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ABSTRACT: The remarkably high stereoselectivity of a Diels−Alder
cycloaddition designed by Stork for the synthesis of germine has been examined
with theory. We conceived a collaboration with Gilbert Stork, the great synthetic
chemist and collaborator. We wished to complement Stork's insights with
computations to explain the extraordinary selectivity he designed to introduce four
new stereocenters in one step. Stork passed away on October 21, 2017, at age 95,
sadly before we finished this work.

In his last paper, published a few months before his passing,
synthetic organic chemist Gilbert Stork reported the Diels−

Alder reaction of 3 and 4 as the key step in the synthesis of
(±)-4-methylenegermine 6 (Scheme 1).1 The cycloaddition
exhibits remarkably high endo-exo and facial selectivity as well
as regioselectivity. Only the Diels−Alder adduct 5 was
observed.
We have studied theoretically the origins of the remarkable

endo-exo and facial selectivity as well as regioselectivity using
the simplified model systems shown Scheme 2 and checked
our conclusions with the real system as well. Geometry
optimizations and frequency calculations were carried out with
the B3LYP density functional2,3 and the 6-31G(d) basis set.4

Single-point energy calculations were performed at the M06-

2X5−7/6-311+G(d,p) level with the optimized structures. The
SMD model8 was used to account for the solvation effects of
toluene. All of the calculations were performed using Gaussian
09,9 and the structures were generated by CYLview.10
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Scheme 1. Diels−Alder Cycloaddition Employed in the
Synthesis of (±)-4-Methylenegermine

Scheme 2. Model Reactions Used To Study Computational
the Observed Selectivities in the Diels−Alder Cycloaddition
Employed in the Synthesis of (±)-4-Methylenegermine
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We first studied the origins of the endo/exo selectivity.
Figure 1a shows the calculated transition structures (TS)
leading to endo and exo Diels−Alder products for reaction A.
Both TS1-endo and TS1-exo are concerted yet highly
asynchronous, each with a shorter forming bond at ∼2.0 Å
and a longer forming bond at ∼2.9 Å. TS1-endo is 3.8 kcal/
mol more stable than TS1-exo. This gives a ratio of endo/exo
product higher than 99:1, consistent with the experimental

observation that the endo product is the single product. Stork
and co-workers proposed that “there should be exclusive endo
addition because exo addition would lead to very severe
interference between the TBSO substituent on the dienophile and
the diene.1” The calculated TS-exo structure shows that the two
methoxy groups, or TBSO in the actual substrate, have
relatively small steric interference (Figure 1a). The calculated
endo and exo TSs for model reaction B (Figure 1b) show that
the TS2-endo is similarly favored by 3.0 kcal/mol over TS2-
exo.11 We believe that the endo selectivity arises mainly from
secondary orbital interactions12−14 involving orbital overlap of
the carbonyl carbon and oxygen orbitals of the dienophile
LUMO with the corresponding carbon orbitals of the diene

Figure 1. Calculated endo and exo transition structures and their
relative Gibbs free energies for (a) the model reaction A and (b) a
simple model B at the SMD-M06-2X/6-311+G(d, p)//B3LYP/6-
31G(d) level of theory. (c) Secondary orbital interactions stabilizing
the endo TS.

Figure 2. (a) Calculated endo transition structures and their relative
Gibbs free energies for the dienophile approach from the top and
bottom faces of diene for the model reactions A at the SMD-M06-2X/
6-311+G(d, p)//B3LYP/6-31G(d) level of theory. (b) Electrostatic
potential map for disfavored TS. (c) Endo transition structures for a
simple model C.
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HOMO (Figure 1c). This type of interaction has been found
to give ambimodal reactions in other cases.15−19

We next investigated the facial selectivities of reactions A
and C. The dienophile can approach from the top or bottom
faces of the diene. Stork and co-workers hypothesized that “the
dienophile would approach the more accessible face of the diene,
i.e., cis to the starred hydrogen.1” Figure 2a shows that the
transition structure for the bottom approach (TS1b-endo) is
5.9 kcal/mol higher in energy than the top approach (TS1-
endo). This means that only the product from the top
approach (near the “starred H”) transition structure will be
observed as predicted. A closer inspection of the transition
structures reveals that the O···O distance between the oxygen
of methoxy group in diene and the oxygen of carbonyl group in
dienophile is only 3.01 Å, an interatomic distance that is
shorter than the sum of the van der Waals radii (3.04 Å). Thus,
TS1b-endo is destabilized by O···O lone pair repulsion, which
is clearly shown in the calculated electrostatic potential map
(Figure 2b). Indeed, the replacement of the methoxy group in
7 with a hydrogen atom (reaction C) reduces the energy
difference to 0.7 kcal/mol (Figure 2c), corroborating that the
O···O lone pair repulsion is a key factor in facial selectivity.
When Stork’s actual substrates are computed, the energy
difference is 4.6 kcal/mol (see TOC).
Finally, we investigated the regioselectivity. In the major

product, the most nucleophilic site of the diene and
electrophilic site of the dienophile are united. The transition
state (TS1c-endo) for the attack at the dienophile C-1

terminus by the C-6 terminus of the diene is 4.9 kcal/
mol higher in energy than by the C-3 terminus (TS1-endo)
(Figure 3a). The computed molecular orbital coefficients of
the diene and dienophile are presented in Figure 3b. Due to
the presence of a methoxy group at the C-6 terminus, the C-3
terminus of diene possesses a larger coefficient than the C-6
terminus in the HOMO. For dienophile 8, the larger orbital
coefficient resides on the C-1 terminus in the LUMO as a
result of the conjugation with carbonyl. The regioselectivity
can be understood through frontier molecular orbital theory
(FMO) with TS1-endo having the more favorable FMO
interactions.20−24

The origins of the remarkably high endo-exo and facial
selectivity as well as regioselectivity observed in this Diels−
Alder cycloaddition have been explored to honor the
remarkable insights by Gilbert Stork in his monumental design
of the germine synthesis.1
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