Low q Bicelles are Mixed Micelles
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ABSTRACT. Bicelles are used in many membrane protein studies as they are thought to be more
bilayer-like than micelles. We investigated the properties of “isotropic” bicelles by SANS,
SAXS, fluorescence anisotropy, and MD. All data suggest that bicelles with a g-value below 1
deviate from the classic bicelle which contains lipids in the core and detergent in the rim. Thus,

not all isotropic bicelles are bilayer-like.
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For nearly two decades, bicelles have had a wide variety of applications, most commonly as
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bilayer mimics for structura and functiona investigations of membrane-associated
proteins. A bicelle is a bilayer micelle; a disc-shape aggregate typically formed by a mixture of
detergents (Figure 1A) and lipids (Figure 1B). Bicelle self-assembly was first determined in
19847122 and since, bicelles have been characterized using many methods such as small angle
neutron scattering (SANS),?->* and NMR.?>3! The classically described ("ideal") bicelle contains
a central disk-shaped lipid bilayer encircled by a rim of detergents which screen the hydrophobic
lipid tails from water (Figure 1C).*?3 Thus, in the “ideal” bicelle the lipid and detergent
molecules are segregated spatially. Bicelles vary in size and shape depending on the ratio of lipid
to detergent (known as the g-value)**, the structure of the lipid and detergent monomers®, total

3336 and temperature?”>°. For solution NMR structural studies,

concentration of amphiphiles
bicelles with low g-values (< 0.7; also known as fast-tumbling “isotropic” bicelles) have
demonstrated some utility for polytopic integral membrane proteins.?* 31 3738 Several of these
studies suggest that the stabilization of membrane protein fold is due to the more “bilayer” nature
of bicelles compared to micelles. That is, the segregated lipid core in bicelles is more similar in
structure to the native membrane.

However, recent studies of binary mixtures of detergents of different alkyl chain lengths and
head groups indicated that these compositions are fully mixed (Figure 1D).>***° This observation
led to a hypothesis that bicelles with g-values below 1, for which the detergent concentration is
higher than the lipid concentration, may not have segregated lipid cores, as previously
suggested.’® Here, we investigate the structure and segregation of bicelles with g-values less than

1 formed by dihexanoylphosphatidylcholine (DHPC; Figure 1A) and

dimyristoylphosphatidylcholine (DMPC; Figure 1B), which have been studied for almost 30



years.*!"** Several measurable structural and physical properties allow the mixing of lipids and
detergents to be tested. As with mixed micelles, the average head group — head group distance
(L) is expected to vary with concentration in mixed bicelles and can be determined via small
angle X-ray scattering (SAXS), a model-free measurement.**-*’ Since the two components of the
bicelle have different scattering length densities, SANS can determine their degree of mixing.
The gel to liquid phase transition temperature (Tm), measured using the fluorescence anisotropy
of diphenylhexatriene (DPH), is an independent measurement of the extent of bilayer formation.
Finally, the shape, size, and lipid-detergent mixing can be quantified directly using molecular

dynamics (MD) simulations.

Figure 1. Structures of detergent (A), lipid (B), and cartoons of idealized bicelles (C) and mixed

micelles (D).

For an ideal bicelle with a fully segregated core, the average head group to head group distance
(L) equals to twice the length of DMPC tails plus a head group (one half on each side) (~43 A;
Figure 1C). But, if the detergent and lipid components mix, then the parameter L will be less and
decrease linearly with the concentration of DHPC in the core®*°. This structural feature can be

determined with SAXS, SANS, and MD simulations.



In the SAXS scattering profile, the second maximum (Qmax) corresponds to the distance
between opposing electron rich head groups, L.*> Our data show that at q-values from 0.5 to 1,
the model-free dimension L remains constant at 42 A (Figures 2 and S1), suggesting a segregated
bicelle (core). However, below q=0.5 L varies linearly with g-values (Figure 2), indicative of
mixing of lipid and detergent in the core. A linear fit produces a y-intercept of 22 A, the

approximate L of pure DHPC.4% 46
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Figure 2. Bicelle dimensions vary with g-values between 0 and 0.5. The L values are measured
directly from the SAXS profiles (L; L=27/Onax= 2 (1.5 + 1.265n¢) + t, where nc is the number of
carbons in the alkyl chain and t is the head group thickness) for bicelles with varying q (6%
(w/w) amphiphile). Linear fits to the data points for q < 0.5 (green) and data points for q > 0.5

(blue) are shown.

To further investigate the structure of bicelles, SANS experiments were conducted on bicelles
with g-values of 0.3 and 0.7 (see SI for methods) with different solvent scattering length
densities (varied percentages of D>O in H>0). Each scattering profile (Figure 3, S2, and S3) was

fit to the core-shell bicelle model (Figure S4). The obtained dimensions (Table S1, S2, and S5)



agree with the SAXS data (Table 1) and provide additional information about the shape. Higher

detergent concentrations reduce the size and result in a more spherical shaped bicelle.
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Figure 3. Examples of model fits to SANS scattering profiles of bicelles with q=0.3 (A) and
q=0.7 (B) (6% (w/w) amphiphile). The scattering profiles of bicelles with varying percentages of
D20 (red) and the fits using the core-shell bicelle model (black; parameters listed in Table S1,
S2, and SS5, all fits shown in Figure S3 and S4) are shown. Scattering profiles with D20

concentrations + 20% the match points were not included in the fits.

We also investigated the bicelle properties using all-atom MD simulations (see SI for details)
for g<1 bicelles. The simulation results support the SANS and SAXS analysis. At higher q,
bicelles become less spherical compared to lower q, as evident from the principal radii of an
ellipsoid fitted to the aggregate shape (Table 1, Table S6). This trend is observed in the SANS
models; however, the average radii from the SANS models are slightly smaller than the MD
models. Some discrepancies are expected due to the differences in the methods related to
ensemble properties (multiple bicelles in experiments with a certain degree of polydispersity vs.
a single bicelle in the simulation box). However, the MD dimensions are within the ranges

obtained from the SANS fits (Table S1, S2, and S6). The small radius is comparable to half the



SAXS-derived L dimension (the SAXS value is smaller by half of a head group since L is the
distance measured from the middle of each head group). Furthermore, L values derived from the
simulated SAXS data (from the MD obtained bicelle structures) are equal to the SAXS values for
q=0.7 (42 A), but are somewhat larger than those for q=0.3 bicelles (Figure 2, Table S6).
Altogether, the difference in the radii between q=0.3 and q=0.7 bicelles is indicative of a
structural change in isotropic bicelles above and below q=0.5. The linear changes in L observed
in SAXS experiments, and the overall geometry determined by all three methods suggest that the
bicelles with q<0.5 do not have fully segregated lipid cores. We therefore investigated bicelle
detergent-lipid mixing.

The classical bicelle model predicts that the concentration of lipids and detergents in the core
and rim will deviate from their bulk concentration: the bilayer forming lipid DMPC is expected
to preferentially partition to the core, while the detergent DHPC to the rim. We used SANS,
MD, and fluorescence anisotropy to investigate the extent of mixing in bicelles with g-values of
0.3 and 0.7.

Table 1. Comparison of experimental and MD derived radii and DHPC concentration for q=0.7

and gq=0.3 bicelles.

Radius (A) DHPC

q 1 ) EXIES/:;ed# Ob(s(;)r;/ed Ratio”
SAXS - 21 - -

0.7 | SANS | 32 22 56 45/51* 0.8/0.9

MD 40 27 49 09

SAXS - 16 - -

03 | SANS | 22 17 76 60/87* 0.8/1.1
MD 24 19 76 1

Dash indicates the parameter is not determined. See supplemental methods for calculations. *If
fully mixed, *Average values for the core/rim are given, "Ratio of expected to observed DHPC.



In SANS experiments, bicelles formed by DHPC with protonated alkyl chains and DMPC with
deuterated alkyl chains were used to distinguish a segregated versus a mixed bicelle.’
Deviations from the DHPC or DMPC alkyl chain scattering length density (SLD; Table S3) in
the “rim” and “core”, respectively, indicates lipid/detergent mixing because of the SLD contrast
between DHPC and DMPC (Table S3, see supplemental methods for calculation). To verify the
SLD values and the effective g-values of the bicelle the theoretical match points and the
experimental match points were compared and are in good agreement (Table S4). The SLD
values from the core-shell bicelle fits to the SANS data (Table S1 and S2 and Figure S2 and S3)
indicate that the core composition is 38 — 77% DHPC and 23 — 62% DMPC in q=0.3 bicelles and
the core composition is 37 —49% DHPC and 51 — 63% in q=0.7 bicelles. Although a broad range

of DHPC is observed for the g=0.3 bicelles, fully mixed values (76%) are observed (Table 1).

In MD simulations, the segregation of lipids and detergents can be quantified by comparing the
local concentration of DHPC around DMPC (see SI for details). There is on average 76% DHPC
around DMPC in q=0.3 bicelles and 49% in 0.7 bicelles. It is interesting to note that full
segregation was not observed in either case indicating a certain degree of mixing even in
isotropic bicelles with g¢>0.5. Thus, mixed nearly-spherical micelles were observed for g~0.3 and
partially segregated ellipsoid bicelles for q~0.7 (representative structures are shown in Figure 4;

the observed characteristics of g=0.3 bicelles are similar to previously reported simulations.*®



Figure 4. Snapshots from MD simulations of A) q=0.3 and B) gq=0.7 bicelles (9% (w/w)
amphiphile). DHPC and DMPC are rendered as sticks and colored yellow and blue,
respectively.*® The surface is shown as transparent gray and a portion of the bicelle is removed to

view the interior distribution of the DMPC and DHPC tails.

The fluorescence anisotropy of diphenylhexatriene (DPH) detects changes in the fluidity of
lipid bilayers as a function of temperature, from which the main phase transition temperature
(Tm) of a lipid bilayer can be determined.*->! To benchmark this technique, the Tm of pure
DMPC vesicles was measured to be 23.1 + 0.4 °C, consistent with other methods (Figure 5A).%
The Tm of bicelles is expected to be identical to that of DMPC vesicles if DPH partitions into a
region comprised purely of DMPC. However, if significant mixing between DMPC and DHPC
occurs, a decrease of T, compared to DMPC vesicles will be observed, as DHPC disrupts acyl

chain packing between DMPC molecules.



Analysis of the melting curves (Figure 5A) yielded the T, for each g-value. Comparison of the
Tm values obtained from the anisotropy measurements to Tm values for ideally mixed
DHPC/DMPC vesicles indicates significant differences at all g-values less than 1.0, suggesting
that these bicelles do not fit a fully mixed bicelle model (Figure 5B).>® This data agrees with
previously reported Tm values derived from FTIR spectroscopy of various g-value bicelles;*®
however, it does not support recent NMR data indicating similar lipid/detergent mixing in low
and high q bicelles.>? As the g-value increased, the Tm asymptotically approached the melting
temperature of a pure DMPC bilayer. Only for q > 1.0 a T close to that of a pure DMPC bilayer
is obtained (+ 1 °C) in agreement with FTIR measurements. (Figure 5B).*® This suggests a
variation in the lipid/detergent mixing at q-values below 1.0, in agreement with the geometrical
changes determined with SAXS (Figure 2), and the geometrical and lipid-detergent mixing

observed in MD and SANS studies (Table 1 and Figure 4).

0.357

0.30 & i
0.25 e e 41
Y
o 0.204
43 =
a 0.157 =3
[ N =
£ 0.10 =¥

0 T T T T T T T
0 5 10 15 20 25 30 35 40
Temperature (°C)
50
25
E S

251 /T
_50 T’ 70——Tq7=1.50 ‘

10



Figure 5. (A) Temperature dependence of the anisotropy value for DPH fluorescence
reconstituted into bicelles with varying q values (2.3% (w/w) amphiphile). The inflection point
of each melting curve was taken as the Tm. (B) Experimentally determined and calculated T
values for bicellar solutions as a function of mole fraction DMPC. The linear black dashed line
represents T values for ideal mixing (Tm = yDHPC x Twm(DHPC) + yDMPC x Tm(DMPC)).
The red dashed line shows the Tm of pure DMPC bilayers (23.1 °C). Errors in each Tn

measurement were approximately = 0.2 — 0.4 °C.

We have shown using four independent methods — SAXS, SANS, MD, and fluorescence - that
bicelle properties vary with the lipid-to-detergent ratio. The data suggest that at q-values below 1
lipid and detergent molecules partially mix, and the bicelle structure deviates from the ideal
bicelle model. With increasing g-values, the lipid-detergent aggregates transition from a
spherical mixed micelle through an ellipsoidal micelle to a disc-like bicelle.

These results suggest that care should be taken in interpreting membrane protein structural
changes in micelles and bicelles. Isotropic bicelles with g-values less than 0.5 likely present a
micellar environment, and bicelles with g-values less than 1 may not fully capture bilayer
properties. A recent NMR study inferred similar bicelle differences based on protein positioning
using PRE experiments.*® Changes in protein structure in a low-q micelle/bicelle may be related
to the micelle shape, size, and fluidity, or specific interactions with the lipids rather than the
claimed “more bilayer-like” feature. It is interesting to note that segregation of lipids in low q

bicelles may be protein mediated if the lipid interactions are pre-formed.’*>*
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