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ABSTRACT: The mechanism of the aryl iodide-catalyzed asym- oot 0 | o
metric migratory geminal difluorination of f-substituted styrenes N COR mepA XL ROJ\:/O 0 OR
(Banik et al. Science 2016, 353, S1) has been explored with density Xm cat F EZJR 2

functional theory computations. The computed mechanism consists HE ©/ COMe

of (a) activation of iodoarene difluoride (ArIF,), (b) enantio- cat
determining 1,2-fluoroiodination, (c) bridging phenonium ion Spiro Periplanar

formation via Sy2 reductive displacement, and (d) regioselective @
7

Y
.
N =0
fluoride addition. According to the computational model, the ArIF, o @ £
¥ E'F O\\; Y F=f° 0w
\/(O @ (O 02
RO” O

intermediate is stabilized through halogen—7 interactions between e
Slipped - RO\’(O
stacking

the electron-deficient iodine(III) center and the benzylic substituents
at the catalyst stereogenic centers. Interactions with the catalyst ester
carbonyl groups (I(III)*---O) are not observed in the unactivated COaMe CcO:Me
R . TS-Major TS-Minor
complex, but do occur upon activation of ArIF, through hydrogen-
bonding interactions with external Brensted acid (HF). The 1,2-
fluoroiodination occurs via alkene complexation to the electrophilic, cationic I(II) center followed by C—F bond formation anti
to the forming C—I bond. The bound olefin and the C—I bond of catalyst adopt a spiro arrangement in the favored transition
structures but a nearly periplanar arrangement in the disfavored transition structures. Multiple attractive non-covalent
interactions, including slipped 7---7 stacking, C—H:--O, and C—H:--7 interactions, are found to underlie the high asymmetric
induction. The chemoselectivity for 1,1-difluorination versus 1,2-difluorination is controlled mainly by (1) the steric effect of

the substituent on the olefinic double bond and (2) the nucleophilicity of the carbonyl oxygen of substrate.

B INTRODUCTION

Hypervalent iodine compounds have in recent years evolved
from chemical curiosities into mainstream reagents in organic
synthesis.' They possess reactivities similar to those of
transition metals, but potentially practical advantages with
respect to toxicity and cost. The discovery of enantioselective
molecular catalysts based on iodine(1/I1I) redox chemistry has
added a new dimension to hypervalent iodine chemistry.”
Many chiral hypervalent iodine reagents or catalysts (Figure 1)
have been invented by the groups of Wirth,® Kita,* Ishihara,’
Fujita,6 Muiiz,” Legault,8 and others,” to effect asymmetric
transformations that would be difficult to accomplish
otherwise.”"'’

One of our groups in 2016 reported a catalytic, asymmetric,
migratory geminal difluorination of f-substituted styrenes to
access a variety of products bearing difluoromethylated tertiary
or quaternary stereocenters (Scheme la)."' The difluoro-
methyl group (CHF,) has received special attention'” because
it serves as a bioisostere of hydroxyl and thiol groups,'’ and
also as a lipophilic hydrogen bond donor.'* The simple C,-
symmetric aryl iodide catalyst plus m-chloroperbenzoic acid

-4 ACS Publications  © 2018 American Chemical Society

and hydrogen fluoride can generate chiral difluoromethyl
groups from reaction with the double bond of styrene
derivatives. The catalyst bearing benzyl substituents (ArI-1)
induces higher enantioselectivity than its 3,4,5-trifluorophenyl
(ArI-2) and aliphatic (ArI-3) analogs (Scheme 1b). It was
hypothesized that cationic intermediates and/or transition
structures are stabilized selectively through attractive cation—z
interactions. A chemoselectivity switch was observed based on
subtle changes in substrate structure, with the 1,1-difluorina-
tion product formed by difluorination of disubstituted
cinnamamides or trisubstituted cinnamate ester derivatives
(Scheme 1a,b), but the 1,2-difluorination product obtained in
the difluorination of the trisubstituted cinnamamide derivative
S3 (Scheme 1c). We report here a computational study of the
mechanism and origins of chemo- and stereoselectivities in
these systems, and advance a model of how these hypervalent
catalysts achieve such remarkable selectivity.
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Figure 1. Some recent chiral organoiodine reagents or catalysts.

Scheme 1. (a) Catalytic Asymmetric Migratory Geminal
Difluorination of f-Substituted Styrenes, (b) Catalyst
Substituent Effects on Enantioselectivity, and (c) Substrate
Substituent Effects on Chemoselectivity
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B COMPUTATIONAL METHODS

Quantum chemical calculations were performed using the Gaussian
09 suite of programs.'® Geometry optimizations and frequencies were
calculated with the M06-2X"° density functional and a mixed basis set
of LANL2DZ'" for I and 6-31G(d, p) for other atoms in conjunction
with the SMD'® implicit solvation model to account for the solvation
effects of dichloromethane. Optimized geometries were verified by
frequency computations as minima (zero imaginary frequencies) or
transition structures (a single imaginary frequency) at the same level
of theory. More accurate electronic energies were obtained by single
point energy calculations at the SMD-MO06-2X/6-311++G(d,
p)+SDD(I)"™ level of theory.”® A number of previous computational

studies of hypervalent iodine-mediated reactions have employed the
M06-2X functional.”!

Because of the flexibility of the hypervalent iodoarene catalyst,
a conformational study was performed on the active catalyst
iodoarene difluoride, intermediates, and transition structures. The
lowest energy conformers are discussed in the following sections,
while other higher energy conformers are given in the Supporting
Information. A factor of RT In(24.46) was added to free energy for
each species to account for the 1 atm to 1 M standard state change.
All Gibbs energies in solution reported throughout the text are in
kilocalories per mole, and the bond lengths are in angstroms.
NCIPLOT* and Multiwfn®* were employed for the visualization of
non-covalent interactions and topolo%y analysis, respectlvely The
structures were generated by CYLview™ and VMD.”

20b,22

B RESULTS AND DISCUSSION

Model Reaction and Proposed Catalytic Cycle. In the
original experimental studies, it was shown that the benzylic

Scheme 2. Reactions and Catalysts Studied Computationally
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substituents at the catalyst stereogenic centers are essential for
high enantioselectivity, while the alkyl ester groups on the
stereocenter-bearing arms do not have a significant influence
on enantioselectivity.'">” We first explored the difluorination
of cinnamamide S1 catalyzed by aryl iodide Arl-4 (Scheme
2a). Subsequently, the stereocontrolling TSs for ArI-1—ArI-3-
catalyzed geminal difluorination of cinnamate ester S2
(Scheme 2b) were studied to investigate effects of catalyst
modification on enantioselectivities. Finally, ArI-4-catalyzed
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Figure 2. Lowest-energy conformation of the active catalyst iodoarene

difluoride ArIF,-4.

enantioselective 1,2-difluorination of cinnamamide S3
(Scheme 2c) was studied to determine the origin of
chemoselectivity.

The mechanism proposed in the initial study for aryl iodide-
catalyzed asymmetric migratory geminal difluorination is
shown in Scheme 3."' Oxidation and deoxyfluorination of
aryl iodide precursor Arl-4 gives the iodoarene difluoride
ArlIF,-4. ArIF,-4 is further activated by HF, and undergoes an
enantioselective 1,2-fluoroiodination of S1 to provide 37,
followed by the stereospecific formation of phenonium ion 4
and regeneration of Arl-4. The final regioselective fluoride
attack on 4 affords the 1I,1-difluorination product. The
computed reaction coordinate diagram shown in Figure 3
starts from ArIF,-4 described in Figure 2.'"*® The relative
energies are SMD-M06-2X/6-311++G(d,p)-SDD(I)//SMD-
MO06-2X/6-31G(d,p)-LANL2DZ(I)-computed Gibbs free en-
ergies, unless specifically noted.

Conformations of the Active Hypervalent lodoarene
Catalyst, ArlF,-4. We first explored the conformation of the

SMD-M06-2X/6-311++G(d,p)+SDD(1)//SMD-M06-2X/6-31G(d,p)+ LANL2DZ(l)
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Figure 3. Calculated potential energy profile for ArIF,-4-catalyzed asymmetric migratory geminal difluorination of cinnamamide S1 (standard

state, 1 mol L™").
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Figure 4. Calculated geometries of transition structures and intermediates for ArIF,-4-catalyzed asymmetric migratory geminal difluorination of

cinnamamide S1.

active catalyst ArIF,-4. Previous single-crystal X-ray structural
analysis®“’“**" as well as Sunoj and co-worker’s computational
studies®* on (diacetoxyiodo)arene bearing lactic esters and
amides have demonstrated the C,-symmetric helical chirality
around the central iodine atom. The conformational space of
the active catalyst ArIF,-4 was studied here. Figure 2 shows
the lowest energy conformer of ArIF,-4 (other high-energy
conformers are presented in Figure S1). A helical C,-
symmetric chirality around the central iodine atom is observed.
The benzylic group at the stereogenic center was found to have
a unique effect on conformation. In ArIF,-4, the center of the
aromatic ring of the benzylic group points toward to the
iodine(III) center, indicatingg the presence of attractive
halogen-bonding interactions™ between the electron-deficient
iodine(III) center and the electron-rich aromatic rings.”® Other
conformers without the halogen—7 interactions are at least 1.7
kcal mol ™" less stable (Figure S1).

Mechanism of Aryl lodide-Catalyzed Migratory
Geminal Difluorination of Cinnamamide. The computed
potential energy profile for ArIF,-4-catalyzed asymmetric
migratory geminal difluorination of cinnamamide S1 is
summarized in Figure 3. Optimized geometries of some key
transition structures and intermediates are presented in Figure
4. The first step is the activation of the iodoarene difluoride
ArIF,-4 by HF to generate the active catalytic species
1a*.*?%3! The formation of the hydrogen-bonded complex

1-HF is endergonic by 1.5 kcal mol™'.*>* The free energy of
activation for the transformation of ArIF,-4 to 1la* via TS1a-
HF is 19.0 kcal mol™". Although a single HF activation model
for iodoarene difluorides has been proposed,***>'¢ multiple
HF molecules (or even pyridine-H") likely participate because
a large excess of pyridine-9HF is employed in these reactions.
The activation barrier to ionization of ArlF,-4 is reduced to
13.7 kcal mol™ (TSla-2HF) when two molecules of HF
engage in activation, and no further reduction in barrier was
predicted computationally when three molecules of HF (or
pyridine-H") participate in activation (TS1a-3HF, AG¥ = 15.3
kcal mol™'; TS1a-PyrH*, AG¥ = 18.2 kcal mol™!; TS1a-HE-
PyrH, AG* = 172 kcal mol™; see Figure S2). The
transformation of ArIF,-4 to 1a* is also assisted by the ester
carbonyl group on the side chain through an I(III)*--O
interaction that stabilizes the incipient cationic iodonium
(Figure 3).> An I(III)*--O interaction was proposed and
confirmed by X-ray structural analysis by Wirth and co-
workers.**™** More recently, Fujita and co-workers also
reported that such a I(II[)*--O interaction exists even in
acetonitrile.”> The formation of the strong I(III)*--O
interaction in la induces a conformational change of the
benzylic group, resulting in disruption of halogen—x
interactions and exposure of the highly electrophilic cationic
I(III) center for subsequent substrate binding and activation.
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In the following step, 1a* coordinates to the Si-face of the
olefin substrate S1 through an I(III)*---7 interaction, leading to
a catalyst—substrate adduct 2, which lies 1.4 kcal mol™' below
la* (Figure 3). The nucleophilic attack of fluoride on the
exposed Re-face of the olefin of adduct 2 (Figure S) leads to
intermediate 3 with a barrier of 6.7 kcal mol™" (via TS2a-S)
with respect to 2. The syn 1,2-fluoroiodination (syn-TS2a-S) is
10.8 keal mol ™! less favorable than the anti 1,2-fluoroiodination
(TS2a-S). Additionally, the barrier for nucleophilic attack of
pyridine-HF (Olah’s reagent)®” to the alkene complex 2 is 9.6
kcal mol™ (TS2a-S-pyrHF), which is 2.9 kcal mol™" higher
than that for nucleophilic attack of "F(HF),. The formation of
the C—I bond significantly weakens the I—F bond in
intermediate 3 (I-F bond length 1.91 A in 2 versus 2.09 A
in 3; Figure 4). Consequently, the I-F bond in intermediate 3
is prone to dissociation under the activation of HF to provide a
more stable intermediate 3%, which is also stabilized by an
I(III)*---O interaction and is exergonic by 20.7 kcal mol™" from
3.

The aryliodonium moiety in 3" is an excellent leaving group.
It is displaced intramolecularly by nucleophilic attack of the
phenyl ring in the cinnamamide, leading to the stereospecific
formation of phenonium ion 4 and regeneration of ArI-4. The

15210

calculated barrier of the reductive displacement via an Sy2-like
transition state TS3a is 18.9 kcal mol™" relative to 3* (Figure
3). The last step of the reaction mechanism is the
regioselective fluoride addition to afford the chiral geminal
difluorination product. The computations predict that the
fluoride F~(HF), addition to the F-substituted carbon atom
through TS4 is facile, with a barrier of only 0.3 kcal mol™
relative to 4. Addition to the CONH,-bearing carbon atom
(TS4-2) is 10.7 kcal mol™ less favorable, which is in line with
our previous findings.*® The formation of P1 is highly
exergonic by 63.1 kcal mol™".

Reviewing the computed energy profile of the overall
reaction pathway,” it is seen that the 1,2-fluoroiodination is
the stereocontrolling step. This step generates the C*—F and
C*—I stereocenters. The stereochemical integrity of the former
is preserved in the subsequent reductive displacement and
fluoride addition.

Origin of Enantioselectivity. The lowest-energy TSs
leading to the major and minor enantiomers are shown in
Figure S. In TS2a-S, the Si-face of the olefinic double bond of
cinnamamide coordinates to the I(III)* center of catalyst,
while the incoming fluoride attacks the exposed Re-face, giving
rise to the experimentally observed major (S)-product after

DOI: 10.1021/jacs.8b05935
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reductive displacement and fluoride addition. In TS2a-R, the
Re-face of olefinic double bond coordinates to the I(III)*
center, and nucleophilic attack of fluoride takes place at the Si-
face. The computed activation energy difference between
TS2a-S and TS2a-R is 2.2 kcal mol™".** This corresponds to
an enantiomeric excess of 95% in favor of the S enantiomer,
which agrees qualitatively with the level and sense of
enantioselectivity observed experimentally (86% S ee).
Jacobsen and co-workers have demonstrated experimentally
that the benzylic substituents at the catalyst stereogenic centers
are essential for high enantioselectivity in the geminal
difluorination reaction, while the ester alkyl group on the
chiral arms does not have a significant influence on
enantioselectivity. ">’ Examination of the computed transition
state structures leading to the major and minor enantiomers
provides some insight into potential structural reasons for this
observation.

As depicted in Figure S, the phenyl group of cinnamamide
adopts a similar binding arrangement in both transition
structures. This causes the double bond to be oriented

DOI: 10.1021/jacs.8b05935
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Scheme 4. Proposed Mechanism for the Observed
Chemoselectivity
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differently in the two TSs. The olefin (C12—Cl13) of
cinnamamide and the C1—I2 bond of catalyst are in a spiro
arrangement in TS2a-S, but are nearly periplanar in TS2a-R
(the dihedral angle A1 between the Cl-I12 and C12—Cl13
bonds is 81.5° in TS2a-S vs —16.4° in TS2a-R; Figure S). We
define a spiro arrangement as 61 = 90 + 30° and periplanar as
01 = 0 + 30°. Thus, TS2a-R is destabilized by torsional
strain.”” We calculated the corresponding TSs (TS2a-S-M and
TS2a-R-M) with the catalyst stereogenic centers being
replaced by methyl groups (Figure 6a). TS2a-S-M and
TS2a-R-M are enantiomeric structures in which the double
bond and the C1—I2 bond are in spiro arrangements with an
identical dihedral angle 1 (01 = 79.2° in TS2a-S-M vs —79.2°
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Figure 9. Transition states for the aryl migration pathway (TS3) and
the anchimeric assistance pathway (TS3’) for reactions with different
substrates.

in TS2a-R-M). Comparing energy differences between TS2a-
R-M and TS2a-R-M-distorted indicates that the spiro
arrangement is more favorable than the periplanar arrangement
by roughly 6.6 kcal mol™" (Figure 6a).

A closer inspection of the two transition structures (Figure
S) reveals that there is a stabilizing 77 stacking
interaction*”*" between the phenyl of cinnamamide and the
electron-deficient iodoaryl ring of the catalyst* (optimized
TSs without 77 stacking were at least 7 kcal mol™" less stable
see Figure S5). The 77 stacking interaction provides a
driving force for the phenyl group of substrate to be deeply
buried in the catalyst’s chiral pocket (Figure 6b). When the Si-
face of the olefinic double bond coordinates to the I(III)*
center, the phenyl is well accommodated in a binding pocket,
and the double bond and the C1—-I2 bond can adopt an ideal
spiro arrangement (TS2a-S and TS2a-S-M have nearly
identical dihedral #1). However, when the Re-face of substrate
S1 coordinates in a similar manner to the I(III)* center of
catalyst, the phenyl group of cinnamamide will clash with the

ester carbonyl group at the stereocenter-bearing arm of
catalyst. Consequently, the chiral catalyst forces TS2a-R to
be distorted away from the ideal spiro structure in order to
accommodate the cinnamamide phenyl into the stabilizing
pocket (Figure 6b). These results suggest that the 77
stacking interaction plays a crucial role in stereoinduction in
this reaction. This model also accounts for the experimental
observation that the reaction conducted with (Z)-methyl
cinnamate proceeds with low enantioselectivity (Figure 7).
This is mainly because of loss of stabilizing 7---7 stacking
interactions due to improper spatial arrangement.43

It should be noted that other favorable non-covalent
interactions,™* including C—H---O* and C—H---7 interaction-
5,"9%% are also developed between the substrate and the
catalyst’s chiral pocket. However, these stabilizing interactions
do not appear to contribute significantly to enantiocontrol, as
their strengths were estimated to be of approximately the same
order of magnitude in TS2a-S and TS2a-R* 947 (Figure S9).

Impact of Catalyst Modification on Enantio-
selectivity. To understand the influence of catalyst mod-
ifications on enantioselectivity, the stereocontrolling TSs for
ArI-1—ArlI-3-promoted geminal difluorination of cinnamate
ester S2 were studied. The calculated transition structures
together with their relative free energies and ee values are given
in Figure 8. The calculated ee values are 99% (AAG* = 3.0 keal
mol™?) for Arl-1, —84% (AAG¥ = —1.2 kcal mol™) for Arl-2,
and —68% (AAG*¥ = —0.8 kcal mol™) for Arl-3, which are in
reasonable agreement with the experimentally observed trend
in these values: 94% for Arl-1, —77% for ArI-2 and —60% for
Ar-3.!

The olefinic double bond of the cinnamate ester and the
C1-I2 bond of catalyst adopt a nearly spiro arrangement in all
three favored TS structures but a periplanar arrangement in
disfavored TS structures (Figure 8). Replacing the phenyl
group of the catalyst with the more electron-deficient 3,4,5-
trifluorophenyl (a weaker z-donator) results in a longer C—
H---z distance in TS2c-R (2.46 A in TS2b-S vs 2.49 A in
TS2¢c-R). Thus, the C—H:--7 interaction would contribute a
lesser extent to the stabilization of the favored TS2c-R.
Additionally, a more acidic C—H bond in 3,4,5-trifluorophenyl
than in phenyl enables formation of a C—H--O interaction
with the ester carbonyl group of substrate in TS2c-S with C—
H---O distance of 2.67 A. Thus, the observed lower selectivity
of Arl-2 can be mainly attributed to two factors: (1)
attenuation of the C—H:--x interaction in the TS leading the
major stereoisomer and (2) strengthening of the C—H:--O
interaction in the TS leading the minor stereoisomer.
Replacing the phenyl group of the catalyst with cyclohexyl
results in disruption of C—H:-z interactions and repulsion
between the phenyl ring of the cinnamate ester and the
cyclohexyl of catalyst (Figure 8). These results are consistent
with the experimental observation that incorporation of poorly
m-donating substituents on the catalyst stereogenic center has a
pronounced deleterious effect on enantioselectivity.'"

Origin of Chemoselectivity. We also explored the origin
of altered chemoselectivity in the a-isopropyl cinnamamide
(Scheme 4). It was proposed that 1,1-difluorination proceeds
via skeletal rearrangement with the phenyl as a nucleophile,
while 1,2-difluorination occurs when the carbonyl of the
cinnamamide acts as the nucleophilic group (Scheme 4)."" We
have calculated the transition state structures that determine
the chemoselectivity of aryl iodide-catalyzed enantioselective
difluorination of substrates S1, S2, and S3. The results are
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presented in Figure 9. For S1 and S2, nucleophilic attack by
the phenyl group (TS3a-S1 and TS3a-S2) was found to 3.5
kcal mol™ and 6.4 kcal mol™ more favorable than by the
carbonyl group (TS3a’-S1 and TS3a’-S2), respectively. This is
consistent with the experimental observation that reactions of
S1 and S2 afford 1,1-difluorination product with complete
chemoselectivity. A greater energy difference between TS3a-S2
and TS3a’-S2 (AAG* = 6.4 vs 3.5 kcal mol™) can be
attributed to a lower nucleophilicity of the carbonyl group in
S2 as indicated by the calculated natural charges (Figure 9).

For a-isopropyl cinnamamide 83, nucleophilic attack by the
phenyl group TS3a-S3 becomes 3.5 kcal mol™" less favorable
than by the carbonyl group TS3a’-S3, consistent with the
experimental observation that only 1,2-difluorination product
is detected."' A closer look into the structure of TS3a-S3
reveals that nucleophilic attack of C12 by the phenyl group
suffers from steric repulsion between the phenyl and 'Pr
groups. The steric effect of the 'Pr group is largely attenuated
when the small carbonyl oxygen of the amide acts as the
nucleophile.

B CONCLUSION

We have developed a computational model to account for the
chemoselectivity and stereoselectivity of aryl iodide-catalyzed
asymmetric difluorinations of f-substituted styrenes. In the
transition structures leading to the major enantiomers, the
styrenyl olefin and the C—I bond of catalyst adopt a spiro
arrangement, and the phenyl group of the substrate is
accommodated in a binding pocket. Although the minor TS
has similar binding of the phenyl, this forces a less favorable
nearly periplanar arrangement in the transition structures
leading to the minor enantiomers. A slipped 7---7 stacking
interaction between the phenyl group of substrate and the
electron-deficient iodoaryl ring of catalyst plays a crucial role in
stereoinduction of these reactions. The model proposed here
may serve as a useful starting point for future analyses of
enantioselective alkene difunctionalization reactions catalyzed
by C,-symmetric chiral aryl iodides.
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