect them and extract all 

related information. The extraction of IFC objects is achieved using the algorithm of Won et al. 

(2013) as reproduced by the authors that can extract all building elements from an IFC file and 

store each element as a separate file. Each file contains a building element that is independent of 

other parts of the original IFC model. For example, one file may contain a window of an exterior 

wall, whereas another file may contain a slab on the second floor. Fig. 4 shows the visualization 

of a Duplex Apartment model collected from buildingSMARTalliance of the National Institute of 

Building Sciences (East 2013). Fig. 5 shows two extracted objects from this model. All such 

objects from the collected data are extracted in this step. The objects are manually labeled with 

their correct categories by observing each object in a BIM visualization and data display utility. 
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Labels include two types: existing categories (represented by IFC entity names) in the IFC schema, 

and non-IFC categories. The existing IFC categories represent common building elements whereas 

non-IFC categories can define building elements to any level of detail. During the labeling using 

existing IFC categories, misuse of IFC entities in the collected data will be identified. The division 

of the IFC objects into a training dataset and a testing dataset is conducted using a data dividing 

Java program that the authors wrote. The program randomly picks objects from the extracted set 

and puts them into training or testing set based on a predefined ratio between training and testing 

data. A common training/testing data ratio to use for statistical learning is 70% to 30% (Kemal and 

Salih 2007). However, the authors’ rule-based learning has more rationality (i.e., based on 

geometric theorems) built into the training process and therefore requires less training data 

comparing to statistical learning, in spite of its dependency on the variety of data representations 

and their distributions. To study such a learning effect, the authors propose a learning curve 

measure which will be described in detail in the Experiment Section. 

(3) Environment setup: initially build a classification algorithm with no rules or patterns. 

The authors use Java as their developing language because Java provides a convenient platform 

with a rich set of existing utilities such as java toolboxes of IFC, which provides facilities to extract 

information from an IFC model. The algorithm to be developed will take a single IFC object file 

as input and output the category it belongs to. The classification algorithm is initialized to be empty, 

i.e., with no rules or patterns. This step establishes an environment in which the IFC object 

classification algorithm and sub-algorithms can be developed. By default, the algorithm classifies 

an IFC object into an “unknown” category as no pattern matching rules are applicable. In the 

development stage, the algorithm is developed by extending it with sub-algorithms, e.g., sub-

algorithms to classify an object into beams, walls, columns, etc., or to classify a beam into I-beam, 
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C-beam, rectangular beam, etc. Each sub-algorithm consists of one or more pattern matching-

based rules. A pattern matching-based rule defines a pattern consisted of features that could 

uniquely recognize a category. These features are inherent properties of the AEC objects such as 

number of sub-components, number of faces, cross section profile, extrusion direction, 

dimensional ratio, number of straight lines and curves, line connection angle, length, and turn 

direction. Extraction of these features are achieved using the authors’ developed object analysis 

algorithms similar to the object extraction algorithms. At this step, there are no sub-algorithms or 

rules.  

(4) Primary development: study the representations of the training set objects in IFC, build rules 

and develop sub-algorithms to classify objects into existing categories in IFC. 

Existing categories in IFC represent a common and essential set of elements in a building. For 

example, IfcBeam, IfcColumn, IfcFooting, IfcSlab, and IfcWall are used to represent beams, 

columns, footings, slabs, and walls, respectively. However, misuse of IFC categories could happen. 

For example, a wall should be represented in an IFC model using IfcWall or IfcWallStandardCase, 

but it may be represented using any of the other four IFC entities: IfBeam, IfcColumn, IfcFooting, 

and IfcSlab. This may appear to be correct in visualization, but the semantic information carried 

would be incorrect and therefore cause errors in BIM applications that rely on such semantic 

information. In this step, training data will be used to develop pattern matching rules to classify 

the IFC objects into existing IFC categories such as beams, columns, footings, slabs, and walls, 

based on the geometric representations of the objects. An object in IFC usually has multiple 

geometric representations for its “Body” and “Axis” (Geiger et al. 2014). The proposed method 

here focuses on analyzing the “Body” representation, which could be using one of the three major 

types of solid representation: “Swept Solid,” “Boolean Results,” and “Brep Bodies” 
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(buildingSMART 2007; Zhang 2018). The primary development of sub-algorithms follows an 

iterative process (Fig. 6): (a) Input reading: get an object instance from the training data; (b) Sub-

algorithms development: study the “Body” representation of the object instance and develop sub-

algorithms to capture the essential features of the “Body” representation for classifying it into the 

labeled categories in Step (2); (c) Intermediate testing: apply the cumulative sub-algorithms 

developed up to this point to all the object instances in the training data; (d) Object instances 

identification: identify the object instances that were either correctly classified, incorrectly 

classified, or not classified; (e) Results recording; (f) Recursion: get the next object instance from 

the training data that was not classified, repeat the process until all object instances in the training 

data are classified. 

(5) Secondary development: study the representations of IFC objects and develop sub-

algorithms to classify them into non-IFC defined categories. 

This step aims to further classify the IFC objects into categories that do not have matching IFC 

entity names in the IFC schema. These are categories that usually define more detailed 

characteristics of an object but could be defining an object in any dimension. Those objects are 

expected to be distinguishable based on their geometric information. To identify these object types, 

the same iterative method as in Step (4) will be used. Each of developed sub-algorithm will be 

used to identify one specific object type such as I-beam, C-beam, and rectangular beam.  

(6) Error analysis and training improvement: analyze errors in the classification results on the 

training set, further add/revise sub-algorithms and rules to improve the training performance. 

After the development in Step (4) and Step (5), the algorithm should be able to classify all the 

objects in the training data. To verify the correctness, the classification results are compared with 

the manually labeled categories. For the instances with incorrect classification, an error analysis 
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will be conducted. The error analysis and training improvement step follows a six-step 

methodology (Fig. 7): (1) Input reading: get an object instance that was classified incorrectly; (2) 

Rule analysis: analyze the application of sub-algorithms on this instance and find the pattern-based 

rule that fires on this instance; (3) Rule modification: modify the identified rule to correct the error 

instance and update the corresponding algorithm; (4) Modification testing: reapply the updated set 

of sub-algorithms on the training set; (5) Modification updating: if the performance on the training 

set improves, then accept the update, otherwise decline the update; (6) Recursion: get the next 

object instance that was classified incorrectly and repeat the procedure until all error instances 

were tried.    

(7) Testing: apply the developed classification algorithm to testing data for evaluation. 

This is the evaluation section of the method measured by recall and precision. The authors adapted 

the measurements of recall and precision from information science domain (Makhoul et al. 1999). 

Recall is defined as the number of correctly classified objects in a category divided by the total 

number of actual objects in that category. Precision is defined as the number of correctly classified 

objects in a category divided by the total number of objects that have been classified into that 

category.  

Experimental Implementation and Validation  

For testing and evaluation, the proposed method was empirically implemented in classifying IFC 

objects collected from 5 IFC models, with 5 additional objects from National BIM Library of UK 

(NBS of UK 2014). The implementation details are described in the following sections.  
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(1) Data collection: collect IFC models from different sources to create a dataset with a broad 

coverage of different types of IFC entity usage. 

To cover the identified main types of AEC objects including beams, columns, footings, slabs, and 

walls in different types of representations and uses of IFC entities, the authors collected data from 

three different sources: (1) the “Common Building Information Model Files” published by 

buildingSMARTalliance of the National Institute of Building Sciences (East 2013), (2) Revit 

models exported as IFC data files, and (3) National BIM library of UK (NBS of UK 2014). Among 

the collected data, the authors selected the duplex apartment model (Deplex_A) from the first 

source, the Revit architectural sample model (Rac_basic), the Revit advanced structural sample 

model (Rst_advanced), the Revit basic structural sample model (Rst_basic), and the Revit 

technical school sample structural model (Tech_school) from the second source, and five special 

beam model objects (including four U-beams and one L-beam) from the third source. The selection 

was based on the variation in their model types and object types. The similarity between all the 

selected models (except for the special beam model objects) was that they all contained beams, 

columns, footings, slabs, and walls. The authors collected the objects by searching through open 

source BIM data and observing their included AEC objects. The selected models contained 

hundreds of AEC objects on average. The special beam model objects were collected so that the 

authors could test secondary development in addition to primary development of the proposed 

method.  
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(2) Preprocessing: extract IFC objects from the collected models, manually label the data, and 

divide the objects into training set and testing set. 

All objects from the selected IFC models were extracted, resulting in a total of 1,891 objects. As 

shown in Table 1, there were 86, 85, 883, 446, 386, and 5 objects from each of the five IFC models 

and the National BIM library of UK, respectively.  

The authors invited 3 independent annotators to manually label the same set of objects with their 

building element types. The average inter-annotator agreement was 87.21% initially (Table 2). For 

the objects that had different labels by different annotators, the authors arranged discussions with 

the annotators and tried to get agreement through debating and convincing each other. In the end, 

an average inter-annotator agreement of 99.06% was achieved. For the 18 objects (0.94% of the 

data) that annotators still did not achieve agreement, the authors picked the majority labels 

(examples in Table 3). BIM viewer was used to visualize the extracted objects and display their 

properties during the manual labeling. Based on the above labeling process, 795 objects were 

labeled as beams, 412 objects were labeled as columns, 348 objects were labeled as footings, 74 

objects were labeled as slabs, and 262 objects were labeled as walls (Table 4). Using the data 

dividing Java program that the authors wrote, the authors collected 1,325 objects into the training 

set and 566 objects into the testing set. The collected data was not exhaustive but sufficient for 

testing the authors’ proposed method (Beleites et al. 2013). In addition, the method can be used to 

continuously develop more patterns and rules to cover more categories when fed with more data. 

Because of the composite nature of the proposed method, the patterns and rules to be developed 

for future categories will not affect the processing results of the already covered categories. 
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(3) Environment setup: initially build a classification algorithm with no rules or patterns. 

The authors developed the framework of the classification algorithm and implemented it in Java 

programming language. It takes a file as input and outputs a string that represents the classification 

result of the object in that file. If the object cannot be classified, an error message with detailed 

information will be displayed. At this step, there were no rules or patterns yet, and the default error 

message “cannot be classified” would be displayed if the method was applied to a model. 

(4) Primary development: study the representations of the training set objects in IFC, build rules 

and develop sub-algorithms to classify objects into existing categories in IFC. 

Using the iterative process described in the method section, the authors developed sub-algorithms 

and rules to classify all objects in the training data into five main existing IFC categories: beams, 

columns, footings, slabs, and walls. Among the instances in the dataset, the study of one object 

will usually be sufficient to classify all object instances with similar geometric representations. To 

study the effect of training at each stage of the development, the authors recorded the number of 

correctly classified instances after each stage of development and plotted them as a learning curve. 

Table 5 shows the geometric content of the study, and the number of correctly classified instances 

with respect to each stage of the development. In each stage, the geometric features of the targeted 

type of geometric representation were analyzed and used to compose patterns and rules for 

identifying objects represented using this targeted type of geometric representation. Stage 1 to 

Stage 8 focused on the “Swept Solid” type of geometric representation. Specifically, Stage 1 

focused on rectangular shapes; Stage 2 focused on I-beams represented by “Swept Solid” with 

IfcArbitraryClosedProfileDef; Stage 3 focused on slabs represented by “Swept Solid” with 

IfcArbitraryClosedProfileDef; Stage 4 focused on objects represented by “Swept Solid” with 

IfcCircleProfileDef; Stage 5 focused on objects represented by “Swept Solid” with four other built-
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in shape profiles, including I-shape, C-shape, U-shape, and L-shape; Stage 6 focused on objects 

represented by “Swept Solid” with built-in IfcCircleHollowProfileDef, which defines a ring shape; 

Stage 7 focused on objects represented by “Swept Solid” with IfcCompositeCurve; Stage 8 focused 

on objects represented by “Swept Solid” with IfcClosedShell. Stage 9 to 12 focused on “Brep,” 

“Clipping,” “CSG,” and “Mapped Representation” types of geometric representation, respectively. 

Fig. 8 shows the plot of the learning curve. Some development details are described below. 

In the geometric representations of objects in the training dataset, the following solid 

representation methods were used: “Swept Solid” (using IfcExtrudedAreaSolid), “Clipping,” 

“MappedRepresentation,” “Brep,” and “CSG”. Among these representation methods, “Swept 

Solid” is the most frequently used one: 1,035 of 1,325 (78.11%) of entities in the training data used 

“Swept Solid”. This representation method extends a 2D shape through a direction that is not in 

the 2D plane, to create a 3D shape. For example, extending a long narrow rectangular shape on the 

floor vertically upwards creates a solid cuboid shape that could be used to represent the geometry 

of a vertical standing wall. The same wall may also be represented using a “Brep” by enclosing 

six connected faces. “Brep” is a powerful geometric representation in IFC (Alain 2016). It can be 

used to approximate almost any shape. The internal structure of Brep data can vary a lot, which 

adds to the complexity of Brep-based geometries and their processing. In contrast, “Swept Solid” 

(or IfcExtrudedAreaSolid) is a faster way to represent common building element shapes 

(buildingSMART 2018b). It can easily represent a cuboid shape by extending a rectangular planar 

surface in its normal direction or the opposite direction. There are also “Clipping”, “CSG”, and 

“MappedRepresentation” that can represent solid model elements (buildingSMART 2007). 

“Clipping” is the Boolean results of two representations; “MappedRepresentation” reuses existing 

representation for new ones; “CSG” is the Boolean results of multiple primitive solids.   
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In the first stage, the authors studied the data representation of “Swept Solid,” which contains an 

instance of IfcExtrudedAreaSolid (buildingSMART 2018a). There are four attributes of an 

IfcExtrudedAreaSolid: a swept area, a direction, a position, and a depth. The swept area defines a 

2D shape to be extended; the position defines the placement position and direction where the solid 

object is to be placed; the extruded direction defines a direction along which the swept area is 

extended; and the depth defines a distance for which the swept area is extended. The authors use 

the assumption that a beam, when represented using a “Swept Solid,” is extended horizontally 

while other building elements such as walls and columns will be extended vertically. So the 

extruded direction is used as an indicator for differentiating beams from the other building 

elements. When looking at the orientation of an object, it is possible that an object is represented 

by “Swept Solid” with extrusion in the vertical direction but then rotated horizontally during the 

placement of the object. In other words, the position and the direction that an object was placed 

also need to be taken into consideration. As a result, in developing the algorithm, the authors 

combined both information. 

In a “Swept Solid” representation, the extruded direction can be obtained from the IfcDirection 

property, and the placement is defined using an IfcAxis2Placement3D, as described by a point and 

two axes (ideally orthogonal). The point is the origin and the two axes are the Z and X axes. The 

axis Z = (Z0, Z1, Z2) and X = (X0, X1, X2) are both represented by a vector with three parameters. 

They are called “Axis” and “RefDirection” respectively in an IfcAxis2Placement3D. In this way, 

it defines a unique position and orientation for the placement of an object. In comparison, the 

direction of the original extruded direction in the “Swept Solid” representation is defined directly 

using a 3D vector (x, y, z) with three parameters. After extracting these information, the authors 
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combined the extruded direction and placement information using Equation (1) to compute the 

final extruded direction of the object. 

Final extruded direction: 

(xnew, ynew, znew) = x*(x0,x1,x2) + y*(x0,x1,x2) × (z0,x1,x2) + z*(z0,z1,z2)       (1) 

where: 

Extruded direction (x,y,z) = x * (1,0,0) + y * (0,1,0) + z * (0,0,1), 

Placement Z axis (Axis): (z0,z1,z2), 

Placement X axis (RefDirection): (x0,x1,x2), 

As a result, if the final extruded direction is horizontal, the object will be processed as a candidate 

of a beam. In contrast, an object with vertical extruded direction will become a candidate for the 

other categories: column, footing, slab, and wall. Then the depth information could be used to 

differentiate the slab category from the other three categories. Finally, the 2D shape of the swept 

area (i.e., cross section) and ratios between different dimensions are used to differentiate the 

column, footing, and wall categories. 

Fig. 9 shows the algorithm after development. The algorithm starts from a single IFC object and 

extracts its geometric representation by tracing its associated IfcShapeRepresentation instance. 

According to the extracted geometric representation type, the algorithm flows to “Clipping”, 

“Swept Solid”, “Brep”, “MappedRepresentation”, or “CSG”. For example, if the geometric 

representation is a swept solid, the algorithm will extract its extruded direction. If the extruded 

direction is horizontal, the algorithm will check the geometry and classify the input into designated 

beam types; if the extruded direction is vertical, the algorithm will make the object a candidate of 

column, footing, slab, and wall categories. Based on the value of the extruded depth, slab can be 
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differentiated from the other three categories. To distinguish footing, column, and wall, the shape 

of the cross section (e.g., square v.s. circle) and ratios between the three dimensions are used. For 

example, a circular cross section profile excludes the object from the wall category. The 

dimensional ratio between height and the other two dimensions can be used to distinguish slabs 

from other categories. 

For “Brep”, the algorithm extracts the number of faces first. Using the number of faces, the 

algorithm selects possible candidates. For example, an instance with 6 faces will be a candidate of 

a cuboid. Then the sub-algorithm for each shape will verify the features of that shape. An example 

of development will be shown in step (5). 

For “Clipping”, the algorithm picks the main element that will be cut or added. The classification 

result will follow the result of that element. This method works well because most clipping results 

are some modification of an existing “Swept Solid,” which has already been classified based on 

its geometric representation.  

For “MappedRepresentation”, the algorithm will track the original element to be mapped and 

classify it. The classification result of the original element will be used as the classification of the 

mapped object. Such use is feasible because the mapping from the original element to the mapped 

object does not change the internal geometric representation of the shape. 

As a result of the development, the authors created an algorithm to classify an IFC object into one 

of the following building elements: beams, columns, footings, slabs, and walls. The algorithm did 

not use the entity name of the IFC object, because the entity name may be incorrect due to a misuse. 

Instead, it directly searches for the geometric representation information of the object from the 

standalone IFC file and uses this information for the classification. 
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(5) Secondary development: study the representations of IFC objects and develop sub-

algorithms to classify them into non-IFC defined categories.  

In this step, the authors expanded the classification on beam into subtypes of beams. Beams can 

be classified by its support into simply supported beam, fixed beam, cantilever beam, continuously 

supported beam, or by the cross-sectional shape into I-Beam, C-Beam, T-Beam, etc. (Chennu 2017; 

buildingSMART 2018c). Because the authors focus on using geometric information, which may 

not necessarily have the support type information, sub-algorithms were developed to classify the 

beams by their cross-sectional shapes.  

In the collected data, there were three ways to represent the geometry of a beam: a “Swept Solid” 

with built-in 2D shapes, a “Swept Solid” with a 2D IfcClosedShell, and a “Brep,” i.e., an 

IfcFacetedBoundaryRepresentation. The authors developed sub-algorithms for processing all the 

three cases. 

In the first case, the beam’s geometry will be represented by a “Swept Solid” with built-in 2D 

shape profiles, which is an IfcProfileDef (buildingSMART 2018c), such as IfcIShapeProfileDef 

and IfcCShapeProfileDef. Using shape profiles provided in IFC, it is straightforward to represent 

common shaped beams. For example, I-Beam can be represented using the IfcIShapeProfileDef, 

which can then be automatically classified as an I-Beam based on its profile shape name.  

However, built-in shape profile types are not the only way to represent an I-Shape. In practice, 

there are a large amount of data that were using IfcArbitraryClosedProfileDef, which is a 2D shape 

bounded by some arbitrary lines or curves that are closed. For the closed curves, their 2D features 

can be used to identify the unique cross-sectional shape. For example, an I-Beam has two possible 

cross sections: W-Section and S-Section as shown in Fig. 10. 
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Although an S-Section can be classified as an I-Beam, the W-Section is much more common in 

industrial use. In fact, in the collected data, there were only W-Section I-Beams. Similar to I-Beam 

having different variants, there can be variants of W-Section I-Beams. However, the goal here was 

only to distinguish I-Beam from other beam types, such as C-Beams and U-Beams. To distinguish 

them, the authors developed a sub-algorithm that counts the number of boundary lines and curves 

and checks the linkages between them. The authors call this type of sub-algorithm shape recognizer. 

For example, a typical I-Beam cross section contains 12 lines (i.e., straight lines) and 4 curves. 

The linkages between the lines and curves are unique, which makes them feasible for use in 

distinction. For example, for a standard U-Beam as shown in Fig. 11, there are 8 lines. For a 

standard C-Beam, there are 12 lines and 8 curves. However, in the practical use of IFC, a C-Beam 

may only contain 12 lines and 4 curves or 12 lines without any curves, according to the level of 

details of their representations. Such complexity may increase the number of possible 

configurations of beam shapes. However, even in these special cases, shape configurations can 

still be enumerated. To sort the beams into different types, the authors developed the following 

four-step method (Fig. 12): (1) Input reading: read in a beam candidate; (2) Lines and curves 

counting: count the number of lines and curves of the geometric representation of the beam 

candidate; (3) Shape checking: compare the line configuration of the geometric representation with 

all studied 2D shapes; (4) Linkage verification: verify the possible shapes by checking the unique 

linkages between lines and curves. 

Among all the beams in the training data, the authors studied four shapes that had built-in 2D 

profiles in IFC. Examples of these shapes are shown in the beams in Fig. 11. They are 

IfcIShapeProfile, IfcCShapeProfile, IfcUShapeProfile, and IfcLShapeProfile (buildingSMART 
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2018c). They can be recognized by adding a new count of the lines and curves, and a verification 

of their linkages. 

Table 6 shows the calculated possible counts of lines and curves of Rectangular Beam, U-Beam, 

C-Beam, I-Beam, and L-Beam, respectively. 

Based on the information in Table 6, the authors summarized possible beam types of different 

geometric patterns in terms of the number of lines and curves in their geometric representations 

(Table 7). 

According to Table 7, with the same number of lines and curves in their geometric representations, 

two beam objects may still have different possible beam types. To successfully differentiate such 

types of beams, the linkage types of the lines and curves in the geometric representations were 

used. For example, for an I-Beam, the following three aspects of the connections between lines 

will be checked. First, all the angles between connected lines must be right angles. Second, there 

must be four different lengths of lines based on the symmetry of I-Beam. Third, because lines have 

directions in IFC data, the way they are connected (e.g., left turn versus right turn) also provide 

useful information. By these observations, the authors developed a verification sub-algorithm that 

verifies the angles, lengths, and turn directions of lines and curves. 

Conceptually, checking linkages helps differentiate the two shapes shown in Fig. 13. These two 

shapes both have 12 lines, with the lengths of all the lines being the same. Apparently, the shape 

in the right part of Fig. 13 should not be classified as an I-Beam while the shape in the left part of 

Fig. 13 should. Such distinction is made at the linkage checking step by analyzing the turn 

directions of the lines. 
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For Brep, there are many ways to represent a beam, the authors used a data-driven approach and 

developed several sub-algorithms for different shape representations. Each time a new shape 

representation was came across in the training data, a new sub-algorithm was added.  

As a result, the authors developed sub-algorithms for all types of beams observed in the training 

data. There were three main types of sub-algorithms developed: one for “Swept Solid” with built-

in shape profiles, one for “Swept Solid” with a 2D IfcClosedShell, and one for Brep.  

The first sub-algorithm type was straightforward by tracking the built-in shape used, as previously 

discussed. The second sub-algorithm type was using the shape recognizer that differentiates shapes 

based on patterns of lines and curves. The third sub-algorithm type classifies the beam objects that 

are represented using “Brep.” Some of them are single beams, for which a recognizer sub-

algorithm was developed for each type of beam. Some of them are trusses. Fig. 14 shows a 

visualization of a truss. In the training data, there can be from 42 sub-elements to as many as 72 

sub-elements in a truss. Each truss consists of two major beams (i.e., longeron) and many web 

members across the bridge, with each major beam consisted of two L-beams as shown in Fig. 14. 

The authors developed a sub-algorithm that: (1) recognizes the two major beams (therefore the 

four L-beams), and (2) verifies and counts the web members. The authors classified this type of 

“Beam” into a truss category. As shown in Fig. 15, this sub-algorithm takes a single IFC object as 

input and counts the number of sub-elements (n). If n is between 42 and 72, then the sub-algorithm 

finds the two sub-elements with the largest two sizes (se1 and se2) and checks their shapes. If n is 

not between 42 and 72, then the object being processed is not identified as a truss. In the shape 

checking, the sub-algorithm tests if any shape associated with the two sub-elements is not in L-

shape. If so, then the object being processed is not identified as a truss. Otherwise (all the four 

shapes associated with the two sub-elements are in L-shape), store all the remaining n-2 sub-
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elements (i.e., web members) into a stack structure (s). The content in stack s is checked, if s is not 

empty, the sub-algorithm pops one sub-element from s and checks its position and number of faces. 

If the position is between the positions of se1 and se2, and at the same time if the number of faces 

is among 6, 8, 10, and 14, then this sub-element passes the test and the sub-algorithm moves on to 

test the next sub-element from stack s. If all sub-elements from stack s pass the test, then the object 

being processed is identified as a truss.  

Similar to truss, the authors developed sub-algorithms for each unique type of beams. Examples 

of such shapes of beams are shown in Fig. 16.  

(6) Error analysis and training improvement: analyze errors in the classification results on the 

training set, further add/revise sub-algorithms and rules to improve the training performance. 

The results of object classification were evaluated in terms of recall and precision (Table 8).  

In the categories of beam, slab, and wall, 100% recall and precision were achieved. The authors 

noticed a low recall (31.28%) in the footing category and low precision (63.05%) in the column 

category. Through analysis, it was found that the shapes of 167 footings in the experiment were 

similar to columns and incorrectly classified into columns, as shown in Fig. 17. Therefore the 

cause of this error was the insufficiency of relying solely on geometric information in such a case. 

In other words, by checking shape information here, the footing cannot be differentiated from 

columns. A possible solution to that is adding in the consideration of other types of information 

such as relative location of an object with other objects. Other than the 167 misclassified footings, 

the classification results were 100% in both recall and precision. 

The classification results on detailed beam types achieved 100% recall and precision in all 

categories, as shown in Table 9. 
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(7) Testing: apply the developed classification algorithm to testing data for evaluation. 

To test the expected performance of the algorithm, the authors tested the algorithm on testing data. 

The results are listed in Table 10 and Table 11. 

Results Analysis and Discussion 

The developed algorithm worked well in most cases on the testing data with a higher than 90% 

precision and recall. A low recall (20.95%) in the footing category was due to the lack of 

distinction between the shapes of footings and columns (as in the training data), which indicated 

the insufficiency of relying solely on geometric information for object classification in certain 

cases. By adding a simple elevation information, however, the algorithm successfully 

distinguished such footings from columns. For the rest of errors in testing data, the authors 

inspected the instances and found that all the 5 error instances were due to new geometric 

representations in the testing data which were not covered in the training data. Among these 5 error 

instances, one was due to a new “SurfaceModel” geometric representation instance in the testing 

data, and 4 were due to new “Brep” geometric representation instances in the testing data.  

The experiment shows that our proposed method could be used to develop an algorithm (with sub-

algorithms) that successfully captures the core features of object geometries and use them to 

distinguish AEC objects. The core features are consisted of: number of sub-components, number 

of faces, cross section profile, extrusion direction, dimensional ratio, number of straight lines and 

curves, line connection angle, length, and turn direction. Using these features, the algorithm can 

correctly classify beams, columns, footing, slabs, and walls, where the errors come from either 

different objects sharing the same exact shape or the lack of coverage of geometric patterns in the 

training data. For beams, the algorithm can identify the detailed beam types it was designed to 

identify with 100% precision and recall. The algorithm can be further extended if more objects of 
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different types and shapes are added to the training data. It can be continuously and accumulatively 

developed in this manner by adding more patterns and rules to cover more categories to ultimately 

lead to a comprehensive classification algorithm that identifies any type of AEC object in IFC 

automatically. Because of the composite nature of the proposed method, the patterns and rules to 

be developed for future categories will not affect the processing results of the already covered 

categories, therefore, the authors’ proposed method can result in an accurate and reliable 

classification method. 

A comparison between the proposed method and the methods by Ma et al. (2017) and Sacks et al. 

(2017) was conducted (Table 12). While all methods work for BIM and could achieve 100% 

precision and recall, their computational complexities differ. The method by Ma et al. (2017) has 

a time complexity of O(kn), where k is the highest number of properties for a studied object, and 

n is the number of studied objects. The method by Sacks et al. (2017) has a time complexity of 

O(n) in theory, where n is the total number of objects to be sort. In practice, the complexity can be 

higher because an optimal subset of unique rules may not always be achieved. In contrast, the 

algorithm developed using the proposed method in this paper has constant time complexity O(1), 

because the algorithm solely analyzes the geometric properties of the instances without the need 

of comparing an object with all possible categories in an enumerative manner. In addition, the 

proposed method does not require the use of reference objects during the classification application 

stage, which was needed in the methods of Ma et al. (2017) and Sacks et al. (2017). 

Limitations and Future Work 

In spite of the promising experimental results and the ability to achieve 100% recall and precision 

in automated AEC object classification, the following limitation of the proposed method is 

acknowledged. The proposed method is labor intensive in the algorithm development phase, 
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especially when a comprehensive algorithm is pursued which is expected to cover all possible 

geometric shape representations of AEC objects. In future work, the authors plan to: (1) formally 

add the use of locational information of AEC objects into the proposed method to avoid the 

confusion of objects of the same geometry but different types; (2) further develop the algorithm 

with more data that belong to more categories and cover more geometric shape representations of 

AEC objects; and (3) investigate potential ways to automate some or all steps of the algorithm 

development phase using machine learning especially deep learning.   

Contributions to the Body of Knowledge 

This research is important from both intellectual and application perspectives. From an intellectual 

perspective, this research contributes to the body of knowledge in four main ways. First, we offer 

a new data-driven method for developing an algorithm and sub-algorithms that can automatically 

classify IFC-based BIM objects into predefined categories. The algorithms rely on the inherent 

geometric features of AEC objects rather than entity or attribute names and therefore prevent 

classification errors caused by misuse of entities. Geometric features are stable and reliable 

properties of AEC objects (not changing with regard to software implementation, modeling 

decisions, an/or language/culture contexts) and therefore object classification algorithms 

developed using the authors’ proposed method can be more robust than those that depend on entity 

or attribute names. Other than the cases where different types of AEC objects have the exact same 

shape, the algorithm could classify objects with 100% recall and precision. Second, we offer a set 

of features to capture the core geometric representation of AEC objects, including: number of sub-

components, number of faces, cross section profile, extrusion direction, dimensional ratio, number 

of straight lines and curves, line connection angle, length, and turn direction. Experiments show 

that this set of features successfully capture the characteristics of the geometric representations of 
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AEC objects for distinguishing different objects. Third, we show that geometric information can 

be used to differentiate AEC objects in BIM, except for the rare cases where different objects have 

the same geometry. The impact of applying this work in the AEC domain could be far-reaching. 

First, the use of inherent geometric features of AEC objects in classifying the objects opens a new 

door to BIM interoperability because such features of AEC objects do not change according to 

modeler, software provider, language, culture or other contexts. Second, the elimination of human-

induced misuse errors in BIM enables better usability of BIM in downstream applications such as 

cost estimation, building code compliance checking, and structural analysis. A better usability of 

BIM can in turn promote the adoption of BIM in the AEC industry. Third, the proposed method 

can be used by our research community to develop AEC object classification algorithms in a 

continuous and accumulatively way, which will ultimately lead to a comprehensive set of AEC 

object classification algorithms that will help significantly reduce or eliminate classification errors 

of BIM objects caused by misuse of entities.  

Conclusions 

This paper presented a data-driven, iterative method for automated classification of AEC objects 

in an IFC-based BIM. The method can be used to develop an algorithm that reads in an AEC object 

and automatically classifies it into predefined categories. These categories include existing IFC 

categories that represent common building object types and non-IFC categories that can represent 

a more detailed level of classification of objects. The developed algorithm consists of multiple 

sub-algorithms with each sub-algorithm depicting a pattern matching rule based on patterns of 

selected features. To test the proposed methodology, an experiment was conducted where IFC 

models were collected from three different sources, from which 1,891 objects were extracted and 

manually labeled with five IFC categories (beams, columns, footings, slabs, and walls) and eleven 
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non-IFC categories (e.g., C-Beam, I-Beam, L-Beam, U-Beam). The data was divided into training 

data (1,325 objects) and testing data (566 objects). An algorithm was developed using the proposed 

method based on the training data and tested on the testing data. In common building elements 

categories, 84.45% recall and 85.20% precision were achieved. In detailed beam categories, 100% 

recall and precision were achieved. For common building element categories, the errors were 

found to come from two sources: (1) different objects (i.e., footings and columns) sharing the exact 

same geometry; and (2) occurrence of geometric shape representation patterns in testing data that 

were not included in training data. The first source of error can be eliminated by adding locational 

information of objects for consideration in addition to geometric information. The second source 

of error can be avoided by including all foreseeable geometric shape representations in the training 

data. By such a strategy, the proposed method can achieve 100% recall and precision in the 

classification of all categories of AEC objects. The computational complexity of the authors’ 

method was also compared with the state-of-the-art methods. The authors’ method has a constant 

computational complexity which is better than the linear (or higher) computational complexity of 

the state-of-the-art methods.  
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Fig. 1. The visualization of a wide flange beam/I-beam 

 

Fig. 2. IFC data of an I-beam as represented by an IfcBeam 
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Fig. 3. The proposed 7-step method for automated IFC-based BIM object classification 
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Fig. 4. Visualization of a Duplex Apartment model 

 

Fig. 5. Extracted building elements from the Duplex Apartment model: a slab (left) and a wall 

(right) 
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Fig. 6. Primary development flowchart 
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Fig. 7. Error analysis and training improvement flowchart 
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Fig. 8. Plot of the learning curve for all objects in the training data 
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Fig. 9. Algorithm flowchart for object classification 
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Fig. 10. W-Section (left) and S-Section (right) types of I-beam 
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Fig. 11. U-Beam, C-Beam, I-Beam, and L-Beam 
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Fig. 12. Beam classification method 
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Fig. 13. Shapes with 12 lines but different line connection types 

 

Fig. 14. The visualization of a truss 
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Fig. 15. The developed sub-algorithm for recognizing a truss 
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Fig. 16. Other shapes of beams 

 

Fig. 17. Visualization of incorrectly classified objects 
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Table 1. Extracted Objects from IFC Models 

IFC model Number of objects extracted 

Deplex_A 86 

Rac_basic 85 

Rst_advanced 883 

Rst_basic 446 

Tech_school 386 

BIM_UK 5 

Total 1,891 

 

Table 2. Inter-Annotator Agreements of IFC Objects Manual Labeling 
Annotator A B C Average 

A - 81.37% -> 99.79% 81.52% -> 98.79% 81.45% -> 99.29% 

B 81.37% -> 99.79%  - 98.74% -> 98.58% 90.06% -> 98.19% 

C 81.52% -> 98.79% 98.74% -> 98.58% - 90.13% -> 99.69% 

Average 81.45% -> 99.29% 90.06% -> 99.19% 90.13% -> 98.69% 87.21% -> 99.06% 

 

Table 3. Sample Majority Vote Labels 

AEC Object and Model Origin Label by 

A 

Label by B Label by C Majority Vote 

IfcWall34 from Duplex_A Wall Wall Beam Wall 

IfcWall35 from Duplex_A Wall Wall Beam Wall 

IfcBeam132 from Rst_advanced Beam Colum Beam Beam 

IfcBeam133 from Rst_advanced Beam Colum Beam Beam 

IfcBeam133 from Rst_advanced Beam Colum Beam Beam 

 

Table 4. Manual Labels of Objects 

Labels Number of objects labeled 

Beams 795 

Columns 412 

Footings 348 

Slabs 74 

Walls 262 

Total 1,891 
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Table 5. Learning Curve Parameters 

Stage Number Geometric Content of Study 
Number of Correctly 

Classified Objects 

Stage 1 Rectangular shapes 146 

Stage 2 
I-Beam with 

IfcArbitraryClosedProfileDef 
153 

Stage 3 
Slabs with 

IfcArbitraryClosedProfileDef  
184 

Stage 4 IfcCircleProfileDef 364 

Stage 5 
Four other built-in shape 

profiles 
538 

Stage 6 IfcCircleHollowProfileDef 554 

Stage 7 IfcCompositeCurve 557 

Stage 8 IfcClosedShell 637 

Stage 9 Brep 902 

Stage 10 Clipping 1,004 

Stage 11 CSG 1,005 

Stage 12 Mapped Representation 1,325 

Total All 1,325 
 

Table 6. Possible Number of Lines and Curves for Rectangular Beam, U-Beam, C-Beam, I-Beam, 

and L-Beam  

 
Beam Types Lines Curves 
Rectangular 

Beam 
4 0 

U-Beam 
8 0 
8 2 
8 4 

C-Beam 
12 0 

12 4 

12 8 

I-Beam 
12 0 

12 4 

L-Beam 
6 0 
6 1 
6 2 

 

  



 

54 

 

Table 7. Possible Beam Type According to Their Number of Lines and Curves in Geometric 

Representation 
Number of 

Lines 
Number of Curves Possible Beam Shape 

4 0 Rectangular Beam 
6 0, 1, 2 L-Beam 

8 0, 2, 4 U-Beam 

12 0, 4 I-Beam, C-Beam 

12 8 C-Beam 

 

 

Table 8. BIM Object Classification Results of Training Data 
Object 

Types 
Number of 

Actual Objects 

(a) 

Number of Objects 

Classified into the 

Category (b) 

Number of Correctly 

Classified Objects (c) 

Recall 

(c/a) 

Precision 

(c/b) 

Beam 561 561 561 100% 100% 

Column 285 452 285  100% 63.05% 

Footing 243 76 76 31.28% 100% 

Slab 52 52 52 100% 100% 

Wall 184 184 184 100% 100% 

Total 1,325 1,325 1,158 87.40% 87.40% 

 

Table 9. Beams Classification Results of Training Data 

Beam 

Shapes 

Number of 

Actual 

Objects (a) 

Number of Objects 

Classified into the 

Category (b) 

Number of Correctly 

Classified Objects (c) 

Recall 

(c/a) 

Precisio

n (c/b) 

Rectangular 

Beam 
155 155 155 100% 100% 

C-Beam 70 70 70 100% 100% 

I-Beam 35 35 35 100% 100% 

L-Beam 1 1 1 100% 100% 

U-Beam 5 5 5 100% 100% 

Rectangular 

Beam with 

Cuts 

222 222 222 100% 100% 

Round 

Beam 
11 11 11 100% 100% 

Truss 35 35 35 100% 100% 

Hollow  

Round 

Beam 

12 12 12 100% 100% 

Skewed  

I-Beam 
12 12 12 100% 100% 

Total 558 558 558 100% 100% 
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Table 10. BIM Object Classification Results of Testing Data 

Object 

Types 

Number of 

Actual 

Objects (a) 

Number of Objects 

Classified into the 

Category (b) 

Number of Correctly 

Classified Objects (c) 

Recall 

(c/a) 

Precisio

n (c/b) 

Beam 234 234 234 100% 100% 

Column 127 210 127 100% 60.48% 

Footing 105 22 22 20.95% 100% 

Slab 22 20 20 90.91% 90.91% 

Wall 78 75 75 96.15% 96.15% 

Total 566 561 478 84.45% 85.20% 

 

Table 11. Beams Classification Results of Testing Data 

Beam 

Types 

Number of 

Actual 

Objects (a) 

Number of Objects 

Classified into the 

Category (b) 

Number of Correctly 

Classified Objects (c) 

Recall 

(c/a) 

Precisio

n (c/b) 

Rectangular 

Beam 
64 64 64 100% 100% 

C-Beam 29 29 29 100% 100% 

I-Beam 9 9 9 100% 100% 

L-Beam 0 0 0 100% 100% 

U-Beam 3 3 3 100% 100% 

Rectangular 

Beam with 

Cuts 

99 99 99 100% 100% 

Round 

Beam 
5 5 5 100% 100% 

Truss 15 15 15 100% 100% 

Hollow  

Round 

Beam 

8 

 

8 

 

8 

 

100% 100% 

100% 100% 

100% 100% 

Skewed  

I-Beam 
2 2 2 100% 100% 

Total 234 234 234 100% 100% 

 

Table 12. Time Complexity of the Proposed Method in Comparison with the State-of-the-Art 

Methods 

Methods Time Complexity 

Proposed Method O(1), constant time. 

Ma et al. 2017 O(kn), k is the highest number of properties for a studied object, and n is 

the number of studied objects 

Sacks et al. 2017 O(n) in theory. May be higher in practice. 
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