

Effects of ball milling on the structure of cotton cellulose

Zhe Ling · Tuo Wang · Mohamadamin Makarem · Michael Santiago Cintrón · H. N. Cheng · Xue Kang · Markus Bacher · Antje Potthast · Thomas Rosenau, Holly King · Christopher D. Delhom · Sunghyun Nam · J. Vincent Edwards · Seong H. Kim ·, Feng Xu · Alfred D. French*

Zhe Ling · Feng Xu, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China

Zhe Ling · Michael Santiago Cintrón · H. N. Cheng · Holly King · Christopher D. Delhom · Sunghyun Nam · J. Vincent Edwards · Alfred D. French* · Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA

Xue Kang, Tuo Wang Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

Mohamadamin Makarem · Seong H. Kim Department of Chemical Engineering and Material Research Institute, The Pennsylvania State University, University Park, PA 16802, USA

Thomas Rosenau, Markus Bacher, Antje Potthast Department of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 24, A-3430 Tulln, Austria

Corresponding author:

Alfred D. French

Email: al.french@ars.usda.gov, Tel: 1-5042864410

ORCID: 0000-0002-6220-6448

Prepared for Cellulose 25th Anniversary Special Issue

Version of 10/13/2018

1 **Abstract** Cellulose is often described as a mixture of crystalline and amorphous
2 material. A large part of the general understanding of the chemical, biochemical
3 and physical properties of cellulosic materials is thought to depend on the
4 consequences of the ratio of these components. For example, amorphous materials
5 are said to be more reactive and have less tensile strength but comprehensive
6 understanding and definitive analysis remain elusive. Ball milling has been used
7 for decades to increase the ratio of amorphous material. The present work used 13
8 techniques to follow the changes in cotton fibers (nearly pure cellulose) after ball
9 milling for 15, 45 and 120 minutes. X-ray diffraction results were analyzed with
10 the Rietveld method; DNP (Dynamic Nuclear Polarization) natural abundance 2-D
11 NMR studies in the following paper assisted with the interpretation of the 1-D
12 analyses in the present work. A conventional NMR model's paracrystalline and
13 inaccessible crystallite surfaces were not needed in the model used for the DNP
14 studies. Sum Frequency Generation spectroscopy also showed profound changes as
15 the cellulose was decrystallized. Optical microscopy and FE-SEM results showed
16 the changes in particle size; molecular weight and carbonyl group analyses by gel
17 permeation chromatography (GPC) confirmed chemical changes. Specific surface
18 areas and pore sizes increased. Fourier Transform IR and Raman spectroscopy also
19 indicated progressive changes; some proposed indicators of crystallinity for FTIR

20 were not in good agreement with our results. Thermogravimetric analysis results
21 indicated progressive increase in initial moisture content and some loss in stability.

22 **Keywords** Amorphous cellulose · Ball milling · Cellulose Degradation · Crystal
23 structure · Rietveld refinement

24

25 **Introduction**

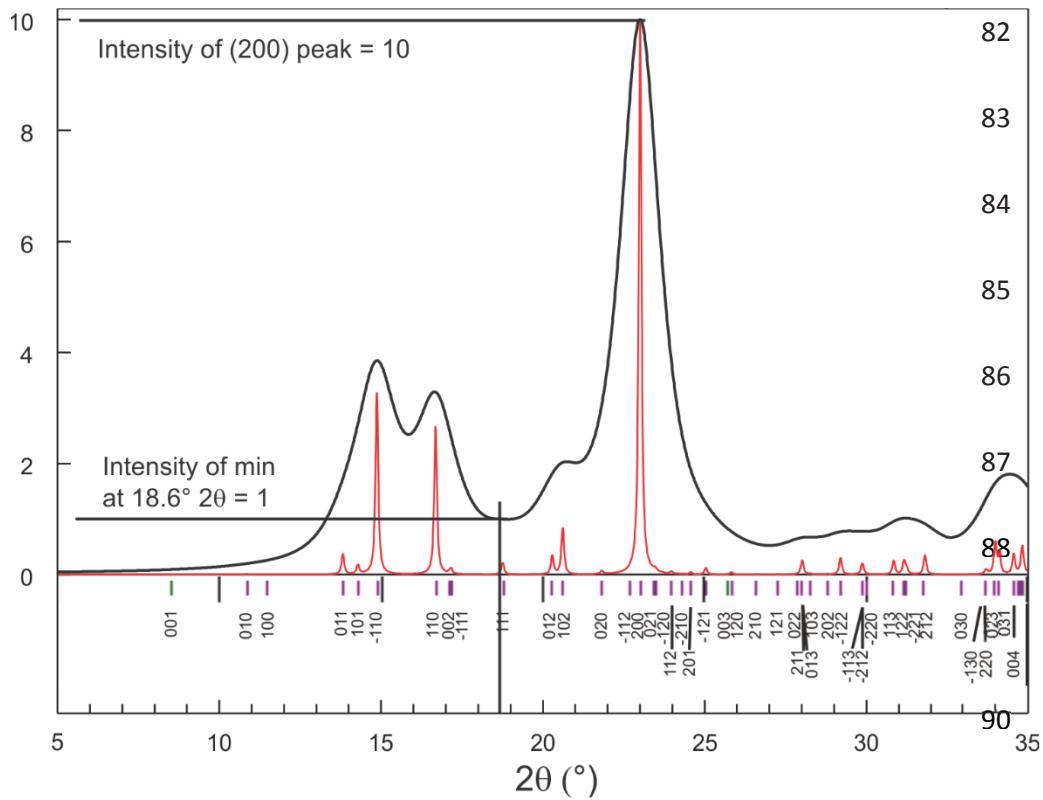
26 Cellulose is often described as a two-phase material, with both crystalline and
27 amorphous domains. It is widely thought that crystalline materials are stronger and
28 less-reactive than their amorphous counterparts. Therefore, it has been of interest
29 for nearly a century to understand these two components to better develop
30 structure-function relationships for both natural and modified cellulosic materials.

31 The idea that cellulose has a crystalline component came from X-ray
32 diffraction. According to the International Union of Crystallographers, any
33 material (including cotton cellulose) that yields a diffraction pattern with sharp
34 peaks is crystalline. Nishiyama et al. (2003a, 2002) published crystal structures of
35 the I α and I β native celluloses from the alga *Cladophora* and tunicate with atomic
36 coordinates, based on both neutron and synchrotron X-ray studies.

37 The idea that everyday plant cellulose is not entirely crystalline came from
38 several directions. In the case of diffraction, the peaks are not as sharp as those
39 from many smaller molecules. That increase in peak breadth could come from

40 small crystallite size, from defects within the crystal lattice, or from material that
41 lacks organization, causing the crystalline peaks to be more diffuse (Wertz et al.
42 2010). Concepts of synthetic petrochemical polymers gave us the “fringed micelle”
43 model and its nuanced “fringed fibril” variant (Hearle 1958) that has individual,
44 long molecules passing through numerous domains of local organization. In
45 between these local domains, or crystallites, the molecules lacked sufficient
46 organization to diffract X-rays into sharp peaks. Another insight from diffraction is
47 that the amorphous regions in ramie cellulose are quite small (Nishiyama et al.
48 2003b) and distances between the regions are comparable to molecular lengths
49 from Leveling Off Degree of Polymerization (LODP) studies.

50 Isogai and Atalla (1991) regenerated samples by precipitating cellulose from
51 SO_2 -diethylamine-dimethylsulfoxide solutions with various precipitants. Unlike
52 other regenerated celluloses, their precipitates were amorphous, and the exact X-
53 ray scattering patterns differed, depending on the particular precipitating anti-
54 solvent. Vibrational spectroscopists identified a group of low frequency vibrations
55 that were necessary conditions for crystallinity (Agarwal et al. 2016). Those
56 vibrations were absent in some native cellulose samples that still give diffraction
57 patterns that the authors interpreted as indications of an aligned but non-crystalline
58 state. These observations indicate that there are nuances to non-crystalline states
59 and models for the disordered components must incorporate flexibility.


60 Cotton fibers are individual plant cells, and their cell walls, which consist
61 mostly of cellulose, have additional structural features of interest. In particular, the
62 crystallites of native cellulose are composed of molecules with their reducing
63 groups at one end of the crystal, described as parallel packing. Since the crystallites
64 are generally aligned with the fiber axis¹ one might describe the crystallite as
65 oriented with the reducing end of the crystal towards the growth tip of the cotton
66 fiber. Based in part on findings that the molecules in crystals of mercerized
67 cellulose II are packed antiparallel, however, it has been concluded that adjacent to
68 the crystallites “pointed” towards the fiber growth tip, there is another set of cotton
69 crystallites oriented in the opposite direction. This finding was supported by sum
70 frequency generation (SFG) spectroscopic studies (Lee et al. 2014). These
71 oppositely oriented crystallites, each with parallel-packed molecules, can, after
72 swelling with NaOH, merge to create crystals with their molecules packed
73 antiparallel while retaining the overall fiber structure (Sarko et al. 1987; Shibasaki
74 et al. 1997; French et al., 2018).

75 An early experiment with ball milling reduced the cotton sample to the
76 amorphous state in 30 min (our ball milling system is slower) (Forzati et al. 1950).
77 Subsequently, Segal et al. (1959) developed a crystallinity index (Fig. 1) to

¹ Even though cotton has a high microfibril angle (French and Kim 2018) or range of deviations of alignment of microfibrils to the fiber axis, for this discussion the alignment of adjacent microfibrils can be considered to be antiparallel.

78 indicate the fraction of crystalline material in the sample. That publication has been
79 cited some 3,650 times at this writing, and their equation is often used without
80 proper credit.² In that paper, the Segal crystallinity index (CrI) was compared with
81 acid crystallinity, LODP, density, moisture regain, and an infrared crystallinity

91
92 **Fig. 1** Calculated diffraction patterns for peak widths at half height (pwhm) of 0.1
93 (red) and 1.5° (black), based on the crystal structure of cellulose I β (Nishiyama et
94 al. 2002). The corresponding Miller indices are plotted for each possible peak,

² Despite its simplicity, the Segal method is sometimes used incorrectly. The Segal CrI depends on the intensity minimum between the (110) and (200) peaks, as well as the peak intensity of the (200) reflection. However, authors have too-often chosen the (110) or combined (1-10) and (110) peak as representing the amorphous material. Furthermore, for material to be represented by the minimum intensity near 18 deg. (copper K α radiation), the background must be subtracted. Typically, this would mean subtraction of a blank.

95 indicated by the vertical magenta lines. The values of 2θ are for a wavelength of
96 1.5419 Å (CuK α). The Segal CrI is $\text{CrI} = 100 * (I_{200} - I_{am})/I_{200}$,
97 where I_{200} is the height of the (200) peak, and I_{am} is the intensity at the minimum at
98 about 18.6° 2θ . Both calculations are based on perfect crystal models, but with
99 sizes of about 900 Å (when pwhm = 0.1°) and 60 Å (pwhm = 1.5°). In this case the
100 smaller crystallite would have a CrI of 90 %, whereas the larger one would have a
101 CrI of 100%. Adapted from Fig. 2a in French (2014)

102

103 index. In the intervening years, researchers have attempted to confirm the Segal
104 equation with numerous methods including infrared spectroscopy (Nelson and
105 O'Connor 1964a) and deuterium exchange (Agarwal 2016).

106 Many such tests could confuse the increase of specific surface area with a
107 decrease in the crystallinity, even though the smaller crystals with more surface
108 area might be perfectly ordered. Another point is that surface molecules become an
109 increasingly large fraction of the total molecules as the crystals are reduced in size.
110 A crystal with 100 molecules (a more or less square shape with 10 molecules on
111 each side) will have 36 molecules (36%) on the surface that are not as constrained
112 by neighbors within the crystal. A similarly shaped crystal with only 36 molecules
113 would have 20 molecules on the surface, or 55%. The O-6 groups on surface
114 molecules would have extra freedom for rotation and occupation of the alternative

115 *gauche-trans* (*gt*) and *gauche-gauche* (*gg*) positions. The O-6 positions will affect
116 various key spectroscopic results more than they would X-ray diffraction
117 intensities. An O-6 in the *gt* position has very similar x- and y- coordinates as one
118 in the usual *trans-gauche* (*tg*) cellulose I position and the very strong $h\bar{k}0$
119 diffraction intensities would not be affected very much. Because different
120 crystallinity techniques measure different things, complete agreement among
121 different methods may never be attained.

122 Segal's landmark equation was criticized, especially because the area under
123 the peaks is more important than their height. More recently, French and Santiago
124 Cintrón (2013) showed that some of the diffraction intensity attributed to
125 amorphous material by Segal et al. can be due to the overlap of the broad peaks
126 resulting from small crystallites, as in Fig. 1. Also, there is a small contribution to
127 Segal's amorphous intensity from some small peaks. Therefore, no cellulose
128 sample with reasonable crystallite size could give 100 % Segal crystallinity. A
129 further deficit in Segal's approach is that a sample that was 100% amorphous
130 would have to give a diffraction pattern with a flat top. Instead, amorphous
131 samples, regardless of source, give a broad hump with a maximum that reflects the
132 distribution of frequent interatomic distances in the sample.

133 Park et al. (2010) describe two other methods for crystallinity determination
134 by diffraction: amorphous subtraction and peak deconvolution. The amorphous

135 subtraction method, as in the case of Segal's peak height method, depends on the
136 assumption that the diffraction intensity at the valley between the (110) and (200)
137 peaks is all due to amorphous material, and is thus inherently flawed. The XRD
138 deconvolution method has better fundamentals. However, its implementations
139 suffer because it is typically carried out with curve-fitting software, instead of
140 software written to take into account the specific problems of diffraction data such
141 as preferred orientation and anisotropic crystallite size that are endemic to cellulose
142 samples. Also, only a few strong peaks are usually considered, along with a broad
143 curve that defines the amorphous contribution to the overall intensity. Thus, none
144 of the conventional methods for crystallinity study by diffraction is satisfactory.

145 In the present work, the Rietveld powder diffraction method is used
146 (Rietveld 1969; Young 1993). This method would seem to be the ultimate
147 approach for diffraction study of cellulose crystallinity and has been applied by a
148 number of researchers including Thygesen et al. (2005), Driemeier and Calligaris
149 (2011), Driemeier (2014), Howell et al. (2011), Chen et al. (2015), Xiaohui et al.
150 (2015), Reyes et al. (2016), Ahvenainen et al. (2016), Duchemin (2017) and
151 Vanderfleet et al. (2018). As also shown in Fig. 1 with the simpler Mercury
152 program, the Rietveld method allows calculation of a theoretical diffraction pattern
153 based on the atomic coordinates of a proposed structure, such as the work of
154 Nishiyama et al. (2002). The question is: what changes to that ideal pattern are

155 needed to make it agree with the observed experimental result? Changes to
156 compensate for variables such as crystallite size, small deviations in unit cell
157 dimensions, and given a model, the presence of amorphous or other phases are
158 optimized with a least squares fit. Even though Rietveld may be the ultimate
159 approach, it is limited by the relatively small amount of data furnished by
160 crystalline cellulose powders, and the X-ray patterns of progressively amorphous
161 material give less and less information.

162 Nuclear magnetic resonance spectroscopy also has a strong role in cellulose
163 crystallinity studies. Solid-state NMR spectroscopy (ssNMR) has been extensively
164 employed to determine the polymorphic structure of native, functionalized and
165 genetically engineered cellulose (Atalla and Vanderhart 1984; Harris et al. 2012;
166 Wang and Hong 2016; Wickholm et al. 1998). Cellulose crystallinity can be
167 inferred from the intensity ratio of the area under C-4 peaks arising from the
168 crystalline chains that resonate at 87-90 ppm and the area of the disordered domain
169 that shows broader signals spanning 80-86 ppm (Atalla et al. 1980; Newman and
170 Hemmingson 1990; Larsson et al. 1999). This peak broadening is primarily caused
171 by distinct hydroxymethyl torsion angles of C-6: the disordered regions adopt
172 either *gt* or *gg* conformations while the tightly hydrogen-bonded crystallites of
173 cellulose I adopt the *tg* conformation, a structure that is less energetically favored
174 and rarely observed in other carbohydrates (Phyo et al. 2018; Viëtor et al. 2002;

175 Yang et al. 2018). Further peak complexity exists within each category due to
176 conformational polymorphism, magnetic non-equivalence of glucose units, diverse
177 patterns of chain packing, bundling of multiple microfibrils, and interactions with
178 matrix polymers (Kono and Numata 2006; Newman et al. 2013; Wang et al. 2016).
179 Despite investigation using ssNMR of these complicated structural aspects, an
180 original issue remains and is discussed here. Namely, what is the level of
181 agreement with other spectroscopic or diffraction methods in estimating cellulose
182 crystallinity? Our analyses have been informed by the results given in the
183 accompanying paper (Kirui et al., 2019). In the Supporting Information, an
184 analysis of similar NMR data has been carried out with a more conventional
185 approach in which a model is assumed and the samples were swollen in water prior
186 to measurement.

187 Of course, many other techniques have been applied to studies of cellulose
188 crystallinity, or at least their results have been interpreted based on changes in
189 crystallinity. As mentioned already, FTIR has been frequently employed (Liu and
190 Kim 2015) as has Raman spectroscopy (Agarwal et al. 2016). Application of SFG
191 spectroscopy specifically to ball-milled cellulose is new. Other techniques are used
192 herein to provide a fuller understanding of the effects of ball milling, including
193 microscopy, molecular weight and oxidation to carbonyl groups determined by
194 multidetector GPC after group-selective fluorescence labeling, surface area and

195 pore size, as well as thermogravimetric analysis. The end of the Results and
196 discussion and the Conclusions sections tie these approaches together.

197

198 **Experimental**

199 **Materials**

200 Cotton balls were purchased from Wal-Mart and chopped in a Wiley mill
201 (Eberbach E3300 mini cutting mill, Eberbach Corp., Belleville, Michigan) until
202 they fell through a 20-mesh screen. Then 5 g portions of the powder were placed in
203 a locally built ball mill (Forziati et al. 1950) running at 1750 rpm. The
204 approximately one liter steel jar was chromium plated and 500 mL of stainless
205 steel balls 0.25 in. (~4 cm) in diameter were employed. The cellulose samples
206 milled for 15 min, 45 min and 120 min were respectively labeled as BMC-15,
207 BMC-45 and BMC-120. The control, Wiley milled cellulose, was denoted as
208 WMC.

209 Lithium chloride was purchased from JT Baker (Philipsburg, NJ, USA) and
210 ethanol, acetone, and dimethylacetamide (DMAc) were purchased from Sigma
211 Aldrich (St. Louis, MS, USA). All chemicals used in this study were either
212 analytical or reagent grade.

213

214 **Microscopy**

215 Optical images were obtained with a Zeiss Axioplan polarized light microscope
216 (Thornwood, NY, USA) with an AmScope digital camera (Irvine, CA, USA). Both
217 WMC and BMC samples were dispersed with a pointed tool. The fiber lengths
218 were determined with Image J software (1.41v, US National Institutes of Health,
219 USA).

220 The samples were also observed with an FEI Quanta 3D FEG Field emission
221 scanning electron microscope (FE-SEM, Hillsboro, Oregon, USA). The
222 accelerating potential was 5 kV, with a beam current of 20 mA. The samples were
223 sputter coated with a 3-nm layer of gold–palladium using a Leica EM ACE600
224 (Buffalo Grove IL, USA).

225

226 **Molecular weight determination and carbonyl group analysis**

227 The samples were treated according to a standard protocol (Röhrling et al. 2002)
228 for cellulose labelling (7 days in a shaking water bath at 40°C). After solvent
229 exchange from water to ethanol into DMAc the samples stayed 12 h in DMAc,
230 were dissolved in DMAc/LiCl 9% and diluted with DMAc prior to injection. The
231 raw data are available upon request. The degree of polymerization was calculated
232 by the following equation:

233
$$DP = M/162 \quad (1)$$

234 where M is the molecular weight of each sample and 162 is the molecular weight
235 of an anhydroglucose unit. The maximum molecular lengths (N) were obtained by:

236
$$N \text{ (nm)} = DP * 0.5125 \quad (2)$$

237 where 0.5125 is our estimated advance per glucose residue along an extended but
238 non-symmetric molecule.

239

240 **Surface properties and thermal analysis**

241 The specific surface area (SSA) and pore sizes of the ball-milled cotton cellulose
242 were measured using Brunauer, Emmet and Teller nitrogen adsorption (Brunauer
243 et al. 1938; Sehaqui et al. 2011) using a TriStar II Plus 2.02 Analyzer (Service
244 purchased from Particle Testing Authority, Norcross, GA, USA). Prior to analysis,
245 samples were under vacuum at 150 °C.

246 For thermogravimetric (TGA) and differential thermogravimetric (DTG)
247 analyses, all cellulose samples (5 mg each) were conditioned in a Nor-Lake
248 Scientific humidity chamber at 60 °C overnight (Hudson, WI, USA). Tests used a
249 TA Q500 thermogravimetric analyzer (TA Instruments, New Castle, DE) and a
250 nitrogen atmosphere. Samples were heated from 0–600 °C at a rate of 10 °C/min.
251 Thermograms were analyzed by the Universal Analysis 2000 Software (TA
252 Instruments).

253

254 **Spectroscopy**

255 FTIR spectra were collected on a Vertex 70 (Bruker Optics, Billerica, MA)
256 equipped with a mid-IR source and an attenuated total reflection (ATR) sampling
257 accessory (Pike Technologies, Madison, WI) with a diamond-ZnSe crystal.
258 Samples were placed on top of the ATR crystal and secured with a metal clamp in
259 a manner that assured consistent pressure for all samples. Three measurements
260 were performed for each sample, with a total of 128 scans taken for each sample at
261 a resolution of 4 cm⁻¹ (3800 – 600 cm⁻¹). Spectra were corrected against an air
262 background. Spectra for each sample were averaged, baseline-corrected and
263 normalized using the OPUS spectroscopy software (version 6.5). Spectra are
264 presented without ATR correction or atmospheric compensation.

265 The FT-Raman spectra were collected using a DXR2 785 nm Raman
266 microscope (Thermo Fisher Scientific Inc., USA). The spectra (100-3100 cm⁻¹)
267 were obtained with a laser power of 10 mW, exposure time 1 s with a 25 μ m
268 pinhole aperture. Each spectrum was measured once with an accumulation time of
269 10 s. Spectra were collected by OMNIC for Dispersive Raman software (Thermo
270 Fisher Scientific).

271 For vibrational SFG spectroscopy, the samples were pressed into pellets.
272 Details of the SFG system have been discussed extensively elsewhere (Lee et al.
273 2015a). Briefly, SFG beams were generated by spatial and temporal overlap of

274 800-nm and IR laser beams. A Ti-sapphire amplifier (Coherent, Libra) generated
275 800-nm laser pulses that were then narrowed by using two Fabry-Pérot etalons to
276 0.78 nm width. A broadband-tunable IR beam ($1000 - 4000 \text{ cm}^{-1}$) with full width
277 at half maximum (FWHM) of $150-200 \text{ cm}^{-1}$ is generated using an optical
278 parametric generation/amplification (OPG/OPA) system (Coherent, OPerA Solo).
279 The analysis was carried out with p-polarized IR and s-polarized 800 nm, and the
280 s-polarized SFG signal was recorded. The experiment was done with reflection
281 geometry with two laser beams (IR and 800 nm) shining on samples with a 45°
282 angle. The generated SFG beam was passed through a monochromator and
283 detected by a CCD camera. To minimize the heterogeneity in samples, the spectra
284 were collected from ten randomly chosen locations on the pellets and averaged.
285 Each spectrum was normalized by the IR power.

286

287 **Solid-state NMR experiments**

288 For the conventional solid-state NMR experiments, 50-59 mg of the native and
289 ball-milled cotton samples were directly packed into 4-mm zirconium rotors for
290 measurements. Solid-state experiments were conducted on a 400 MHz (9.4 Tesla)
291 Bruker Avance spectrometer (Bruker Optics, Billerica MA, USA) using a 4-mm
292 MAS HCN probe. The standard ^{13}C CP experiments were collected under 10 kHz
293 magic-angle spinning (MAS) at 296 K. ^{13}C chemical shifts were externally

294 referenced to adamantane CH₂ signal at 38.48 ppm on the TMS (tetramethylsilane)
295 scale. Typical radiofrequency field strengths were 80 kHz for ¹H decoupling and
296 hard pulse, 62.5 kHz for 1H and ¹³C CP. A contact time of 1 ms is used for CP. For
297 signal averaging, 12288 scans were measured on each sample. The spectra were
298 deconvoluted using DMfit software (Massiot et al. 2002). The WMC and BMC
299 samples were also processed using a matrix-free protocol for DNP experiments
300 (Takahashi et al. 2012) and the results are detailed in an accompanying separate
301 paper (Kirui et al. 2019).

302

303 **Diffraction experiments**

304 Laboratory XRD measurements were performed at room temperature with a
305 PANalytical Empyrean laboratory diffractometer (Malvern Panalytical Inc.,
306 Westborough MA, USA) with a spinning, zero-background sample holder, using
307 Cu K α -radiation and a PIXcel3D detector. The patterns were corrected by a blank
308 and then analyzed using the pseudo-Voigt peak shape with the MAUD Rietveld
309 program (Materials Analysis Using Diffraction, version 2.7, Lutterotti et al. 2007).
310 The crystallinity was calculated from the area of the calculated pattern for
311 crystalline cellulose divided by the sum of the areas for crystalline and amorphous
312 regions. The *d*-spacings were calculated from refined unit cell dimensions, and

313 crystallite sizes perpendicular to different lattice planes were calculated using the
314 Scherrer Equation (3).

315

$$L_{hkl} = \frac{0.9\lambda}{B_{hkl} \cos \theta} \quad (3)$$

316 where λ is the X-ray wavelength, B_{hkl} is the angular FWHM in radians of the (hkl)
317 line profile, and θ is the scattering angle (Holzwarth and Gibson 2011).

318 Synchrotron measurements were performed at beamline 6B of the Center for
319 Advanced Microstructures and Devices (CAMD) (Baton Rouge, Louisiana, USA).
320 Samples of 1 mg of milled cotton were placed in a plastic capillary (MiTeGen
321 MicroRT, Ithaca NY) for which the background scattering pattern was individually
322 recorded immediately prior to filling and collecting the data. Exposure time was 10 s
323 and wavelength $\lambda=1.38$ Å. The MAR 2048 x 2048 CCD detector synchrotron data
324 were visualized and converted to 1D data with the XRD2D Scan software
325 (Rodriguez-Navarro 2006). The Caglioti asymmetry parameters in the MAUD
326 Rietveld program were adjusted from their Bragg-Brentano defaults (used with the
327 laboratory data) to zero, and the HWHM Caglioti value0 was set to 0.00025; the
328 value1 and value2 parameters were set to 0.

329 For visual comparison (Figs. 9 and 10), the synchrotron X-ray patterns
330 ($\lambda=1.3801$ Å) were converted to the same 2θ scale as the laboratory data
331 ($\lambda=1.5418$ Å) by solving the Bragg equation (4) (Klug and Alexander 1974) for d

332

$$n\lambda = 2d \sin \theta \quad (4)$$

333 and then converting the d value to 2θ with the Bragg equation's arcsin inverse.

334

335 **Results and discussion**

336 **Optical microscopy and FE-SEM**

337 Polarized light optical micrographs of the samples are in Fig. S1. Previously
338 immersed and dispersed in alcohol, many particles in the WMC and BMC-15
339 samples were birefringent under polarized light. WMC showed intact and long
340 cellulose fibers with an average length of 296 μm . Ball milling for 15 min broke

351

352 **Fig. 2** SEM images of Wiley milled cotton (a) and cotton ball-milled for 15 min
353 (b), 45 min (c) and 120 min (d). Scale bars in large images and insets = 20 μ m and
354 5 μ m respectively

355
356 down the fibers, lowering the sample birefringence as well as the average size of
357 fibers. With longer milling time, the fiber shape disappeared for BMC-45
358 and BMC-120 (average sizes were 47 μ m and 23 μ m, respectively), indicating that
359 the extended ball milling effectively broke the WMC fibers into smaller particles.

360 Figure 2 shows the FE-SEM images of the samples. Wiley milling chopped
361 the cotton fibers into relatively large fragments of about 120 μ m in length (Fig. 2a).
362 A closer observation of a single fiber (zoomed in Fig. 2a) shows that the intrinsic
363 fiber morphology of WMC remained intact. However, ball milling significantly
364 degraded the fiber. Even 15 min of ball milling (Fig. 2b) split open some fibers
365 along the fiber length as well as breaking some into small fragments. The
366 fragments were irregular, but the longitudinal fragmentation was dominant. Ball
367 milling extended to 45 min reduced the aspect ratio of the fragments to generate
368 particles with a diameter of about 50 μ m (Fig. 2c). However, some large particles
369 remain in sample BMC-45, suggesting the inhomogeneity of cellulose fiber
370 particles after ball milling. The size of the particles was further decreased to about
371 7 μ m after 120 min of ball milling (Fig. 2d). The disordered fiber residues were

372 approximately 10-15 μm in length (zoomed in Fig. 2d) with coarse surfaces and
373 pores, showing the higher extent of destruction of the cotton fibers.

374

375 **Molecular weights**

376 Table 1 shows that the molecular weights of the samples decrease steadily with
377 increased milling time. Some oxidation is revealed by the notably increased
378 carbonyl amount from 1.9 $\mu\text{mol/g}$ (WMC) to 36 $\mu\text{mol/g}$ for BMC-120. As the
379 chains became shorter, more carbonyl groups per unit mass appeared than the
380 expected increase based on the increased number of reducing ends from breakage
381 of the molecules. However, the oxidation resulted in only more carbonyls, whereas
382 the amount of uronic acid groups did not increase significantly. The distributions
383 of oxidized functionalities with regard to molar mass and the corresponding molar
384 mass distributions are given in Fig. S2.

385

386 **Table 1** The DP based on number-average molecular weight (M_n), weight-average
387 molecular weight (M_w), Z-average molecular weight (M_z); sample polydispersity
388 and calculated average molecular lengths of Wiley and ball-milled cotton cellulose

Samples	DP on number- average (M_n) ^a	DP on weight- average (M_w)	DP on Z- average (M_z)	Dispersity (M_w/M_n) ^b	Molecular lengths (nm) from M_n , M_w , M_z ^c
WMC	718	3335	5850	4.7	370 / 1718 / 3013

BMC-15	517	2143	4696	4.2	266 / 1103 / 2418
BMC-45	344	1409	3659	4.3	177 / 726 / 1885
BMC-120	265	856	2134	3.2	137 / 441 / 1099

389 ^a DP was calculated by equation (1)

390 ^b The dispersity equals Mw/Mn.

391 ^c The molecular lengths were calculated according to equation (2).

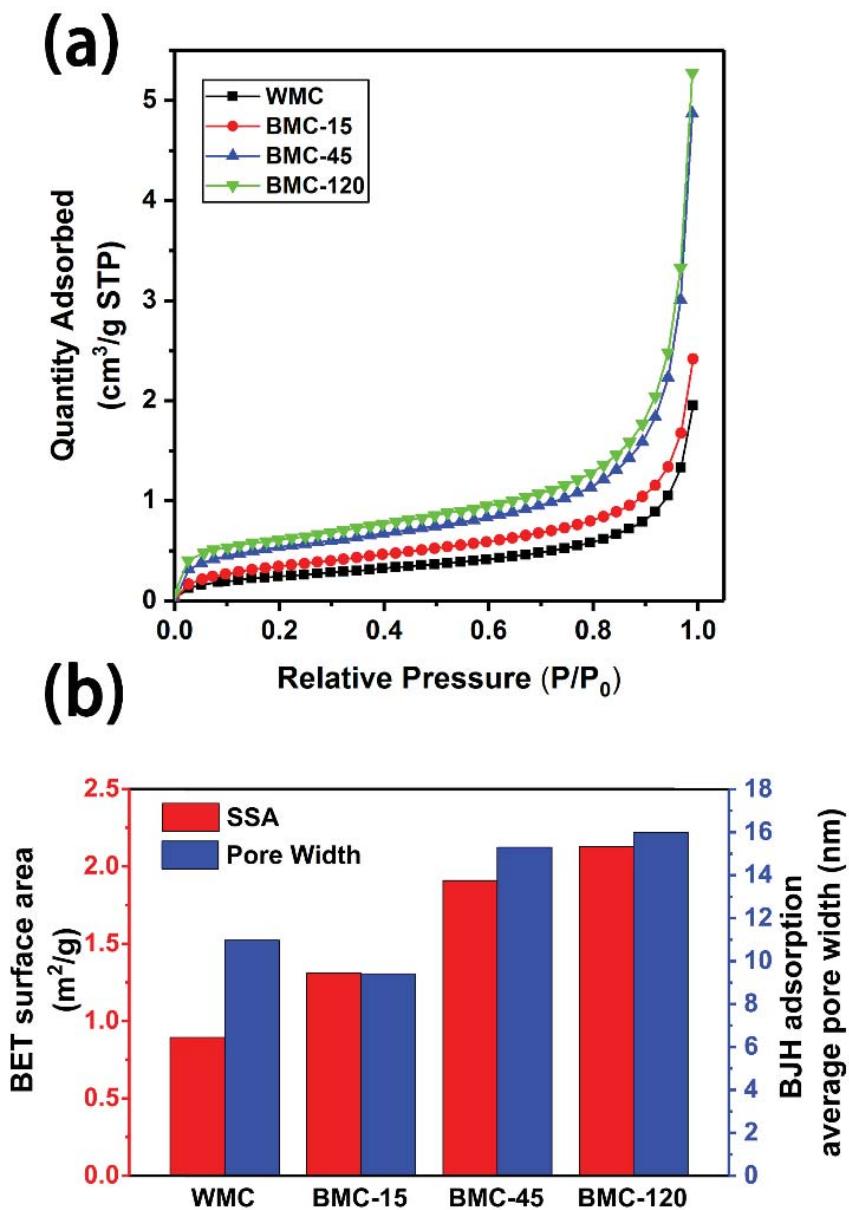
392

393 **Specific surface area (SSA), pore size and thermogravimetric analysis (TGA)**

394 SSA was determined from N₂ adsorption using BET analysis (Brunauer et al. 1938;

395 Sehaqui et al. 2011). All samples presented similar adsorption isotherm curve

396 shapes (Fig. 3a). WMC absorbed the lowest quantity of N₂. The highest absorption


397 value was 5 cm³/g for BMC-120. The SSA and average pore width are plotted in

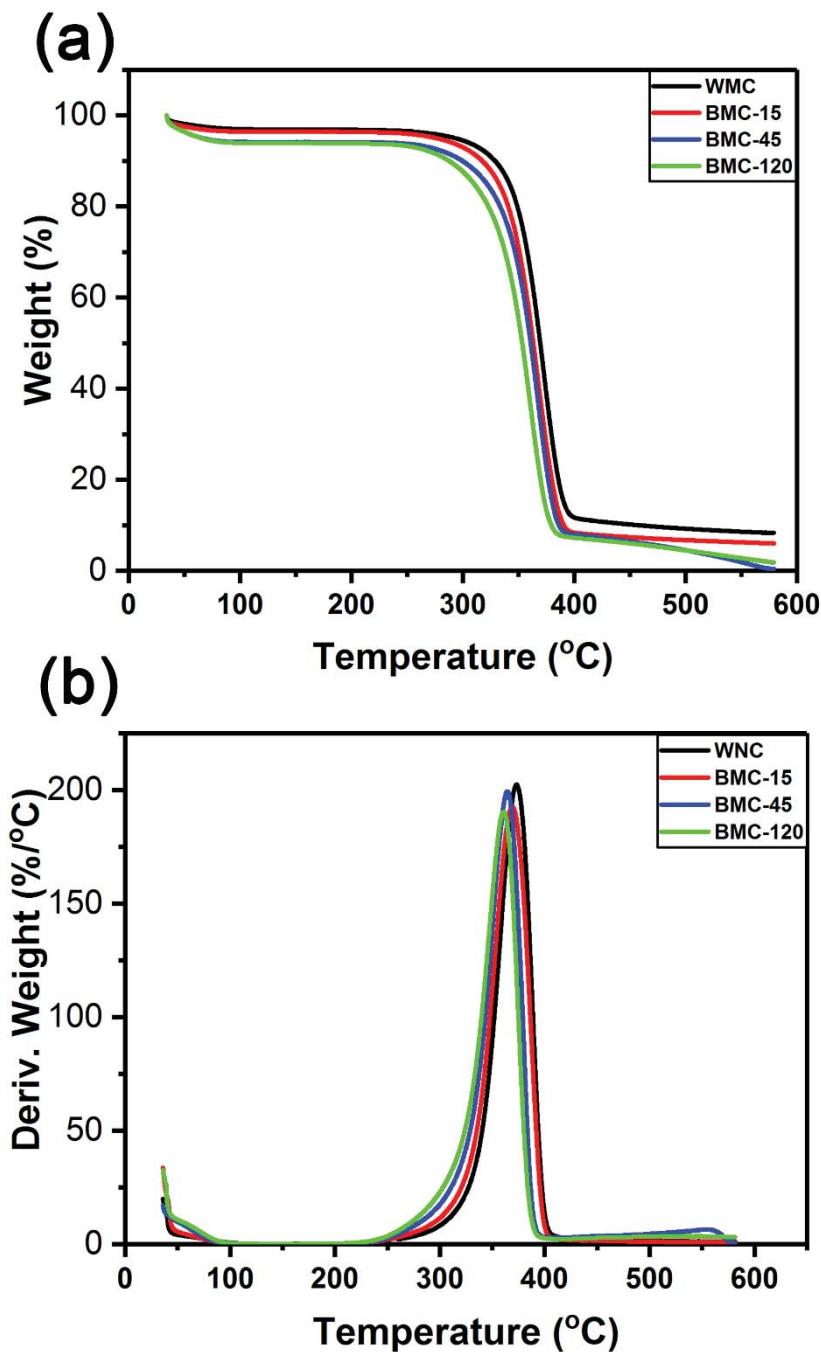
398 Fig. 3b based on the BET analysis. SSA showed a gradual increase with increased

399 ball milling time. It can be explained by the destruction of cellulose structures after

400 ball milling and exposure of internal surface of fibers as seen in the SEM images

401 (Fig. 2).

402


403 **Fig. 3** The adsorption isotherms (a) and BET surface area (red bars in b), BJH
 404 adsorption average pore width (blue bars in b) of Wiley milled cotton cellulose and
 405 cotton cellulose ball milled for 15, 45 and 120 min

406

407 The average pore width decreased slightly for BMC-15 but the pores were opened
408 significantly for BMC-45 and BMC-120 with approximately 15 nm of average
409 pore width. As expected, the ball-milling treatment for longer times is an effective
410 way to disrupt the ordered arrangements of cellulose molecules. It breaks down the
411 fibrous structures, exposes more surface area, and opens the pores of cotton. The
412 initial decrease in pore size may have resulted from impact compression by the ball
413 mill without the damage and fragmentation that occur at longer ball-milling times.

414 The samples were studied by TGA and DTG under an N₂ atmosphere. All
415 data were plotted in the TGA weight loss mode and the DTG mode. From the
416 analysis of thermal properties, we can estimate the cellulose crystallinity according
417 to Bertran and Dale (1986), who used DSC to show that the crystallinity of
418 cellulose could be correlated with the moisture content. The hypothesis was that
419 the amorphous region of cellulose should absorb more moisture in a humidity
420 chamber, whereas the crystalline region adsorbs much less. Of course, there is a
421 rough correlation between the initial moisture content and SSA.

422 The TGA and DTG results are displayed in Fig. 4. The point of rapid weight
423 loss for WMC appeared at nearly 300 °C while the curves for BMC samples
424 shifted left to lower temperatures (Fig. 4a). BMC-120 began degrading obviously
425 at 250 °C and lost almost all of its initial weight, indicating a decrease of thermal

443

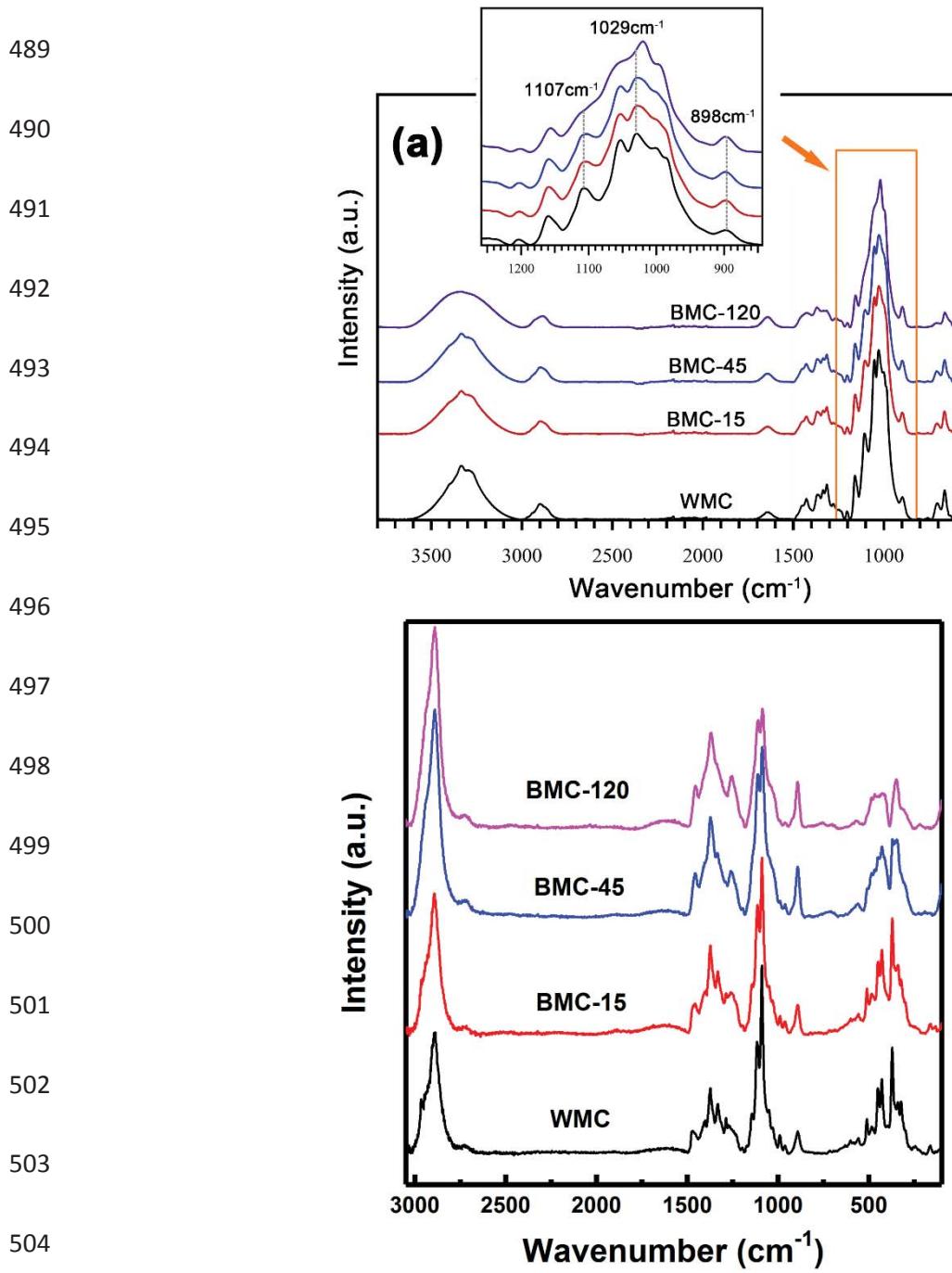
444 **Fig. 4** TGA (a) and DTG (b) analyses of Wiley milled cellulose and ball-milled
 445 cellulose for different times

446 stability after ball milling. WMC showed the highest maximum degradation rate as
447 well as the highest degradation temperature (Fig. 4b). With extension of ball-
448 milling time, the temperature for maximum degradation rate reduced to 369.3 °C,
449 367.2 °C and 362.4 °C for BMC-15, 45 and 120 (Fig. S3a). However, the weight
450 loss at each maximum DTG temperature showed a gradual increase (Fig. S3b),
451 confirming the loss of stability after ball-milling treatments. This apparent loss
452 could result, however, from a constant heating rate and the smaller particle sizes of
453 the ball-milled materials. If the weight loss is taking place on the surfaces, larger
454 crystals would take a longer time to decompose.

455 Two more correlations are shown for the four cotton samples (Fig. S4). The
456 plots give the correlation of weight loss at 100 °C versus the temperature at the
457 maximum degradation rate as well as the weight loss vs the maximum degradation
458 rate. Both correlations are satisfactory ($R^2 = 0.99$ and 0.94, respectively) for the
459 cellulose samples that were preconditioned in the humidity chamber. The good
460 correlations of the ball-milling time duration with two parameters further suggest
461 that the high moisture loss is from the amorphous material of BMC.

462

463 **ATR-FTIR and FT-Raman spectroscopy**


464 The FTIR spectra are shown in Fig. 5a. The spectrum for WMC showed infrared
465 bands and peaks commonly observed for cotton: a wide OH stretching band (3600-

466 3000 cm⁻¹), a CH stretching region (3000-2900 cm⁻¹), the OH bending region,
467 1800–1300 cm⁻¹, and the fingerprint region with multiple combination bands,
468 1250–850 cm⁻¹. The visible bands at 3270 cm⁻¹ and 710 cm⁻¹ are typical for
469 cellulose I β for WMC, even though there are tiny peaks at 3240 cm⁻¹ and 750 cm⁻¹
470 assigned to a small amount of cellulose I α (Sugiyama et al. 1991). Ball milling
471 leads to progressive broadening of the OH band, with the BMC-120 spectrum
472 lacking the inflection points at 3334 cm⁻¹ observed for WMC. Meanwhile, the
473 bands attributed to both cellulose I α and I β disappeared for BMC-120, a result
474 attributed mainly to the destruction of the crystal structure by lengthy ball milling.

475 Ball milling also results in changes to the fingerprint IR region. While the
476 position of the 1159 cm⁻¹ peak is slightly altered by ball milling, its intensity
477 appears unaffected. In contrast, the well resolved peaks at 1107 and 1052 cm⁻¹
478 diminish in intensity for the sample ball-milled for 120 min. The prominent peak at
479 1029 cm⁻¹ is gradually shifted to 1019 cm⁻¹ following ball milling. Two shoulder
480 bands are observed centered at 1000 and 985 cm⁻¹ in the Wiley milled sample;
481 however, only one shoulder band (995 cm⁻¹) is observed for BMC-120. The peak
482 near 898 cm⁻¹ appears more intense in the ball-milled cotton samples. An early
483 study by Nelson and O'Connor (1964b) observed similar spectral changes in ball-
484 milled cotton samples. Key changes include the position of the 1163 cm⁻¹ band
485 (observed in this study at 1159 cm⁻¹), and the intensity of bands at 1111 and 893

486 cm^{-1} (observed in this study at 1107 and 898 cm^{-1} , respectively). Their study did
487 not show significant changes to the 1052, 1000 and 985 cm^{-1} bands, but these

488

506 **Fig. 5** ATR-FTIR (a) and FT-Raman (b) spectra of Wiley milled cellulose, and
507 cellulose ball-milled for 15 min, 45 min and 120 min. A small peak for water in
508 amorphous domains is seen at $\sim 1650\text{ cm}^{-1}$.

509

510 differences could be the result of their sampling methodology and resolution of
511 their instrument.

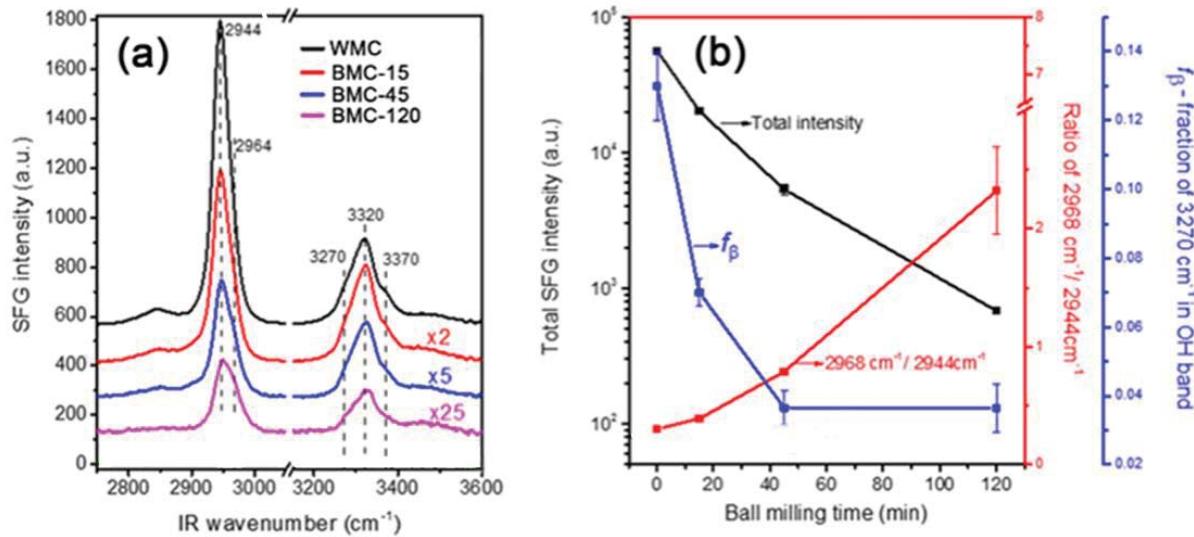
512 The Raman spectra of Wiley and ball-milled cotton cellulose are presented
513 in Fig. 5b. With the increase of milling time, the main peak of cellulose at 380 cm^{-1}
514 assigned to symmetric bending vibration of pyranose rings in crystalline cellulose
515 showed visible reduction together with the C-O-C and C-H stretching vibration at
516 1096 cm^{-1} and 2900 cm^{-1} , respectively (Agarwal and Ralph 1997; Agarwal et al.
517 2016; Makarem et al. 2019). The decreases of these main peaks were substantial
518 for BMC-120, indicating the distortion of crystalline arrangements and the smaller
519 CrI. Meanwhile, the peaks attributed to the bending vibrations of cellulose
520 glycosidic linkages (990 cm^{-1} , 1116 cm^{-1} and 1331 cm^{-1}) disappeared for the most
521 amorphous sample (BMC-120) (Wiley and Atalla 1987).

522 The notable peak of 1481 cm^{-1} in WMC shifted to 1462 cm^{-1} with prolonged
523 ball milling. The ratio of these two peaks refers to the proportion of crystalline
524 cellulose, and confirmed an increased amorphous fraction in the sample, leading to
525 a significant decrease of CrI (Schenzel et al. 2005).

526

527 **SFG analysis**

528 SFG spectroscopy is specific to non-centrosymmetric vibration modes in an
529 otherwise amorphous matrix (Barnette et al. 2011). The SFG signal intensity can
530 be used to quantify the amount of crystalline cellulose in the sample if a proper
531 calibration curve can be obtained (Barnette et al. 2012; Park et al. 2013). For ball-
532 milled cellulose, the main features observed in the CH stretch region (2800-3000
533 cm^{-1}) are the peak at 2850 cm^{-1} assigned to the CH_2 symmetric vibration, the peak
534 at 2944 cm^{-1} as the CH_2 asymmetric vibration, and a shoulder at 2968 cm^{-1} also
535 assigned to CH_2 asymmetric vibrations (Fig. 6a) (Lee et al. 2013). Time-dependent
536 density functional theory (TD-DFT) calculations also revealed that the CH_2
537 vibrations between 2800-3000 cm^{-1} are highly coupled with CH vibrations on the
538 six-atom ring (Lee et al. 2016a). Thus, the peaks in this region represent more than
539 just the vibrational modes of isolated CH_2 groups. The peak at 2944 cm^{-1} is
540 characteristic for cellulose I β , which also has a shoulder at 2968 cm^{-1} (Huang et al.
541 2018a). With increased ball-milling time, peaks between 3200-3500 cm^{-1} assigned
542 to the stretching vibrations of OH groups in cellulose I β show a notable decrease.
543 Note that OH peaks in this region also cannot be assigned to single vibrational
544 modes; they originate from highly coupled vibrations of multiple OH groups in
545 cellulose structure (Lee et al. 2015b). Meanwhile, the broad component at 3450


546 cm^{-1} can be attributed to OH groups exposed at the surface of cellulose crystals
547 (Makarem et al. 2017).

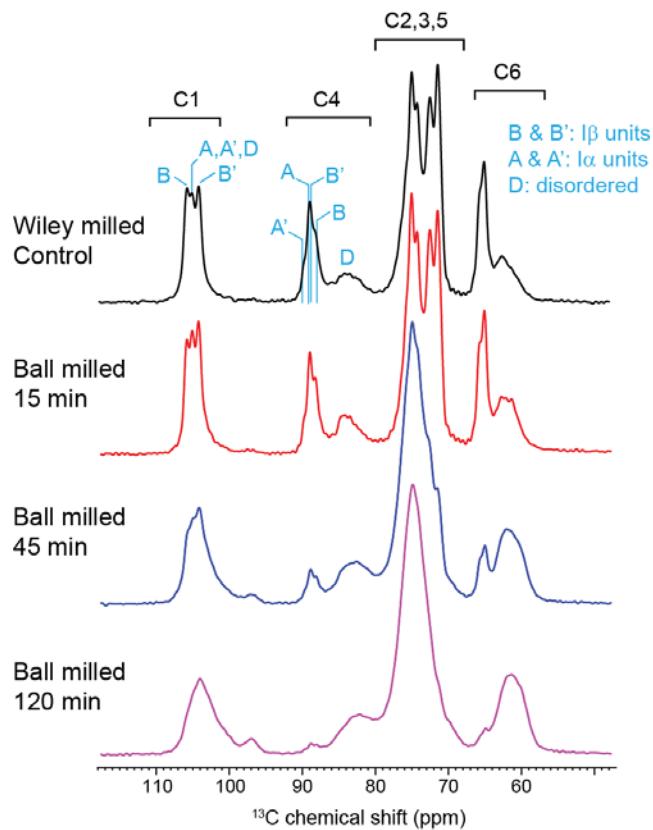
548 Fig. 6b displays changes in the total intensity of the CH/CH_2 SFG peak as a
549 function of ball-milling time. The SFG intensity from the cellulose I β phase in the
550 BMC-15, -45, AND -120 samples decreased to ~35%, ~9%, and ~1%,
551 respectively, compared to the SFG intensity of WMC. This implies that a small
552 fraction of cellulose I β crystallites still remains in BMC-120.

553 Another important aspect is that the shape of the CH/CH_2 asymmetric stretch
554 feature in the 2900-3000 cm^{-1} region changes with ball milling. The relative
555 intensity ratio ($2968 \text{ cm}^{-1}/2944 \text{ cm}^{-1}$) is plotted against the right-side red axis in
556 Fig. 6b. The increase in this ratio implies that a small fraction of cellulose I β was
557 converted to cellulose II, as also found for the FTIR work. This transformation
558 might have happened when the amorphized portion of cellulose chains underwent
559 crystallization due to the proximity of cellulose chains or mechanochemical
560 processes during ball milling.

561 SFG peaks in the OH stretch region (3200-3600 cm^{-1}) can be deconvoluted
562 with various components. The component at 3270 cm^{-1} is characteristic of cellulose
563 I β . The fraction of this component intensity with respect to the entire OH
564 components (f_β) can show the change in cellulose I β fraction among the SFG-active

565 fraction of cellulose. The plot of f_β versus the milling time is also shown in Fig. 6b,
566 decreasing as the ball-milling time increases.

567

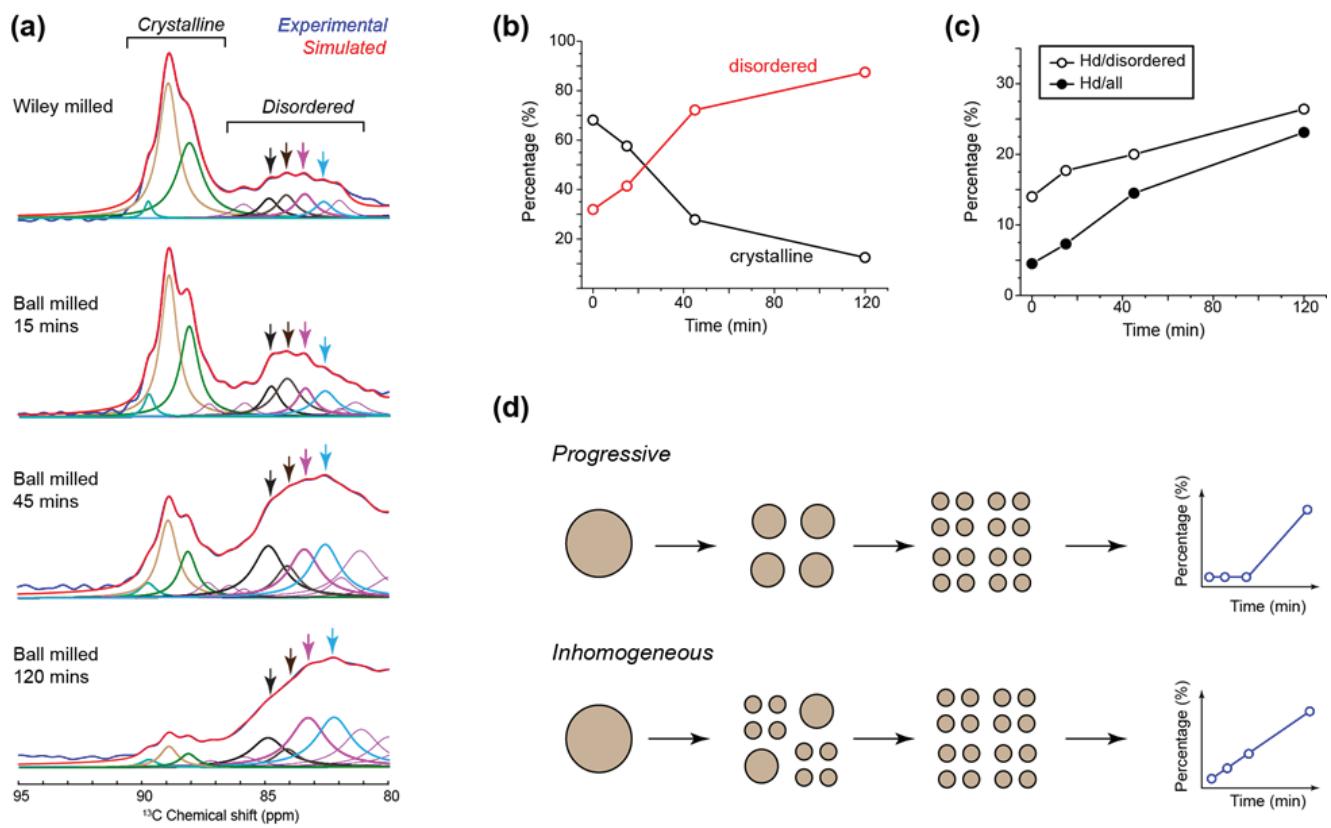

568 **Fig. 6** (a) SFG spectra of cotton before and after ball milling for 15 min, 45 min,
569 and 120 min. Note that some spectra are amplified for comparison with different
570 magnification ratios (marked for each spectrum). (b) Plots of the SFG total
571 intensity, the $2968\text{cm}^{-1}/2944\text{cm}^{-1}$ intensity ratio, and the 3270 cm^{-1} fraction in the
572 OH peak versus the ball-milling time

573

574 **NMR characterization**

575 The standard ^{13}C CP spectra of WMC and the three BMC samples show that
576 cellulose crystallinity decreases with longer ball milling by the sequential

577 reduction in the intensity of crystalline cellulose C-4 at 88-90 ppm and the rise of
578 disordered cellulose C-4 at 80-85 ppm. Peak multiplicity was observed in WMC
579 since both I α and I β cellulose contain two magnetically inequivalent glucose units:
580 A and A' for I α and B and B' for I β (Fig. 7) (Kono and Numata 2006). For BMC-
581 45, the sharp peaks become negligible: instead, the spectra are dominated by broad
582 components originating from the disordered forms (D), the intensity of which was
583 low in the Wiley milled sample.


584
585 **Fig. 7.** ^{13}C CP spectra of Wiley milled control and ball milled cotton samples.
586 Representative signals of the inequivalent glucose units in I α and I β cellulose are
587 labeled in cyan for the control sample

588

589 Spectral deconvolution allows us to analyze the composition and
590 crystallinity of cellulose in greater detail and as a function of ball-milling time. The
591 peak positions are using those resolved in the 2D ^{13}C - ^{13}C correlation spectra of
592 these unlabeled samples as enabled by the sensitivity-enhancing Dynamic Nuclear
593 Polarization (DNP) technique, the spectral and technical details of which are
594 reported in a separate article in the same issue (Kirui et al. 2019). The simulated
595 and measured spectra dovetail well (Fig. 8a). In contrast, the central peak position
596 for the disordered part gradually shifted from 85 ppm in WMC to 82 ppm in
597 BMC-120. Quantification of peak areas shows that the cellulose crystallinity
598 decreases in the order of 68%, 58%, 28% and 13% in the four samples, which
599 clearly reveals the molecular-level structural effect of ball milling (Fig. 8b).

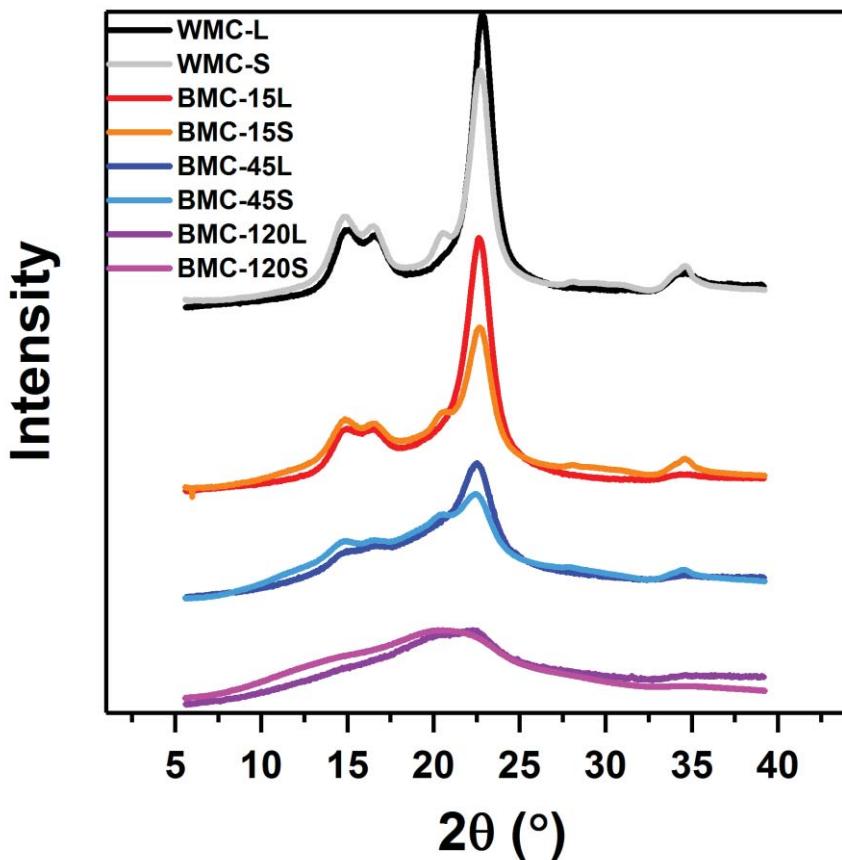
600 A central question is whether the crystallites of cellulose fracture
601 homogeneously or not. This was addressed by monitoring the intensity change for
602 the highly disordered form (Hd) at 82.5 ppm, which is only a minor component in
603 the Wiley milled cotton but becomes dominant after 2 h of ball milling, accounting
604 for one-fifth of all cellulose (Fig. 8c). If structural fractioning of the crystallites
605 occurs progressively, we expect the size of cellulose particles to be roughly
606 consistent within each step, a scenario in which the most disordered molecular
607 structures can only occur in the last step (Fig. 8d). In contrast, linear growth of the

608 highly disordered subform is expected for inhomogeneous fractioning, in which
 609 large and small particles could coexist. The experimental results align better,
 610 although not perfectly, with the second model, suggesting that cellulose crystallites
 611 are perturbed inhomogeneously during the ball-milling process. This concept of
 612 inhomogeneous decrystallization is also supported (at a much larger length scale)
 613 by the imaging results presented in Fig. 2 and Fig. S1.

614
 615 **Fig. 8.** Compositional change of cellulose during ball milling. (a) Cellulose
 616 compositional change tracked by spectral deconvolution. (b) Quantification of
 617 cellulose crystallinity. (c) The content of highly disordered (Hd) allomorph (82.6
 618 ppm) increases with longer duration of ball milling. (d) Two models for cellulose

619 fractioning during ball milling. The NMR data in panel (c) support inhomogeneous
620 fractioning

621


622 **Laboratory and synchrotron X-ray diffraction analyses**

623 Because of the fundamental problems with the conventional methods (see
624 Introduction), we have used only the Rietveld method to analyze the crystallinity
625 of the samples. Crystallinity was analyzed with laboratory (reflection mode) and
626 synchrotron (transmission mode) X-rays. All data were corrected by subtracting
627 background due to the air scatter and sample holder and, for the synchrotron work,
628 the capillary. The patterns are compared in Fig. 9. WMC gave typical cellulose I β
629 X-ray patterns with major peaks at 14.8°, 16.5°, 22.5° and 34.5°, respectively
630 attributed to the (1-10), (110), (200) and (004) reflections (Fig. 1 shows that each
631 of these peaks [especially (004)] is a composite of one or more adjacent peaks.)

632 The slightly lower 2 θ value (22.5°) for the (200) reflection of the control cotton
633 compared to the 23.0° value for the archetype tunicate structure indicates a larger
634 d-spacing, perhaps resulting from the reduced long-range forces in the smaller
635 crystallites of cotton. Also, there may be strains on the crystallites because of their
636 participation in the complex cell wall architecture that results in a disrupted
637 structure compared to the higher order of the tunicate nano-needle crystallite films
638 (see Fig. 6 in Huang et al., 2018b). The synchrotron X-ray pattern of WMC

639 (WMC-S in Fig. 9) presents a few more peaks than the laboratory pattern WMC-L.
640 The two overlapping peaks at 20.3° and 20.6° are assigned to the (012) and (102)
641 reflections (Fig. 1). The near absence of those “shoulder” peaks near the (200)
642 peak on the WMC-L pattern indicates preferred orientation of the crystallites
643 (French 2014) despite the sample simply being sprinkled on the diffractometer’s
644 rotating sample holder and pushed towards the center with a spatula.

645 As the ball milling progressed, the maximum intensity decreased for these
646 patterns (Fig. 9), which are plotted with constant areas between the curve and the
647 baselines (not shown). Instead, the photon counts (X-ray intensity values) were
648 slightly higher in most places to compensate for reduced (200) peak height. Under
649 these conditions of constant (intensity $\times 2\theta^\circ$) area it is legitimate to state that
650 higher peaks indicate higher crystallinity. The pattern for BMC-120 is similar to
651 those in studies on amorphous cellulose produced with different kinds of solvents
652 (Schroeder et al. 1986; Isogai and Atalla 1991; Rollin et al. 2011).

665

666 **Fig. 9** Laboratory (L) and CAMD synchrotron (S) X-ray patterns for the samples.

667 For comparison, the intensities were adjusted to have comparable area under the

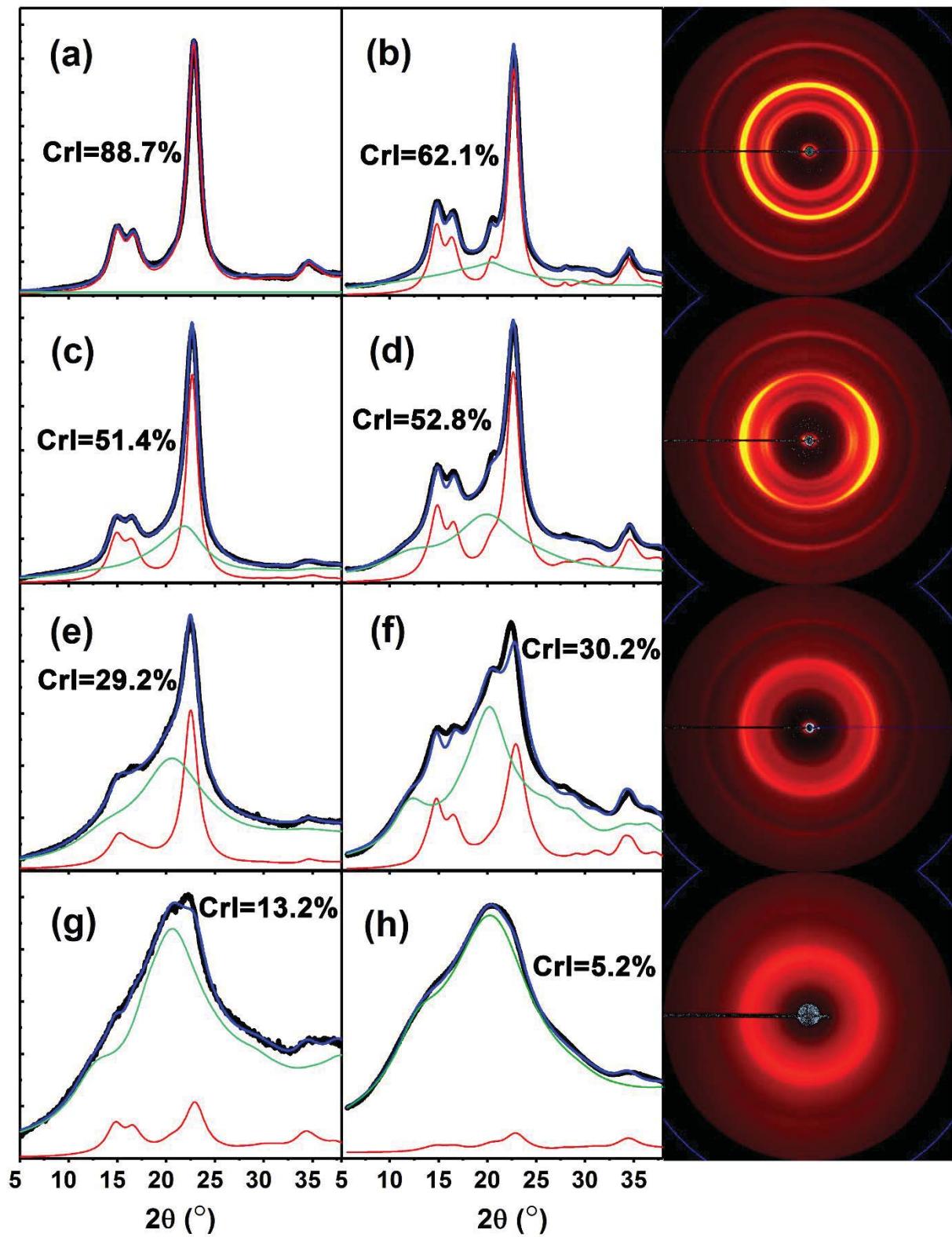
668 curves, with compensation for the different wavelengths and step sizes

669

670 Rietveld analyses were performed to obtain more detailed information from

671 laboratory and synchrotron X-ray patterns (Fig. 10). All the samples show fairly

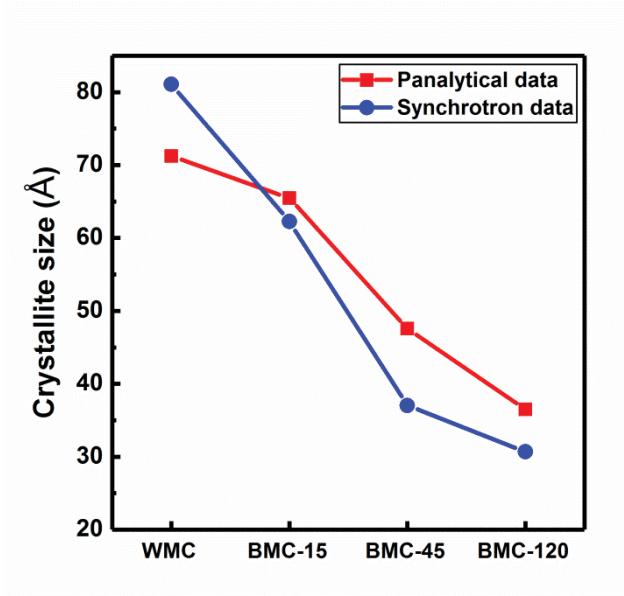
672 good fits of the calculated patterns to the experimental patterns in the images a-h.


673 The thin red lines (representing the crystalline I β component) indicate reduced
674 peak heights and areas under the curve as the ball-milling time increased.
675 Meanwhile, the areas under the green lines, representing the quantity of amorphous
676 cellulose, were progressively greater proportions of the total. The crystallinity
677 index (CrI) values calculated from the Rietveld refinement are also shown in Fig.
678 10. WMC had CrI values of 88.7% for the laboratory XRD data and 62.1% for the
679 synchrotron data. The relatively lower value of CrI from the synchrotron analysis
680 is possibly a consequence of the inhomogeneity of the sample. Particle sizes were
681 not uniform. Importantly, these crystallinity values are based on values of intensity
682 for the calculated components exported from MAUD. MAUD also presents
683 percentages of each phase in the program interface with typically very high error
684 limits. Those values can differ substantially from the percentages calculated from
685 the areas under the curves plotted in Fig. 10. Rietveld CrI analyses of BMC-15 and
686 BMC-45 gave similar values regardless of X-ray source (laboratory and
687 synchrotron). Those CrI are around 50% and 30% respectively. The amorphous
688 phase dominated the patterns for BMC-120, with fairly similar CrI values of 13.2%
689 and 5.2%. As in the SFG and NMR results, X-ray diffraction indicates that not all
690 of the cellulose I crystallinity was destroyed even after 120 min. This is in contrast
691 to the conclusions of Millett et al. (1979) who obtained similar diffraction patterns
692 and used the Segal method. Comparison of the BMC-120 patterns in Fig. 9 and 10

693 emphasizes how the visual impression of the nature of the diffraction pattern can
694 change depending on the amplitude of the y-axis for intensity. The Rietveld
695 method is immune to visual impressions and it gave results for BMC-120 that are
696 more consistent with the SFG and ssNMR results.

697 The 2D synchrotron X-ray diffraction images are also shown in Fig. 10 to
698 the right of the 1D patterns obtained from the XRD2DScan program. The black
699 experimental line in Fig. 10b (underneath the blue fitted line), for example can be
700 considered to be the result of scanning to the right from the center of the adjacent
701 2D pattern. The 2D image of BMC-15 shows an uneven intensity distribution
702 proceeding around the rings at the same 2θ angle (Fig. 10, row 2). This is another
703 example of preferred orientation, which occurred for the sample in the capillary
704 tube for the synchrotron. The pattern is very similar to those from cotton fiber
705 bundles (French and Kim 2018) although the sample consisted of particles picked
706 up with tweezers and pushed into a capillary tube. (It was difficult to ensure good
707 sampling for these small samples.) This underscores the need to take measures to
708 avoid preferred orientation and to be aware that it may be inconsistent from sample
709 to sample. In the present laboratory experiments, the sample holder was rotated
710 during data collection. In the synchrotron experiments, the data were averaged
711 around each circle to get the 1D plots.

712 In this work, the amorphous material was modeled by a very small crystal of
713 cellulose II (Langan et al. 2001), initially 12 Å in each direction. The calculated
714 scattering is somewhat different from that of cellulose I β and seem to fit the
715 observed data better. Rietveld refinements that include this model for amorphous
716 material can vary the same parameters as are varied for the crystalline phase,
717 providing the needed variability to compensate for differences in amorphous
718 material.


719 In our earlier Rietveld analyses of cellulose, we had not corrected the
720 experimental data for the background scattering. In those cases, the background
721 was instead included as part of the Rietveld refinement, based on a quadratic
722 equation. In a number of cases, the refined amorphous component of the calculated
723 intensity and the refined background worked together to give a better fit to the
724 observed data but the values for the background were negative in some 2θ ranges.
725 Subtraction of carefully collected background data from the experimental data
726 allowed the Rietveld refinement to avoid the unphysical results because the
727 background was simply not included and reduced the number of variable
728 parameters by three.

730 **Fig. 10** Rietveld refinement analyses of laboratory (a, c, e and g) and synchrotron
731 X-ray results (b, d, f and h) for WMC (a, b), BMC-15 (c, d), BMC-45 (e, f) and
732 BMC-120 (g, h). Black lines are the experimental 1D data; blue, red, and green
733 lines refer to the total fitted line for the analysis, and the modeled crystalline
734 cellulose I β and modeled amorphous cellulose contributions, respectively.
735 Backgrounds were experimentally determined and subtracted. The 2D synchrotron
736 X-ray diffraction images related to each sample are plotted to the right of the
737 patterns. The yellow circles or arcs indicate the greatest intensity. Very small gray
738 dots in the beam stop and support areas indicate negative intensity values resulting
739 from background subtraction. They are within the noise levels

740 The crystallite sizes perpendicular to the (200) planes (Fig. 11) were
741 obtained from the fitted cellulose I β patterns with the MAUD software. However,
742 the Scherrer equation was applied, rather than MAUD crystallite size values, which
743 are somewhat larger than those calculated with the Scherrer equation. The
744 calculation regions were set at $2\theta=20^\circ\text{-}25^\circ$, in which the (200) plane of cotton
745 cellulose is included. Both the laboratory and synchrotron X-ray methods showed
746 that the ball-milling treatment not only reduced the fraction of crystalline material
747 but effectively reduces the crystallite sizes (Fig. 11). The trend is in agreement
748 with the decrease of the CrI discussed above but there is better agreement between
749 laboratory and synchrotron results for crystallite size. Diffraction-based

750 determinations of crystallite size are minimum values because the peak widths are
751 affected by the other factors (Huang et al. 2018b).

752

753 **Fig. 11** Crystallite sizes perpendicular to the (200) reflections of Wiley milled and
754 ball-milled cotton cellulose determined by laboratory XRD and synchrotron XRD

755

756 The various shapes of the calculated cellulose I β and amorphous
757 contributions to the total modeled diffraction intensity have arisen because they are
758 the results of answering the question, “What must be done to the shape of an ideal
759 cellulose diffraction pattern to make it match the experimental one?” Ideally, the
760 individual components would vary in simple ways, such as total number of counts
761 that represent the fraction of total intensity contributed by the component.

762 However, that is not enough variability. The widths of the resolved I β component

763 are sharper for the WMC than the BMC, so that must be considered. The
764 laboratory samples clearly have preferred orientation; MAUD can model that
765 component with the March-Dollase equation (Dollase 1986) that changes the
766 intensities of the individual peaks. In the end, to obtain low values of the
767 discrepancy indices (R values), the variations of crystallite size in the different
768 dimensions was also modeled (Popa and Balzar, 2008) that add considerably to the
769 number of variables that were used.

770

771 **Comparison of the methods**

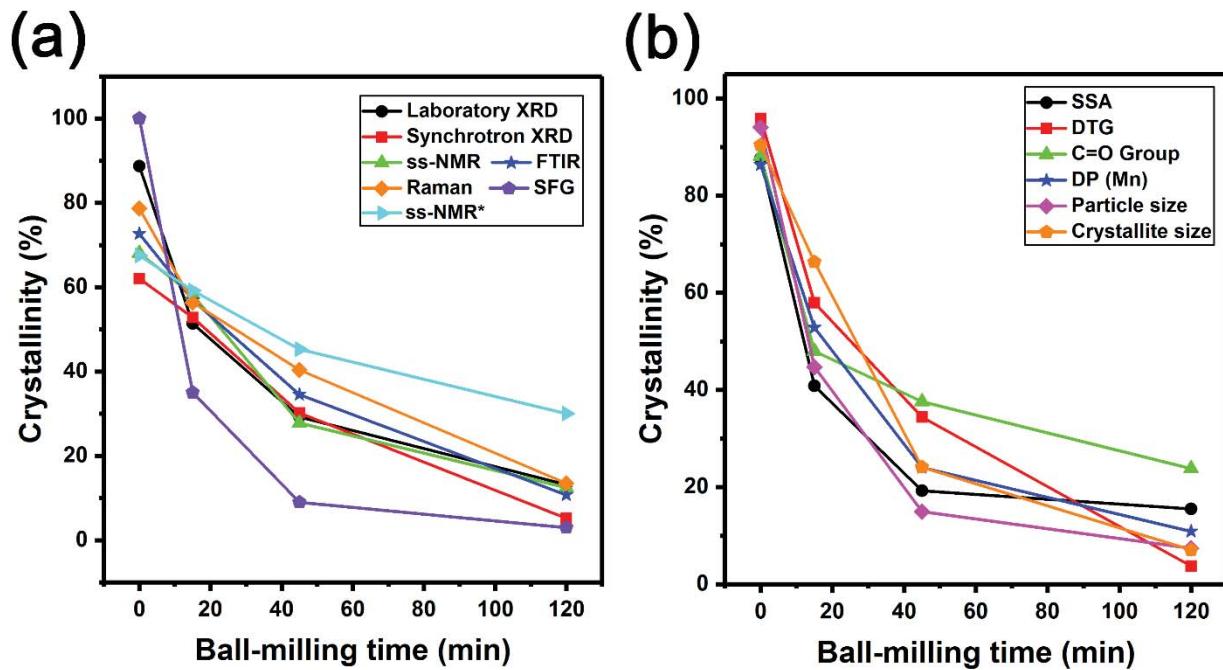
772 A comparison of crystallinity estimates from each of the surveyed methods was
773 undertaken. Although the different analyses in this work measure different
774 properties (Lee et al. 2016b), it is of interest to know how well they agree on the
775 degree of disruption of the structure of the cotton fiber caused by ball milling. In
776 the case of diffraction, we have used a two-phase model that considers both the
777 fraction of amorphous material and the size of the remaining crystalline material.
778 The NMR work indicates the relative fractions of molecules in characteristic
779 environments. Various methods for calculating CrI have been proposed for IR and
780 Raman data, and are employed in this study. SFG-based crystallinity
781 determinations have also been reported, but absent a calibration curve, we assigned
782 a value of a 100% for the CrI of WMC.

783 For the other analyses, we are not aware of existing crystallinity indices
784 based on, for example, carbonyl group increases. Such CrI values would not be
785 widely applicable as there are many reasons that the carbonyl groups could have
786 increased such as intentional oxidation reactions that do not affect crystallinity so
787 much. Still, we felt that it was of interest to derive simple equations that would
788 enable us to compare the crystallinities based on different methods. These
789 relationships are tabulated in Table 2 and plotted in Fig. 12b.

790 Table 2 includes the results from a second, more conventional ^{13}C NMR
791 analysis (Larsson et al. 1999; Massiot et al. 2002) that is fully reported in
792 Supplementary Information. The values of crystallinity in Table 2 for the
793 conventional NMR method were calculated from the sums of the percentages for
794 the four NMR peaks: $\text{I}\alpha$, $\text{I}(\alpha+\beta)$, $\text{I}\beta$, and the paracrystalline peak (Foston et al.
795 2011; Park et al. 2010). For this conventional method, the ssNMR crystallinity
796 values for the WMC and BMC-15 are very similar, but the BMC-45 and BMC-120
797 results diverge considerably. This result might be partially attributed to water
798 swelling in the conventional ^{13}C NMR samples as part of their preparation. That
799 could lead to some recrystallization or other change in the molecular organization.

800 Every surveyed method for estimating sample crystallinity showed a
801 decrease in value that followed increases in ball-milling time (Table 2, Fig 12).
802 (The pore size measurements, which showed a decrease for BMC-15 and

803 subsequent increases, were not included.) For example, the WMC samples were
804 more crystalline by any measure than any of their corresponding BMC samples in
805 Fig. 12. Omitting from Fig. 12a the water-soaked conventional ssNMR results and
806 the SFG data, the agreements among the methods is considerably improved. The
807 outlier here is the synchrotron result for WMC. As seen in Fig. 10, the laboratory
808 and synchrotron diffraction patterns differed substantially, most apparently because
809 the laboratory data exhibit preferred orientation of the crystallites. In theory, the
810 results of these two X-ray techniques should agree, and pursuit of the experimental
811 protocols and algorithmic factors in the analysis should improve the inter-method
812 agreement and improve the accuracy of X-ray crystallinity measurements.

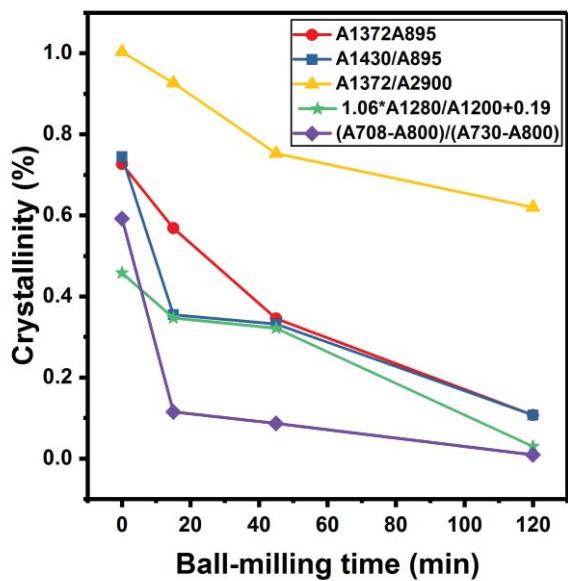

813

814

815

Table 2 Comparison of numeric crystallinity values and underlying data

Methods	Laboratory XRD		Synchrotron XRD		ss-NMR		FTIR		Raman		SFG	
	MAUD Rietveld method	MAUD Rietveld method	Cr 88-90ppm Am 80-85ppm	Cr 88-90ppm Am 80-85ppm	Fitting and modeling of NMR spectra ^a	CrI=A ₁₃₇₂ cm ⁻¹ /A _{895cm} ⁻¹	CrI=[(I _{380cm} ⁻¹ /I _{1096cm} ⁻¹) -0.0286]/0.0065	CrI=[(I _{380cm} ⁻¹ /I _{1096cm} ⁻¹) -0.0286]/0.0065	CrI (%)=120000/(Carb+35) ²	CrI (%)=120000/(Carb+35) ²	CrI (%)=(DP-200)/6	
Reference	Lutterotti et al. 2007	Kono and Numata 2006	Massiot et al. 2002	Oh et al. 2005	Agarwal et al. 2014	Kim et al. 2015						
WMC	88.7%	62.1%	68%	67.5%	72.7%	78.6%					100%	
BMC-15	51.4%	52.8%	58%	59.2%	56.9%	56.3%					35%	
BMC-45	29.2%	30.2%	28%	45.3%	34.5%	40.4%					9%	
BMC-120	13.2%	5.2%	13%	30%	10.7%	13.4%					3%	
Samples	SSA	Est CrI	DTG	Est CrI	Carbonyl	Est CrI	DP (Mn)	Est CrI				
WMC	0.8937	87.6%	371.99	95.8%	1.9	88.1%	718				86.3%	
BMC-15	1.309	40.8%	369.32	57.9%	15	48%	517				52.8%	
BMC-45	1.909	19.2%	367.18	34.3%	21.5	37.5%	344				24%	
BMC-120	2.1265	15.4%	362.36	3.7%	36	23.8%	265				10.8%	
Estimation Methods	CrI (%)=70/SSA²			CrI (%)=(DTG-360)²/1.5		CrI (%)=120000/(Carb+35)²		CrI (%)=(DP-200)/6				



820 **Fig. 12** Plots to compare crystallinity indices from different methods. (a) Those
 821 with established relationships. ss-NMR* denotes the conventional NMR analysis
 822 (b) Those with proposed relationships from Table 2.

823

824 Five different FTIR peak ratios have been proposed to predict crystallinity of
 825 cellulose. Those crystallinity values derived from the ratios in Table 3 are plotted
 826 in Fig. 13. It seems that the $A1372\text{ cm}^{-1}/A2900\text{ cm}^{-1}$ ratio and the $1.06 * A1280$
 827 $\text{cm}^{-1}/A1200\text{ cm}^{-1} + 0.19$ equations result in estimates of a too-narrow range of
 828 values. Similarly, the Liu et al. method (2012) estimates do not cover enough of
 829 the range for the BMC samples. One of the ratios of the Oh et al. studies showed
 830 crystallinity values comparable to the other methods reported in Table 2.

Samples	A1372 cm ⁻¹ /A895 cm ⁻¹	A1430 cm ⁻¹ /A895 cm ⁻¹	A1372 cm ⁻¹ /A2900 cm ⁻¹	(1.06*A1280 cm ⁻¹ /A1200 cm ⁻¹)+0.19	(A708 cm ⁻¹ -A800 cm ⁻¹)/(A730 cm ⁻¹ -A800 cm ⁻¹)
WMC	72%	74%	100%	45%	59%
BMC-15	56%	35%	92%	34%	12%
BMC-45	34%	33%	75%	32%	9%
BMC-120	10%	10%	61%	29%	1%
Reference	Oh et al. 2005		Nelson and O'Connor 1964b	Ilharco et al. 1997	Liu et al. 2012

832 **Table 3** Calculations of crystallinity based on FTIR results836 **Fig. 13** Comparison of crystallinity indices from various infrared peak ratios (see

838

839 **Conclusions**

840 In this work, cotton cellulose was ball-milled for 15, 45 and 120 min. Multiple
841 approaches concurred that the cellulose crystals were progressively destroyed by
842 the blunt-force impacts of ball milling. The fibers were split open and broken into
843 small bits, the molecular weights decreased, and the cellulose was oxidized on a
844 small scale, as shown by an increase in carbonyl groups. This resulted in more
845 pores and higher surface area of the ball-milled cellulose. There was an increase in
846 water adsorption and a decrease in thermal stability.

847 According to an average of the two different sets of diffraction experiments,
848 the ball mill reduced the crystalline content of the original cellulose from around
849 75% to 9%. Ball milling also reduced the crystallite size of the decreasing amount
850 of remaining crystals from about 75 Å to about 35 Å. Except as described below,
851 none of the other results contradicts these basic conclusions.

852 Results from two other approaches are strongly influenced by neighboring
853 molecules over a range of distances: sum frequency generation vibrational
854 spectroscopy, and ssNMR. They gave reasonable correlations with the X-ray data
855 but the language of the description of decrystallization is different. In the case of
856 SFG, the intensities of the peaks in the OH- and CH- stretch regions decline
857 because of a loss of dipole moment as the sample is decrystallized. In the

858 unmolested crystals of cellulose I β , the molecules have parallel packing that results
859 in net dipoles for the crystals. In the case of cellulose II, the individual molecules
860 alternate in packing direction (antiparallel), so there is no net dipole and the SFG
861 spectrum disappears. Somehow, the milling reduces the sizes of the parallel-chain
862 domains, not only by fracturing the parallel-chain crystals of cellulose I, but also
863 by mixing the fragments of adjacent crystallites that have antiparallel orientation
864 (see Introduction), similar to the mercerization treatment but dealing presumably
865 with crystal fragments rather than individual molecules.

866 NMR results, informed by the 2D results in the following paper, gave a
867 surprising result. Namely, there are new molecular structural features created by
868 the ball milling. Although the 1D NMR spectra appeared to experience a general
869 broadening of the peaks as milling progressed (as did the FTIR and Raman
870 spectra), the 2D NMR results could be resolved in terms of peaks that had narrow
871 peak widths. The major ordered component of the 120 minute-ball-milled sample
872 is similar to one of the cellulose I β molecules in tunicate cellulose. The major
873 disordered components were most similar to surface molecules of native celluloses
874 that have small crystals (*Arabidopsis*, *Brachypodium*, *Zea mays*). Remarkably, the
875 native control cotton did not give peaks with chemical shifts closely similar to
876 those interpreted from the small-crystal plant celluloses. Instead, the control cotton
877 was analyzed in terms of molecular structural species similar to the archetypical

878 *Cladophora* A, A', and tuncate B and B' molecules. In the case of the 120-min
879 ball-milled sample, there were also signals representing four different molecular
880 species. We have not developed any ideas about the domain sizes needed to
881 support the observation of four distinct molecular species by ssNMR in the small
882 (30 Å) remaining crystallites or in the amorphous domains that were modeled with
883 crystals of about 12 Å.

884 Another important finding from the DNP work was that the curve resolution
885 did not depend on a “paracrystalline” component. The more conventional NMR
886 analysis indicated a 27% paracrystalline component for the control cotton, but
887 values of 18.6, 18.9, and 9.7% for the 15-, 45-, and 120-min samples respectively,
888 in complete disagreement with the other analysis. The conventional NMR analysis
889 also reported a large component of inaccessible fibril surface with a very broad
890 width (about 3 ppm). Those values were 15.2, 22.4, 31.5, and 32.5% of the
891 material. There was no need to invoke such a broad peak in the DNP work, nor did
892 the observed increase in BET surface area support the modeled increase of
893 inaccessible surface. Some of the other indicators of crystallinity from FTIR
894 spectroscopy did not perform well enough either.

895 Ball-milled cotton was an interesting sample for analyses of amorphous or
896 non-crystalline cellulose because few other molecules such as hemicellulose or
897 lignin were present. Its initial crystal size is apparently bigger than for many other

898 plants. Also, all of the samples had the same history until the ball milling began,
899 rather than choosing native materials from different sources to obtain different
900 crystallinities. The choice of cotton balls from Wal-Mart balanced trivial expense
901 and wide availability against a lack of detailed sample history, but they should be
902 similar to other samples of bleached and scoured upland cotton. The diffraction
903 data for the samples is provided in Supplementary Information.

904 Future efforts could aim to improve the understanding of domain sizes (and
905 size distributions) for the SFG and NMR signals. From the diffraction side, it may
906 be that improvement of the model crystals is necessary to get a better agreement
907 with the observed data. Perhaps more than two crystallite sizes will be needed to
908 reflect a range of crystallite sizes. Also, is it necessary to employ the random
909 quarter-up or quarter-down shifting of molecules described by Driemeier and
910 Francisco (2014)? How do structures of crystals in the common plants with smaller
911 crystals differ from being smaller pieces of tunicate crystals?

912

913 **Acknowledgments**

914 The authors gratefully acknowledged the support by Chinese Scholarship Council
915 (CSC No.201706510045) for ZL. The NMR work was supported by National
916 Science Foundation (NSF OIA-1833040). The SFG work was supported by the
917 Center for Lignocellulose Structure and Formation, Energy Frontier Research

918 Center funded by the U.S. Department of Energy, Office of Science, Basic Energy
919 Sciences, under Award Number DE-SC0001090. Prof. Nathaniel C. Gilbert at
920 CAMD kindly helped with the synchrotron X-ray diffraction analysis, and Dr.
921 Dongmei Cao at the Louisiana State University Shared Instrument Facility
922 provided the FE-SEM micrographs. Stephanie Beck of FPI Innovations and Hee Jin
923 Kim of the Southern Regional Research Center reviewed the manuscript.
924 Acknowledgements are also made to Catrina Ford for technical assistance.
925 Mention of trade names or commercial products in this publication is solely for the
926 purpose of providing specific information and does not imply recommendation or
927 endorsement by the U.S. Department of Agriculture. USDA is an equal
928 opportunity provider and employer.

929

930

931 **References**

932 Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: Identifying
933 contributions of lignin and carbohydrate polymers in the spectrum of black
934 spruce (*Picea mariana*). *Appl Spectrosc* 51:1648–1655. doi:
935 10.1366/0003702971939316
936 Agarwal UP (2014) 1064 nm FT-Raman spectroscopy for investigations of plant
937 cell walls and other biomass materials. *Front Plant Sci* 5: 490

938 Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-
939 dried wood cellulose with Raman spectroscopy. *Cellulose* 23:125–144. doi:
940 10.1007/s10570-015-0788-7

941 Ahvenainen P, Kontro I, Svedström (2016) Comparison of sample crystallinity
942 determination methods by X-ray diffraction for challenging cellulose I
943 materials. *Cellulose* 23:1073–1086

944 Atalla RH, Gast JC, Sindorf, DW, Bartuska VJ, Maciel GE (1980) Carbon-13
945 NMR spectra of cellulose polymorphs. *J Am Chem Soc* 102(9): 3249–3251

946 Atalla RH, Vanderhart DL (1984) Native cellulose: A composite of two distinctive
947 crystalline forms. *Science* 223: 283–285

948 Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park J, Park S, Kim SH (2011)
949 Selective detection of crystalline cellulose in plant cell walls with sum
950 frequency generation (SFG) vibration spectroscopy. *Biomacromolecules*
951 12:2434–2439

952 Barnette AL, Lee C, Bradley LC, Schreiner EP, Park H, Shin H, Cosgrove DJ,
953 Park S, Kim SH (2012) Quantification of crystalline cellulose in
954 lignocellulosic biomass using sum frequency generation (SFG) vibration
955 spectroscopy and comparison with other analytical methods" *Carbohydr*
956 *Polym* 89:802–809

957 Bertran MS, Dale BE (1986) Determination of cellulose accessibility by

958 differential scanning calorimetry. *J Appl Polym Sci* 32:4241–4253

959 Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular
960 layers. *J Am Chem Soc* 60:309–319

961 Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield
962 and characteristics of wood cellulose nanocrystals (CNC) using concentrated
963 acid hydrolysis. *Cellulose* 22:1753–1762

964 Dollase WA (1986) Correction of intensities for preferred orientation in powder
965 diffractometry: application of the March model. *J Appl Crystallogr* 19(4):267–
966 272.

967 Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for
968 accurate determination of crystallinity of cellulose I materials. *J Appl Cryst*
969 44:184–192

970 Driemeier C (2014) Two-dimensional Rietveld analysis of celluloses from higher
971 plants. *Cellulose* 21:1065–1073

972 Driemeier C, Francisco LH (2014) X-ray diffraction from faulted cellulose I
973 constructed with mixed I α –I β stacking. *Cellulose* 21:3161–3169

974 Duchemin B (2017) Size, shape, orientation and crystallinity of cellulose I β by X-
975 ray powder diffraction using a free spreadsheet program. *Cellulose* 24:2727–
976 2741

977 Forziati FH, Stone WK, Rowen JW, Appel WD (1950) Cotton powder for infrared

978 transmission measurements. *J Res Nat Bur Stand* 45: 109–113

979 Foston MB, Hubbell CA, Ragauskas AJ (2011) Cellulose Isolation Methodology

980 for NMR Analysis of Cellulose Ultrastructure. *Materials* 4:1985–2002

981 French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs.

982 *Cellulose* 21:885–896. DOI: 10.1007/s10570-013-0030-4

983 French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and

984 the Segal crystallinity index. *Cellulose* 20:583–588

985 French AD, Pérez S, Bulone V, Rosenau T, Gray D (2018) Cellulose, in

986 *Encyclopedia of Polymer Science and Technology* DOI:

987 10.1002/0471440264.pst042.pub2

988 French AD, Kim HJ (2018) Cotton fiber structure, in Fang D ed. *Cotton fiber,*

989 *physics and biology* DOI: 10.1007/978-3-030-00871-0_2

990 Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Petti C, Smilgies D-M,

991 Estevez JM, Bonetta D, Urbanowicz BR, Ehrhardt DW, Somerville CR, Rose

992 JKC, Hong M, Debolt S (2012) Cellulose microfibril crystallinity is reduced

993 by mutating C-terminal transmembrane region residues CESA1^{A903V} and

994 CESA3^{T942I} of cellulose synthase. *Proc Natl Acad Sci* 109:4098–4103

995 Hearle JWS (1958) A fringed fibril theory of structure in crystalline polymers. *J*

996 *Polym Sci* 28:432–435

997 Holzwarth U, Gibson N (2011) The Scherrer equation versus the' Debye-Scherrer

998 equation'. *Nat Nanotechnol* 6:534

999 Howell C, Hastrup ACS, Jara R, Larsen FH, Goodell B, Jellison J (2011) Effects of
1000 hot water extraction and fungal decay on wood crystalline cellulose structure.

1001 *Cellulose* 18:1179–1190

1002 Huang S, Makarem M, Kiemle SN, Hamed H, Sau M, Cosgrove DJ, Kim SH
1003 (2018a) Inhomogeneity of cellulose microfibril assembly in plant cell walls
1004 revealed with sum frequency generation microscopy. *J Phys Chem B*
1005 122:5006–5019

1006 Huang S, Makarem M, Kiemle SN, Zheng Y, Xin H, Ye D, Gomez EW, Gomez
1007 ED, Cosgrove DJ, Kim SH (2018b) Investigating dehydration-induced
1008 physical strains of cellulose microfibrils in plant cell walls. *Carbohydr Polym*
1009 197:337–348

1010 Ilharco LM, Garcia AR, Silva JL, Ferreira FV (1997) Infrared Approach to the S
1011 tudy of Adsorption on Cellulose: Influence of Cellulose Crystallinity on the
1012 Adsorption of Benzophenone. *Langmuir* 13(15): 4126–4132.

1013 Isogai A, Atalla RH (1991) Amorphous celluloses stable in aqueous media:
1014 Regeneration from SO₂–amine solvent systems. *J Polym Sci Part A Polym*
1015 *Chem* 29:113–119

1016 Kirui A, Ling Z, Kang X, Dickwella Widanage MC, Mentink—Vigier F, French
1017 AD, Wang T (2019) Atomic resolution of cotton cellulose structure enabled by

1018 Dynamic Nuclear Polarization Solid-State NMR. *Cellulose* 26:XXXX–XXYY

1019 Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline
1020 and amorphous materials. *X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials* 2nd
1021 Ed. Klug HP, Alexander LE Eds., pp 992 ISBN 0-471-49369-4 Wiley-VCH

1022 Kono H, Numata Y (2006) Structural investigation of cellulose I α and I β by 2D
1023 RFDR NMR spectroscopy: determination of sequence of magnetically
1024 inequivalent D-glucose units along cellulose chain. *Cellulose* 13:317–326

1025 Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose
1026 II at 1 \AA resolution. *Biomacromolecules* 2:410–416

1027 Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS ^{13}C
1028 NMR spectroscopy applied to structure and interaction studies on cellulose
1029 I. *Solid State Nucl Magn Reson* 15:31–40

1030 Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-
1031 frequency-generation vibration spectroscopy and density functional theory
1032 calculations with dispersion corrections (DFT-D2) for cellulose I α and I β . *J
1033 Phys Chem B* 117:6681–6692

1034 Lee C, Kafle K, Park Y-B, Kim SH (2014) Probing crystal structure and mesoscale
1035 assembly of cellulose microfibrils in plant cell walls, tunicate tests, and
1036 bacterial films using vibrational sum frequency generation (SFG)
1037 spectroscopy” *Phys Chem Chem Phys* 16:10844–10853

1038 Lee CM, Kafle K, Huang S, Kim SH (2015a) Multimodal broadband vibrational
1039 sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. *J*
1040 *Phys Chem B* 120:102–116

1041 Lee CM, Kubicki JD, Xin B, Zhong L, Jarvis MC, Kim SH (2015b) Hydrogen
1042 bonding network and OH stretch vibration of cellulose: Comparison of
1043 computational modeling with polarized IR and SFG spectra. *J Phys Chem B*
1044 119:15138–15149

1045 Lee CM, Chen X, Weiss PA, Jensen L, Kim SH (2016a) Quantum mechanical
1046 calculations of vibrational sum-frequency-generation (SFG) spectra of
1047 cellulose: dependence of the ch and oh peak intensity on the polarity of
1048 cellulose chains within the SFG coherence domain. *J Phys Chem Lett* 8:55–60

1049 Lee CM, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2016b)
1050 Correlations of apparent cellulose crystallinity characterized by estimated from
1051 different characterization techniques: XRD, NMR, IR, Raman, & and SFG.
1052 *Adv Polym Sci* 271:115–131

1053

1054 Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D (2012) Comparative
1055 investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray
1056 diffraction (XRD) in the determination of cotton fiber crystallinity. *Appl*
1057 *Spectrosc* 66:983–986

1058 Liu Y, Kim HJ (2015) Use of attenuated total reflection fourier transform infrared
1059 (ATR FT-IR) Spectroscopy in direct, nondestructive, and rapid assessment of
1060 developmental cotton fibers grown in planta and in culture. *Appl Spectrosc*
1061 69:1004–1010

1062 Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H-R, (2007) Rietveld
1063 texture analysis from diffraction images, *Z Kristallogr, Suppl.* 26, 125–130

1064 Makarem M, Lee CM, Sawada D, O'Neill HM, Kim SH (2017) Distinguishing
1065 surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational
1066 sum frequency generation spectroscopy. *J Phys Chem Letts* 9:70–75

1067 Makarem M, Lee CM, Kafle K, Huang S, Chae I, Yang H, Kubicki JD, Kim SH
1068 (2019) Probing cellulose structures with vibrational spectroscopy. *Cellulose*
1069 26:XXXX-XXYY

1070 Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli
1071 B, Gan Z, Hoatson G (2002) Modelling one- and two- dimensional solid-
1072 state NMR spectra. *Magn Reson Chem* 40:70–76

1073 Millett MA, Effland MJ, Caulfield DF (1979) Influence of fine grinding on the
1074 hydrolysis of cellulosic materials-acid vs. enzymatic. *Adv Chem Ser* 181:71–
1075 89

1076 Nelson ML, O'Connor RT (1964a) Relation of certain infrared bands to cellulose
1077 crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation

1078 of crystallinity in celluloses I and II. *J Appl Polym Sci* 8:1325–1341. doi:
1079 10.1002/app.1964.070080323

1080 Nelson ML, O'Connor RT (1964b) Relation of certain infrared bands to cellulose
1081 crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III
1082 and of amorphous cellulose. *J Appl Polym Sci* 8:1311–1324

1083 Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose
1084 crystallinity in wood by carbon-13 Nuclear Magnetic Resonance
1085 Spectroscopy. *Holzforschung* 44:351–356

1086 Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state
1087 nuclear magnetic resonance data combined to test models for cellulose
1088 microfibrils in mung bean cell walls. *Am Soc Plant Biol* 163:1558–1567

1089 Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding
1090 system in cellulose I β from synchrotron X-ray and neutron fiber diffraction. *J*
1091 *Am Chem Soc* 124:9074–9082

1092 Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003a) Crystal structure and
1093 hydrogen bonding system in cellulose I α from synchrotron x-ray and neutron
1094 fiber diffraction. *J Am Chem Soc* 125:14300–14306. doi: ja0257319

1095 Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, and Langan P (2003b)
1096 Periodic disorder along ramie cellulose microfibrils. *Biomacromolecules*
1097 4:1013–1017

1098 Oh SY, Yoo D, Shin Y, Kim HC, Kim HY et al (2005) Crystalline structure
1099 analysis of cellulose treated with sodium hydroxide and carbon dioxide by
1100 means of X-ray diffraction and FTIR spectroscopy. *Carbohydr. Res.* 340: 2376-
1101 2391.

1102 Park S, Baker JO, Himmel ME, Parrilla PA, Johnson DK (2010) Cellulose
1103 crystallinity index: measurement techniques and their impact on interpreting
1104 cellulase performance. *Biotechnol Biofuels* 3:10

1105 Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring
1106 meso-scale ordering of cellulose in intact plant cell walls using sum frequency
1107 generation (SFG) spectroscopy. *Plant Physiol* 163:907–913

1108 Phyto P, Wang T, Yang Y, O'Neill H, Hong M (2018) Direct determination of
1109 hydroxymethyl conformations of plant cell wall cellulose using ¹H polarization
1110 transfer solid-state NMR. *Biomacromolecules* 19:1485–1497

1111 Popa NC, Balzar D (2008) Size-broadening anisotropy in whole powder pattern
1112 fitting. *J Appl Cryst* 41:615–627

1113 Application to zinc oxide and interpretation of the apparent
1114 crystallites in terms of physical models

1115 Reyes DCA, Skoglund N, Svedberg A, Eliasson B, Sundman O (2016) The
1116 influence of different parameters on the mercerisation of cellulose for viscose
1117 production. *Cellulose* 23:1061–1072

1118 Rietveld H (1969) A profile refinement method for nuclear and magnetic
1119 structures. *J Appl Crystallogr* 2:65–71

1120 Rodriguez-Navarro AB (2006) XRD2DScan: new software for polycrystalline
1121 materials characterization using two-dimensional X-ray diffraction. *J Appl*
1122 *Crystallogr* 39:905–909

1123 Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002)
1124 A novel method for the determination of carbonyl groups in cellulosics by
1125 fluorescence labeling. 2. Validation and applications. *Biomacromolecules*
1126 3: 969–975

1127 Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YP (2011) Increasing cellulose
1128 accessibility is more important than removing lignin: A comparison of
1129 cellulose solvent- based lignocellulose fractionation and soaking in aqueous
1130 ammonia. *Biotechnol Bioeng* 108:22–30

1131 Sarko A, Nishimura H, Okano T (1987) Crystalline alkali-cellulose complexes as
1132 intermediates during mercerization. *ACS Symp Ser* 340:169–177

1133 Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree
1134 of cellulose I crystallinity by means of FT Raman spectroscopy. *Cellulose*
1135 12:223–231. doi: 10.1007/s10570-004-3885-6

1136 Schroeder LR, Gentile VM, Atalla RH (1986) Nondegradative preparation of
1137 amorphous cellulose. *J Wood Chem Technol* 6:1–14

1138 Segal L, Creely JJ, Martin a. E, Conrad CM (1959) An empirical method for
1139 estimating the degree of crystallinity of native cellulose using the X-Ray
1140 diffractometer. *Text Res J* 29:786–794. doi: 10.1177/004051755902901003

1141 Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific
1142 surface area prepared from nanofibrillated cellulose (NFC). *Compos Sci
1143 Technol* 71:1593–1599

1144 Shibasaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of
1145 bacterial cellulose. *Cellulose* 4:75–87

1146 Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron
1147 diffraction study of the polymorphism of native celluloses. *Macromolecules*
1148 24:2461–2466

1149 Takahashi H, Lee D, Dubois L, Bardet M, Hediger S, De Paëpe G (2012) Rapid
1150 natural- abundance 2D ^{13}C – ^{13}C correlation spectroscopy using Dynamic
1151 Nuclear Polarization Enhanced Solid- State NMR and matrix- free sample
1152 preparation. *Angew Chemie Int Ed* 51:11766–11769

1153 Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl (2005) On the
1154 determination of crystallinity and cellulose content in plant fibres. *Cellulose*
1155 12:563–576

1156 Vanderfleet OM, Reid MS, Bras J, Heux L, Godoy-Vargas J, Panga MKR,
1157 Cranston ED (2019) Insight into thermal stability of cellulose nanocrystals

1158 from new hydrolysis methods with acid blends. *Cellulose* 26:XXX–XXX

1159 (This issue)

1160 Viëtor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC (2002) Conformational

1161 features of crystal-surface cellulose from higher plants. *Plant J* 30(6) 721–731

1162 Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and

1163 interactions with matrix polysaccharides in plant primary cell walls. *J Exp Bot*

1164 67: 503–514

1165 Wertz J-L, Mercier JP, Bédué O (2010) Cellulose sciense and technology. Taylor &

1166 Francis Group

1167 Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms

1168 in cellulose I by CP/MAS ^{13}C NMR spectroscopy. *Carbohydr Res* 312:123–

1169 129

1170 Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses.

1171 *Carbohydr Res* 160:113–129

1172 Xiaohui J, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction

1173 method for cellulose crystallinity measurement. *Carbohydr Polym* 123:476–

1174 481

1175 Yang H, Wang T, Oehme D, Petridis L, Hong M, Kubicki JD (2018) Structural

1176 factors affecting ^{13}C NMR chemical shifts of cellulose: a computational study.

1177 *Cellulose* 25:23–36

1178 Young RA ed. (1993) The Rietveld Method. IUCr Monographs in Crystallography.

1179 5. International Union of Crystallography, Oxford University Press, New

1180 York, NY. pp. 298