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ABSTRACT 

 

Object signatures have been widely used in object detection and classification. Following a 

similar idea, the authors developed geometric signatures for architecture, engineering, and 

construction (AEC) objects such as footings, slabs, walls, beams, and columns. The signatures 

were developed both scientifically and empirically, by following a data-driven approach based 

on analysis of collected building information modeling (BIM) data using geometric theories. 

Rigorous geometric properties and statistical information were included in the developed 

geometric signatures. To enable an open access to BIM data using these signatures, the authors 

also initiated a BIM data repository with a preliminary collection of AEC objects and their 

geometric signatures. The developed geometric signatures were preliminarily tested by a small 

object classification experiment where 389 object instances from an architectural model were 

used. A rule-based algorithm developed using all parameter values of 14 features from the 

geometric signatures of the objects successfully classified 336 object instances into the correct 

categories of beams, columns, slabs, and walls. This higher than 85% accuracy showed the 

developed geometric signatures are promising. The collected and processed data were deposited 

into the Purdue University Research Repository (PURR) for sharing.  

 

INTRODUCTION 

 

Object signatures have been widely used in object detection and classification. For example, Wang 

and Zhang (2010) used decomposed spatial temporal-signatures to enable dynamic 3D objects 

perception from digital images by computers. Tu et al. (2017) proposed a fusion method to 

combine different object signatures such as appearance and motion cues for salient object detection 

from videos. In a geometric study, He and Peng (2011) proposed a shape retrieval system using 

geometric signatures that are invariant under translation. Hoff and Olver (2012) proposed further 

extensions of these invariant signatures with a compromise between local and global identifying 

properties to enable the recognition of non-congruent curves. Both versions of geometric 

signatures can be used to support the detection and recognition of real-world objects.  

Following a similar idea with the above works, the authors developed geometric signatures 

for architecture, engineering, and construction (AEC) objects such as footings, slabs, walls, beams, 

and columns. The signatures were developed both scientifically and empirically, by following a 
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data-driven approach based on analysis of building information modeling (BIM) data using 

geometric theories. These signatures include features of two types: (1) rigorous geometric 

properties such as cross-sectional profile, extrusion direction, dimensional ratios, boundary line 

connection angles, lengths, and turn directions, and (2) statistical information such as number of 

sub-components, number of faces, and the number of straight lines and curves. Because geometric 

information usually takes a large portion of BIM data (Zhang 2018), these signatures provide 

robust information of AEC objects that can be used to support engineering and management 

analysis such as quantity takeoff and structural analysis, in order to support seamless and universal 

interoperability of BIM. To enable open access to BIM data using these signatures, the authors 

also initiated a BIM data repository with a preliminary collection of AEC objects and their 

geometric signatures.   

 

BACKGROUND 

 

Neural signatures. The structure and functions of human brains are still underexplored. But the 

way that a human brain detects objects gradually got unraveled, i.e., patterns consisted of features 

help people recognize objects (Brandman and Peelen 2017). For example, Johnson and Olshausen 

(2003) observed this object detection process by a human brain through experiments. In their 

experiment, two ways to measure event-related potential (ERP), i.e., the electrophysiological 

response to a stimulus, were used to correlate brain activities with object recognition. Two types 

of components in an ERP of natural images were discovered: early presentation-locked signal and 

later recognition-related component, respectively. An early presentation-locked signal indicates 

low-level feature differences between images. A later recognition-related component covariates 

with the subsequent reaction time. Their experiment inferred that the second type of neural 

signatures for image recognition have a substantially later and variable time of onset comparing to 

the first type, which provides insights into object detection by human brains using neural signatures.  

 

Mathematical signatures. Compared to neural signatures described above, mathematical 

signatures follow a more concise and rigid formulation. The creation of mathematical signatures 

followed a rigorous procedure of definition and proof, based on element axioms and complicated 

deductions. For example, the mathematical signature of a circle includes the following two rules 

depicting the patterns of features: (1) the set of points that forms the circle must be in the same 

plane; (2) the boundary (circumference) must be equidistant to a center point (Coolidge 1902). 

Furthermore, Daniyarova et al. (2012) showed that the entire properties of algebraic universal 

geometry can be carried over to the case of an arbitrary geometric signature without essential 

changes.  

 

Other signatures. The idea of signatures is widely used and has varieties of different nature. For 

example, Stow et al. (2012) proposed frequency distribution signatures for use in the classification 

of within-object pixels. Nelson and Sokkappa (2008) proposed radiation signatures generated 

using a statistical model to detect nuclear threats. Marat and Ltti (1996) established object 

signatures for object classification and showed that the amount of context learned had an important 

effect in object recognition results. 
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Shared data for research and development. A Shared dataset (e.g., ImageNet, Flickr) not only 

provides people with resources for research, but also enhances the synergistic effect of research 

efforts from different teams by providing a common ground for comparison and discussion. It has 

been a common practice in computer science domains and helped advance research discoveries 

and technology development. For example, in the computer vision domain, Guillaumin et al. (2014) 

developed automated annotation methods for images using ImageNet. Yin et al. (2009) explored 

social tagging graph-based web object classification using Flickr. In the natural language 

processing domain, Reid et al. (2018) developed social science interpretation methods based on 

decompounded lexicon induction technics, through the use of a Consumer Complaint Database in 

their development.  

 

Open BIM repository. A few data repositories exist in the architecture, engineering, and 

construction (AEC) domain. For example, Dimitrov and Golparvar-Fard (2014) established the 

Construction Materials Library that contains 3,000 material samples that were collected from 5 

construction sites and 2 existing buildings. Varying degrees of viewpoint, scale, and illumination 

were recorded during the collection period spanning seven months. For IFC data, the “Open IFC 

Model Repository” (Dimyadi and Henderson 2012) provides 105 models of building elements. 

The NBS National BIM Library (2018) provides 6,660 IFC data instances. While useful for 

research and development, these data repositories mostly provide data models without detailed 

analysis. In comparison, the authors created a new IFC data repository which provides IFC data at 

the object level that were processed with their geometric signatures. These data can be used for 

various analyses and developments such as AEC object classification to detect misuse of IFC 

entities in BIM.   

 

PROPOSED GEOMETRIC SIGNATURES OF AEC OBJECTS  

 

IFC-based BIM data extraction. IFC data follows the EXPRESS specification (BuildingSmart 

2018). Information in IFC is stored in entities and attributes, including numeric values and 

relationships that refer entities to one another, forming a hierarchical structure of interrelated 

objects. To extract information from IFC data using the cross-references between entities, Won et 

al. (2013) proposed an IFC data extraction algorithm that can extract targeted parts of an IFC 

model, e.g., extracting a slab from a building or a pier from a bridge. The authors used a similar 

algorithm to extract objects from IFC models (referred to as AEC objects hereafter) and store each 

extracted object into one stand-alone IFC file. The authors collected data from two different 

sources: (1) the “Common Building Information Model Files” published by 

buildingSMARTalliance of the National Institute of Building Sciences (East 2013), and (2) Revit 

models exported as IFC data files. The data includes models of a duplex apartment, three 

architecture projects, and a technical school building. 

 

Geometric signatures of AEC objects. The authors analyzed the contents and structures of the 

extracted AEC objects by tracing their 3D geometric representations in IFC such as “swept solid”  

and “boundary representation (Brep) bodies” and found two sets of properties to describe the 

objects’ geometries. The first set includes geometric properties that come from mathematical 

definitions and geometric theorems. The second set includes statistical measures of components in 

an object’s geometry. Combining both sets, the authors proposed a systematic set of features as 

https://doi.org/10.1061/9780784482421.034


The published version is found in the ASCE Library here: https://doi.org/10.1061/9780784482421.034  
Wu, J., and Zhang, J. (2019). “Introducing geometric signatures of architecture, engineering, and 
construction objects and a new BIM dataset.” Proc., 2019 ASCE International Conference on Computing 
in Civil Engineering, ASCE, Reston, VA, 264-271. 

 – 4 –   

geometric signatures of AEC objects, including number of sub-components, number of faces, 

cross-sectional profile, extrusion direction, dimensional ratios, number of straight lines and curves, 

boundary line connection angles, lengths, and turn directions. 

 The most frequently used shape in our collected objects is rectangular parallelepiped. Table 

1 summaries the features of walls, slabs, footings, columns, and beams in this shape. The values 

of number of sub-components (NoSC), number of faces (NoF), cross-sectional profile (CSP), 

number of straight lines and curves (NoSLC), boundary line connection angles (BLCA), lengths 

(BLCL), and turn directions (BLCTD) are the same across these five types of objects. For extrusion 

direction (ED), beams have the value of “horizontal” where all other four types have the value of 

“vertical.” Dimensional ratios (DR) are mainly distinguishing different types of objects from each 

other in this case. 

 

Table 1. Geometric signatures of AEC objects in a rectangular parallelepiped shape. 
Feature Value range for each object type 

 Wall Slab Footing Column Beam 

Number of sub-components 

(NoSC) 

1 1 1 1 1 

Number of faces (NoF) 6 6 6 6 6 

Cross-sectional profile (CSP) Rectangle 

Extrusion direction (ED) Vertical Vertical Vertical Vertical Horizontal 

Dimensio

nal ratios 

(DR) 

H: height 

W: width 

L: length 

L:H 

 

[0.1228, 

99.3807] 

 

[11.6545, 

3000.1260] 

[1.5000, 

3.8000] 

[0.1500, 

0.4444] 

[0.0091, 

0.16551] 

 

W:H [0.0175, 

0.6847] 

 

[5.0000,  

171.5385] 

[0.6667, 

3.8000] 

[0.1500, 

0.4444] 

[0.0046, 

0.0587] 

L:W [3.2143, 

294.6825] 

[1.0683, 

40.1069] 

[1.0000, 

2.2500] 

[1.0000, 

1.0000] 

[1.0000, 

4.000] 

Number of straight lines and 

curves (NoSLC) 

12 straight lines 

Boundary line connection angle 

(BLCA) 

90 degrees 

 

Boundary 

line length 

type 

(BLCL) 

Mathematical 

(theory) 

Three lengths. Each length has four lines of that length. 

IFC (swept solid) For swept solid, the 2D shape has two lengths: width and length. 

 

Boundary line connection turn 

direction (BLCTD) 

90 degrees with the same direction (all right turns or all left turns) 

 
1 Height is the extrusion depth, which is horizontally aligned.  

 

 The second most frequently used shape in the collected data is the cylinder. Table 2 shows 

feature values in the geometric signatures of cylinder-shaped footings, columns, and beams. 

Similar to objects in a rectangular parallelepiped shape, objects in a cylinder shape have the same 

values for all features except for extrusion direction and dimensional ratios. In addition, ring-

shaped and I-shaped objects were also processed, the feature values in the geometric signatures of 

which are summarized in Table 3 and Table 4, respectively. A typical I-shape cross-sectional 
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profile and a typical ring shape cross-sectional profile are illustrated in Figures 1 and 2, 

respectively.  

 

 

 

 

Table 2. Geometric signatures of AEC objects in a cylinder shape. 
Feature Value range for each object type 

 Footing Column Beam 

NoSC 1 1 1 

NoF 3 3 3 

Face type (FT) 2 circles, one 

curved 

rectangle 

2 circles, 

one curved 

rectangle 

2 circles, one 

curved 

rectangle 

CSP Circle Circle Circle 

ED Vertical Vertical Horizontal 

DR (R:H) 

R: radius 

H: height 

 

[0.0250, 

0.0417] 

[0.0395, 

0.1230] 

[0.0043, 

0.0047] 

NoSLC 2 curves: 2 

circles 

2 curves: 2 

circles 

2 curves: 2 

circles 

BLCA 90 degrees 90 degrees 90 degrees 

BLCTD 90 degrees with the same direction (all right 

turns or all left turns) 

 

Table 3. Geometric signature of AEC objects in a ring shape. 
Feature NoSC NoF FT CSP ED DR1 NoSLC BLCA BLCTD 

Value 

range 

1 4 2 rings, 

two 

curved 

rectangles 

Ring Horizontal R:H [0.0124, 0.0157] 2 

curves 

and 2 

circles 

90 

degrees  

90 

degrees 

with the 

same 

direction 

(all right 

turns or 

all left 

turns) 

T:H [0.0017, 0.0018] 

1 H: height, R: radius, T: thickness. 

 

Table 4. Geometric signature of AEC objects in an I-Shape. 
Featur

e 

NoS

C 

No

F 

FT CSP ED DR1 NoLC Con Turn 

Value 

range 

1 14 12 

rectangles

, 2 I-

shaped 

faces 

I-

shap

e 

Horizonta

l  

 OD:ED [0.0842

, 

0.1023] 

2 

curve

s and 

2 

circle

s 

90 

degree

s 

90 

degrees 

with the 

same 

directio

n (all 

right 

turns or 

OW:E

D 

[0.0432

, 

0.0988] 

R:ED [0.0031

, 

0.0042] 
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FT:ED [0.0031

, 

0.0029] 

all left 

turns) 

WT:ED [0.0049

, 

0.0165] 
1 R: radius, FT: flange thickness, WT: web thickness, OD: overall depth, OW: overall width, ED: 

extrusion depth.  

 

 
Figure 1. Cross-sectional profile of an I-shape. 

 

 

 
Figure 2. Cross-sectional profile of a ring shape. 

 

DEVELOPED BIM DATA REPOSITORY 

 

After the geometric signatures were developed, the authors extracted features of 1,252 object 

instances from the collected data. Figure 3 shows a part of the processed data, including 14 features 

of 14 object instances among 1,252 object instances of regular shapes.   
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 In addition, to show an example use of the data set, the authors developed a rule-based 

algorithm for object classification, which was tested on 389 object instances from an architectural 

model. The algorithm used all parameter values from the 14 features and successfully classified 

336 object instances into the correct categories of beams, columns, footings, slabs, and walls, 

resulting in an 88.67% accuracy (Table 5). The collected and processed data were deposited into 

the Purdue University Research Repository (PURR) (Wu and Zhang 2018).  

 

 

 

 

Table 5. Classification results of object instances in an architectural model  

Object type Correctly classified Ground truth Accuracy 

Beam 12 37 32.43% 

Column 170 176 95.59% 

Footing 0 0 Na 

Slab 14 30 46.67% 

Wall 140 146 95.89% 

Overall 336 389 86.38% 

 

 

 
    Figure 3. A snapshot of the developed dataset (partial). 

 

CONCLUSION 

 

The authors developed AEC object geometric signatures for regular shapes of footings, slabs, walls, 

beams, and columns, including rectangular parallelepiped, cylinder, ring, and I-shape. These 

geometric signatures were developed in a scientific and empirical manner following a data-driven 

approach. Mathematical definitions, geometric theorems, and statistical counts of components 

were used in the signatures. The developed signatures provide useful information for describing 

the characteristics of AEC objects’ geometries. The authors collected a set of 1,252 AEC object 

instances and processed their geometric signatures. The dataset was shared through the Purdue 

University Research Repository (PURR) to provide analyzed AEC objects data as a benchmark 

and common ground for establishing shared tasks in future BIM research.  
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