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Abstract

Industry foundation classes (IFC) is widely accepted as the future of building information
modeling (BIM) to take on the challenge of BIM interoperability and enables its support of various
automation tasks. However, it is not uncommon to‘see misuses of IFC entities during the creation
of BIM. Such misuses prevent a successful automation of BIM-supported tasks because
misclassification of objects in BIM can lead to significant negative consequences in downstream
applications due to incorrect semantic information provided. To address this problem, the authors
propose a new data-driven, 'iterative method that can be used to develop an algorithm to
automatically classify each object in an IFC model into predefined categories. The algorithm
consists of multiple sub-algorithms with each sub-algorithm depicting a pattern matching rule that
uses inherent.features of the geometric representation of an architecture, engineering, and
construction (AEC) object. The method was tested in an experiment where IFC models from three
different sources were collected and 1,891 AEC objects were extracted and divided into training
and testing data for use. By comparing the classification results of the algorithm developed based
on training data and applied to testing data with a manually developed gold standard, 84.45% recall

and 85.20% precision were achieved in common building element categories, 100% recall and
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precision were achieved in detailed beam categories. The sources of errors were found to be: (1)
different objects sharing the same geometric shape; and (2) uncovered geometric shape
representation in the training data. By adding locational information into consideration in addition
to geometric information and making sure training data covers all geometric shape representations,

100% precision and recall can be achieved for all categories.

Author keywords: Object classification; Building information modeling (BIM); Interoperability;

IFC; Computer applications.

Introduction

Since the emergence of the first Building information modeling (BIM) software in the 1980s - the
ArchiCAD’s Radar CH - BIM has been under fast development due to its high demand (Quirk
2012). BIM software, such as AutoDesk Revit, Bentley AECOsim, Solibri Model Viewer, and
BIMserver, help people visualize a building design prior to its construction (Eastman et al. 2011).
Such pre-construction visualization improves collaboration between different stakeholders such as
planner, designer, structural, engineer, construction manager, and field workers. A better
collaboration between these stakeholders will likely improve performance and quality of the end
product — the building./With the BIM software at hand, people can take quick responsive actions
to design changes and discover errors and omissions prior to the actual construction (Eastman et
al. 2011). There are many off-the-shelf BIM software that a BIM user can choose from. For
example, ETakeoff helps people with the cost estimation task, ANSYS helps people with the
structural analysis task, and STR Vision provides a 4D and 5D modeling system to help people
with scheduling and cost estimation tasks. For such BIM uses, one would like to take advantage
of all the strengths of these different BIM software. Considering that for the same project the BIM

data in these different software belong to the same building structure, it will be a waste of

2



opportunities to create BIM data from scratch in each of the software. An optimal process would
require a seamless data transfer between different software in an automated fashion. In theory,
BIM is designed to be interoperable. However, in practice, BIM software developed by different
companies use different data structures and data formats. As a result, data transfer between
different software used by stakeholders in different disciplines can be costly because of the needed
manual efforts or converters in conducting the transfer and fixing information inconsistency or
adding missing information, even for the same building project. For example, if two software need
one converter that converts the BIM model between the formats of the tworsoftware, ten BIM
software would require CZ, = 45 converters (theoretically) to achieve interoperability between all
of them. The number of converters increases quadratically with.the number of BIM software,
resulting in a high cost and inconvenience for achieving interoperability between all BIM software.
To reduce the high cost of achieving BIM interoperability, twelve companies collaborated to
develop a uniform standard for BIM which is known as the Industry Foundation Classes (IFC)
(Hamil 2012).

IFC specifications are open and transparent (buildingSMART 2018a). IFC models can be readily
accessed using a text editor. Under constant development and refinement by buildingSMART, IFC
became one of the most promising attempts trying to solve BIM interoperability. However, [FC
schema still has major problems when transforming to other proprietary software formats and vice
versa (Ma et al. 2006; Pazlar and Turk 2008). The IFC standard defines its own object data types
to store the physical and functional information of building elements in entities and attributes. For
a standard building, most elements are in common shapes such as cuboids, prisms, and cylinders,
whereas uncommon shapes (in the context of building structure) also exist such as pyramids,

pentagonal cylinders, and dodecahedrons. It is easier to construct elements in common shapes than



the ones in uncommon shapes. However, it also creates room for the misuse of entities. For
example, an IfcSlab entity may be misused to represent a wall, which should be using IfcWall or
IfcWallStandardCase for data representation. The misuse occurred because both of them have a
cuboid shape, and the only differences are in their corresponding length/width/height ratios.
Although model visualization tools can still provide the same visualization results of a slab
represented using an IfcWall entity as if it was represented correctly by an IfcSlab entity, this type
of misuse can lead to problems in transferring data between different BIM applications that require
the use of semantic information of building elements beyond their shape and geometry, such as
architectural design, cost estimation, and structural analysis. It will make the conversion results
from IFC files error-prone. For example, given the previous misuse case, when taking off the
volume of slabs, the software will mistakenly add the ' volume of the wall represented by a slab
entity. While the names of IFC entities can.be misleading in the case of entity misuse, the
geometric shapes information are one‘of the most reliable parts of BIM and it is almost always
accurate for a successful building object representation. In this paper, the authors leverage the
geometric information of objects inIFC models to automatically classify BIM objects in the
architectural, engineering, and construction (AEC) domain into predefined building element

categories.

Background

Object Classification

Object classification is the process where objects are recognized, differentiated, and understood,
meaning that the objects are grouped for some specific purpose (Henri et al. 2005). Object
classification in an automated fashion involves two essential steps: feature extraction and feature-

based classification (Ullman 2007).



There are many researches on 2D object classification to detect and classify objects from 2D
images. For example, Henri et al. (2017) proposed to extract a hierarchy of fragments with visual
element features such as human faces and car wheels for use in recognizing and classifying objects
(e.g., people and cars) from 2D images. Ullman and Epshtein (2007) proposed two extensions of
the fragment-based object recognition scheme. One is a hierarchical decomposition into parts and
sub-parts at multiple levels according to the features. The other is depicting different views of the
same object part using semantically equivalent feature sets (Ullman and Epshtein 2007).
Distinguished from the fragment-based scheme, Wang et al. (2009) designed atechnique that sorts
objects into predefined categories by building their “text-based image features”. A text-based
feature is built from the tags of its k-nearest neighbors insthe training collection. For example,
“motorbikes” is a text-based feature built from the tags of its 5,000-nearest neighbors based on
measuring the chi-square distance in a space.of 256-dimensional vectors. Wang et al. (2009) found
that text-based features from images are reliable to classify the objects in images even when an
object appearance changes in the images. In the civil engineering domain, computing methods and
algorithms have also been developed to identify/classify the following contents from 2D images:
construction equipment (Memarzadeh et al. 2013), construction activities (Liu and Golparvar-Fard
2015), safety harness (Fang et al. 2018), construction materials (Han and Golparvar-Fard 2015),
highway assets (Golparvar-Fard et al. 2013) and traffic signs (Balali and Golparvar-Fard 2015),
bridge-components (Narazaki et al. 2018), cracks and defects in a structure (Feng et al. 2017,
Gopalakrishnan et al. 2017), among others.

In contrast to 2D object classification, 3D object classification has more information to leverage
because of its additional spatial dimension. For a successful 3D object classification, object

detection is a critical step when dealing with less structured data such as point cloud data collected



using Light Detection and Ranging (LIDAR) techniques. For example, Wang and Schenk (2010)
designed an object classification technique to detect and reconstruct buildings from LIDAR data.
Their approach uses LIDAR terrain surface, edges, and points of a building as features. Also
working on point cloud data but from a different perspective, Voegtle and Steinle (2003) designed
a method to detect segments and extract objects inside these segments based on a special region
growing algorithm. LIDAR data has been widely used in the civil engineering domain for
capturing as-built projects (Wang and Cho 2014), prefabricated components (Kalasapudi et al.
2015), construction equipment and assets (Chen et al. 2016; Fang et‘al. 2016), and surveying
results (Tang and Akinci 2012). RGB-D data is another type of commonly used 3D data other than
point cloud data. Different methods have been proposed to conduct object classification on RGB-
D data. For example, Richard et al. (2012) proposed a combination of convolutional and recursive
neural networks (CNN and RNN) to classify 3D objects from RGB-D data, where multiple RNN
weights are randomly initialized and a tree structure is built for the classifier. Bo et al. (2013)
proposed a hierarchical matching pursuit (HMP) method for RGB-D data object classification,
which uses an unsupervised learning technique with sparse coding to generate hierarchical feature
representations for classifying household objects.

In spite of the different types of data used, the above methods all focused on object classification
in as-built models-or assets. As-built models are models created from surveying/inspecting a
physical system (Hefele and Dolin 1998). On the contrary, as-designed models are virtual models
that are derived from design data (Huber et al. 2011). As such, as-designed model has more
“degrees of freedom” in terms of the possible model setup. For example, an as-designed model
can be built as high as the designer wants, whereas as-built models can only be as high as it

physically stands. As a result, a successful classification of objects in an as-designed model will



heavily rely on the correct understanding of the designed structure and the BIM data structure.
Object classification of as-designed models is underexplored comparing to that of as-built models.
In this domain, Qin et al. (2014) proposed a 3D CAD object classification method using deep
neural networks in which they leveraged prior CAD knowledge to generate features to use in the
deep neural network model training. An average correct rate of 98.64% was achieved in a dataset
that contained objects in 28 categories such as screw and nut. Henn et al. (2012) presented a
support vector machines (SVMs)-based machine learning classifier that can automatically classify
the building type of a selected 3D model from city models such as terraced building and apartment

building. They achieved a cross validation accuracy of 90.79% on 1,953 building objects.

IFC Schema

IFC schema has been under constant development and released many versions from IFC1.0 to
IFC4 Add2 (buildingSMART 2018a). Although not the latest version, IFC2x3 is currently the most
widely implemented version of the IFC-schema, which the authors chose to use in this paper. In
IFC2x3, there are 117 defined types and 653 entities, including 33 types of entities for building
elements (buildingSMART 2007). For example, IfcBeam is a building element entity that is used
to define a beam instance, and IfcDoor is a building element entity that is used to define a door
instance. Fig. 1 provides a visualization of a beam in IFC and Fig. 2 shows the IFC data of the
beam. It is a wide flange beam (or I-beam) that is commonly seen in a steel structure. The IfcBeam
references =~ other entities such as  IfcOwnerHistoty,  IfcLocalPlacement,  and
IfcProductDefinitionShape, which contain detailed information about the beam. By tracing the
references between entities in an IFC data, all relevant information to an object can be extracted

(Won et al. 2013).



An IFC model of a building usually contains multiple building elements. While most of the
building elements should be using correct IFC entities, e.g., IfcWall for a wall, IfcSlab for a Slab,
it is not rare to see misuses, such as the misuse of an IfcSlab for a wall as described above. In
extreme cases, most of the objects in a model contain entity misuses. For example, in the 59 objects
in a bridge model described by Ma et al. (2017), 35 objects (59%) contained entity misuses.

To prevent potential negative consequences resulting from misuses of IFC entities and support a
seamless interoperability of BIM, the authors propose an IFC-based BIM object classification

method based solely on the geometric information of the object.

IFC Object Classification

Few recent works in IFC object classification were found. For ‘example, Koo and Shin (2018)
explored the use of novelty detection machine learning approach to detect IFC objects
misclassifications during manual creation of the IFC data. They used SVMs to classify objects into
individual classes and tested the SVMs-on four classes - walls, doors, columns, and slabs. Their
testing achieved an accuracy that ranged from 80.95% to 97.14% for different classes. The use of
machine learning was promising, but it was difficult (if not impossible) to achieve 100% accuracy.
In contrast, Sacks et-al. (2017) captured domain expert knowledge into computer rules for
classifying IFC objects. The rules were based on pairwise geometric, spatial, and topological
relationships between IFC objects. Ma et al. (2017) designed a similar method to classify BIM
objects using a tailored matching algorithm. In their methods, each object in consideration is paired
with all other objects and the similarity of objects in each pair is calculated by comparing their
feature values and relationships. Perfect testing results (100% accuracy) have been reported in both
methods on 333 objects and 390 objects from one and two bridge IFC models, respectively.

However, their methods focused on the relative relationship between features of different objects



rather than the feature values of the objects themselves, such as geometric representation and
numerical parameters of the object, thus, reference objects are always in need. In this paper, the
authors look into the geometric representations of objects in IFC and directly leverage such
information in classifying the objects. Using the authors’ method, although sample objects are still
needed in the development phase, the developed algorithm could then be directly applied to new
IFC objects, without the need of reference objects during the classification application stage. For
example, a regular wall usually has a long rectangular box shape defined by the three parameters
of length, width, and height. These geometric parameters can be directly used for BIM object
classification. Based on this idea, the authors propose a data-driven method that could be used to
develop algorithms for classifying BIM objects automatically. The method was implemented on

processing IFC data, but is adaptable to any data format.

Proposed Method for Automated Object Classification in IFC-based BIM

The authors propose a new 7-step iterative method to classify BIM objects in [FC models (Fig. 3):
data collection, preprocessing, environment setup, primary development, secondary development,
error analysis and training.improvement, and testing. The method provides a platform for
algorithm development using-a data-driven and pattern matching rule-based approach. With the
addition of detailed patterns, the algorithm can be continuously developed to reach a required level
of granularity, e.g., to distinguish beams from walls, to distinguish [-Beams from C-beams, or to
distinguish different sizes of [-Beams. The detailed explanation of the 7 steps is listed below. To

help illustrate the method, some implementation examples are used in this explanation.



(1) Data collection: collect IFC models from different sources to create a dataset with a broad

coverage of different types of IFC entity usage.

Although IFC was designed to be an open and neutral data standard that is intended to be used by
all disciplines and all life cycle phases of a project in the AEC domain, its built-in flexibility allows
the IFC standard to be used in different ways. For example, the same 3D shape can be represented
using either a “Swept Solid” (i.e., the solid created by the sweeping motion of an existing-solid or
plane) or a “Boundary Representation” (i.e., a solid created by a collection.of connected surface
elements). Furthermore, the existence of property sets allows BIM implementations to customize
and define their own properties. Therefore, a dataset consisted of models collected from different
sources are expected to have a broader coverage of different types of representations and uses of

IFC entities comparing to models collected from a single/source.

(2) Preprocessing: extract IFC objects from the collected models, manually label the data, and

divide the objects into training set and testing set.

In order to classify the objects of an'IFC model, the algorithm needs to detect them and extract all
related information. The extraction of IFC objects is achieved using the algorithm of Won et al.
(2013) as reproduced by the authors that can extract all building elements from an IFC file and
store each element as)a separate file. Each file contains a building element that is independent of
other parts of the original IFC model. For example, one file may contain a window of an exterior
wall, whereas another file may contain a slab on the second floor. Fig. 4 shows the visualization
of a Duplex Apartment model collected from buildingSMARTalliance of the National Institute of
Building Sciences (East 2013). Fig. 5 shows two extracted objects from this model. All such
objects from the collected data are extracted in this step. The objects are manually labeled with

their correct categories by observing each object in a BIM visualization and data display utility.
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Labels include two types: existing categories (represented by IFC entity names) in the IFC schema,
and non-IFC categories. The existing IFC categories represent common building elements whereas
non-IFC categories can define building elements to any level of detail. During the labeling using
existing IFC categories, misuse of IFC entities in the collected data will be identified. The division
of the IFC objects into a training dataset and a testing dataset is conducted using a data dividing
Java program that the authors wrote. The program randomly picks objects from the extracted set
and puts them into training or testing set based on a predefined ratio between training and testing
data. A common training/testing data ratio to use for statistical learning is- 70%to 30% (Kemal and
Salih 2007). However, the authors’ rule-based learning has more rationality (i.e., based on
geometric theorems) built into the training process and itherefore requires less training data
comparing to statistical learning, in spite of its dependency on the variety of data representations
and their distributions. To study such a learning effect, the authors propose a learning curve

measure which will be described in detail in the Experiment Section.

(3) Environment setup: initially build a classification algorithm with no rules or patterns.

The authors use Java as their developing language because Java provides a convenient platform
with a rich set of existingutilities such as java toolboxes of IFC, which provides facilities to extract
information from an IFC model. The algorithm to be developed will take a single IFC object file
as input and output the category it belongs to. The classification algorithm is initialized to be empty,
i.e., with no rules or patterns. This step establishes an environment in which the IFC object
classification algorithm and sub-algorithms can be developed. By default, the algorithm classifies
an IFC object into an “unknown” category as no pattern matching rules are applicable. In the
development stage, the algorithm is developed by extending it with sub-algorithms, e.g., sub-

algorithms to classify an object into beams, walls, columns, etc., or to classify a beam into [-beam,
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C-beam, rectangular beam, etc. Each sub-algorithm consists of one or more pattern matching-
based rules. A pattern matching-based rule defines a pattern consisted of features that could
uniquely recognize a category. These features are inherent properties of the AEC objects such as
number of sub-components, number of faces, cross section profile, extrusion direction,
dimensional ratio, number of straight lines and curves, line connection angle, length, and turn
direction. Extraction of these features are achieved using the authors’ developed object analysis
algorithms similar to the object extraction algorithms. At this step, there are no sub-algorithms or

rules.

(4) Primary development: study the representations of the training set objects in IFC, build rules

and develop sub-algorithms to classify objects into existing categories in IFC.

Existing categories in IFC represent a common and essential set of elements in a building. For
example, IfcBeam, IfcColumn, IfcFooting, IfcSlab, and IfcWall are used to represent beams,
columns, footings, slabs, and walls, respectively. However, misuse of IFC categories could happen.
For example, a wall should be represented in an IFC model using IfcWall or IfcWallStandardCase,
but it may be represented using any of the other four IFC entities: I[fBeam, IfcColumn, IfcFooting,
and IfcSlab. This may-appear-to be correct in visualization, but the semantic information carried
would be incorrect and therefore cause errors in BIM applications that rely on such semantic
information. In this step, training data will be used to develop pattern matching rules to classify
the IFC objects into existing IFC categories such as beams, columns, footings, slabs, and walls,
based on the geometric representations of the objects. An object in IFC usually has multiple
geometric representations for its “Body” and “Axis” (Geiger et al. 2014). The proposed method
here focuses on analyzing the “Body” representation, which could be using one of the three major

types of solid representation: “Swept Solid,” “Boolean Results,” and “Brep Bodies”
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(buildingSMART 2007; Zhang 2018). The primary development of sub-algorithms follows an
iterative process (Fig. 6): (a) Input reading: get an object instance from the training data; (b) Sub-
algorithms development: study the “Body” representation of the object instance and develop sub-
algorithms to capture the essential features of the “Body” representation for classifying it into the
labeled categories in Step (2); (c¢) Intermediate testing: apply the cumulative sub-algorithms
developed up to this point to all the object instances in the training data; (d) Object instances
identification: identify the object instances that were either correctly classified, incorrectly
classified, or not classified; () Results recording; (f) Recursion: get the'next.object instance from
the training data that was not classified, repeat the process until all object instances in the training

data are classified.

(5) Secondary development: study the representations of IFC objects and develop sub-

algorithms to classify them into non-1FC defined categories.

This step aims to further classify the IFC objects into categories that do not have matching IFC
entity names in the IFC schema. These are categories that usually define more detailed
characteristics of an object but could be defining an object in any dimension. Those objects are
expected to be distinguishable-based on their geometric information. To identify these object types,
the same iterative method as in Step (4) will be used. Each of developed sub-algorithm will be

used to identify one specific object type such as [-beam, C-beam, and rectangular beam.

(6) Error analysis and training improvement: analyze errors in the classification results on the
training set, further add/revise sub-algorithms and rules to improve the training performance.
After the development in Step (4) and Step (5), the algorithm should be able to classify all the

objects in the training data. To verify the correctness, the classification results are compared with

the manually labeled categories. For the instances with incorrect classification, an error analysis
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will be conducted. The error analysis and training improvement step follows a six-step
methodology (Fig. 7): (1) Input reading: get an object instance that was classified incorrectly; (2)
Rule analysis: analyze the application of sub-algorithms on this instance and find the pattern-based
rule that fires on this instance; (3) Rule modification: modify the identified rule to correct the error
instance and update the corresponding algorithm; (4) Modification testing: reapply the updated set
of sub-algorithms on the training set; (5) Modification updating: if the performance on the training
set improves, then accept the update, otherwise decline the update; (6) Recursion: ‘get the next
object instance that was classified incorrectly and repeat the procedure until all error instances

were tried.

(7) Testing: apply the developed classification algorithm to testing data for evaluation.

This is the evaluation section of the method measured by recall and precision. The authors adapted
the measurements of recall and precision from:information science domain (Makhoul et al. 1999).
Recall is defined as the number of correctly classified objects in a category divided by the total
number of actual objects in that category. Precision is defined as the number of correctly classified
objects in a category divided by the total number of objects that have been classified into that

category.

Experimental Implementation and Validation

For testing and evaluation, the proposed method was empirically implemented in classifying IFC
objects collected from 5 IFC models, with 5 additional objects from National BIM Library of UK

(NBS of UK 2014). The implementation details are described in the following sections.
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(1) Data collection: collect IFC models from different sources to create a dataset with a broad

coverage of different types of IFC entity usage.

To cover the identified main types of AEC objects including beams, columns, footings, slabs, and
walls in different types of representations and uses of IFC entities, the authors collected data from
three different sources: (1) the “Common Building Information Model Files” published by
buildingSMARTalliance of the National Institute of Building Sciences (East 2013), (2) Revit
models exported as IFC data files, and (3) National BIM library of UK (NBS.of UK 2014). Among
the collected data, the authors selected the duplex apartment model (Deplex A) from the first
source, the Revit architectural sample model (Rac_basic), the Revit advanced structural sample
model (Rst advanced), the Revit basic structural sample model (Rst basic), and the Revit
technical school sample structural model (Tech_school) from the second source, and five special
beam model objects (including four U-beams and one L-beam) from the third source. The selection
was based on the variation in their model types and object types. The similarity between all the
selected models (except for the special beam model objects) was that they all contained beams,
columns, footings, slabs, and walls. The authors collected the objects by searching through open
source BIM data and observing their included AEC objects. The selected models contained
hundreds of AEC objects‘on average. The special beam model objects were collected so that the
authors could test secondary development in addition to primary development of the proposed

method.
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(2) Preprocessing: extract IFC objects from the collected models, manually label the data, and

divide the objects into training set and testing set.

All objects from the selected IFC models were extracted, resulting in a total of 1,891 objects. As
shown in Table 1, there were 86, 85, 883, 446, 386, and 5 objects from each of the five IFC models
and the National BIM library of UK, respectively.

The authors invited 3 independent annotators to manually label the same set of objects with their
building element types. The average inter-annotator agreement was 87.21% initially (Table 2). For
the objects that had different labels by different annotators, the authors arranged discussions with
the annotators and tried to get agreement through debating and convineing each other. In the end,
an average inter-annotator agreement of 99.06% was achieved. For the 18 objects (0.94% of the
data) that annotators still did not achieve agreement, the authors picked the majority labels
(examples in Table 3). BIM viewer was used to.visualize the extracted objects and display their
properties during the manual labeling. Based on the above labeling process, 795 objects were
labeled as beams, 412 objects were labeled as columns, 348 objects were labeled as footings, 74
objects were labeled as slabs, and 262 objects were labeled as walls (Table 4). Using the data
dividing Java program that the authors wrote, the authors collected 1,325 objects into the training
set and 566 objects. into-the testing set. The collected data was not exhaustive but sufficient for
testing the authors” proposed method (Beleites et al. 2013). In addition, the method can be used to
continuously develop more patterns and rules to cover more categories when fed with more data.
Because of the composite nature of the proposed method, the patterns and rules to be developed

for future categories will not affect the processing results of the already covered categories.

16



(3) Environment setup: initially build a classification algorithm with no rules or patterns.

The authors developed the framework of the classification algorithm and implemented it in Java
programming language. It takes a file as input and outputs a string that represents the classification
result of the object in that file. If the object cannot be classified, an error message with detailed
information will be displayed. At this step, there were no rules or patterns yet, and the default error

message “cannot be classified” would be displayed if the method was applied to amodel.

(4) Primary development: study the representations of the training set objects in IFC, build rules

and develop sub-algorithms to classify objects into existing categoriesin I1FC.

Using the iterative process described in the method section, the authors developed sub-algorithms
and rules to classify all objects in the training data into five main existing IFC categories: beams,
columns, footings, slabs, and walls. Among the instances in the dataset, the study of one object
will usually be sufficient to classify all object instances with similar geometric representations. To
study the effect of training at each stage of the development, the authors recorded the number of
correctly classified instances after/each stage of development and plotted them as a learning curve.
Table 5 shows the geometric.econtent of the study, and the number of correctly classified instances
with respect to each stage of the development. In each stage, the geometric features of the targeted
type of geometric representation were analyzed and used to compose patterns and rules for
identifying objects represented using this targeted type of geometric representation. Stage 1 to
Stage 8focused on the “Swept Solid” type of geometric representation. Specifically, Stage 1
focused on rectangular shapes; Stage 2 focused on I-beams represented by “Swept Solid” with
IfcArbitraryClosedProfileDef; Stage 3 focused on slabs represented by “Swept Solid” with
IfcArbitraryClosedProfileDef; Stage 4 focused on objects represented by “Swept Solid” with

IfcCircleProfileDef; Stage 5 focused on objects represented by “Swept Solid” with four other built-

17



in shape profiles, including I-shape, C-shape, U-shape, and L-shape; Stage 6 focused on objects
represented by “Swept Solid” with built-in IfcCircleHollowProfileDef, which defines a ring shape;
Stage 7 focused on objects represented by “Swept Solid” with IfcCompositeCurve; Stage 8 focused
on objects represented by “Swept Solid” with IfcClosedShell. Stage 9 to 12 focused on “Brep,”
“Clipping,” “CSG,” and “Mapped Representation” types of geometric representation, respectively.
Fig. 8 shows the plot of the learning curve. Some development details are described below.

In the geometric representations of objects in the training dataset, the following solid
representation methods were used: “Swept Solid” (using [fcExtrudedAreaSolid), “Clipping,”
“MappedRepresentation,” “Brep,” and “CSG”. Among these representation methods, “Swept
Solid” is the most frequently used one: 1,035 of 1,325 (78.11%) of entities in the training data used
“Swept Solid”. This representation method extends a 2D shape through a direction that is not in
the 2D plane, to create a 3D shape. For example, extending a long narrow rectangular shape on the
floor vertically upwards creates a solid cuboid shape that could be used to represent the geometry
of a vertical standing wall. The same wall may also be represented using a “Brep” by enclosing
six connected faces. “Brep” is a powerful geometric representation in IFC (Alain 2016). It can be
used to approximate almost any shape. The internal structure of Brep data can vary a lot, which
adds to the complexity of Brep-based geometries and their processing. In contrast, “Swept Solid”
(or IfcExtrudedAreaSolid) is a faster way to represent common building element shapes
(buildingSMART 2018b). It can easily represent a cuboid shape by extending a rectangular planar
surface in its normal direction or the opposite direction. There are also “Clipping”, “CSG”, and
“MappedRepresentation” that can represent solid model elements (buildingSMART 2007).
“Clipping” is the Boolean results of two representations; “MappedRepresentation” reuses existing

representation for new ones; “CSG” is the Boolean results of multiple primitive solids.
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In the first stage, the authors studied the data representation of “Swept Solid,” which contains an
instance of IfcExtrudedAreaSolid (buildingSMART 2018a). There are four attributes of an
IfcExtrudedAreaSolid: a swept area, a direction, a position, and a depth. The swept area defines a
2D shape to be extended; the position defines the placement position and direction where the solid
object is to be placed; the extruded direction defines a direction along which the swept area is
extended; and the depth defines a distance for which the swept area is extended. The authors use
the assumption that a beam, when represented using a “Swept Solid,” is extended horizontally
while other building elements such as walls and columns will be extended vertically. So the
extruded direction is used as an indicator for differentiating beams. from the other building
elements. When looking at the orientation of an object, it i possible that an object is represented
by “Swept Solid” with extrusion in the vertical direction/but then rotated horizontally during the
placement of the object. In other words, the position and the direction that an object was placed
also need to be taken into consideration. As a result, in developing the algorithm, the authors
combined both information.

In a “Swept Solid” representation, the extruded direction can be obtained from the IfcDirection
property, and the placement is defined using an IfcAxis2Placement3D, as described by a point and
two axes (ideally orthogonal). The point is the origin and the two axes are the Z and X axes. The
axis Z = (Zo,Za, Zza)yand X = (Xo, X1, X2) are both represented by a vector with three parameters.
They are called “Axis” and “RefDirection” respectively in an IfcAxis2Placement3D. In this way,
it defines a unique position and orientation for the placement of an object. In comparison, the
direction of the original extruded direction in the “Swept Solid” representation is defined directly

using a 3D vector (x, y, z) with three parameters. After extracting these information, the authors
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combined the extruded direction and placement information using Equation (1) to compute the
final extruded direction of the object.

Final extruded direction:

(Xnew, YVnew, Znew) = x*(xO,x],,xZ) +y*(x0,x1,x2) X (ZO,)CI,XZ) + Z*(ZO,Z],Z2) (1)

where:

Extruded direction (x,y,z) = x * (1,0,0) + y * (0,1,0) + z * (0,0,1),

Placement Z axis (Axis): (z0,z1,z2),

Placement X axis (RefDirection): (x0,x/,x2),

As aresult, if the final extruded direction is horizontal, the object will be processed as a candidate
of a beam. In contrast, an object with vertical extruded direction will become a candidate for the
other categories: column, footing, slab, and wall. Then the depth information could be used to
differentiate the slab category from the other three categories. Finally, the 2D shape of the swept
area (i.e., cross section) and ratios between different dimensions are used to differentiate the
column, footing, and wall categories.

Fig. 9 shows the algorithm after development. The algorithm starts from a single IFC object and
extracts its geometric representation by tracing its associated IfcShapeRepresentation instance.
According to the extracted geometric representation type, the algorithm flows to “Clipping”,
“Swept Solid”, “Brep”, “MappedRepresentation”, or “CSG”. For example, if the geometric
representation is a swept solid, the algorithm will extract its extruded direction. If the extruded
direction is horizontal, the algorithm will check the geometry and classify the input into designated
beam types; if the extruded direction is vertical, the algorithm will make the object a candidate of

column, footing, slab, and wall categories. Based on the value of the extruded depth, slab can be
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differentiated from the other three categories. To distinguish footing, column, and wall, the shape
of the cross section (e.g., square v.s. circle) and ratios between the three dimensions are used. For
example, a circular cross section profile excludes the object from the wall category. The
dimensional ratio between height and the other two dimensions can be used to distinguish slabs
from other categories.

For “Brep”, the algorithm extracts the number of faces first. Using the number of faces, the
algorithm selects possible candidates. For example, an instance with 6 faces will be a candidate of
a cuboid. Then the sub-algorithm for each shape will verify the features-of thatshape. An example

of development will be shown in step (5).

For “Clipping”, the algorithm picks the main element that will be cut or added. The classification
result will follow the result of that element. This method works well because most clipping results
are some modification of an existing “Swept Solid,” which has already been classified based on

its geometric representation.

For “MappedRepresentation”, the algorithm will track the original element to be mapped and
classify it. The classification result of the original element will be used as the classification of the
mapped object. Such use is feasible because the mapping from the original element to the mapped

object does not change the internal geometric representation of the shape.

As a'result of the development, the authors created an algorithm to classify an IFC object into one
of the following building elements: beams, columns, footings, slabs, and walls. The algorithm did
not use the entity name of the IFC object, because the entity name may be incorrect due to a misuse.
Instead, it directly searches for the geometric representation information of the object from the

standalone IFC file and uses this information for the classification.
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(5) Secondary development: study the representations of IFC objects and develop sub-

algorithms to classify them into non-IFC defined categories.

In this step, the authors expanded the classification on beam into subtypes of beams. Beams can
be classified by its support into simply supported beam, fixed beam, cantilever beam, continuously
supported beam, or by the cross-sectional shape into [-Beam, C-Beam, T-Beam, etc. (Chennu2017;
buildingSMART 2018c). Because the authors focus on using geometric information, which may
not necessarily have the support type information, sub-algorithms were developed to classify the
beams by their cross-sectional shapes.

In the collected data, there were three ways to represent the geometry of a beam: a “Swept Solid”
with built-in 2D shapes, a “Swept Solid” with a 2D [feClosedShell, and a “Brep,” i.e., an
IfcFacetedBoundaryRepresentation. The authors developed sub-algorithms for processing all the
three cases.

In the first case, the beam’s geometry will be represented by a “Swept Solid” with built-in 2D
shape profiles, which is an IfcProfileDef (buildingSMART 2018c), such as IfcIShapeProfileDef
and IfcCShapeProfileDef. Using shape profiles provided in IFC, it is straightforward to represent
common shaped beams. For example, [-Beam can be represented using the IfcIShapeProfileDef,

which can then be automatically classified as an [-Beam based on its profile shape name.

However, built-in shape profile types are not the only way to represent an I-Shape. In practice,
there are-a large amount of data that were using IfcArbitraryClosedProfileDef, which is a 2D shape
bounded by some arbitrary lines or curves that are closed. For the closed curves, their 2D features
can be used to identify the unique cross-sectional shape. For example, an [-Beam has two possible

cross sections: W-Section and S-Section as shown in Fig. 10.
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Although an S-Section can be classified as an [-Beam, the W-Section is much more common in
industrial use. In fact, in the collected data, there were only W-Section [-Beams. Similar to [-Beam
having different variants, there can be variants of W-Section [-Beams. However, the goal here was
only to distinguish [-Beam from other beam types, such as C-Beams and U-Beams. To distinguish
them, the authors developed a sub-algorithm that counts the number of boundary lines and curyes
and checks the linkages between them. The authors call this type of sub-algorithm shape recognizer.
For example, a typical I-Beam cross section contains 12 lines (i.e., straight lines) and 4 curves.
The linkages between the lines and curves are unique, which makes"them-feasible for use in
distinction. For example, for a standard U-Beam as shown in Fig. 11, there are 8 lines. For a
standard C-Beam, there are 12 lines and 8 curves. However;, in the practical use of IFC, a C-Beam
may only contain 12 lines and 4 curves or 12 lines without any curves, according to the level of
details of their representations. Such complexity may increase the number of possible
configurations of beam shapes. However, even in these special cases, shape configurations can
still be enumerated. To sort the beams into different types, the authors developed the following
four-step method (Fig. 12): (1) Input reading: read in a beam candidate; (2) Lines and curves
counting: count the number of lines and curves of the geometric representation of the beam
candidate; (3) Shape checking: compare the line configuration of the geometric representation with
all studied 2Drshapes; (4) Linkage verification: verify the possible shapes by checking the unique
linkages between lines and curves.

Among all the beams in the training data, the authors studied four shapes that had built-in 2D
profiles in IFC. Examples of these shapes are shown in the beams in Fig. 11. They are

IfcIShapeProfile, IfcCShapeProfile, IfcUShapeProfile, and IfcLShapeProfile (buildingSMART
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2018c¢). They can be recognized by adding a new count of the lines and curves, and a verification
of their linkages.

Table 6 shows the calculated possible counts of lines and curves of Rectangular Beam, U-Beam,
C-Beam, [-Beam, and L-Beam, respectively.

Based on the information in Table 6, the authors summarized possible beam types of different
geometric patterns in terms of the number of lines and curves in their geometric representations
(Table 7).

According to Table 7, with the same number of lines and curves in their-geometric representations,
two beam objects may still have different possible beam types. To suecessfully differentiate such
types of beams, the linkage types of the lines and curves in the geometric representations were
used. For example, for an [-Beam, the following three aspects of the connections between lines
will be checked. First, all the angles between connected lines must be right angles. Second, there
must be four different lengths of lines based on the'symmetry of [-Beam. Third, because lines have
directions in IFC data, the way they are connected (e.g., left turn versus right turn) also provide
useful information. By these observations, the authors developed a verification sub-algorithm that
verifies the angles, lengths, and turn directions of lines and curves.

Conceptually, checking linkages helps differentiate the two shapes shown in Fig. 13. These two
shapes both have 121ines, with the lengths of all the lines being the same. Apparently, the shape
in the right part of Fig. 13 should not be classified as an [-Beam while the shape in the left part of
Fig. 13 should. Such distinction is made at the linkage checking step by analyzing the turn

directions of the lines.
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For Brep, there are many ways to represent a beam, the authors used a data-driven approach and
developed several sub-algorithms for different shape representations. Each time a new shape
representation was came across in the training data, a new sub-algorithm was added.

As a result, the authors developed sub-algorithms for all types of beams observed in the training
data. There were three main types of sub-algorithms developed: one for “Swept Solid” with built-
in shape profiles, one for “Swept Solid” with a 2D IfcClosedShell, and one for Brep.

The first sub-algorithm type was straightforward by tracking the built-in shape used, as previously
discussed. The second sub-algorithm type was using the shape recognizer thatdifferentiates shapes
based on patterns of lines and curves. The third sub-algorithm type classifies the beam objects that
are represented using “Brep.” Some of them are single beams, for which a recognizer sub-
algorithm was developed for each type of beam. Some of them are trusses. Fig. 14 shows a
visualization of a truss. In the training data,there can be from 42 sub-elements to as many as 72
sub-elements in a truss. Each truss consists of two major beams (i.e., longeron) and many web
members across the bridge, with each major beam consisted of two L-beams as shown in Fig. 14.
The authors developed a sub-algorithm that: (1) recognizes the two major beams (therefore the
four L-beams), and (2) verifies and counts the web members. The authors classified this type of
“Beam” into a truss category. As shown in Fig. 15, this sub-algorithm takes a single IFC object as
input and counts thenumber of sub-elements (7). If n is between 42 and 72, then the sub-algorithm
finds the two sub-elements with the largest two sizes (sel and se2) and checks their shapes. If n is
not between 42 and 72, then the object being processed is not identified as a truss. In the shape
checking, the sub-algorithm tests if any shape associated with the two sub-elements is not in L-
shape. If so, then the object being processed is not identified as a truss. Otherwise (all the four

shapes associated with the two sub-elements are in L-shape), store all the remaining n-2 sub-
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elements (i.e., web members) into a stack structure (s). The content in stack s is checked, if s is not
empty, the sub-algorithm pops one sub-element from s and checks its position and number of faces.
If the position is between the positions of se/ and se2, and at the same time if the number of faces
is among 6, 8, 10, and 14, then this sub-element passes the test and the sub-algorithm moves on to
test the next sub-element from stack s. If all sub-elements from stack s pass the test, then the object
being processed is identified as a truss.

Similar to truss, the authors developed sub-algorithms for each unique type of beams. Examples

of such shapes of beams are shown in Fig. 16.

(6) Error analysis and training improvement: analyze errors in the classification results on the

training set, further add/revise sub-algorithms and rules to improve the training performance.

The results of object classification were evaluated in terms of recall and precision (Table 8).

In the categories of beam, slab, and wall, 100%:recall and precision were achieved. The authors
noticed a low recall (31.28%) in the footing category and low precision (63.05%) in the column
category. Through analysis, it was found that the shapes of 167 footings in the experiment were
similar to columns and incorrectly classified into columns, as shown in Fig. 17. Therefore the
cause of this error was the insufficiency of relying solely on geometric information in such a case.
In other words, by checking shape information here, the footing cannot be differentiated from
columns. A pessible solution to that is adding in the consideration of other types of information
such as'relative location of an object with other objects. Other than the 167 misclassified footings,
the classification results were 100% in both recall and precision.

The classification results on detailed beam types achieved 100% recall and precision in all

categories, as shown in Table 9.
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(7) Testing: apply the developed classification algorithm to testing data for evaluation.

To test the expected performance of the algorithm, the authors tested the algorithm on testing data.

The results are listed in Table 10 and Table 11.

Results Analysis and Discussion

The developed algorithm worked well in most cases on the testing data with a higher than 90%
precision and recall. A low recall (20.95%) in the footing category was due to the lack of
distinction between the shapes of footings and columns (as in the training data), which indicated
the insufficiency of relying solely on geometric information for object classification in certain
cases. By adding a simple elevation information, however, the algorithm successfully
distinguished such footings from columns. For the rest of errors in testing data, the authors
inspected the instances and found that all the 5 error instances were due to new geometric
representations in the testing data which were not covered in the training data. Among these 5 error
instances, one was due to a new “SurfaceModel” geometric representation instance in the testing
data, and 4 were due to new “Brep’’ geometric representation instances in the testing data.

The experiment shows that our proposed method could be used to develop an algorithm (with sub-
algorithms) that successfully captures the core features of object geometries and use them to
distinguish AEC objects. The core features are consisted of: number of sub-components, number
of faces, cross section profile, extrusion direction, dimensional ratio, number of straight lines and
curves, line connection angle, length, and turn direction. Using these features, the algorithm can
correctly classify beams, columns, footing, slabs, and walls, where the errors come from either
different objects sharing the same exact shape or the lack of coverage of geometric patterns in the
training data. For beams, the algorithm can identify the detailed beam types it was designed to

identify with 100% precision and recall. The algorithm can be further extended if more objects of
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different types and shapes are added to the training data. It can be continuously and accumulatively
developed in this manner by adding more patterns and rules to cover more categories to ultimately
lead to a comprehensive classification algorithm that identifies any type of AEC object in IFC
automatically. Because of the composite nature of the proposed method, the patterns and rules to
be developed for future categories will not affect the processing results of the already covered
categories, therefore, the authors’ proposed method can result in an accurate and reliable
classification method.

A comparison between the proposed method and the methods by Ma et-al. (2017) and Sacks et al.
(2017) was conducted (Table 12). While all methods work for BIM and could achieve 100%
precision and recall, their computational complexities differ. The method by Ma et al. (2017) has
a time complexity of O(kn), where k is the highest number of properties for a studied object, and
n is the number of studied objects. The method by Sacks et al. (2017) has a time complexity of
O(n) in theory, where n is the total number of objects to be sort. In practice, the complexity can be
higher because an optimal subset of unique rules may not always be achieved. In contrast, the
algorithm developed using the propesed method in this paper has constant time complexity O(1),
because the algorithm solely analyzes the geometric properties of the instances without the need
of comparing an object with all possible categories in an enumerative manner. In addition, the
proposed method does not require the use of reference objects during the classification application

stage, which was needed in the methods of Ma et al. (2017) and Sacks et al. (2017).

Limitations and Future Work

In spite of the promising experimental results and the ability to achieve 100% recall and precision
in automated AEC object classification, the following limitation of the proposed method is

acknowledged. The proposed method is labor intensive in the algorithm development phase,
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especially when a comprehensive algorithm is pursued which is expected to cover all possible
geometric shape representations of AEC objects. In future work, the authors plan to: (1) formally
add the use of locational information of AEC objects into the proposed method to avoid the
confusion of objects of the same geometry but different types; (2) further develop the algorithm
with more data that belong to more categories and cover more geometric shape representations of
AEC objects; and (3) investigate potential ways to automate some or all steps of the algorithm

development phase using machine learning especially deep learning.

Contributions to the Body of Knowledge

This research is important from both intellectual and application perspectives. From an intellectual
perspective, this research contributes to the body of knowledge in four main ways. First, we offer
a new data-driven method for developing an algorithm and sub-algorithms that can automatically
classify IFC-based BIM objects into predefined categories. The algorithms rely on the inherent
geometric features of AEC objects rather than entity or attribute names and therefore prevent
classification errors caused by misuse of entities. Geometric features are stable and reliable
properties of AEC objects (not.changing with regard to software implementation, modeling
decisions, an/or language/culture contexts) and therefore object classification algorithms
developed using the authors’ proposed method can be more robust than those that depend on entity
or attribute names. Other than the cases where different types of AEC objects have the exact same
shape, the algorithm could classify objects with 100% recall and precision. Second, we offer a set
of features to capture the core geometric representation of AEC objects, including: number of sub-
components, number of faces, cross section profile, extrusion direction, dimensional ratio, number
of straight lines and curves, line connection angle, length, and turn direction. Experiments show

that this set of features successfully capture the characteristics of the geometric representations of
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AEC objects for distinguishing different objects. Third, we show that geometric information can
be used to differentiate AEC objects in BIM, except for the rare cases where different objects have
the same geometry. The impact of applying this work in the AEC domain could be far-reaching.
First, the use of inherent geometric features of AEC objects in classifying the objects opens a new
door to BIM interoperability because such features of AEC objects do not change according to
modeler, software provider, language, culture or other contexts. Second, the elimination of human-
induced misuse errors in BIM enables better usability of BIM in downstream applications such as
cost estimation, building code compliance checking, and structural analysis.:A better usability of
BIM can in turn promote the adoption of BIM in the AEC industry. Third, the proposed method
can be used by our research community to develop AEC:object classification algorithms in a
continuous and accumulatively way, which will ultimately lead to a comprehensive set of AEC
object classification algorithms that will help significantly reduce or eliminate classification errors

of BIM objects caused by misuse of entities.

Conclusions

This paper presented a data-driven, iterative method for automated classification of AEC objects
in an [FC-based BIM. The method can be used to develop an algorithm that reads in an AEC object
and automatically classifies it into predefined categories. These categories include existing I[FC
categories that represent common building object types and non-IFC categories that can represent
a more detailed level of classification of objects. The developed algorithm consists of multiple
sub-algorithms with each sub-algorithm depicting a pattern matching rule based on patterns of
selected features. To test the proposed methodology, an experiment was conducted where IFC
models were collected from three different sources, from which 1,891 objects were extracted and

manually labeled with five IFC categories (beams, columns, footings, slabs, and walls) and eleven
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non-IFC categories (e.g., C-Beam, [-Beam, L-Beam, U-Beam). The data was divided into training
data (1,325 objects) and testing data (566 objects). An algorithm was developed using the proposed
method based on the training data and tested on the testing data. In common building elements
categories, 84.45% recall and 85.20% precision were achieved. In detailed beam categories, 100%
recall and precision were achieved. For common building element categories, the errors were
found to come from two sources: (1) different objects (i.e., footings and columns) sharing the exact
same geometry; and (2) occurrence of geometric shape representation patterns in testing data that
were not included in training data. The first source of error can be eliminated-by adding locational
information of objects for consideration in addition to geometric. information. The second source
of error can be avoided by including all foreseeable geometric shape representations in the training
data. By such a strategy, the proposed method can achieve 100% recall and precision in the
classification of all categories of AEC objects. The computational complexity of the authors’
method was also compared with the state-of-the-art methods. The authors’ method has a constant
computational complexity which is better than the linear (or higher) computational complexity of

the state-of-the-art methods.
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Fig. 1. The visualization of a wide flange beam/I-beam

DATA;

#1= IFCBEAM('20rWItJ6zAwWBNNROL:SCH", #2, M _W-Wide Flange:W410X60:WA18X60:208949',%, M _W-
Wide Flange:4W410X60:208814° #3 [#4,"208949");

#2=/IFCOWNERHISTORY(#5,#6,% . NOCHANGE.,$,$,$,9);

#3=<TFCLOCALPLACEMENT (%7, #8);

#4=<IPCPRODUCTDEFINITIONSHAPE($,$, (#9,%#10));

#5= IFCPERSONANDORGANIZATION(#11,#12,%);

#6= IFCAPPLICATION(#13,'2011°", 'Autodesk Revit Architecture 2011°, 'Revit’);
#7= IFCLOCALPLACEMENT(#14,#15);

#8= IFCAXIS2PLACEMENT3D(#16,#17,#18);

#9= IFCSHAPEREPRESENTATION(#19, 'Axis", "Curve2D’, (#20));

#10= IFCSHAPEREPRESENTATION(#19, 'Body’,'SweptSolid', (#21));

Fig. 2. IFC data of an [-beam as represented by an IfcBeam
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Step (1)

Data collection: collect IFC
models from different
sources to create a dataset
with a broad coverage of
different types of IFC entity

Step (2)

Preprocessing: extract IFC
abjects from the collected

models, v

Step (3)

Environment setup:

Step (4)

Primary development:
study the representations
of the training set objects

in IFC, build rules and
develop sub-algorithms to

classify objects into
existing categories in [FC

usage.

Step (7)

Testing: apply the
developed classification
algorithm to testing data

for evaluation

lly label the . initially build a
data, and divide the objects classification algorithm
into training set and testing with no rules or patterns

set.
Step (6)

Error analysis and training
improvement: analyze
errors in the classification
results on the training set,
further add/revise
sub-algorithms and rules
t0 improve the training
performance

Step (5)

Secondary development:
study the representations
of IFC objects and develop
sub-algorithms to classify
them into non-IFC defined
categories

Fig. 3. The proposed 7-step method for automated IFC-based BIM object classification
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Fig. 4. Visualization of a Duplex Apartment model

(a) (b)

Fig. 5. Extracted building elements from the Duplex Apaﬂme@ slab (left) and a wall
(right) Q
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Fig. 6. Primary development flowchart
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Input reading

Y

Rule analysis

v

Rule modification

v

Modification testing
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Modification updating

v

Recursion
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|
End

A

Fig. 7. Error analysis'and training improvement flowchart
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Fig. 8. Plot of the learning curve for all objects in the training data
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Extract the geometric
representation
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Fig. 9. Algorithm flowchart for object classification
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Fig. 11. U-Beam, C-Beam, [-Beam, and L-Beam
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Input reading

Y

Lines and curves counting
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Shape checking

Y

Linkage verification

Y

End

Fig. 12. Beam classification method

I
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Fig. 13. Shapes with 12 lines but different line connection types

Fig. 14. The visualization of a truss
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astack s
Pop one
—Yes No-m=| sub-element from
stack s
Position
between sel No
and se2?
Y \ |
Output: a truss Output: nota /_
shape truss shape [
— End -— |

Fig. 15. The developed sub-algorithm for recognizing a truss
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Fig. 16. Other shapes of beams

U

Fig. 17. Visualization of incorrectly classified objects
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Table 1. Extracted Objects from IFC Models

IFC model Number of objects extracted

Deplex A 86
Rac basic 85
Rst_advanced 883
Rst basic 446
Tech _school 386
BIM UK 5
Total 1,891

Table 2. Inter-Annotator Agreements of IFC Objects Manual Labeling

Annotator A B

Average

A -
B 81.37% ->99.79% -

81.37% ->99.79%

81.52% ->98.79%

98.74% -> 98.58%

C 81.52% ->98.79%  98.74% -> 98.58%

Average 81.45% ->99.29%  90.06% ->99.19%

90.13% -> 98.69%

81.45% ->99.29%
90.06% ->98.19%
90.13% ->99.69%
87.21% -> 99.06%

Table 3. Sample Majority Vote Labels

AEC Object and Model Origin Label by

Labelby B Label by C  Majority Vote

A
IfcWall34 from Duplex A Wall Wall Beam Wall
IfcWall35 from Duplex A Wall Wall Beam Wall
IfcBeam132 from Rst advanced Beam Colum Beam Beam
IfcBeam133 from Rst_advanced Beam Colum Beam Beam
IfcBeam133 from Rst advanced Beam Colum Beam Beam
Table 4. Manual Labels of Objects
Labels Number of objects labeled
Beams 795
Columns 412
Footings 348
Slabs 74
Walls 262
Total 1,891
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Table 5. Learning Curve Parameters

. Number of Correctly
Stage Number  Geometric Content of Study Classified Objects
Stage 1 Rectangular shapes 146
[-Beam with
Stage 2 IfcArbitraryClosedProfileDef 153
Slabs with
Stage 3 IfcArbitraryClosedProfileDef 184
Stage 4 IfcCircleProfileDef 364
Stage 5 Four other built-in shape 538
profiles
Stage 6 IfcCircleHollowProfileDef 554
Stage 7 IfcCompositeCurve 557
Stage 8 IfcClosedShell 637
Stage 9 Brep 902
Stage 10 Clipping 1,004
Stage 11 CSG 1,005
Stage 12 Mapped Representation 1,325
Total All 1,325

Table 6. Possible Number of Lines and Curves for Rectangular Beam, U-Beam, C-Beam, [-Beam,
and L-Beam

Beam Types Lines  Curves
Rectangular 4 0
Beam
8 0
U-Beam 8 2
8 4
12 0
C-Beam 12 4
12 8
12 0
I-Beam 1 4
6 0
L-Beam 6 1
6 2
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Table 7. Possible Beam Type According to Their Number of Lines and Curves in Geometric

Representation
Number of Number of Curves  Possible Beam Shape
Lines
4 0 Rectangular Beam
6 0,1,2 L-Beam
8 0,2,4 U-Beam
12 0,4 I-Beam, C-Beam
12 8 C-Beam

Table 8. BIM Object Classification Results of Training Data

Object Number of Number of Objects ~ Number of Correctly=" Recall  Precision
Types Actual Objects  Classified into the  Classified Objects (¢) (cla) (c/b)
(a) Category ()

Beam 561 561 561 100% 100%
Column 285 452 285 100% 63.05%
Footing 243 76 76 31.28% 100%

Slab 52 52 52 100% 100%

Wall 184 184 184 100% 100%

Total 1,325 1,325 1,158 87.40%  87.40%

Table 9. Beams Classification Results of Training Data
Number of Number of Objects

Beam Number of Correctly ~ Recall ~ Precisio

Actual Classified into the . )
Shapes Objects (a) Category (b) Classified Objects (c) (c/a) n (c/b)
Re‘gi‘;i‘lﬂar 155 155 155 100%  100%
C-Beam 70 70 70 100% 100%
[-Beam 35 35 35 100% 100%
L-Beam 1 1 1 100% 100%
U-Beam 5 5 5 100% 100%
Rectangular
Beam with 222 222 222 100% 100%
Cuts
%‘;‘;‘;‘ 11 11 11 100%  100%
Truss 35 35 35 100% 100%
Hollow
Round 12 12 12 100% 100%
Beam
?}‘ggﬁ 12 12 12 100%  100%
Total 558 558 558 100% 100%
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Table 10. BIM Object Classification Results of Testing Data

Object Number of Numb.er Of.ObJ ects Number of Correctly  Recall ~ Precisio

Types Acal - Classified into the 0, (Ghed Objects (¢)  (cla) 1 (c/b)
yP Objects (a) Category (b) .

Beam 234 234 234 100% 100%
Column 127 210 127 100% 60.48%
Footing 105 22 22 20.95% 100%

Slab 22 20 20 90.91% 90.91%

Wall 78 75 75 96.15%  96.15%

Total 566 561 478 84.45%  8520%

Table 11. Beams Classification Results of Testing Data
Beam Number of Numb.er Of.ObJ ects Number of Correctly | Recall’  Precisio
Types Actual Classified into the Classified Objects (¢) (cla) n (c/b)
yP Objects (a) Category () .
Re‘i‘gﬁ;ﬂar 64 64 64 100%  100%
C-Beam 29 29 29 100% 100%

[-Beam 9 9 9 100% 100%
L-Beam 0 0 0 100% 100%
U-Beam 3 3 3 100% 100%

Rectangular
Beam with 99 99 99 100% 100%
Cuts

Ié‘::;f 5 5 5 100%  100%

Truss 15 15 15 100% 100%
Hollow ] ] 3 100% 100%

Round 100% 100%

Beam 100% 100%
Srewed 2 2 2 100%  100%

Total 234 234 234 100% 100%

Table 12. Time Complexity of the Proposed Method in Comparison with the State-of-the-Art

Methods
Methods Time Complexity
Proposed Method O(1), constant time.

Maetal. 2017

O(kn), k is the highest number of properties for a studied object, and n is
the number of studied objects

Sacks et al. 2017 O(n) in theory. May be higher in practice.
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