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ABSTRACT

Object signatures have been widely used in object detection and classification. Following a
similar idea, the authors developed geometric signatures for architecture, engineering, and
construction (AEC) objects such as footings, slabs, walls, beams, and columns. The signatures
were developed both scientifically and empirically, by following a data-driven approach based
on analysis of collected building information medeling (BIM) data using geometric theories.
Rigorous geometric properties and statistical information were included in the developed
geometric signatures. To enable an open access to BIM data using these signatures, the authors
also initiated a BIM data repository with a preliminary collection of AEC objects and their
geometric signatures. The developed geometric signatures were preliminarily tested by a small
object classification experiment where 389 object instances from an architectural model were
used. A rule-based algorithm developed using all parameter values of 14 features from the
geometric signatures of the objects successfully classified 336 object instances into the correct
categories of beams, columns, slabs, and walls. This higher than 85% accuracy showed the
developed geometric signatures are promising. The collected and processed data were deposited
into the Purdue University Research Repository (PURR) for sharing.

INTRODUCTION

Object signatures have been widely used in object detection and classification. For example, Wang
and Zhang (2010) used decomposed spatial temporal-signatures to enable dynamic 3D objects
perception. from digital images by computers. Tu et al. (2017) proposed a fusion method to
combine different object signatures such as appearance and motion cues for salient object detection
from videos. In a geometric study, He and Peng (2011) proposed a shape retrieval system using
geometric signatures that are invariant under translation. Hoff and Olver (2012) proposed further
extensions of these invariant signatures with a compromise between local and global identifying
properties to enable the recognition of non-congruent curves. Both versions of geometric
signatures can be used to support the detection and recognition of real-world objects.

Following a similar idea with the above works, the authors developed geometric signatures
for architecture, engineering, and construction (AEC) objects such as footings, slabs, walls, beams,
and columns. The signatures were developed both scientifically and empirically, by following a


https://doi.org/10.1061/9780784482421.034

The published version is found in the ASCE Library here: https://doi.org/10.1061/9780784482421.034

Wu, J., and Zhang, J. (2019). “Introducing geometric signatures of architecture, engineering, and
construction objects and a new BIM dataset.” Proc., 2019 ASCE International Conference on Computing
in Civil Engineering, ASCE, Reston, VA, 264-271.

data-driven approach based on analysis of building information modeling (BIM) data using
geometric theories. These signatures include features of two types: (1) rigorous geometric
properties such as cross-sectional profile, extrusion direction, dimensional ratios, boundary line
connection angles, lengths, and turn directions, and (2) statistical information such as number of
sub-components, number of faces, and the number of straight lines and curves. Because geometric
information usually takes a large portion of BIM data (Zhang 2018), these signatures provide
robust information of AEC objects that can be used to support engineering and management
analysis such as quantity takeoftf and structural analysis, in order to support seamless'and universal
interoperability of BIM. To enable open access to BIM data using these signatures, the authors
also initiated a BIM data repository with a preliminary collection of AEC objects and' their
geometric signatures.

BACKGROUND

Neural signatures. The structure and functions of human brains are still underexplored. But the
way that a human brain detects objects gradually got unraveled, i.e., patterns consisted of features
help people recognize objects (Brandman and Peelen 2017). For example, Johnson and Olshausen
(2003) observed this object detection process by a human brain through experiments. In their
experiment, two ways to measure event-related potential (ERP), i.e., the electrophysiological
response to a stimulus, were used to correlate brain activities with object recognition. Two types
of components in an ERP of natural images were discovered: early presentation-locked signal and
later recognition-related component, respectively. An early presentation-locked signal indicates
low-level feature differences between images. A later recognition-related component covariates
with the subsequent reaction time. Their experiment inferred that the second type of neural
signatures for image recognition havea substantially later and variable time of onset comparing to
the first type, which provides insights into object detection by human brains using neural signatures.

Mathematical signatures. Compared to neural signatures described above, mathematical
signatures follow a more concise and rigid formulation. The creation of mathematical signatures
followed a rigorous procedure of definition and proof, based on element axioms and complicated
deductions. For example, the mathematical signature of a circle includes the following two rules
depicting the patterns of features: (1) the set of points that forms the circle must be in the same
plane; (2) the boundary (circumference) must be equidistant to a center point (Coolidge 1902).
Furthermore, Daniyarova et al. (2012) showed that the entire properties of algebraic universal
geometry can be carried over to the case of an arbitrary geometric signature without essential
changes.

Other signatures. The idea of signatures is widely used and has varieties of different nature. For
example, Stow et al. (2012) proposed frequency distribution signatures for use in the classification
of within-object pixels. Nelson and Sokkappa (2008) proposed radiation signatures generated
using a statistical model to detect nuclear threats. Marat and Ltti (1996) established object
signatures for object classification and showed that the amount of context learned had an important
effect in object recognition results.
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Shared data for research and development. A Shared dataset (e.g., ImageNet, Flickr) not only
provides people with resources for research, but also enhances the synergistic effect of research
efforts from different teams by providing a common ground for comparison and discussion. It has
been a common practice in computer science domains and helped advance research discoveries
and technology development. For example, in the computer vision domain, Guillaumin et al. (2014)
developed automated annotation methods for images using ImageNet. Yin et al. (2009) explored
social tagging graph-based web object classification using Flickr. In the natural language
processing domain, Reid et al. (2018) developed social science interpretation methods based on
decompounded lexicon induction technics, through the use of a Consumer Complaint Database in
their development.

Open BIM repository. A few data repositories exist in the architecture, engineering, and
construction (AEC) domain. For example, Dimitrov and Golparvar-Fard (2014) established the
Construction Materials Library that contains 3,000 material samples that were.collected from 5
construction sites and 2 existing buildings. Varying degrees of viewpoint, scale, and illumination
were recorded during the collection period spanning seven months. For IFC data, the “Open IFC
Model Repository” (Dimyadi and Henderson 2012) provides 105 models of building elements.
The NBS National BIM Library (2018) provides 6,660 IFC data instances. While useful for
research and development, these data repositories mostly provide data models without detailed
analysis. In comparison, the authors created a new IFC data repository which provides IFC data at
the object level that were processed with their geometric signatures. These data can be used for
various analyses and developments suchras AEC object classification to detect misuse of IFC
entities in BIM.

PROPOSED GEOMETRIC SIGNATURES OF AEC OBJECTS

IFC-based BIM data extraction. [FC data follows the EXPRESS specification (BuildingSmart
2018). Information in IFC is stored in entities and attributes, including numeric values and
relationships that refer entities to one another, forming a hierarchical structure of interrelated
objects. To extract information from IFC data using the cross-references between entities, Won et
al. (2013) proposed-an IFC data extraction algorithm that can extract targeted parts of an IFC
model, e.g., extractinga slab from a building or a pier from a bridge. The authors used a similar
algorithm to extract objects from IFC models (referred to as AEC objects hereafter) and store each
extracted object into jone stand-alone IFC file. The authors collected data from two different
sources: (1) the “Common Building Information Model Files” published by
buildingSMARTalliance of the National Institute of Building Sciences (East 2013), and (2) Revit
models exported as IFC data files. The data includes models of a duplex apartment, three
architecture projects, and a technical school building.

Geometric signatures of AEC objects. The authors analyzed the contents and structures of the
extracted AEC objects by tracing their 3D geometric representations in IFC such as “swept solid”
and “boundary representation (Brep) bodies” and found two sets of properties to describe the
objects’ geometries. The first set includes geometric properties that come from mathematical
definitions and geometric theorems. The second set includes statistical measures of components in
an object’s geometry. Combining both sets, the authors proposed a systematic set of features as
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geometric signatures of AEC objects, including number of sub-components, number of faces,
cross-sectional profile, extrusion direction, dimensional ratios, number of straight lines and curves,
boundary line connection angles, lengths, and turn directions.

The most frequently used shape in our collected objects is rectangular parallelepiped. Table
1 summaries the features of walls, slabs, footings, columns, and beams in this shape. The values
of number of sub-components (NoSC), number of faces (NoF), cross-sectional profile (CSP),
number of straight lines and curves (NoSLC), boundary line connection angles (BLCA), lengths
(BLCL), and turn directions (BLCTD) are the same across these five types of objects: For extrusion
direction (ED), beams have the value of “horizontal” where all other four types have the value of
“vertical.” Dimensional ratios (DR) are mainly distinguishing different types of objects from each
other in this case.

Table 1. Geometric signatures of AEC objects in a rectangular parallelepiped shape.

Feature Value range for each object type
Wall Slab Footing Column Beam
Number of sub-components | 1 1 1 |
(NoSC)
Number of faces (NoF) 6 6 6 6 6
Cross-sectional profile (CSP) Rectangle
Extrusion direction (ED) Vertical Vertical Vertical Vertical Horizontal
Dimensio L:H [0.1228, [11.6545, [1.5000, [0.1500, [0.0091,
nal ratios 99.3807] 3000:1260] 3.8000] 0.4444] 0.1655']
(DR)
@lﬁﬁiﬁ W:H [0.0175, [5.0000, [0.6667, [0.1500, [0.0046,
L'.len th 0.6847] 171.5385] 3.8000] 0.4444] 0.0587]
:leng
L:w [3.2143, [1.0683, [1.0000, [1.0000, [1.0000,
294.6825] 40.1069] 2.2500] 1.0000] 4.000]
Number of straight lines and 12 straight lines
curves (NoSLC)
Boundary line connection angle 90 degrees
(BLCA)
Boundary Mathematical Three lengths. Each length has four lines of that length.
line length (theory)
type IFC (sweptsolid) For swept solid, the 2D shape has two lengths: width and length.
(BLCL)
Boundary line connection turn 90 degrees with the same direction (all right turns or all left turns)
direction (BLCTD)

! Height is the extrusion depth, which is horizontally aligned.

The second most frequently used shape in the collected data is the cylinder. Table 2 shows
feature values in the geometric signatures of cylinder-shaped footings, columns, and beams.
Similar to objects in a rectangular parallelepiped shape, objects in a cylinder shape have the same
values for all features except for extrusion direction and dimensional ratios. In addition, ring-
shaped and I-shaped objects were also processed, the feature values in the geometric signatures of
which are summarized in Table 3 and Table 4, respectively. A typical I-shape cross-sectional
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profile and a typical ring shape cross-sectional profile are illustrated in Figures 1 and 2,
respectively.

Table 2. Geometric signatures of AEC objects in a cylinder shape.

Feature Value range for each object type
Footing Column Beam
NoSC 1 1 1
NoF 3 3 3
Face type (FT) 2 circles, one 2 circles, 2 circles, one
curved one curved curved
rectangle rectangle rectangle
CSP Circle Circle Circle
ED Vertical Vertical Horizontal
DR (R:H) [0.0250, [0.0395, [0.0043,
R: radius 0.0417] 0.1230] 0.0047]
H: height
NoSLC 2 curves: 2 2 curves: 2 2 curves: 2
circles circles circles
BLCA 90 degrees 90 degrees 90 degrees
BLCTD 90 degrees with the same direction (all right

turns or all left turns)

Table 3. Geometric signature of AEC objects in a ring shape.

Feature NoSC NoF FT CSP ED DR! NoSLC BLCA BLCTD
Value 1 4 2 rings, Ring “Horizontal R:H [0.0124, 0.0157] 2 90 90
range two curves degrees  degrees

curved and 2 with the
rectangles T:H [0.0017, 0.0018] circles same
direction
(all right
turns or
all left
turns)

' H: height, R: radius, T: thickness.

Table 4. Geometric signature of AEC objects in an I-Shape.

Featur NoS = No FT CSP ED DR! NoLC Con Turn
e C F
Value 1 14 12 I- Horizonta OD:ED [0.0842 2 90 90
range rectangles  shap 1 , curve degree degrees
,21- e 0.1023] sand s with the
shaped OW:E  [0.0432 2 same
faces D , circle directio
0.0988] s n (all
R:ED  [0.0031 right
, turns or
0.0042]
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FT:ED [0.0031 all left
, turns)
0.0029]
WT:ED [0.0049

0.0165]
'R: radius, FT: flange thickness, WT: web thickness, OD: overall depth, OW: overall width, ED:
extrusion depth.

}7 Overall Width 4{

Flange thic‘(ne;s | |

Fillet Radius

Overall Depth

Web Thickness

Figure 1. Cross-sectional profile of an I-shape.

gKness

Figure 2. Cross-sectional profile of a ring shape.

DEVELOPED BIM DATA REPOSITORY

After the geometric signatures were developed, the authors extracted features of 1,252 object
instances from the collected data. Figure 3 shows a part of the processed data, including 14 features
of 14 object instances among 1,252 object instances of regular shapes.
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In addition, to show an example use of the data set, the authors developed a rule-based
algorithm for object classification, which was tested on 389 object instances from an architectural
model. The algorithm used all parameter values from the 14 features and successfully classified
336 object instances into the correct categories of beams, columns, footings, slabs, and walls,
resulting in an 88.67% accuracy (Table 5). The collected and processed data were deposited into
the Purdue University Research Repository (PURR) (Wu and Zhang 2018).

Table 5. Classification results of object instances in an architectural model

Object type Correctly classified Ground truth Accuracy
Beam 12 37 32.43%
Column 170 176 95.59%
Footing 0 0 Na
Slab 14 30 46.67%
Wall 140 146 95.89%
Overall 336 389 86.38%
A B = D E F G H | ] K L [l M o] P Q
1 |Steplinge Name Type Rec_L Rec W RecH CirR Cir H R_R R_T 12w I_H (e} LR I_WT I_FT Done
2 23286 #23286 lficFooting  Footing 12.283 0.9 03 Done
3 23369 #23369 IfcFooting  Footing 8.383 0.9 0.3 Done
4 23408 #23408 lficFooting  Footing 17.383 08 03 Done
5 23446 #23446 lfcFooting  Footing 7483 0g 03 Deone
6 23485 #23485 IfcFooting | Footing 41915 0.9 03 Deone
. 23524 #£23524 lfcFooting | Footing 22 ca 03 Daone
8 36892 #36392 IfcBeam  Beam 5.18189 0178 0.347 618188 0.0128 0.0128 C.06795 Done
9 37456 #37456 IfcBeam  Beam 5.18189 0.178 0.347 618188 0.0128 0.0128 0.06795 Done
10 96743 #96743 IfcSlab Slab 150 6002 Done
11 96818 =968189 IfcSlab Slab 150 6002 Daone
12 96379 #36379 IfcSlab slab 150 G002 Done
13 96939 #96939 IfcSlab Slab 150 G002 Daone
14 96999 #96999 IfcSlab Slab 150 6002 Daone
Figure 3. A snapshot of the developed dataset (partial).
CONCLUSION

The authors developed AEC object geometric signatures for regular shapes of footings, slabs, walls,
beams, and columns, including rectangular parallelepiped, cylinder, ring, and I-shape. These
geometric signatures were developed in a scientific and empirical manner following a data-driven
approach. Mathematical definitions, geometric theorems, and statistical counts of components
were used in the signatures. The developed signatures provide useful information for describing
the characteristics of AEC objects’ geometries. The authors collected a set of 1,252 AEC object
instances and processed their geometric signatures. The dataset was shared through the Purdue
University Research Repository (PURR) to provide analyzed AEC objects data as a benchmark
and common ground for establishing shared tasks in future BIM research.
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