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Abstract: The Brown hydroboration reaction, first reported in
1957, is the addition of B—H across an olefin in an anti-
Markovnikov fashion. Here, we solved a long-standing prob-
lem on mild 1,3-hydroborations of non-activated cyclopro-
panes. A three-component system including cyclopropanes,
boron halides, and hydrosilanes has been developed for
borylative ring-opening of cyclopropanes following the anti-
Markovnikov rule, under mild reaction conditions. Density
functional theory (M06-2X) calculations show that the pre-
ferred pathway involves a cationic boron intermediate which is
quenched by hydride transfer from the silane.

Cyclopropanes are a fundamentally important class of
compounds not only because such small rings are found in
many biologically active compounds but also because a broad
range of pharmaceutical and agrochemical agents are synthe-
sized from cyclopropanes, as they can serve as useful synthetic
building blocks.!! The inherent ring strain present in small
rings is frequently used for ring-opening reactions, many of
which are not readily accessible by other conventional
methods.”) Most of the existing cyclopropane ring-opening
approaches have relied on the specific functional group
assistance, including 1) polarizing one of the C—C bonds
through the attachment of an activated donor—acceptor
cyclopropane,” and 2) the attachment of directing groups
that favor oxidative addition by a transition metal to form
metallacyclobutane intermediates (Figure 1a)."! Although
non-activated cyclopropanes are the most common three-
membered ring systems found in nature, methods for their
selective ring-opening remain scarce.”) Some elegant research
works have recently demonstrated that they could undergo
1,3-addition of B(C4Fs);/BuyP[® 1,3-aminofluorination,”” 1,3-
difluorination,® 1,3-deoxygenation,” and elimination!” reac-
tions. Nevertheless, the development of new systems for
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Figure 1. Ring-opening reactions of cyclopropanes.

efficient opening and functionalization of these compounds
under mild and environmentally friendly conditions is still in
high demand.

Alkylboronic esters play important roles in a variety of
fields ranging from material science to drug discovery and
organic synthesis.!"!! The well-known Brown hydroboration of
olefins is a classic transformation used for their synthesize.'”!
Hydroboration with HBR, (R = H, alkyl etc.) typically occurs
in an anti-Markovnikov manner. It proceeds via a four-
membered concerted transition state: the hydrogen and the
boron atoms added on the same face of the double bond
(Figure 1b).'"! However, such a pathway for the hydrobora-
tion of cyclopropanes is very sluggish.'¥ High reaction
temperatures and poor functional group compatibility make
this transformation less practical. Because boron halides were
known to be applied in electrophilic borylation reactions with
arenes, heteroarenes," alkynes!"” and alkenes,"”) we envi-
sioned that the alkene-like m-donating properties of non-
activated cyclopropanes could facilitate similar electrophilic
ring-opening and borylation. Herein, we describe the discov-
ery of a mild three-component system for the ring-opening
1,3-hydroboration of non-activated cyclopropanes and the
simplest cyclopropane gas, using BBr; as a boron source, and
PhSiH; as an external hydride source (Figure 1c). Through
mechanistic experiments and density functional theory (DFT)
calculations, we identified a stepwise pathway for this trans-
formation, which allows high reactivity at room temperature.
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determined by GC. [c] Yield of isolated product.
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We began our investigation by monitoring the reactivity of ~ Table 2: Substrate scope.”
2-(1-methylcyclopropyl)naphthalene (1a) in the presence of L2 cauiv BBy
. . . .2 equiv 1
boron Lewis acids (Table 1). The reaction was found to be 2 DoM. AN T/\/\,Bpi"
facile with 1.2 equivalents of BBr; as a boron source in the R e H
1 2
Table 1: Reaction optimization.? o[ in H _ _Bpin H ___Bpin H
1.2 equiv BBrs ©:‘/>\' O:‘g\' Q)\Aepm
W2 1.2 equiv PhSiH; Me F cl
Ve DCM, rt, 1 h _
O fhen 3.0 equiv pinacol OO H Bpin 2b, 87% 2c, 90% 2d, 62% 2e, 66%
EtsN, rt, 1 h H Me H Bpin H Me H Me
1a 2a Wspin /@:‘;\/ @)Kﬂspin Wapin
Br Br | MeO
Entry  Variation from the “standard conditions”  Yield of 2a [%]"
2f, 94% 2g, 86% 2h, 83% 2i, 55%P
1 none 92 (81)
2 without PhSiH; trace Ph Bpin Ph H Ph H H Me
3 NaBH, instead of PhSiH, 48 W7 Mo~ ~gn I~ He~gpn P gpin
4 LiAlH, instead of PhSiH, 55
5 Et,SiH instead of PhSiH, 52 2 92% 2k 88% 21, 85% 2m, 83%
6 Ph,MeSiH instead of PhSiH, 63 ' ' "
7 BCl; instead of BBr; 80 . H . " 4 A~
8 BF;-Et,0 instead of BBr, 0 Cefhra Bpin &/\/Bpin Bpin e Bein
9 BH, THF instead of BBr, + PhSiH, 0 Ceftia
10 HBBr,-Me,S instead of BBr; + PhSiH, 0 2, 85% 2o, 84% 20, 75% 2q, 93%
[a] Conditions: all reactions were run at a 0.20-mmol scale in 1.0 mL of "
DCM at room temperature for 1 hour, and then pinacol (0.6 mmol) in H H
Et;N was added, and the mixture was stirred for another 1 hour. [b] Yield Ve Ve Bpin Br/\m)\/\Bpin pno/\m)\/‘spin

Me

2r, 68% 2s,78% 2t, 53%"
H
presence of PhSiH; as a hydride source. In DCM at room i ) O o "
temperature for 1 hour, 4,4,5,5-tetramethyl-2-(3-(naphthalen- Phs/\m)\/\apm NWBP Q,Bpin
2-yl)butyl)-1,3,2-dioxaborolane (2a) is formed in 92% GC O
yield after pinacol protection. PhSiH; is crucial for high 2u,69%° 2v, 89%° 2w, 52%

conversion (entry 2). Inorganic reducing agents such as
NaBH, and LiAlH, and other hydrosilanes such as Et;SiH
and Ph,MeSiH were also effective and afforded boronate 2a

H  Bpin
—
Ph’( M Ph)\(l

e
Me

in 48-63 % yields as the only ring-opened product (entries 3— i 2x, 60%

6). The addition of BCl; also gave the desired product 2a in W Bpin

80% yield (entry 7), but BF; did not work in this reaction Ph P on

(entry 8). Further exploration showed that the common N 2 65% 22, 56% (9:1)%¢

reagents applied in Brown hydroborations (BH; THF and
HBBr,-Me,S) were completely ineffective in our reaction,
suggesting that 2a is formed by a different pathway (entries 9
and 10).

With the optimal conditions in hand, we examined the
scope of this 1,3-hydroboration reaction (Table 2). Substrates
containing spiro cyclopropanes with an indane or tetralin
scaffold (2b,c) were all rapidly ring-opened, and the corre-
sponding pinacol boronate esters were isolated in excellent
yields. Halogen substituents (F, Cl, Br and I) worked well
under the reaction conditions (2d-h), highlighting the poten-
tial of this process in combination with further conventional
cross-coupling transformations. While the O-demethylation
process with BBr; is well documented, substrate 1i bearing
a methoxy group is compatible with this process, affording
desired product 2i in 55% yield. The reaction of 1,1-
diphenylcyclopropane (1j) in our system afforded desired
product 2j in 92 % yield. Boronates 2k and 21 were obtained
in good yields from 1,1-arylalkylcyclopropanes after the ring-
opening reactions. 1,1-Dialkylcyclopropanes 1m-o could also

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

[a] Reaction conditions: 1 (0.50 mmol), BBr; (0.60 mmol), PhSiH;
(0.60 mmol) in DCM (2.5 mL) at room temperature, 1 hour; then pinacol
(1.5 mmol) in Et;N was added, and the reaction was stirred for an
additional 1 hour. [b] Using 1 (0.55 mmol), BBr; (0.50 mmol). [c] Using
1 (0.50 mmol), BBr; (1.10 mmol). [d] Determined by crude 'H NMR.

be subjected to our reaction conditions and desired products
2m-o0 were obtained in good yields after the ring-opening—
hydroboration reaction. Notably, this reaction is not limited to
cyclopropanes with a quaternary carbon center. Monosub-
stituted cyclopropanes 1p—v bearing aryl, benzyl, and alkyl
groups worked well in this protocol and gave corresponding
products 2 p-v with good yields and excellent regioselectivity.
Among these substrates, those containing Br (2s), OPh (2t),
SPh (2u), and carbazole (2v) functionalities were well
tolerated. Ring-opening and borylation of fused 1,2-disubsti-
tuted cyclopropane 1w occurred most favourably at the
secondary methylene position, and ring expansion products
were not observed. Trans-1,2-alkylarylcyclopropane 1x was

Angew. Chem. Int. Ed. 2018, 57, 16861-16865
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regioselectively converted into 2x in 60 % yield. However,
cis-1,2-diphenylcyclopropane (ly) was transformed into
product 2y by cleavage of the most sterically hindered
o bond. This mild hydroboration procedure can also be
utilized in late-stage functionalization of complexed biolog-
ically active molecules. The investigation was initiated with
the preparation of cyclopropane 1z from estrone. Then, 1z
was subjected to this developed method to produce 2z in 56 %
isolated yields with good diastereoselectivity.

The activation of small molecules has been an increasingly
popular area of research in recent years!™ and the C—H
borylation of small molecules such as methane,['”! ethane,”?!
and cyclopropanes™ have been recently developed. How-
ever, C—C bond cleavage-borylation of small molecules
remains a major challenge.’!! Having established optimal
reaction conditions, we found that the 1,3-hydroboration of
cyclopropane gas (3) under the pressure generated by
a balloon could produce "PrBpin (4) in 71 % yield (Scheme 1).

1.0 equiv BBr3
1.0 equiv PhSiH;

2 DOM.tt 12h o o
then 3.0 equiv pinacol =P
3 EtsN, 1t, 1 h 4
71%

Balloon pressure

Scheme 1. 1,3-Hydroboration of cyclopropane.

Compared to traditional Brown hydroborations of olefins,
the value of a 1,3-hydroboration of cyclopropanes is high-
lighted by the fact that the corresponding product contains an
additional methylene substituent. As shown in Scheme 2,
dehydroabietic acid (5) with a carboxylic acid group readily
produce olefin 6 and cyclopropane 7 in good yields. Not
surprisingly, ring-opening of compound 7 on a gram-scale
results in boronate 8 with excellent yield. As noted at the
outset, the boronate group is an extremely versatile inter-
mediate in organic synthesis because it can be converted into

Me  zn(CH,l),
CClLCOOH

DCM, 25°C, 24 h
84%

85% "standard
1.3 g-scale | conditions"

Me X =OH, 9a,91%
X = NHBn, 9b, 56%
X =Ph, 9¢, 80%% € -

X = furan-2-yl, 9d, 78%

X = vinyl, 9e, 86%

Scheme 2. Derivatization of 1,3-hydroboration products.
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other important compounds by reactions such as Brown
oxidation (9a), amination (9b), arylation (9¢), heteroaryla-
tion (9d), and vinylation (9e) reactions (For details, see the
Supporting Information).

Several experiments were conducted to provide insight
into the potential mechanism of this transformation
(Scheme 3). When the reaction of la is conducted with

1.2 equiv BBry
1.2 equiv PhSiD;

X oeMatin Bpin
OO Me  Tren 3.0 equiv pinacol O ;\ @
EtN, 1t 1h

84%

1.2 equiv BBry
1.2 equiv PhSiHg
DCM, x°C, y h
— =
then 3.0 equiv pinacol

h@rt 62%, 58% e |

- P BRIN 1 @200 4%, 7% ee | ©)
PR Me Me ' I

EtoN, 1, 1 h i8h,@-40°C 37%, 93%ee |
(R, R)-1x (R)-2x
98% ee
1.2 equiv BBry
1.2 equiv PhSiD;
o
; DCM, x C th Ph/Y\Bpin
Ph Me then 3.0 equiv pinacol Me
Et:N, 11, 1h
(R, R)-1x (R)-2x
98% ee likely via:
--------------------------------------------------------------- o ©
50% 12% 66% 2% 70% 17% Ph : BBr,
DD 359 D Pp12% D D 2% °
Ph Bpin Ph Bpin Ph Bpin Me
Me Me Me
D-2x D-2x D-2x
1Th@rt 2h,@-20°C 8h, @-40°C

Scheme 3. Mechanistic experiments.

PhSiD; under standard reaction conditions, the D label is
nearly fully incorporated into 2a (84 % yield, 98 % D). This
observation confirmed that the hydrosilane is the sole source
of the hydrogen atom in the product (Scheme 3 a). We further
employed (R,R)-1x under the standard reaction conditions,
and desired product (R)-2x was formed in 62% yield with
58% ee. As the reaction temperature was gradually reduced,
the enantioselectivity of the product increased to 93 %
(Scheme 3b). To further explore this process, PhSiD; was
added to the above mentioned reaction, and the hydrogen on
the chiral carbon was deuterated. Moreover, the ratio of
deuteration is consistent with the racemization product.
These results suggest that in situ-formed benzylic carbon
cations should be intermediates in these reactions and that
1,2-H migration is likely to occur during the C—C cleavage
process (Scheme 3c¢).

To better understand the mechanism of the 1,3-hydro-
boration of cyclopropanes, DFT calculations were performed
on the model reaction of cyclopropylbenzene and BBr;.*?! As
shown in Figure 2, the C—C cleavage of cyclopropylbenzene
promoted by BBr; to give benzylic cation IN1 via TS1
requires a barrier of 19.8 kcalmol™'. The benzylic carbon
abstracts a hydride from PhSiH; through TS2 with a barrier of
9.1 kcalmol ! relative to IN1. Such a barrier would allow the
benzylic carbon to undergo 1,2-H migration, which has
a barrier of only 6.3 kcalmol™'. This is in line with the
experimental observation of the racemized hydroboration
product in the hydroboration of chiral cyclopropane 1x.
Based on the computed energy profile of the overall reaction
pathway, the C—C cleavage is the rate-determining step, with
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CPCM(CH,Cl,)-M06-2X/6-311++G(d,p)/CPCM(CH,C1,)-BALYP/6-31G(d)

AG: keal mol™

BBr,
| _-36.7

+ PhSiHBr

Figure 2. DFT-computed potential energy profile for the model reaction
between cyclopropylbenzene and BBr; (standard state, 1 molL™).

an overall activation energy of 19.8 kcalmol™'. This is
consistent with the relatively mild conditions required for
the reaction. Notably, the calculated free energy of activation
for the hydroboration of cyclopropylbenzene by BH; through
a concerted process is as high as 28.7 kcalmol™" (TS1").['!

In conclusion, we have discovered a direct, catalyst-free
method for the 1,3-hydroboration of non-activated cyclo-
propanes under mild reaction conditions. With the developed
system in hand, the first conversion of cyclopropane to n-
propyl boronic esters has been achieved. The reaction
proceeds through a stepwise pathway via energetically
favourable transition states instead of a concerted four-
membered transition state. As a practical method, the
reaction cleanly and regioselectively produces widely used
alkyl boronic esters in good to excellent yields. Owing to these
advantages, this reaction should be of high synthetic value.
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